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Abstract

To discover or exclude at the LHC new particles, precise predictions of the expected
kinematic patterns and cross sections are essential. In this thesis, we focus on the production
of a heavy scalar singlet S through gluon fusion during 13TeV LHC collisions and its decay
into a pair of top-quarks (gg → S → tt̄). We investigate systematically for which singlet
scenarios the signal-background interference pattern contributes significantly to the signature
of the scalar. To answer this question we will compute the partonic cross section of the signal
process, of its interference with the background and of the background as well as simulate with
MadGraph, for various scalar scenarios, the total and differential cross section of the different
components during proton-proton collisions and analyze their dependences on the parameters
of the scalar, including its mass, width, coupling constants and complex phase of the transition
amplitudes.

We find that especially if the scalar has a large resonance width and weak scalar-gluon
and scalar-quark couplings, the interference can be relevant and even dominant in the scalar
signature. Depending on the complex phase of the signal and background transition amplitude,
the interference can shift the invariant mass peak away from the resonance mass, or decrease
(enhance) its counting rate as well as the total cross section. In some benchmark scenarios,
the interference causes a dip below the continuum background which could not be detected
when using the usual algorithm that only search for a peak.

Zusammenfassung

Um am LHC neue Teilchen zu entdecken oder auszuschließen, sind präzise Vorhersagen
der nach Proton-Proton-Kollisionen zu erwartenden differentiellen und totalen Wirkungsquer-
schnitte notwendig. In dieser Arbeit untersuchen wir die Produktion eines schweren, skalaren
Singuletts S durch Gluonenfusion während Proton-Proton-Kollisionen bei 13TeV und seinen
anschließendem Zerfall in ein Top-Antitop-Paar (gg → S → tt̄). Ziel ist es, systematisch zu
analysieren, für welche Szenarien die Interferenz zwischen Signal und Untergrund signifikant
zu der Signatur des skalaren Teilchens beiträgt. Um diese Frage zu beantworten, werden wir so-
wohl analytische Berechnungen der partonischen Wirkungsquerschnitte von Signal, Interferenz
und Untergrund durchführen als auch für verschiedne skalare Teilchen mit MadGraph die diffe-
rentiellen und totalen hadronischen Wirkungsquerschnitte bei Protonen-Protonen-Kollisionen
simulieren und deren Abhängigkeit von Parametern des Skalars, wie u.a. seiner Masse, Zer-
fallsbreite, Kopplungskonstaten sowie komplexen Phase der Amplitude, analysieren.

Unsere Ergebnisse zeigen, dass, insbesondere wenn das skalare Teilchen eine große Zerfalls-
breite und geringe Kopplung an Gluonen und Quarks besitzt, die Interferenz einen relevanten
und teils sogar dominanten Anteil an der Signatur des Skalars besitzt. Abhängig von der kom-
plexen Phase der Signal- und Untergrundamplituden kann die Interferenz die Position der
Resonanz verschieben oder die Zählrate dieser und somit den gesamten Wirkungsquerschnitt
verringern bzw. erhöhen. Es lassen sich Beispiele finden, in denen dieses sogar zu einem Ab-
fall der Zählrate unter die vom Standardmodell vorhergesagte Rate des Untergrunds führen
kann und somit nicht durch die üblichen Algorithmen, die ausschließlich nach Peaks suchen,
detektierbar ist.
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1 Introduction and Motivation
The Standard Model (SM) of particle physics includes all so-far known fundamental particles and
has been proven to describe a variety of the observed phenomena in particle physics. Despite the
great success of the SM, there are still several remaining open questions. Phenomena like the nature
of dark matter or the matter-antimatter asymmetry cannot yet be explained. Different theories
have been developed in order to explain these ‘beyond the Standard Model’ (BSM) effects. The
theories frequently predict new particles, which could be produced, for instance, in proton-proton
(pp)-collisions at the Large Hadron Collider (LHC). The production amplitude for new particles
at the LHC can interfere with SM amplitudes, leading to a shift in the expected event rates as well
as characteristic patterns in the kinematic distributions.

In this thesis, we systematically analyze this interference effect in the production of a new scalar
singlet particle decaying into a pair of top quarks gg → S → tt̄. To obtain general results, we
do not specify the model that predicts the scalar singlet further. We chose to investigate the pro-
duction channel through gluon-fusion, because this is the channel with the largest production rate
during pp-collisions. The amplitude from the scalar resonance interferes with the QCD continuum
background process gg → tt̄. The total counting rate for all gg → tt events includes signal events
with an intermediate scalar, background events without intermediate scalar and the interference
effects between signal and background. We aim to understand the structure of the interference
term and its dependence on the different parameters such as the couplings, mass and total width of
the new particle as well as the complex phases of the signal and background transition amplitudes.
We tackle these questions with two tools: analytical calculations to help us understand the struc-
ture of the interference effects clearly, and Monte Carlo simulations with MadGraph [1] to include
effects due to the parton distribution functions (PDF) and access different kinematic properties of
simulated event samples.

So far, searches by the ATLAS and CMS experiments have not discovered any evidence of a
new BSM scalar particle but set exclusion limits on the strength of the signal that a potential
scalar can produce [2, 3]. However, current and future runs of the LHC will be sensitive to a much
larger range of masses and couplings [4]. This will allow to detect rarer process and provides the
potential to find new particles or set stronger exclusion limits. To assess if the measured data
contain a new scalar, accurate predictions of the event rates are essential.

In contrast to previous analyses, the recent analysis by the ATLAS group [5] of data collected by
the ATLAS experiment at the LHC, at an center-of-mass energy of

√
s = 8TeV, took interference

effects into account. Former analyses have often only simulated the signal and the background but
have neglected the interference.

Interference effects have been thoroughly studied in the literature. Many studies have focused
on Higgs production in the H → γγ channel [6, 7]. It has been shown that the interference between
H → γγ and the background can cause a shift of the diphoton mass peak [6]. Furthermore, the
interference rate can be used to place limits or even measure the Higgs width [7].

Depending on the parameters of the new scalar, the shape of its interference distribution is com-
parable to the interference during a Higgs decay into photons. Similar to the H → γγ interference,
the gg → S → tt̄ interference distribution consists of the real part of the interference amplitude,
that has the shape of a bump and dip and is nearly anti-symmetric around the resonance mass
and the imaginary part of the interference amplitude, which has the shape of a Breit-Wigner dis-
tribution with a negative (dip) sign [8, 9]. The relative importance of interference compared to the
signal of the new scalar can be considerably larger than in the case of the interference of H → γγ
with the background. This is particularly true for a large scalar resonance width [10]. Thus, the
interference term can overwhelm the perturbative peak of the resonance and lead to a peak-dip
structure or even a dip alone, in the invariant mass distribution [8, 10]. In the following we want
to answer the question for which parameters of the singlet scenarios the interference has a relevant
influence on the line shape of the invariant mass distribution as well as on the total cross section.

This thesis is structured as follows: In the Sect. 2 we review some essential background in-
formation. This includes an introduction to the SM and its limits. We briefly discuss how new
scalars can appear in extensions of the SM. We also discuss how such a new scalar particle could
be produced and detected at the LHC.
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Figure 1: The Standard Model [11].

Sect. 3 provides a theoretical calculation of the partonic cross sections in presence of a scalar, for
the general case with a pair of quarks in the final state. We calculate the partonic cross sections of
the signal process (gg → S → qq), the background process (gg → qq) and the interference between
signal and background.

In the Sect. 4 we introduce numerical methods to generate and analyze signal, background and
interference events of the process gg → qq taking place during pp-collisions. Afterwards, in the
Sect. 5, we present the results of simulations with a top quark pair in the final state, performed
with the Monte-Carlo event generator MadGraph. We will discuss the dependence of the shape
and the size of the differential cross sections on different parameters and compare the numerical
results with the analytical results of Sect. 3. Furthermore, we discuss the influence of the quark
mass on the cross sections and show results of simulations with a pair of bottom quarks in the final
state.

Concluding remarks are made in Sect. 6.

2 Background

2.1 The Standard Model
The Standard Model is a fully renormalizable, Lorentz-invariant, gauge quantum field theory and
includes the electroweak unification and QCD [12]. It not only classifies the elementary particles
but also describes their fundamental interactions, except from gravity. The mass and kinetic terms
of the particle fields of the SM, as well as the interaction terms, can be written down in a lagrangian.
From this lagrangian, we can derive Feynman rules that can be used to calculate the probability
of an interaction between particles of the SM [13].

We distinguish two groups of particles, fermions and bosons. Fermions have a non-integer
spin and bosons have an integer spin. The group of fundamental, fermionic particles consists of
spin- 12 particles. These fermions can be can be subdivided into three generations of particles,
where each generation contains two quark flavors and two leptons. The group of fundamental,
bosonic particles consists of gauge bosons and the Higgs boson. Gauge bosons have spin-1 while
the Higgs boson has spin 0. An overview of the SM particles is provided in Fig. 1. There are also
antiparticles corresponding to the particles, that have opposite charge, flavour quantum-number
and third component of the iso-spin, but the same mass. [12]

Leptons can be divided into two classes: leptons with the charge e = −1.6× 10−19 C and
neutrinos (neutral leptons). Each generation of leptons contains one charged lepton and one
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neutrino. The first generation consists of an electron and an electro-neutrino. The other two
generations consist of one particle similar to the electron, but heavier, and its corresponding
neutrino. Neutrinos are uncharged and predicted by the SM to be massless. [12]

Quarks are distinguished by their mass, their flavour and their electric and color charges. In
each generation, there is one quark with charge +2/3e and another quarks with charge −1/3e.
The top quark is the heaviest quark. Quarks carry one of three possible colour charges. Due to
the colour confinement, quarks cannot be observed individually. They have to form color-neutral
particles called hadrons, consisting of a combination of two or three quarks. [12]

Gauge bosons mediate interactions between the different fermions. Charged particles can inter-
act via the exchange of a photon (electromagnetic interaction). The weak interaction is mediated
by W± and Z0-bosons. Quarks interact by strong interaction via the exchange of gluons. There are
eight differently colour-charged gluons, where each carries a combination of colour and anticolour.
Different to photons, gluons interact with each other. [12]

The Higgs boson is the most recently discovered particle at the LHC. It is a scalar particle
with no charge and mass mH = 125GeV. It couples to particles via the Yukawa couplings. As the
coupling strength is proportional to the particle mass, the particle with the largest coupling to the
Higgs is the top quark. [14]

Even though the SM has predicted all so-far discovered fundamental particles and a variety
of observed phenomena, it still has some deficiencies. For example, we can observe an oscillation
between neutrinos of different generations, which is inconsistent with massless neutrinos. Fur-
thermore, the nature of dark matter, dark energy and the matter-antimatter asymmetry cannot
be explained by the SM. To explain these effects of so-called ‘new physics’, various new theoret-
ical models have been developed [12]. Several of these models, especially the ones that aim to
explain the nature of dark matter or the matter-antimatter asymmetry, include additional new
scalar particles.

2.2 Higgs portal model
The simplest model including an additional scalar particle is the Higgs-portal model [15]. It extends
the SM Higgs sector by adding a real scalar S0 that transforms as singlet under the SM gauge
group. The new scalar interacts with the other SM particles only by mixing with the SM Higgs
doublet Φ0. The Lagrangian of the Higgs sector is then given by

LHiggs = |DµΦ0|2 + |DµS0|2 − µ2
1|Φ0|2 − λ1|Φ0|4 − µ2

2|S0|2 − λ2|S0|4 − η|Φ0|2|S0|2, (1)

where µi, λi are mass parameters and η defines the strength of the coupling [16]. We can rewrite the
Lagrangian by expanding the two fields about their vacuum expectation vΦ = (−µ2

1 − ηvS/2)/λ1

and vS = (−µ2
2 − ηvΦ/2)/λ2, which gives us Φ0 = (vΦ + Φ̃0) and S0 = (vΦ + S̃0) [16]. The linear

coupling between Φ0 and S0 induced by the term η|Φ0|2|S0|2, leads to physical mass eigenstates that
contain components of both fields. We obtain the mass eigenstates basis {S,Φ} by diagonalizing
the Lagrangian, which gives us(

Φ
S

)
=

(
cosα sinα
− sinα cosα

)(
Φ̃0

S̃0

)
, (2)

where α is the mixing angle [16]. We can interpret the mass-eigenstate Φ as the Higgs boson with
the mass mH = 125GeV, which was discovered at the LHC [17]. The scalars Φ and S interact
with fermions via Yukawa coupling of the doublet components. Thus, the interacting part of the
lagrangian includes

L ⊃ −yf Φ̃0ff +
gggH
vΦ

Φ̃0G
µνGµν = −yf (cosαΦ− sinαS) ff +

gggH
vΦ

(cosαΦ− sinαS)GµνGµν ,

(3)
where the second term of the lagrangian describes the effective coupling with the coupling constant
gggH between gluon fields Aµ and the Higgs doublet using Gµν = ∂µAν − ∂νAµ +O(A2) [20]. The
new scalar particle, S, interacts with fermions in the same way as the SM Higgs boson, but with
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Figure 2: An example proton-proton collision at LHC.

differently-scaled coupling constants that depend on the mixing angle, α [18]. This simplified model
requires further completion to render the scalar couplings gauge-invariant.

This model is just one of various possible models which includes an additional scalar. We will
examine the interference between a scalar singlet and the SM background for the general case, not
model specific. Consequently, we chose the singlet parameters, including the signal and background
phases, the singlet mass, its width and the Scalar-quark/Scalar-gluon coupling to be independent
of the limitations of a specific model.

2.3 LHC
The LHC is the biggest and most powerful particle accelerator worldwide [4]. Proton-proton (pp-)
collisions are performed at high energy (currently up to 13TeV [19]). Protons consist of partons,
which are two up and one down valence quark and a sea of gluon and quarks/antiquarks of different
flavours. The probability of finding a parton inside the proton, that has the momentum xip, where
p is the momentum of the proton, is given by the PDF [20]. During a pp-collision the partons
of the protons interact with each other (‘hard process’) [21]. Thereby, new particles, potentially
including the new scalar S, could be produced as intermediate particles. The intermediate particles,
produced in the collision, decay into final-state leptons or into gauge bosons and quarks that then
decay further or hadronize. Because of the confinement quarks form jets consisting of highly
boosted hadrons [20]. If during the ‘hard-process’ heavy particles like W± and Z0 bosons or top
quarks are produced, they decay further into leptons or into quarks that then form jets [21].

With the detectors at the LHC, particles like electrons, muons, photons, protons, neutrons
and pions can be detected directly [21]. Furthermore, the initial state partons from the detected
jets and its kinematic properties can be reconstructed using jet algorithms [20]. If the sum of the
transverse momenta of the detected jets and leptons in the center of mass frame is non-zero, this
can indicate the existence of a final state neutrino. We will discuss the detection methods that are
relevant for our process further in Sect. 4.2.

The two biggest experiments at LHC are ATLAS and CMS [19]. Both experiments use general-
purpose detectors that surround a pp-collision point. The number of pp-collisions at a given
collision point per unit of time through unit transverse area is proportional to the luminosity, L,
defined as

L ∝ fn1n2/a, (4)

where ni is the number of particles per bunch, f is the crossing frequency and a the transverse
profile of the beams [21].

So far, neither the data taken by ATLAS, nor by CMS has shown any hint for a new, BSM
scalar particle [2, 3]. Consequently, if a new scalar particle exists, it must either have a very high
mass and cannot be produced during the collisions at the LHC, or it has a very low cross section. In
the case where the signal is too small to be distinguished from the background, it would be possible
to discover the scalar with more data. Thus, the following data-taking periods, and especially the
high-luminosity upgrade of the LHC in 2025, after which the LHC will have a 10 times higher
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luminosity, provide possibilities to either discover a new scalar, if it exists, or to set new exclusion
limits [22].

3 Analytical calculations

3.1 Calculating cross sections
To discover a new particle, it is necessary to predict its cross section. In order to get a first idea
about how, in presence of a scalar, the events with a quark pair in the final state will be distributed
in phase space, we begin by calculating the partonic cross section of the examined process. The
cross section gives the likelihood of a particular final state for a given initial state [13]. It is not
possible to calculate the hadronic cross section for a quark-pair final state during a pp collision
analytically, because that requires including the parton distribution function of the protons (see
Section 4.1). However, calculating the cross section at parton level will already give us a general
idea of the line-shape of the hadronic differential cross section of the signal, interference and
background and how they depend on the different parameters. In Sect. 5 we will find that most
of the analytical calculated line shapes of the partonic cross sections as a function of the center of
mass energy of the partons ŝ are in good agreement with the line shapes of the differential hadronic
cross sections as a function of ŝ ,that we obtained when simulating pp-collisions numerically with
MadGraph. Also, the observed dependence on the different parameters of the scalar was similar.

The differential cross section for a process with two colliding particles with momenta pa and pb
and the energies Ea and Eb in the initial state and N particles with momenta p1, p2, ..., pN in the
final state is given by

dσ̂(ŝ) =
1

(2Ea)(2Eb)|va − vb|
|M|2dΠLIPS, (5)

where |va−vb| is the relative velocity of the incoming particles and dΠLIPS is the Lorentz-invariant
phase space [23]. The squared matrix element, |M|2, includes the average over initial states and
the sum over final states spins and colours and is given by

|M|2 = |〈f |M|i〉|2 =
1

n
·

∑
polarization

∑
colors

∣∣∣∣∣∣
∑

diagrams

M

∣∣∣∣∣∣
2

, (6)

where n is the number of possible initial states, |i〉 is the initial and 〈f | the final state [23].
In the case of two-to-two particle scattering (papb → p1p2) in the center-of-mass frame, the

cross section can be simplified to(
dσ̂
dΩ

)
CM

(ŝ) =
1

64π2ŝ|
|~p1
|~pa|

|M|2Θ(
√
ŝ−m1 −m2), (7)

where
√
ŝ = Ea+Eb = E1+E2 is the center-of-mass energy and Θ is the Heaviside function [23]. In

the instance that the incoming particles are massless and the outgoing particles have equal masses
m = m1 = m2, then the expression |~p1|

|~pa| can be simplified to |~p1|
|~pa| =

√
1− (2m)2

(pa+pb)2
.

To calculate the squared matrix element we use Feynman rules. The Feynman rules for the
scalar are obtained in analogy to the Feynman rules of the SM Higgs and can be found in Ap-
pendix A. We employ, as propagator of the scalar, a Breit-Wigner propagator

i

(ŝ−m2
s) + imsΓs

, (8)

where Γs is the resonance width and ms is the resonance mass.

3.2 Cross Section of gg → qq

The partonic cross section, σ̂, of the process g + g → q + q is given by

σ̂ ∝ |MS +MB|2 = |MS|2 + 2Re(M∗
SMB) + |MB|2 ∝ σ̂S + σ̂i + σ̂B , (9)
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where MS is the transition amplitude for quark pair production through an s-channel scalar, in
a simplified model with effective gluon-scalar coupling (see Fig. 3), and MB is the transition
amplitude of the background, where no intermediate scalar is produced (see Fig. 4). In Fig. 3 and
Fig. 4 the momenta of the incoming gluons are k1 and k2. The momenta of the outgoing quarks
are p1 and p2. All momenta are defined in the center of mass system and from left to right in
direction of the time axis.

For simplicity, from here on, ‘signal’ will refer to only the process where an intermediate scalar
is produced (gg → S → qq). Thus, the partonic cross section of the signal, σ̂S , is proportional to
|MS|2.

‘signal’ ∝ σ̂s ∝ |MS|2. (10)

The ‘interference’ is the part of the cross section that is proportional to 2Re(M∗
SMB). Its partonic

cross section is
‘interference’ ∝ σ̂i ∝ 2Re(M∗

SMB). (11)

We denote the part of the cross section that is different from the background, i.e. the sum of signal
and interference as ‘signal including the interference’ , σ̂S+i = σ̂i + σ̂S . The ‘background’ is the
process where no intermediate scalar is produced. Its partonic cross section, σ̂B , is proportional
to |MB|2.

k2

k1

S

p1

p2
g : (ν; b)

g : (µ; a) q

q

Figure 3: Feynman diagram of the signal process.

k2

k1

g

p1

p2
g : (ν; b)

g : (µ; a) q

q

(a) Background term 1.

g : (µ; a) q

g : (ν; b) q

k1 p1

k2 p2

q

(b) Background term 2.

g : (µ; a) q

g : (ν; b) q

k1 p2

k2 p1

q

(c) Background term 3.

Figure 4: Feynman diagram of the background processes.

Using Feynman rules [13], we can derive the matrix element for the signal process

iMS = ε∗µ(k1)ggg(−i)(k1,νk2,µ − k1k2η
µν)ε∗ν(k2)

i

((k1 + k2)2 −m2
s) + imsΓs

u(p2)(i)gqqv(p1), (12)

where ggg = |ggg| · eiα is the coupling constant between gluons and the scalar, gqq = |gqq| · eiβ is
the coupling constant between the scalar and the quarks, ηµν is the Minkowski metric and ε∗µ(k1),
ε∗ν(k2) the polarization vectors of the initial state gluons.

The cross section of the signal is given by

σ̂s(ŝ) =
ŝ2

256π

(
1− (2mq)

2

ŝ

) 3
2 |ggg|2|gqq|2

(ŝ−m2
s)

2 + (msΓs)2
Θ(ŝ− (2mq)

2), (13)
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including the factor 1
n = 1

2·8 , used for spin- and colour averaging. Gluons are colour octets that
can have either a spin up or a spin down. Thus, there are n = 8 · 2 possible initial states per
gluon (8 possible colour states and 2 possible spin states). In the case of small quark masses, the
partonic cross section calculated above of the signal Eq. (13) as a function of ŝ is approximately
a Breit-Wiegner distribution. Depending on the choice of parameters, the distribution is slightly

asymmetrically shifted to larger ŝ because of the
(
1− (2mq)

2

ŝ

) 3
2

term. This effect is higher for

larger Γs, because if the width is small,
(
1− (2mq)

2

ŝ

) 3
2 ≈ const. for

√
ŝ ∈ [ms − Γs,ms + Γs].

Furthermore, the shift due to
(
1− (2mq)

2

ŝ

) 3
2

is higher for larger quark masses.
The matrix element for the first background diagram in Fig. 4a is given by

iMB1
=ε∗µ(k1)gsfabc

[
(−2k2 − k1)

νηµλ + (k1 − k2)
ληµν + (2k2 + k1)

µηνλ
]

ε∗ν(k2)
−iηλδδcd
(k1 + k2)2

u(p2)igsT
dγδv(p1),

(14)

where gs is the strong coupling constant. The matrix elements of the other two background
diagrams, Fig. 4b and 4c, are given by

iMB2
+ iMB3

=ε∗µ(k1)ε
∗
ν(k2)u(p2)(igs)

2

[
γµT aT b i(6 k1 −6 p1 +mq)

(p1 − k1)2 −m2
q

γν−

γνT bT a i(6 k2 −6 p1 +mq)

(p1 − k2)2 −m2
q

γµ

]
v(p1).

(15)

The differential cross section of the background process is given by

dσB

dt̂
(ŝ) =

g4

π128ŝ2

[
6(g2qq − t̂)(m2

q − û)

ŝ2
−

m2
q(ŝ− 4m2

q)

3(m2
q − t̂)(m2

q − û)
+

4(m2
q − t̂)(m2

q − û)− 8m2
q(m

2
q + t̂)

3(m2
q − t̂)2

+ (t̂ ↔ û)− 3
(m2

q − t̂)(m2
q − û) +m2

q(û− t̂)

ŝ(m2
q − t̂)

+ (t̂ ↔ û)

]
Θ

(
1− (2mq)

2

ŝ

)
,

(16)
where t̂ = (p1−k1)

2 = (p2−k2)
2 and û = (p2−k1)

2 = (k2−p1)
2 are the Mandelstam variables [24].

The next step is to calculate the cross section for the interference term. As can be seen in
Eq. (7), only the diagrams with the same initial state interfere with each other. To get a scalar
particle, the spins and colors of the incoming/outgoing particles have to cancel each other [10].
This is not the case for the background diagram Fig. 4a, gg → g → qq, because the propagating
gluon has colour. Thus, there can only be an interference between the signal and the background
diagrams Fig. 4b and Fig. 4c. The interference term is given by∑

polarization

∑
colors

2Re (M∗
S(MB2

+MB3
)) = 2Re

( ∑
polarization

∑
colors

ερ(k1)g
∗
gg(k1,σk2,ρ − k1k2η

ρσ)

εσ(k2)
−i

((k1 + k2)2 −m2
s)− imsΓs

v(p1)g
∗
qqu(p2)ε

∗
µ(k1)ε

∗
ν(k2)u(p2)(igs)

2[
γµT aT b i(6 k1 −6 p1 +mq)

(p1 − k1)2 −m2
q

γν − γνT bT a i(6 k2 −6 p1 +mq)

(p1 − k2)2 −m2
q

γµ

]
v(p1)

)
.

(17)
In the limit mq → 0, there is an odd number of γ matrices, so that the trace vanishes and the
interference term is zero. Therefore, the interference term is enhanced by the mass of the quark.
We can simplify the Eq. 17 by using

2Re
( −g∗ggg

∗
qq

(s−m2
s)− imsΓs

)
=

2|ggg||gbb|
(s−m2

s)
2 + (msΓs)2

(
− cosφ(s−m2

s)− sinφmsΓs

)
, (18)
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where φ = α+ β − ξ is the difference between the strong phase of the signal α+ β and the strong
phase of the background ξ. The cross section of the interference term is then given by

σ̂i(ŝ) =
1

π · 64ŝ
|ggg||gbb|

(ŝ−m2
s)

2 + (msΓs)2
(
− cosφ(ŝ−m2

s)− sinφmsΓs

)
g2smq−m2

q

2 (14t̂+ 12û)− 3t̂û
2 − t̂2

2 − û2

t̂−m2
q

−
−m2

q

2 (14t̂+ 12û)− 3t̂û
2 − t̂2

2

û−m2
q


=

1

π · 32
|ggg||gbb|

(ŝ−m2
s)

2 + (msΓs)2
(
− cosφ(ŝ−m2

s)− sinφmsΓs

)
g2smq[

artanh

(√
1− (2mq)2

ŝ

)
−
√

1− (2mq)2

ŝ

]
Θ
(
ŝ− (2mq)

2
)
.

(19)

For φ = 0 (φ = π), the interference term Eq. (19) as a function of ŝ has the shape of a peak
followed by a dip (dip followed by a peak). For φ = π

2 (φ = 3π
2 ) its shape is approximately a

Breit-Wiegner distribution, but with a negative sign (positive sign). This will be discussed further
in Sect 5.2, where we also show plots of the line shape of the partonic cross section for different
phases (see Fig. 5).

3.3 Height (difference) of the peak (and dip) of σ̂(ŝ)

If we want to investigate how the size of the parton-level interference and signal terms are influenced
by the choice of the couplings ggg, gtt, the width Γs, the scalar mass ms and the quark mass mq,
there are two methods that we can choose. We can either discuss the influence on the total cross
section, i.e. the integral of the cross section over ŝ, or look at the height (difference) of the peak (and
dip), Â, of the partonic cross section defined as the difference between minimum and maximum of
the partonic cross section:

Â = σ̂max(ŝmax)− σ̂min(ŝmin). (20)

The total cross section is mainly influenced by the part of the interference-term proportional
to sinφ, because the term proportional to cosφ has a positive and a negative part that largely
cancels in the total cross section. However, even for φ = 0, the interference term can influence the
kinematics, because it shifts the position of the maximum of the signal including the interference.
This is why we choose to discuss the influence of the different parameter on Â.

As the partonic cross section of the signal is always positive and approaches zero for ŝ → ∞.
The height of the signal peak, Âs, is given by Âs = σ̂s,max − σ̂s,min = σ̂s,max − 0. We can simplify
the signal terms in Eq. (13), by expanding in a Taylor series around (2mq)

2

ŝ = 0, which gives us

σ̂s(ŝ) =
ŝ2

642π

(
1− (2mq)

2

ŝ

) 3
2 |ggg|2|gqq|2

(ŝ−m2
s)

2 + (msΓs)2
Θ(ŝ− (2mq)

2)

=
ŝ2

642π

(
1− 1.5

(2mq)
2

ŝ

)
|ggg|2|gqq|2

(ŝ−m2
s)

2 + (msΓs)2
Θ(ŝ− (2mq)

2) +O

(4m2
q

ŝ

)2
 .

(21)

The maximum of the simplified term is at

ŝmax = m2
s + Γ2

s+O

(
4m2

q

ŝ

)
. (22)

Evaluating Eq. (21) at ŝmax gives us the height of the peak

Âs = σ̂s,max − 0 =
|ggg|2|gqq|2

4 · 642π
m2

s + Γ2
s

Γ2
s

(
1− 1.5

(2mq)
2

m2
s + Γ2

s

)
. (23)
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We find that, Âs is proportional to the squared coupling constants and in the case of ms � Γs

and ms � mq, it is approximately proportional to 1/Γ2
s. Furthermore, Âs increases with ms and

decreasing with mq.
Concerning the interference, there is no simple closed-form for the maximum and the minimum

of the partonic interference cross section (Eq. (19)). To examine the dependence of the height (dif-
ference) of the peak (and dip) of the interference, Âi, on Γs, ms and φ, we have simplified the cross
section further by approximating the interfering background near the resonance to be independent
on ŝ and using the narrow-width approximation (NWA). This is a reasonable approximation for
very small Γs and should show schematically the dependence on the different parameters. Taking
this into account and using that the transition amplitude of the signal is proportional to the prop-
agator of the scalar multiplied with the coupling constants, we can simplify the interference term
to

σ̂i ∝ 2Re
(
M∗

B2,3

ggggqq
(ŝ−m2

s)− imsΓs

)
= |MB2,3 |

2|ggg||gqq|
(ŝ−m2

s)
2 + (msΓs)2

(
− cos(φ)(ŝ−m2

s)− sin(φ)msΓs

)
,

(24)

where |MB2,3
| is the transition amplitude of the interfering part of the background.

For φ = 0, the maximum and the minimum of the simplified interference term Eq. (24) differ
only by sign and can be found at

ŝmin,max = m2
s ±msΓs. (25)

Thus, Âi of the φ = 0 interference term is proportional to

Âi ∝ |MB2,3 |
|ggg||gbb|
msΓs

. (26)

For φ = π
2 , the interference consists of only a peak with a maximum at ŝmin/max = m2

s. Its height
is the same as the height difference between peak and dip for φ = 0.

We can conclude that Âi is approximately proportional to 1/Γs and proportional to ggg and
gqq. The dependence on ms is less obvious since the assumption that the background is the same
for

√
ŝ ≈ 500GeV, which is approximately the position of the maximum for a singlet scenario with

ms = 500GeV, as for
√
ŝ ≈ 1000GeV, which is approximately the position of the maximum for a

singlet scenario with ms = 1000GeV, is not a good approximation. Thus, the decaying background
has a non-negligible influence on the dependence of Âi on ms, which can also be seen in Eq. (19)
when evaluating the part of the cross section that is caused by the decaying background for large
values of ŝ

lim
ŝ→∞

[
artanh

(√
1− (2mq)2

ŝ

)
−
√
1− (2mq)2

ŝ

]
= ∞. (27)

If we compare Âs and Âi, we observe that for sufficiently small |ggg||gqq|
Γs

, Âi can be larger than
Âs. Thus, in this scenario, the interference becomes important for an accurate description of the
process.

4 Numerical simulations

4.1 Simulations with Madgraph
After having calculated the partonic cross section for gg → qq and discussed the influence of the
different parameter, we want investigate which signal we would measure during pp-collisions at the
LHC. To calculate such a hadronic cross section, we have to take into account the probability of
finding a gluon i inside the proton, that carries the fraction xi of the total proton momentum p.
This probability is given by the PDFs fg(xi); fg(xi) decreases approximately with x−2

i [20]. The
hadronic cross section for obtaining a given final state during a pp-collision is given by

σ =

∫
dx1dx2σ̂(ŝ)fg(x1)fg(x2)δ(ŝ− x1x2s), (28)
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where s is the center of mass energy of the protons [21]. This integral has to be solved numerically,
which is done by programs like Madgraph performing Monte-Carlo integration. Madgraph provides
the total cross section, as well as event samples with kinematic features, mimicking measurable
events. We will perform tree-level simulations with MadGraph Version 5 using the SM defined
in FeynRules for background events and a self-implemented FeynRules model to generate events
involving the scalar. We set the luminosity L = 300 fb−1, the energy of the proton beams

√
s
2 =

6500GeV and the total number of events Ntotal = 100000. We used minimal phase-space cuts,
including a minimal distance between jets of ∆R = 0.4 a, a maximum pseudorapidity of jets of
η = 5, a minimum transverse momentum of jets of 20GeV and a minimum invariant mass of
b-quarks of mbb,min = 250GeV.

4.2 Detection method
In Sect. 5.2-5.7 we will discuss the case where we have a top pair in the final state. This is the
final state with the largest interference contribution.

Because of their short lifetime, we cannot detect top quarks directly. Almost 100% of the
top quarks decay into a b-quark and a W+ boson [26]. The W± bosons decay either leptoni-
cally or hadronically [26]. We want to look at the channel tt → W+bW−b, where one W± boson
decays leptonically and the other one hadronically (‘lepton-plus-jets channel’), because this al-
lows us to use the lepton as the trigger event [26]. Thus, we will detect events with one single
muon or electron, missing transverse momentum which indicates the existence of the correspond-
ing muon/electro-neutrino, two b-jet and other hadronic jets [27]. The hadronically decaying top
quark (top quark that decays into the hadronically decaying W± boson) is reconstructed using
top-tagging algorithm [28].

The branching ratio of the decay of the W± boson into hadrons is
Br(W± → hadrons) = 67.42 ± 0.27% [26]. The branching ratio of the W±-boson into electron is
Br(W± → e±ν) = 10.71± 0.16% and into muons is Br(W± → µ±ν) = 10.63± 0.15% [26]. Thus,
the branching ratio for the decay of the top pair into the ‘lepton-plus-jets channel’ is given by
Br(tt → lepton+ jet) = 2 · 67.42% · 10.71% · 10.63% = 28.89%, when using only electrons or muons
as trigger events.

If we are looking at a real particle detector, we also need to take into account that not all of the
decays of the top pair into ‘lepton-plus-jets’ events can be detected. The detection efficiency of the
ATLAS detector for electrons and muons is about 90% [29, 27] . The b-tagging efficiency for the
examined events is approximately 77% and the hadronically decaying top quark is detected with an
efficiency of about 80% [27]. Thus, the total detection efficiency is approximately 55.44%. These
efficiency values are only valid when performing various cuts on the data and using specific ana-
lyzing methods. To get an approximate idea of the counting rates, we will include these efficiency
factors, even though we did not perform these cuts and analyzing methods in our simulations.

We will include the corresponding branching ratios and efficiencies in our analysis of data
generated by MadGraph.

In Sect. 5.8 we will discuss the decay of the scalar into b-quarks. For the b-quark, the detection
efficiency of the b-pair is 0.772. The gg → bb process also has an additional, not interfering
background component arising from gg → gg events, where the final state gluons are misidentified
as pairs of b-quarks. As we mainly focus on the decay into a top pair final state and only provide
approximate results for the b-quark final state, we will not take this extra background into account.

4.3 Analysis
We want to investigate the dependence of the interference and the signal terms on the complex
phases of the signal and background transition amplitudes φ, the scalar mass ms, the width Γs, the
coupling constants gqq, ggg and the quark mass mq. The relevant questions are how the kinematic
distributions look, for which parameter values the interference term is negligibly small compared

a∆R =
√

η2 +Φ2, where Φ is the azimuth angle around the beam pipe and η = − tan(θ/2) is the pseudorapidity,
defining θ as the polar angle [25].
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to the signal and which parameters allow the interference and the signal to be distinguishable from
the background. For various different parameters we will separately generate for the interference,
signal and background event samples with MadGraph and plot histograms of the obtained the
invariant mass distributions. The invariant mass distribution denotes the differential, hadronic
cross section dσ

dmqq
as a function of the invariant mass of the quark pair (mqq = ŝ).

To observe the qualitative influence of the different parameters, we first show for several bench-
mark scenarios, histograms of invariant mass distribution. This allows us to observe the influence
of the different parameters, not only on the size of the differential, hadronic cross sections, but also
on the shape. We will compare the histograms of the invariant mass distributions obtained with
MadGraph with the results of our analytical calculated parton-level cross section of Sect. 3.2.

Moreover, we want to take into account that the particle detectors do not measure the exact
energy of the detected quarks. Real particle detectors have different energy resolutions and distri-
butions in different parts of the detectors [6]. However, to show qualitatively the influence of the
limited detector resolution, we approximate the measured energy to be a Gaussian distribution. A
typical detector resolution in the search for new heavy resonance is 8% of the invariant mass of the
top-pair (at mtt = 400GeV) [29]. Thus, to obtain plots including resolution effect, we produce a
random, normally distributed number around the cm-energy mtt with the standard deviation of 8%
of mtt of the event generated by MadGraph, and identify this number with the energy measured
by the detector. We want to observe the effect of the energy resolution, depending on the shape
of the histograms, which is influenced by the width Γs and the signal and background phases φ.

To quantify the effect of the different parameters on the size of the interference and signal terms,
we plot the height (difference) of the peak (and dip) as a function of the different parameters. The
height of the signal peak As and the height of the interference peak (and dip) Ai is defined
as difference between the highest and lowest differential hadronic cross section per bin in the
histogram. We will compare the numerically with MadGraph obtained dependence of As and Ai

on the different parameters with the analytically in Sect. 3.3 calculated dependence of Âs and Âi

on the different parameters.
To determine if the signatures of our singlet scenarios are actually relevant for LHC measure-

ments and not just in the order of magnitude of statistical fluctuations of the background, we need
to calculate their significance. In our analysis we will compute the significances over the QCD
background on parton level of the signal alone, the interference alone, the absolute value of the
interference alone and of the signal including the interference (i.e. the part of the total counting
rate that is produced due to an intermediate scalar). If the significance of the signal including the
interference is large enough, it is potentially possible to discover the scalar at the LHC. However,
to perform precise predictions about the significance, we would need to discuss resolution effects
and detection efficiency in more detail and perform further cuts on the data. As this is beyond the
scope of this thesis, we will only roughly estimate the significance and discuss their dependence on
different parameters.

We define the significance of the signal alone Ss, the significance of the interference alone Si and
the significance of the signal including the interference Ss+i as the sum of signal and/or interference
events within a symmetric interval around the approximate position of the maximum of the signal
divided by the statistical error of the background (the square-root of the sum of background-events
within the same interval). For example, the significance of the signal including the interference is
given by

mqq,max∑
k=mqq,min

(
dσk

i

dmqq
+

dσk
s

dmqq
)L√∑mqq,max

k=mqq,min

dσk
B

dmqq
L

, (29)

where L is the luminosity and thus dσx

dmqq
L the number of events per bin.

If we take into account resolution effects, an appropriate choice of the interval would be the
position where the scalar is produced on-shell (i.e. at

√
ŝ ≈ ms) plus/minus its statistical error,

which is given by the squared sum of the width Γs and the resolution of the detector. Assuming a
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Table 1: Quantities characterizing the chosen singlet scenario. Can be evaluated separately
x ∈ {s (signal), i (interference), |i|, s+i (Signal including the interference), B (background), total
(s+i+B)}.

Symbol Description Expression Sect.

σ̂x(ŝ) Partonic cross section of x Calculated analytically 3.2
dσx

dmqq
Differential cross Section of x during pp collision Generated numerically

with MadGraph
5

Âx Height (difference) of the peak (and dip) of σ̂x(ŝ) Calculated analytically
from the function σ̂x(ŝ)

3.3

Ax Height (difference) of the peak (and dip) of dσx

dmqq
Computed numerically
from the histogram of
dσx

dmqq

5

Sx Significance of x defined in Eq. (29) Computed numerically
from the histogram of
dσx

dmqq

5

detector with a energy resolution of the invariant mass of the top pair of 8% [29], we would obtain

mqq,min/max = ms ±
√
Γ2
s + (0.08 ·ms)2. (30)

If we do not take into account resolution effects of the detector, then

mqq,min/max = ms ± Γs. (31)

We did not take into account that the maximum is not at
√
ŝ = ms, but slightly shifted due to

phase space factors and PDF effects. However, this should not change our result significantly,
because we choose a sufficiently large interval.

Table 1 shows an overview of the quantities that we want to analyze systematically for various
different singlet scenarios. We will examine the dependence of the listed quantities as a function
of each parameter of interest, namely the Signal and Background phases φ, the scalar mass ms,
the width Γs, the coupling constants gqq, ggg and the quark mass mq.

4.4 Choice of parameter
While varying gtt, ggg and Γs, we have to make sure that the couplings of the new scalar S and its
width Γs are chosen consistently. Equivalently, when we choose a given singlet scenario, the total
decay width, Γs, has to be the sum of the partial widths, i.e.

Γs = Γ(S → qq) + Γ(S → gg) + Γ(S → x) > Γ(S → qq) + Γ(S → gg), (32)

where x are other particles like W± or Z0 bosons that the scalar can decay into. In our simplified
model we only consider the interaction between the scalar and gluons or quarks. Equivalently to
condition that Γs > Γ(S → tt) + Γ(S → gg), we can also assure that the sum of the branching
ratios Br for a decay into tops and gluons

Br(S → tt) + Br(S → gg) =
Γ(S → tt)

Γs
+

Γ(S → gg)

Γs
, (33)

must be < 1.
We can calculate the partial width Γ(S → tt) from the literature result for the SM Higgs boson,

Γ(H → ff) = Nc
GF

4
√
2π

m2
fMHβ3

f , (34)
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where Nc = 3 is the colour factor, mf the fermion mass, MH is the Higgs mass,
GF = 1√

2v2
= 1√

2(246GeV)2
is the Fermi coupling constant and βf =

√
1− 4m2

f/M
2
H [30]. Thus,

the branching ratio of our scalar particle is given by

Br(S → tt) =
Γ(H → ff)

Γs

g2Sqq

g2Hqq

=
3msg

2
qq

8πΓs
β3
q , (35)

where gHqq =
mq

v is the coupling of the Higgs boson to a quark pair and g2Sqq = g2qq [8].
Values for the partial width Γ(S → gg) can be obtained, when simulating the decay of the

scalar into gluons with MadGraph.
According to most models that predict the BSM scalar, the scalar particle should to have

comparable properties and coupling constants as the Higgs boson. For example the Higgs portal
model (see Section 2.2) predicts coupling constants smaller than the coupling constants of the Higgs
boson. The effective coupling between Higgs and gluons is gggH = αs

v12π ≈ 9.91× 10−6 1
GeV [20].

The coupling between quarks and the Higgs is gHqq =
mq

v , which induces the coupling constant
gHtt ≈ 0.84 for top quarks and gHbb ≈ 0.13 for bottom quarks [26].

For most simulations, if not specified otherwise, we choose ggg = 9.91× 10−6 1
GeV and a value

for gqq that is around or lower the value of gHqq.

5 Physics questions

5.1 Overview
In this section we will present the results obtained with MadGraph. Apart from the simulations in
Sect. 5.8, we investigate the process with a top pair final state because the interference is higher
for a decay into a top pair, than for a decay into the other SM quarks (see Sect. 5.8). In Sect. 5.8,
we will discuss the influence of the quark mass and perform simulations with a b-quark-pair in the
final state.

Section 5 is organized as follows: in each subsection, we will discuss the dependence of the
interference, signal and background on one of the parameters listed in Table 2. We will systemat-
ically vary the parameters in the region defined in Table 2 and choose the listed default values for
the other parameters including ggg = αs

12πv , ms = 500GeV, φ = 0, and Γs = 20GeV. In that case
Γ(S → gg) ≈ 0.8GeV. Apart from our scenarios in Sect. 5.7, we do not set the branching ratio
Br(S → tt) to a fixed value but compute Br(S → tt) using Eq. (35) for each chosen singlet scenario.
While varying the different parameters, we assure, that the branching ratio Br(S → tt) is ≤ 0.6
for all scenarios in the examined parameter range. The condition Br(S → tt) ≤ 0.6 leaves enough
room to vary the parameters gtt, Γs and ms, that depend on the Br(S → tt), but also allows other
decay channels. As we did not specified a model, we assume that for each given Br(S → tt) it is
possible to find a model so that the sum over all branching ratios of the possible scalar-decays is 1.

We do not set a default value for gtt but choose instead large values so that we obtain large signal
and interference contributions (see Sect 5.5) but assure, that the condition Br(S → tt) ≤ 0.6 for
all scenarios in the examined parameter range is full-filled and that gtt is in the order of magnitude
of gHtt. However, as we are interested in observing generally the effect of a variation of the scalar
parameters, the exact choice of the value of the different parameters is not that relevant. There are
several benchmark scenarios in this section, where we did not used the default values but specified
the chosen parameters.

To quantify the dependence of the interference, signal and background on the different param-
eters, we will plot histograms of differential cross sections with the bin size ∆mtt = 1.6GeV (if not
specified differently) and then compute their height (difference) of the peak (and dip) As and Ai

and significance Ss, Si and Ss+i numerically for various of the in Table 2 listed singlet scenarios.
If we show histograms of benchmark invariant mass distributions, to demonstrate the influence

of the different parameters (e.g. in Fig. 5, Fig 7, etc.), we use ggg = 1.3× 10−3 1
GeV instead of

the default value of ggg. We are choosing a larger value of ggg, because for the default parameters
the background at mtt = 500GeV is more than 500 times larger than Ai and As. The signal
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Table 2: Overview of singlet parameters

Parameter Symbol Default Investigated range Sec.

Signal/background phase φ 0 and π
2 [0, 2π] 5.2

Resonance mass ms 500GeV [500GeV, 1000GeV] 5.3
Resonance width Γs 20GeV [5GeV, 200GeV] 5.4
Scalar-quark coupling gtt none [0.1, 0.73] 5.5
Scalar-gluon coupling ggg

αs

12πv [ αs

12πv , 0.001
1

GeV ] 5.6
Branching ratio Br(S → tt) ≤ 0.6 (0, 1) 5.7
Quark mass mq mt [mb = 4.2GeV,mt = 172.4GeV] 5.8

is proportional to g2gg and the interference is proportional to ggg. By choosing a larger value for
ggg, like for example ggg = 1.3× 10−3 1

GeV , Ai and As can be in the order of magnitude of the
background, which is a good benchmark scenario for showing histograms of the invariant mass
distribution of signal and interference.

5.2 Signal and background phases
First, we analyze the dependence of the interference, signal and background on the complex phase
φ of the signal and background matrix element.

Invariant mass distribution

In Section 3.2, we have calculated the cross sections for the signal and the interference at parton
level. We found that the cross section of the signal and the background are independent of the
phases but the shape of the partonic interference cross section, given in Eq. (19) crucially depends
on φ between the signal and background matrix element:

σ̂i ∝
− cos(φ)(ŝ−m2

s)− sin(φ)msΓs

(ŝ−m2
s)

2 + (msΓs)2
. (36)

We demonstrate this dependence in Fig. 5 where we show the analytically calculated partonic
cross section of the signal and the interference for gg → tt̄ as a function of the tt̄ invariant mass
for the singlet scenario Γs/ms = 0.04, S/B = 0.186, Br(S → tt) = 0.42, ggg = 1.3× 10−3 1

GeV and
φ = 0 or φ = π

2 . We observe the Breit-Wigner shape of the signal component, which does not
depend on any phases.

The real and imaginary parts of the interference term, corresponding to the first and second
term in Eq. (19), predict strikingly different shapes. For a vanishing complex phase difference
between the phases of the signal and background matrix element, φ = 0 or φ = π, we only see the
real part of the interference, corresponding to a bump and dip, nearly anti-symmetric around the
resonance mass (see Fig. 5a). On the other hand, relative phases φ = π

2 or φ = 3π
2 only leave the

imaginary part of the interference, described by a Breit-Wigner distribution with either a positive
(bump) or negative (dip) sign (see Fig. 5b). Intermediate values of the relative phase lead to a
superposition of these two distinct types of effects.

Even though our analytical calculations did not include PDF effects, the line-shape of the
partonic cross sections as a function of ŝ are similar to the invariant mass distributions of the
differential hadronic cross section obtained with MadGraph (see Fig. 6). In Fig. 6, we have plotted
histograms that show the over one bin integrated differential, hadronic cross section dσ

dmtt
generated

by Madgraph, as a function of the center of mass energy mtt for different phases using the same
singlet scenario as in the plot of the partonic cross sections in Fig. 5 (benchmark parameters:
Γs/ms = 0.04, Br(S → tt) = 0.42, ggg = 1.3× 10−3 1

GeV ). The distribution of the signal and
the background components do not depend on φ. Given Eq. (13), the line shape of the signal
is approximately a Breit-Wiegner distribution, which is in agreement with the numerical results.
The distribution of the interference has the expected shape containing a peak (dip) followed by
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Figure 5: Calculated partonic cross section for the signal and interference component of gg → tt̄
as a function of the invariant mass of the top-pair mtt =

√
ŝ. The singlet parameters are chosen as

Γs/ms = 0.04, Br(S → tt) = 0.04, ggg = 1.3× 10−3 1
GeV , ms = 500GeV, mq = mt = 172.4GeV,

gtt = 0.19. The signal component is shown in red, the interference is shown in blue.
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(c) φ = π.
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Figure 6: Dependence of the invariant mass distribution generated by Madgraph on the phase φ.
The singlet parameters are chosen as Γs/ms = 0.04, ms = 500GeV, ggg = 1.3× 10−3 1

GeV ,
gtt = 0.19 and Br(S → tt) = 0.04. The total distribution is shown in magenta, the background
distribution in grey, the signal distribution in red and the interference distribution in blue. Bin
size: 3.3GeV.
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a dip (peak) for φ = 0 (φ = π). It is approximately a Breit-Wiegner distribution that interferes
destructively (constructively) with the signal for φ = π

2 (φ = 3π
2 ). For other phases it is a

superposition of both shapes.
However, because of the phase-space factor

√
1− (2mq)2

m2
tt

in the partonic cross sections Eq. (19)
and Eq. (13) (see Section 3.2), as well as PDF effects (see Sect. 4.1), both the signal and interference
distributions are not completely symmetric around mtt = 500GeV. The phase-space factors shift
the distribution to larger energies whereas the PDFs, that describe that statistically gluons with a
lower energy are preferred, shift the distribution to lower energies.

There are no signal, interference or background events for mtt < 2mt = 345GeV, because,
in this case, the production of on-shell final state top quarks is not possible. The background is
increasing fast in the energy region between 2mt ≤ mtt . 400GeV and is decreasing slowly for
higher energies.

In Fig. 7 we show the same histograms, also taking into account the smearing of the mtt

distributions due to the limited detector resolution. The dashed lines represent the signal that we
would measure with a detector which has a Gaussian energy resolution of 8%. The ‘measured’
distributions are wider, but with lower Ai and As and the shape becomes more flattened out. The
effect of the limited detector resolution is higher for φ = 0 than for φ = π

2 . This is because the
peak and the dip in the distribution with φ = 0 are narrower and some of the negative events and
the positive events cancel each other. Furthermore, when choosing φ = 0 (φ = π), the position
of the peak/dip (dip/peak) is shifted by resolution effects to slightly lower/higher (higher/lower)
energies then when not taking resolution effects into account.

(a) φ = 0. (b) φ = π
2
.

Figure 7: Resolution effects on the mtt distribution. We show a singlet scenario with
Γs/ms = 0.04, ms = 500GeV, ggg = 1.3× 10−3 1

GeV , gtt = 0.19 and Br(S → tt) = 0.04. The
invariant mass distribution of the background is shown in grey, the signal distribution in red, the
interference distribution in blue and the total distribution in magenta. The solid lines show the
generated distributions and the dashed lines show the distributions including resolution effects.
Bin size: 3.3GeV.

In Fig. 6 and Fig. 7, we have chosen benchmark singlet scenarios with a scalar-gluon coupling
of ggg = 1.3× 10−3 1

GeV , that is around 130 times larger than the Higgs-gluon coupling. This large
coupling constants are not typical for some models like the Higgs portal model. Fig. 8 shows the
invariant mass distribution in a case with a gluon-Scalar coupling similar to the SM Higgs-scalar
coupling (ggg = gggH = αs

12πv , gtt = 3.626, Br(S → tt) = 0.6, Γs/ms = 0.01 and φ = π
2 ). We

observe that the interference term dominates over the signal component and thus, the singlet leads
to a dip under the continuum background in the expected mtt distribution rather than the usual
excess of the background! To discover the scalar, we would need to search for a dip in the total
counting rate, which would require a dedicated analysis method different from the usual bump
hunting algorithms.
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Figure 8: Invariant mass distribution generated by Madgraph for a singlet scenario with gtt = 3.626,
Br(S → tt) = 0.6, Γs/ms = 0.01, ms = 500GeV, ggg = αs

12πv . The total distribution is shown in
magenta, the background distribution in grey, the signal distribution in red and the interference
distribution in blue. Bin size: 1GeV.

Height (difference) of the peak (and dip)

Next, we want to quantify the effect of the phase on the size of the interference term. As described
in Section 4.1.3, this can be done by plotting the height (difference) of the peak (and dip), defined
as difference between the maximum and the minimum of the interference line shape, as a function
of the phase.

Analytically, we did not find a simple closed-form of the height (difference) of the peak (and
dip) of the interference cross section Eq. (19), Âi, as a function of the phase. Instead, we nu-
merically evaluate the cross section of the interference Eq. (13) for a large number of different
mtt ∈ [250GeV, 750GeV] and then calculate the difference of the maximum and minimum value of
the obtained array. We repeat this procedure for a large number of different phases and then plot
the obtained Âi as a function of the phase. We find that the analytical calculated Âi is independent
of the phase.

We have generated event samples with MadGraph for different phases φ using a singlet scenario
with gtt = 3.626, and otherwise the default parameter defined in Table 2 including Γs/ms = 0.04,
Br(S → tt) = 49%, ggg = αs

12πv and plotted histograms of the invariant mass distribution for each
phase. From these histograms, we computed the height (difference) of the peak (and dip), Ai

and As, and plotted them as a function of the phase (see Fig. 9). We find that Ai only slightly
changes randomly with the phase. The position of the maximum/minimum of the invariant mass
distribution and therefore also the position of the bin with the maximum/minimum differential
cross section per bin changes with the phase. If the maximum/minimum of the differential cross
section is at the border between two bin, we obtain a lower maximum/minimum differential cross
section per bin and therefore lower values of Ai, than if the maximum/minimum is in the middle
of a bin. This could cause the in Fig. 9 shown fluctuations of Ai. As the fluctuations are small,
we can assume that the Ai is mostly independent of the phase which is in agreement with our
results based on the analytically calculated cross section. Thus, we conclude that, in the following,
when we are evaluating the dependence of Ai on the other parameters, it is sufficient to plot this
dependence for only one fixed phase.

If the height of the signal peak As is equal to or greater than Ai, we would observe that the
height (difference) of the peak (and dip) of the signal including the interference As+i is dependent
on the phase. For our choice of parameters, that is not the case. Therefore, also the position of
the maximum of the signal including the interference is at the position of the maximum of the
interference. In Section 4.2.5, we describe how to choose the parameters such that the signal and
the interference term have similar sizes. We will then also discuss the dependence of Ai and As

and of the position of the maxima of the different terms on the phase in the case where the signal
is larger than the interference.
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Figure 9: Height (difference) of the peak (and dip), A, of the signal distribution (red), the inter-
ference distribution (blue) and the signal including the interference distribution (green), obtained
with Madgraph as a function of the phase. The singlet parameters are chosen as Γs/ms = 0.04,
ms = 500GeV, gtt = 0.66, ggg = αs

12πv and Br(S → tt) = 49%. Bin size: 1.6GeV.

Significance and total cross section

To determine if the signatures of our singlet benchmark scenarios are relevant for LHC measure-
ments, we calculate significances as described in Sect. 4.3, both with and without detector resolution
effects. We determine the significance over the QCD background of the signal alone, the signal
including the interference, the interference term only, and the absolute value of the interference
term only. We used the same singlet scenarios and generated data as when plotting Ai and As as
a function of φ.

We have defined the significance of the signal and/or interference in Eq. (29) as the sum of signal
and/or interference events within a symmetric interval around ms, divided by the statistical error
of the background (the square-root of the sum of background-events within the same interval).
For φ = π

2 , the cross section of the interference is negative. Therefore, the contribution of the
interference decreases the total counting rate, which is why the sum of the interference events, and
thus its significance as defined in Eq. (29), is negative. From here on, significance, refers to the
absolute value of the significance as defined in Eq. (29). For the significance of the interference it is
possible that we obtain very low values because positive and negative values cancel each other when
summing over the peak-dip shaped distribution. However, a peak-dip/dip-peak shaped interference
distribution can have a considerable influence on the total distribution, for example by shifting its
maximum to lower (larger) energies. Therefore, we not only plot the significance of the interference
but also of the absolute values of the significance (i.e. we take the absolute value of each bin before
summing over the given interval).

Fig. 10 shows that, as expected, the net effect of the interference on the event rate is small if
the interference has a peak-dip/dip-peak-shape (i.e. for φ = 0 and φ = π) because the positive and
negative events cancel each other, leading to very small values of the corresponding significance.
The significance is maximal if the interference is a Breit-Wiegner distribution (for φ = π

2 and
φ = 3π

2 ). As described before, the effect of the limited detector resolution is higher for φ = 0 and
φ = π, which is why the significance of the absolute value of the ‘measured’ interference term is
lower for φ = 0 and φ = π.

In the parameter range we are looking at, the significance of the signal and the interference at
φ = 0 are negligible, but the significance of the absolute value of the interference term can be more
than 5σ. For φ = π

2 the significance of the sum of interference and signal distribution is above 5σ.
If the significance of the signal including the interference is high enough, it is potentially possible
to discover the new scalar. However, a significance of 5σ at parton level does not necessarily mean
that we will detect the singlet at the LHC. To perform predictions if a given singlet scenario would
be observable in the distribution of detected events, we would need to include effects like detector
simulations etc. in our simulation.

The described dependences can also be observed when looking at the total cross sections of
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Figure 10: Dependence of the significance of the invariant mass distributions obtained with Mad-
Graph on φ with and without resolution effects. We show a singlet scenario with gtt = 0.66,
ggg = αs

12πv , ms = 500GeV, Br(S → tt) = 49% and Γs/ms = 0.04. The significance of the interfer-
ence is shown in blue, the significance of the signal in red, the significance of the signal including
the interference in green and the significance of the absolute values of the interference distribution
in purple. The darker coloured dots show the significance of the generated distributions, the lighter
coloured triangles show the significance of the distributions including resolution effects.

the described scenarios. The total cross section of the interference is σi,tot = −0.05 pb for φ = 0,
σi,tot = −0.33 pb for φ = π

2 . The total cross section of the signal is σs,tot = 0.015 pb. The
background with a total cross section of σB,tot = 453.26 pb, and therefore largely dominating the
signal and interference.

Summary

All in all, we observed that the phase of the signal and the background amplitude has a crucial
influence on the shape of the interference distribution but no influence on the height (difference) of
the peak (and dip), Ai, as well as on the signal and on the background. The results of the numerical
simulation are in good agreement with our analytical results. We observed that the signal is Breit-
Wiegner distributed and the interference has, depending on the phase, either an anti-symmetric
bump-dip or dip-bump structure around the resonance mass, a Breit-Wigner-shaped bump or dip
at the resonance mass, or a superposition of both. We have demonstrated that, for some parameter
points, the interference term can dominate over the signal component. In these scenarios, the key
signature of the scalar resonance can indeed consist of dips below the continuum background rather
than the well-known Breit-Wigner peaks on top of it.

If we consider that the detector has a resolution of 8%, the line shape of the distributions is
more flattened out. This effect is larger if the interference term has a peak-dip/dip-peak structure
then if it only contains a dip/peak.

For the potentially possible choice of parameter that we used to plot the significances and the
heights (differences) of peak (and dip), the interference was considerably larger than the signal.
Thus, if such a scalar particle exists, the difference in the detected distribution of events to the
expectations of the SM, would mainly be induced by interference effects. This can also be observed
when plotting the significance of the sum of interference and signal depending on the phase. For
our choice of parameters, the significance of the sum is larger than 5σ, for phases near φ = π

2 and
φ = 3π

2 and negligible for phases near φ = 0 and φ = π because when summing over the events,
the positive and negative contributions cancel each other. Therefore, it is essential to include the
interference in the analysis of experimental data. Analyzing methods that only search for a peak
could, for example, not detect the case where φ = π

2 and the total signal contains a dip. Even
in the case where the interference term contains a peak it is important to include the structure
of the interference in the analysis. For φ = 0 the peak-dip structure of the interference shifts the
position of the mass peak of the part of the signal differing from the background to considerably
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lower energies.

5.3 Resonance mass
In this Section we examine the dependence of the interference and signal term on the scalar mass
ms.

Invariant mass distribution

Increasing ms not only shifts the entire signal and interference distribution to larger energies but
also has an influence on the height (difference) of their peaks (and dips) and their signficances.
The analytically calculated cross section of the signal Eq. (13) is proportional to

σ̂s ∝
1

(ŝ−m2
s)

2 + (msΓs)2
. (37)

The analytically calculated cross section of the interference Eq. (19) is proportional to

σ̂i ∝
− cos(φ)(ŝ−m2

s)− sin(φ)msΓs

(ŝ−m2
s)

2 + (msΓs)2
. (38)

Our analytical calculations of the partonic cross sections do not include PDF effects. If we vary
the resonance mass over a wide range of energies, the influence of the PDFs is considerably large
and thus we expect that our analytical results differ from the results we obtain numerically.

Height (difference) of the peak (and dip)

To quantify the effect of ms on the size of the interference and signal term, we will investigate the
height (difference) of the peak (and dip) of the signal and the interference. In Sect. 3.3, we found
that the height of the signal-peak of the partonic cross section, Âs, proportional to

Âs ∝ m2
s + Γ2

s − 6m2
q. (39)

The analytically calculated height (difference) of the peak (and dip) of the interference Eq. (26), Âi,
does not have a realistic dependence on ms, because the taken assumption of constant background
does not hold when varying ms over a large range of energies, as explained in Sect. 3.2. Thus, to
plot the dependence of the analytical calculated cross section on ms, we use the same method as
in Sect. 5.2 to plot its dependence on the phase: We numerically calculate Âi of the partonic cross
section Eq. (18) for a large number of ms and then plot the dependence of Âi on ms (see Fig. 11).
We observe that Âi reaches a maximum and decreases afterwards. As described in Eq. (39), Âs

increases with m2
s.

In our numerical simulations with MadGraph, when we vary ms between 500GeV and 1TeV
for a singlet scenario with φ = π

2 , ggg = 2 αs

12πv and Γs/ms = 0.04, gtt = 0.257 and corresponding
branching ratio Br(S → tt) computed using Eq. (35), we observe that Ai decreases with ms (see
Fig. 12). For the signal we find that As increases until about ms = 600GeV and afterwards
decreases with ms. Ai and As approach each other with increasing ms. However, for ms = 1TeV,
Ai is still 6 times higher than As.

The dependence of the with MadGraph obtained Ai and As on ms differs from the analytically
obtained dependence of Âi and Âs on ms that based on the partonic cross sections. This can be
justified by the fact that we did not included the PDFs in our analytical calculations. The, in the
PDF defined probability of finding a gluon pair with a given energy mtt, is lower for larger energies
mtt. Thus, if we would include the PDFs in the calculation of the cross section, this cross section
would be lower for larger mtt than the partonic cross section that we calculated analytically. An
increasing ms, shifts the position of the maximum/ minimum of the interference and the signal
to larger mtt. Thus, if we would include PDF effects, we would obtain significantly lower height
(difference) of the peak (and dip) for larger ms than the ones that we have calculated based on
the partonic cross section.
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the signal (red) and the interference (blue) as a function of ms. The singlet parameter are chosen
as φ = π
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12πv , gtt = 0.257 and Γs/ms = 0.04.
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Figure 12: Height (difference) of the peak (and dip) of invariant mass distribution, A, of the
signal (red) and the interference (blue) obtained with MadGraph as a function of ms. The singlet
parameter are chosen as φ = π

2 , ggg = 2 αs

12πv and Γs/ms = 0.04, gtt = 0.257. The right figure is a
zoomed in version of the left figure. Bin size: 1.6GeV.
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Significance

Fig. 13 shows the significance of the different components over the QCD background as a function
of ms. We used the same singlet scenarios and generated data as when plotting Ai and As. Unlike
As, the significance of the signal increases with ms (see Fig. 13). This is due to the fact that the
background is lower at higher mtt, so that the statistical error of the background is lower. This
effect can also be observed when looking at the significance of the interference. The significance
increases slightly for small ms, but for larger ms, the decrease in Ai is the dominating effect and
thus the significance decreases. As we did not change Γs and gtt, the branching ratio increases
with ms. If we leave Br(S → tt) fixed, we obtain higher significance of signal and of interference,
when ms is smaller than when ms = 1TeV.
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Figure 13: Dependence of the significance of the invariant mass distributions obtained with Mad-
Graph on ms. The singlet parameters are chosen as φ = π

2 , ggg = 2 αs

12πv , Γs = 20GeV, gtt = 0.257.
The significance of the interference alone is shown in blue, the significance of the signal alone in red
and the significance of the signal including the interference in green. The right figure is a zoomed
in version of the left figure.

Summary

To summarize, we observed that both, the interference and the signal term are shifted to larger
energies, when increasing ms. The height (difference) of the peak (and dip) of the interference, Ai,
decreases and the height of the signal-peak, As, first increases and then decreases with ms. We
obtain lower significances for the interference but larger significances for the signal when increasing
ms. The size of the signal and the interference are approaching with increasing ms. To detect new
scalar particles, which have very large masses ms, we would need a higher energy regime than the
current 13TeV.

5.4 Resonance width
Next, we will observe the dependence of the signal and interference on the total resonance width
Γs.

Invariant mass distribution

Examining the dependence on Γs is of interest, because Γs not only determines the width of
the signal and interference distributions, but also has a large influence on their sizes relative to
each other as well as compared to the background. This can be observed when analyzing the
analytically calculated partonic cross sections, as well as when plotting the distributions obtained
in our MadGraph simulation. The analytical partonic cross section of the signal (Eq. (13)) is
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proportional to

σ̂s ∝
1

(ŝ−m2
s)

2 + (msΓs)2
. (40)

The analytical partonic cross section of the interference (Eq. (19)) is proportional to

σ̂i ∝
− cos(φ)(ŝ−m2

s)− sin(φ)msΓs

(ŝ−m2
s)

2 + (msΓs)2
. (41)

Fig. 14 shows the numerical invariant mass distributions of the signal, background and interference
for different Γs = 30GeV and Γs = 100GeV. We chose as benchmark a singlet scenario with the
coupling constant ggg = 1.3× 10−3 1

GeV , gtt = 0.577, φ = 0 or φ = π
2 . We observe that, for larger

Γs, the signal and the interference are wider but have a smaller size, which is in agreement with
our expectations based on the partonic cross sections Eq. (19) and Eq. (13).
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(a) Γs/ms = 0.06, Br(S → tt) = 0.36, φ = 0.
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(b) Γs/ms = 0.2, Br(S → tt) = 0.073, φ = 0.
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(c) Γs/ms = 0.06, Br(S → tt) = 0.36, φ = π
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Figure 14: Invariant mass distribution obtained with MadGraph depending on Γs/ms. We choose a
singlet scenario with ggg = 1.3× 10−3 1

GeV , ms = 500GeV and gtt = 0.577. The total distribution
is shown in magenta, the background distribution in grey, the signal distribution in red and the
interference distribution in blue. Bin size: 2.5GeV.

If we take the energy resolution of the detector into account, we can observe that the smaller
the value of Γs, the more the distribution of the signal and interference are influenced by resolution
effects (see Fig. 15). This can be observed in Fig. 15, where we show the same histograms as 14a
and 14b but with taking into account detector resolution effect.

Height (difference) of the peak (and dip)

To quantify the effect of Γs on the size of the signal and the interference, we determine the
dependence of the height (difference) of the peak (and dip) on Γs.
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Figure 15: Invariant mass distribution for Γs = 20GeV and Γs = 100GeV including resolution
effects of the detector. We choose a singlet scenario with ggg = 1.3× 10−3 1

GeV , ms = 500GeV
and gtt = 0.577. The invariant mass distribution of the background is shown in grey, the signal
distribution in red, the interference distribution in blue and the total distribution in magenta. The
solid line show the distributions generated with MadGraph and the dashed lines show the same
distributions but taking resolution effects into account. Bin size: 2.5GeV

Analytically, we found in Section 3.3 that, in the case where mq and Γs are small compared to
ms, the height of the signal peak of the calculated partonic cross section, Âs, is proportional to

Âs ∝
1

Γ2
s

(42)

and the height (difference) of the peak (and dip) of the calculated partonic cross section of the
interference, Âi, is proportional to

Âi ∝
1

Γs
. (43)

This is in good agreement with the results we obtain in our numerical simulation with Mad-
Graph (see Fig. 16). Fig. 16 shows the height (difference) of the peak (and dip), Ai and As, in
the invariant mass distributions generated with Madgraph as a function of Γs with and without
detector resolution. We varied Γs between 5GeV and 200GeV and chose the default scalar-gluon
coupling and scalar mass defined in table 2 (ggg = αs

12πv , ms = 500GeV) and gtt ≈ 0.363. We
compute the branching ratio Br(S → tt) using Eq. (35) and obtained values between a few percent
and around 60%. As Ai is independent of the signal and background phase φ (see Sect. 5.2), we
only determine Ai for one benchmark phase (φ = 0 here).

We observe that as expected from our analytical results, the numerically obtained values of
As (Ai) are proportional to 1/Γ2

s (1/Γs) and we can fit a 1/Γ2
s (1/Γs)-function on the obtained

values (see Fig. 16). As can be seen in Fig. 16, the background at mtt = 500GeV is significantly
larger than Ai and As. We would obtain a larger ratio between the signal/ interference and the
background, when choosing lower values for Γs than the minimum value in Fig. 16 of Γs = 5GeV.
However, as explained in Sect. 4.4, if we want the coupling constant gtt and the width Γs to be
chosen consistently and equivalently that the branching ratio Br(S → tt), which is proportional
to g2

tt

Γs
, is below 100%, we also need to choose a lower value of gtt, when choosing a lower value of

Γs. As the cross sections decrease with gtt, this would cancel the effect of the increase of the ratio
between the signal/ interference and the background due to the chosen lower value of Γs. In Section
4.2.6 we will further discuss what happens when we choose lower values of both Γs and gtt and leave
the branching ratio constant. Another possibility to obtain a larger ratio signal/interference to
background is to choose a larger coupling constant ggg. This will be discussed further in Sect. 5.6.

Furthermore, in Fig. 16, we show the Ai and As of the ‘measured’ distributions, which include
the resolution effects of the detector. We find that Ai and As of the distributions that include
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detector resolution effects are smaller than Ai and As of the distribution that do not include
the limited detector resolution. We can confirm our observation based on the invariant mass
distributions Fig. 15 that, the smaller the value of Γs, the larger the effect of the detector resolution.
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Figure 16: Height (difference) of the peak (and dip), A, of the signal distribution (red dots), the sig-
nal distribution including resolution effects (light red triangles), the interference distribution (blue
dots) and the interference distribution including resolution effects (light blue triangles) depending
on Γs/ms. We choose a singlet scenario with φ = 0, ggg = αs

12πv , ms = 500GeV and gtt = 0.36.
The solid grey line shows the cross section of the background in the bin at

√
ŝ = 500GeV. The

red (blue) solid line shows function 1/Γ2
s (1/Γs) fitted on the height (difference) of the peak (and

dip). Bin size: 1.6GeV.

Position of the resonance maximum

Next, we want to discuss the influence of Γs on the position of the maximum of the invariant mass
distribution of signal only, interference only and signal including the interference.

In Section 3.3 we found that the position of the maximum of the partonic cross section of the
signal Eq. (22) is at ŝmax,s = m2

s − Γ2
s. The computed maximum of the partonic cross section of

the interference Eq. (25) for φ = 0 is approximately at ŝmax,i = m2
s −msΓs. As we used various

approximations and simplifications while calculating the position of the maxima, these positions
differ from the position of the maxima of the partonic cross sections, which we would obtain without
performing any approximations. This holds especially for larger Γs, where the approximation of
having a constant background is no longer valid. Thus, we evaluated the partonic cross sections
(Eq. (19) and (13)) for a large number of

√
ŝ ∈ [250GeV, 750GeV] and calculated and plotted the

position of the maxima for different Γs (see Fig. 17, straight lines). We observe that the position of
the maximum of the signal is shifted to larger energies with increasing Γs, which can be explained
by phase space factors. The position of the maximum of the peak-dip shaped interference is shifted
to lower energies with increasing Γs because the distribution is becoming wider with Γs.

This general behaviour is in agreement with the results of our numerical simulations (see
Fig. 17). The dots plotted in Fig. 17 show the position of the maximum of the signal and the
interference as a function of Γs using the same generated data as when plotting Ai and As. As the
height ot the signal peak is distinctly lower than the height the interference peak, the position of
the maximum of the signal including the interference coincides with the position of the maximum
of the interference.

We can observe in Fig. 17 that the positions of the maxima in the histograms obtained with
Madgraph do not completely coincide with the results of our analytical simulations. This is because
we did not included the PDFs in our analytical calculations. Statistically, gluons with lower
momenta are preferred. This increases the differential cross section at lower energies and thus also
shifts the maximum to lower energies.
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Figure 17: Position of the maxima of the signal only (red dots) and the interference only (blue dots)
as a function of Γs/ms. We choose a singlet scenario with a ggg = αs

12πv , gtt = 0.36, ms = 500GeV
and φ = 0. The position of the maximum of the interference only coincides with the position of the
maximum of the signal including the interference. The red/blue lines show the calculated position
of the maxima of the partonic cross sections of the signal/interference.

Significances

Next, we want to investigate the influence of the resonance width on the statistical significance
of the different components. As Ai and As decreases with Γs, we expect that the significance of
the signal and the absolute values of the interference also decreases with Γs. This can indeed be
observed in Fig. 18, where we plot the significances of the interference, the signal and the signal
including the interference over the QCD background as a function of Γs using the same data as
when plotting Ai and As as a function of Γs.

In our chosen benchmark scenario, the significances of both, the signal and the interference for
φ = 0 are negligible. Only for small Γs/ms the significances of the absolute value of the interference,
and in a singlet scenario with φ = π

2 also of the interference alone and the signal including the
interference, are larger than 5σ. For φ = 0 the significance of the interference term fluctuates
around zero from Γs/ms = 0.01 until Γs/ms = 0.2 and decreases thereafter (see Fig. 18). This can
be explained by the fact that for small Γs the interference term contains approximately as many
positive as negative events. However, the cross section decreases to zero if mtt is below the top
quark threshold 2mt (see Fig. 14). Thus, if Γs is of the size ms−2mt or larger, the top-production
threshold lies inside the interval [ms − Γs,ms + Γs], over that we are integrating the differential
cross section to compute the significance (as defined in eq. (29)). The differential cross section
within that interval is no longer anti-symmetric around the resonance mass and the integral is no
longer vanishing, wherefore we obtain negative values for the significance of the bump-dip shaped
interference term.

The significances of the signal and/or interference are smaller, when taking into account the
limited detector resolution. This effect is more distinctive for smaller Γs.

Summary

We found that the shape of distribution of the signal and interference are wider but of smaller size
when Γs is larger. The larger Γs, the smaller the effect of the limited detector resolution on the
shape of the kinematic distribution. The height (difference) of the peak (and dip) of the interference
distribution, Ai, is proportional to 1

Γs
and the height of the peak of the signal distribution, As, is

proportional to 1
Γ2
s
. Thus, the ratio of the interference to signal is proportional to Γs. For our choice

of parameters, the interference is larger than the signal but small compared to the background.
The position of the maximum of the signal is shifted to larger energies with increasing Γs while the
position of the peak in the peak-dip-shaped interference distribution is shifted to lower energies.
The significance of the signal and interference both decrease with increasing Γs. However, the
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Figure 18: Dependence of the significance over the QCD background on Γs/ms. We show singlet
scenarios with ggg = αs

12πv , ms = 500GeV and gtt = 0.36. The significance of the interference over
the QCD background is shown in blue, the significance of the signal only in red, the significance
only of the signal including the interference in green and in the left Figure the significance of the
absolute values of the interference distribution is shown in purple. The darker coloured dots belong
to the significance of the distributions generated with MadGraph, the lighter coloured triangles to
the significance of the distributions generated with MadGraph including resolution effects.

significance of the signal and of the interference for φ = 0 are both negligible but the significance
of the absolute value of the interference and of the interference for φ = π

2 are both larger than 5σ
for small Γs.

5.5 Scalar-quark coupling
In this Section we discuss the influence of the scalar-top coupling, gtt, on the interference and the
signal.

Invariant mass distribution and Signal to Background ratio

In our analytical calculations we found that

σ̂s ∝ g2tt, (44)

(see Eq. (13)) and that
σ̂i ∝ gtt, (45)

(see Eq. (19)).
We observe as analytically predicted that, when generating kinematic distributions with Mad-

Graph, both the signal and interference increase with gtt but do not change in shape (see Fig. 19).
Fig. 19 shows the kinematic distribution for singlet scenarios with the benchmark parameter
Γs/ms = 20GeV and ggg = 1.3× 10−3 1

GeV and gtt = 0.077 or gtt = 0.23.
Thus, the only observables that are influenced by gtt are the ratio ‘signal including interference

to background’ (S/B). We can define the ratio S/B as

S/B =

mtt,max∑
k=mtt,min

dσk
i

dmtt
+

dσk
s

dmqq∑mtt,max
k=mtt,min

dσk
B

dmtt

, (46)

with mtt,xmin/max = 500GeV±Γs (using the same mtt,xmin/max as for the significance in Eq. (30)).
From our analytical calculation (Eq. (13)), we expect that, if the signal dominates the interference
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Figure 19: Invariant mass distributions generated with MadGraph depending on gtt. We show
a singlet scenario with Γs/ms = 0.04, ms = 500GeV and ggg = 1.3× 10−3 1

GeV . The total
distribution is shown in magenta, the background distribution in grey, the signal distribution in
red and the interference distribution in blue. Bin size: 2.5GeV
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or the interference has a peak-dip shape whose sum vanishes, the partonic cross section of the
signal σ̂s and therefore the ratio S/B is proportional to g2tt. When the interference dominates the
signal and has the shape of a Breit-Wiegner distribution, we expect that S/B is also proportional
to gtt, because the partonic cross section of the interference σ̂i (Eq. (13)) is proportional to gtt.

To verify this dependence numerically, we performed MadGraph simulations for φ = 0 and
φ = π

2 using otherwise the default singlet scenario defined in Table 2 (with Γs = 20GeV, ggg = αs

12πv ,
ms = 500GeV) and coupling constants between 0.1 ≤ gtt ≤ 0.73, corresponding to branching ratios
between a few percent and around 60%, computed using Eq. (35). We plot histograms showing
the invariant mass distributions of the generated data and using these histograms then calculate
and plot the ratio S/B as a function of gtt (see Fig. 20).

In our chosen singlet scenario, the interference dominates the signal. Thus, for φ = π
2 , we can

observe the relationship between gtt and S/B that we expect from the partonic cross section of
the interference Eq. (19) (see Fig. 20b). We can fit a straight line through the ratio S/B as a
function of gtt and obtain S/B ≈ −0.007gtt. The S/B ratio is negative, because the interference
is destructive (has a negative sign). However, for φ = 0, the net effect of the interference on S/B
is small, because the positive and negative events in the peak-dip distribution mostly cancel each
other. Thus, we observe proportionality between g2tt and S/B that we expect from the partonic
cross section of the signal Eq. (13) (see Fig. 20a). We can fit a parabola through the ratio S/B as
a function of gtt and obtain S/B ≈ 0.0006g2tt. The fluctuations of the ratio S/B in Fig. 20a are
caused by the statistical fluctuations of the interference. As the sum over the interference term
vanishes apart from statistical fluctuations, the ratio S/B is smaller than for φ = π

2 and thus, the
importance of the statistical fluctuations compared to S/B increases. Fig. 20a is more zoomed in
than Fig. 20b so the statistical fluctuations are better observable.

The obtained functions S/B(gtt) only hold for the chosen singlet scenario, because Ai and As

and therefore the S/B ratio as defined in Eq. (46) is influenced by all the other singlet parameters.
For the chosen singlet scenarios the background is largely dominant and therefore the ratio S/B
very small.
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Figure 20: Ratio S/B as a function of gtt for a singlet scenario with ggg = αs

12πv , ms = 500GeV
and Γs/ms = 0.04. The dots show the numerically determined S/B.

As the shape of the signal and interference are not influenced by gtt, the detector resolution
smears out the invariant mass distribution of singlet scenarios, that only differ by their gtt, in the
same way. Thus, we will not investigate the dependence of the smearing on gtt further.

Height (difference) of the peak (and dip)

To quantify the dependence of the height (difference) of the peak (and dip) of the interference
and signal, Ai and As, on gtt, we compute Ai and As of the kinematic distributions for different
values of gtt. We use the same event samples as for plotting the ratio S/B as a function of gtt and
furthermore and computed the Br(S → tt) using Eq. (35). . We plot Ai and As not as a function
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of gtt but as a function of the physically more relevant parameter, S/B (see Fig. 21). For φ = 0 we
use the parabolic relationship between S/B and gtt to convert gtt into S/B and for φ = π

2 we use
the linear relationship between S/B and gtt to convert gtt into S/B. The partonic cross section of
the interference (signal) term Eq. (19) (Eq. (13)) and its height (difference) of the peak (and dip)
Âi (Âs) is proportional to gtt ( g2tt) and thus for φ = 0 proportional to

√
S/B (S/B) and for φ = π

2
proportional to S/B (S/B2). This is in agreement with our numerical results shown in Fig. 21a.

The ratio of the interference to signal is proportional to 1
gtt

and therefore, proportional to 1√
S/B

for φ = 0 and to 1
S/B for φ = π

2 .
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Figure 21: Height (difference) of the peak (and dip), A, of the signal distribution generated with
MadGraph (red) and of the interference distribution (blue) depending on S/B. We show a singlet
scenario with ggg = αs

12πv , Γs/ms = 0.04, ms = 500GeV, φ = 0 or φ = π
2 . In Fig. 21a, the red

(blue) solid line shows straight (root function) fitted on the height (difference) of the peak (and
dip) and in Fig. 21b, the red (blue) solid line show a parabola (line) fitted on the height (difference)
of the peak (and dip). Bin size: 1.6GeV.

Significance and total counting rate

Next, we want to determine the significance of the different distributions as a function of S/B
using the same singlet scenarios and generated data for plotting S/B as a function of gtt and Ai

or As as a function of A/B. By definition, the significance of the signal including the interference
is the ratio S/B multiplied by the constant factor

√∑mtt,max
mtt,min

dσB

dmqq
. This proportionality can be

observed in Fig. 22. Furthermore, we observe that for the shown singlet scenarios, the significance
of the signal and the interference at φ = 0 are negligibly small, but the significance of the absolute
value of the interference component can be above 5σ, if the gtt and thus |S/B| is large. Also for
φ = π

2 and large gtt, the significance of the sum of interference and signal distribution is above
5σ. Thus, in that case the expected mtt distribution contains no maximum, but a minimum under
the continuum background. However, as discussed in Sect. 4.3, a higher significance obtained by
choosing larger values of gtt is limited by the requirement to choose Γs and gtt consistently.

When calculating the total cross sections, we obtain similar dependences as when calculating
the significances (see Table 3).

Summary

To conclude, we found that the interference is proportional to gtt and the signal is proportional to
g2tt. This was also observable when plotting the ratio signal to background, S/B, as a function of
gtt. Depending on the signal and background phase and on the relative size of the signal compared
to the interference, the ratio S/B can be proportional to g2tt (if the signal dominates the interference
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Figure 22: Dependence of the significance over the QCD background on the ratio S/B. We show
singlet scenarios with Γs/ms = 0.04, ms = 500GeV, ggg = αs

12πv and φ = 0 or φ = π
2 . The

significance of the interference is shown in blue, the significance of the signal alone in red, the
significance of the signal including the interference in green and the purple dots in the left figure
show the significance of the absolute values of the interference distribution.

Table 3: Total cross section of the interference and signal for different gtt values. The total cross
section of the background is σB,tot = 453.26 pb

gtt σs,tot σi,tot for φ = 0 σi,tot for φ = π
2

0.1 0.3461(70) pb −8.265(88) pb −50.02(6) pb
0.65 14.62(43) pb −52.82(56) pb −325.5(37) pb
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and φ = π
2 ), proportional to gtt (if the interference dominates the signal and φ = 0) or proportional

to a sum of both (if signal and interference have the same size). We plotted the height (difference)
of the peak (and dip), Ai and As, and the significances over the QCD background as a function of
S/B and obtained the expected dependences.

In our chosen singlet scenario, the significance of the signal and of the interference for φ = 0
are negligible. The significance of the absolute values of the interference and of the interference
for φ = π

2 are larger than 5σ for large gtt.

5.6 Scalar-gluon coupling
In this section, we discuss the influence of the scalar-gluon coupling, ggg, on the interference and
the signal. In the previous sections, we chose a default singlet scenario with a scalar-gluon coupling
of ggg = αs

12πv , the value of the effective Higgs-gluon coupling. Higher values of ggg are not typical
for the simplest singlet models, but can easily be achieved in more complex extensions.

While varying ggg and gtt, we have to make sure that ggg, gtt and Γs are chosen consistently.
For ggg = 0.001 1

GeV , gtt = 0.73 and Γs = 20GeV, the branching ratio for a decay of the scalar
into gluons is Br(S → gg) = 0.29 and for a decay into quarks Br(S → tt) = 0.6. We will generate
data with Madgraph for singlet scenarios with gtt = 0.73, Γs = 20GeV and ggg ∈ [ αs

12πv , 0.001
1

GeV ]
and calculate the height (difference) of the peak (and dip), Ai and As and the significance of the
invariant mass distribution as a function of ggg.

Height (difference) of the peak (and dip) and Significance as a function of ggg

From our analytical calculations, we expect the same dependence of the signal and interference
on ggg as on gtt: The partonic cross section of the signal Eq. (13) is proportional to g2gg and the
partonic cross section of the interference Eq. (19) is proportional to ggg.

This is in agreement with the numerical results that we obtain when plotting Ai and As of the
invariant mass distributions as a function of ggg (see Fig. 23). The ratio of signal to interference
increases with ggg and therefore we can find regions where the signal is larger than the interference
and the background. For example for a singlet scenario with ggg ≈ 0.0009 1

GeV , Γs/ms = 0.04
and Br(S → tt) = 0.6, the signal is approximately 4.5 times larger than the interference. Thus,
the interference is not as relevant any more. The branching ratio for the decay of the scalar into
gluons is Br(S → gg) = 0.243, when choosing ggg ≈ 0.0009 1

GeV . Choosing much larger values for
ggg than ggg ≈ 0.0009 1

GeV would be unrealistic for the benchmark scenario with Γs/ms = 0.04
and Br(S → tt) = 0.6, because that would lead to larger values of Br(S → gg) and thus the sum
of Br(S → tt) and Br(S → gg) would be larger than 1.

The dependence of the significance over the continuum background on ggg for the different
components (Fig. 23) is the same as the dependence of the significance on gtt (Fig. 22). However,
the significance we obtain are not just slightly above 5σ as observed when varying gtt, but above
3000σ. In Sect. 5.5, when choosing ggg = αs

12πv and varying gtt between 0.1 and 0.73, we cannot
obtain much larger significances than 5σ because increasing gtt much further than 0.73 would lead
to values of Br(S → tt) above 1. As we can choose more than 100 times larger values for ggg than
the default value, without obtaining values of Br(S → gg) above one, it is possible to obtain a lot
larger significances by varying ggg.

In the scenario where the signal is approximately 4.5 times higher than the interference, the
significance of the signal is over 7 times larger than the significance of the interference, and the
signficance of the signal including the interference is above 3000σ. If a benchmark singlet scenario
induces a signature of a significance of 3000σ at a luminosity of 300 fb−1, it would most likely also
already have been observed in LHC data with a lower luminosity.

However, there are singlet scenarios with larger ggg than the effective Higgs-gluon coupling that
are not yet excluded. If we choose, for example, ggg = 4 αs

12πv , the significance of the signal can
be 5σ if we choose a sufficiently large value of gtt and low value of Γs. Thus, in contrast to the
scenarios in the previous section, a singlet scenario with ggg = 4 αs

12πv would have a significance of
above than 5σ even for φ = 0 and can be relevant for LHC measurements.
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Figure 23: Height (difference) of the peak (and dip), A, of the signal distribution obtained with
MadGraph (red dots) and the interference distribution (blue dots) depending on ggg. We show
singlet scenarios with Γs/ms = 0.04, gtt = 0.73, Br(S → tt) = 0.6, ms = 500GeV and φ = 0. The
red (blue) line shows parabola (line) fitted to the height (difference) of the peak (and dip). The
solid grey line shows the background cross section of the histogram for the bin at mtt = ms. Bin
size: 1.6GeV.
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Figure 24: Significance over the continuum background of the different components as a function of
ggg. We generated data with MadGraph for singlet scenarios with Γs/ms = 0.04, ms = 500GeV,
gtt = 0.73, Br(S → tt) = 0.6 and φ = 0. The significance of the interference is shown in blue, the
significance of the signal in red, the significance of the signal including the interference in the right
figure in green and the purple dots in the left figure show the significance of the absolute values of
the interference distribution.
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Singlet scenarios with a larger height of the signal peak than the height (difference)
of the interference peak (and dip)

Even if the signal term has a significance of more than 5σ and the signal is larger than the
interference, it is still necessary to consider the interference, because we need to take into account
the shift in position and in size of the peak of the singal includin interference distribution due to
the interference. Fig. 25 shows the position of the maximum of the signal including interference,
smax,i+s, as a function of the phase, for a singlet scenario with with Γs/ms = 0.04, Br(S → tt) = 0.6
and ggg = 3.43× 10−4 1

GeV (which is around 35 times higher than the effective coupling of the
Higgs to gluons). In that case, the height of the signal peak, As, is 1.7 times higher than the
height (difference) of the peak (and dip) of the interference Ai. Thus, the distribution of the signal
including the interference has a peak, even for φ = π

2 . As expected, for φ = π
2 and φ = 3π

2 , where
the interference is approximately Breit-Wiegner distributed, the position smax,i+s is at the same
position as the maximum of the signal. For φ = 0 (φ = π), the position smax,i+s is shifted by the
peak-dip-shape (dip-peak-shape) of the interference term to lower (higher) energies (see Fig. 25).
The statistical fluctuations of the distribution and the binning effects are large. This could be
overcome by producing samples with higher statistics.
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Figure 25: Position of the maximum of the signal distribution (red) and the signal including
interference distribution (green) as a function of the phase, for a singlet scenario with Γs/ms = 0.04,
Br(S → tt) = 0.6, ms = 500GeV, gtt = 0.73, and ggg = 3.44× 10−4 1/GeV.

In the case where the influence of the interference on smax,i+s is minimal, its influence on the
height of the peak of the signal including interference As+i is maximal. This can be observed
in Fig. 26, where we plot Ai, As+i and As as a function of the phase using the singlet scenarios
described above. We find that for φ = 0 and φ = π, As+i is similar to As. For other phases, the
Breit-Wiegner distributed part of the interference term shifts As+i to higher or lower values.

Summary

We found that the interference is proportional to ggg and the signal is proportional to g2gg. When
choosing values of ggg that are considerably larger than the coupling between the SM Higgs and
gluons, the signal is larger than the interference and can even be dominant compared to the
background and the interference. However, very large values of ggg induce significances of above
3000σ which would have likely already shown up in LHC data. For the case where the signal is
larger than the interference, we plotted the dependence of of the position of its maximum and of
the height (difference) of the peak (and dip) of the signal including the interference As+i on the
phase. We found that, if the interference has the shape of a Breit-Wiegner distribution, As+i is
lower (larger) than the height of the signal peak only, but the position of the maximum of the
signal including the interference is at the same position as the maximum of the signal alone. When
the interference has a peak-dip (dip-peak) shape, As+i does not differ that much from the height
of the signal peak alone but the position of the maximum of signal including the interference is
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Figure 26: Height (difference) of the peak (and dip), A, of the distribution of the signal only (red),
the interference only (blue) and the signal including the interference (green) as a function of the
phase. We show results from MadGraph simulations with a singlet scenarios with Γs/ms = 0.04,
Br(S → tt) = 0.6, ms = 500GeV, gtt = 0.73, and ggg = 3.44× 10−4 1

GeV .

shifted to lower (higher) energies.

5.7 Constant branching ratio Br(S → tt)

In Section 4.2.3 and 4.2.4 we have seen that the significance of the signal and the interference
increase with gtt, decrease with Γs and thus increases with Br(S → tt). The branching ratio
Br(S → tt) given in Eq. (35) is proportional to g2

tt

Γs
. Having a value of Br(S → tt) below 100%

assures that Γs and gtt are chosen consistently. We want to investigate whether the significance is
higher when Γs is low and gtt large or the other way around for a given, fixed Br(S → tt).

From our previous numerical results (Section 4.2.3 and 4.2.4) and analytical calculations (Sec-
tion 3.3.3) we know that the signal is proportional to Γ2

s

g2
tt

and the interference is proportional to
Γs

gtt
. Thus, we expect when leaving the branching ratio and therefore g2

tt

Γs
fixed, that As and Ai

decrease with increasing Γs and decreasing gtt.
This is in agreement with the results of our numerical simulations, where we fixed the branching

ratio at 60% and varied the width between Γs = 5GeV and Γs = 150GeV and chose the coupling
constant gtt correspondingly as defined in Eq. (35) (i.e. gtt = (8πΓsBr(S → tt)/(β3

q3ms))
0.5).

Furthermore, we chose the default parameter ms = 500GeV and ggg = αs

12πv .
In Fig. 27 we show the significance of the invariant mass distributions over the continuum

background of the different terms as a function of Γs/ms. We observe that the significance is
approximately constant from Γs/ms = 0.01 until Γs/ms = 0.15 and decreases for Γs/ms larger
than 0.15. The decrease is caused by the decrease of Ai. For the same reason, the significance of
the signal decreases with Γs.

In total, we found that the significance of the signal and the interference does not change
very much when leaving the branching ratio fixed but varying Γs and gtt. The significance of the
signal and the interference both decrease by less than 1σ when increasing Γs/ms from 0.05GeV
to 0.3GeV. We expect the same results when leaving the branching ratio Br(S → gg) fixed and
varying Γs and ggg.

5.8 Quark mass and flavour
Until now, we have always discussed the process where the scalar decays into a pair of top quarks.
The last remaining parameter is the quark mass mq. Even though it is already measured to some
accuracy, we will vary mq to find how it influences the signal and the interference distribution.
Furthermore, we will perform simulations with a pair of b quarks in the final state and compare
them to our previous results.
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Figure 27: Dependence of the significance of different terms over the continuum background on
Γs and gtt. We choose a singlet scenario with Br(S → tt) = 0.6, ms = 500GeV, φ = π

2 and
ggg = αs

12πv . The significance of the interference is shown in blue, the significance of the signal only
in red, the significance of the signal including the interference in green and the purple dots in the
left Figure show the significance of the absolute values of the interference distribution.

Invariant mass distribution

In our analytical calculation in Sect. 3.2, we found that the partonic cross section of the signal
Eq. (13) is proportional to the phase-space factor

σ̂s ∝
(
1− (2mq)

2

ŝ

) 3
2

, (47)

and thus decreases with mq. This can be explained by the fact that the higher the mass of the
final state particles, the less phase space is available for the decay.

The partonic cross section of the interference given in Eq. (19) is

σ̂i ∝ mq

[
artanh

(√
1− (2mq)2

ŝ

)
−
√

1− (2mq)2

ŝ

]
. (48)

Thus, the cross section of the interference is zero for mq = 0 ( lim
mq→0

mq artanh
(√

1− (2mq)2/ŝ
)
= 0).

Fig. 28 shows the invariant mass distribution of a b-quark final state for a scalar singlet scenario
with Γs/ms = 0.04, ms = 500GeV, gbb = 0.23, Br(S → bb) = 0.16, and ggg = 1.3× 10−3 1

GeV with
and without background. We have chosen the same singlet parameters as in Fig. 19b including the
same scalar-b-quark coupling as scalar-top-coupling. We observe that the background for a bb final
state is significantly larger than for the tt final state. As expected from our analytical results, the
differential cross section of the signal is larger but the differential cross section of the interference
is significantly lower than when detecting a top quark final state. Thus, the ratio interference to
signal is larger for the top decay.

Height (difference) of the peak (and dip)

We want to analyze the influence of mq on the size of the interference and signal. From our
analytical results in Sect. 3.3, we expect that the height of the signal peak Âs proportional to

Âs ∝
(
1− 1.5

(2mq)
2

ŝ

)
. (49)

The interference term given in Eq. (18) can be simplified by expanding a Taylor series around
mq,0 = 172GeV and evaluating the Taylor series at ŝ = m2

s = (500GeV)2, which gives us

σi ∝ 158.17− 0.458(mq − 172) + 7.61× 10−3(mq − 172)2 +O((mq − 172)3). (50)
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Figure 28: Invariant mass distributions for a b-quark final state generated with MadGraph. We
show a singlet scenario with Γs/ms = 0.04, ms = 500GeV, gbb = 0.23, Br(S → bb) = 0.16, and
ggg = 1.3× 10−3 1

GeV . The total distribution is shown in magenta, the background distribution in
grey, the signal distribution in red and the interference distribution in blue. The right figure is a
zoomed in version of the left figure.

Thus, we expect that the height (difference) of the interference peak (dip), Âi, initially increases
for low mq, reaches a maximum and then decreases.

As for the mass of b-quarks, the Taylor series would not hold, we calculate Âs and Âi of
the cross section Eq. (13) and Eq. (19) within the region ŝ ∈ [250GeV, 750GeV] numerically for
different values of mq and plot the obtained Âs and Âi as a function of mq (see Fig. 29). We
observe similar behaviour as predicted by our calculation above.
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Figure 29: Height (difference) of the peak (and dip), Â, of the calculated partonic cross section of
the signal (red line) and the interference (blue line) depending on mq at gqq = 0.4485, ggg = αs

12πv ,
φ = π

2 , ms = 500GeV and Γs/ms = 0.04. The right Figure is a zoomed in version of the left
figure. Bin size: 2.5GeV.

We obtain numerical results with MadGraph by generating gg → tt or gg → bb, with various
values of the top/bottom mass. The results we obtain when generating gg → tt for different
top masses are the same up to statistical fluctuations, as for gg → bb when choosing the same
masses. Thus, we will only show the results obtained by generating gg → tt for top quark masses
mq ∈ [4.7GeV, 172GeV] for a singlet scenario with gqq = 0.4485 and otherwise default parameter
(ms = 500GeV, ggg = αs

12πv , φ = π
2 , Γs/ms = 0.04) and corresponding Br(S → tt) computed

using Eq. (35). We set the minimum invariant mass of the pair of quarks to 250GeV to avoid
that the total cross section is dominated by the differential cross section of the bb-background at
low energies just above the bb-threshold. Fig. 30 shows the height (difference) of the peak (and
dip), Ai and As, obtained from the generated invariant mass distributions as a function of mq.
The numerical results we obtained with MadGraph are in good agreement with our analytical
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predictions shown in Fig. 29. We observe that the As decrease with increasing mq because of
the reduction in available phasespace for the decay. The maximum of Ai is at approximately
mq ≈ 95GeV. For 2mq > ms, the scalar has to be produced off-shell, which is possible because of
the Heisenberg uncertainty principle. As we chose Γs = 20GeV, we can still observe events when
the mass of the quark pair is slightly larger than ms. However, when increasing the quark mass
further, the cross section of the signal and the interference approach zero (see Fig. 30).
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Figure 30: Height (difference) of the peak (and dip), A, of the invariant mass distributions gener-
ated with MadGraph of the signal (red dots) and the interference (blue dots) depending on mq at
gqq = 0.4485, ggg = αs

12πv , φ = π
2 , ms = 500GeV and Γs/ms = 0.04. The right figure is a zoomed

in version of the left figure. Bin size: 1.6GeV.

Significance

Next, we want to observe the influence of the quark mass on the significance. The total cross section
of the background and therefore its statistical error decreases with the increasing quark mass, due
to the reduction of the available phase space for the decay. Because of the lowered statistical error
of the background, the significance of the signal over the background increases until mq ≈ 100GeV
even though the signal cross section decreases (see Fig. 31). However, for larger quark masses, the
effect of the decrease of the signal cross section becomes more relevant and therefore the significance
of the signal decreases. Similar to Ai, the significance of the interference also reaches a maximum
and then decrease (see Fig. 31). The maximum of the significance is at mq ≈ 140GeV and thus
around 40GeV shifted to larger quark masses compared to the maximum of Ai. This can be
explained by the decrease of the size of the background with the quark mass.

In total, the significances of the signal and of the interference for a given Γs and gqq are higher
for a decay into top quarks, than for a decay into b-quarks. Also, the branching ratio decreases
with mt, so we can choose higher values of gtt, than of gbb for a given width and branching ratio.
Thus, we expect lower significances if we observe the decay of the scalar into lighter quarks.

Simulation with a b-pair in the final state

We have investigated the dependence of As and Ai and of the significances on mq for a benchmark
singlet scenario. Next, we want to analyze the process where the scalar decays into a pair of
b-quarks for different singlet scenarios. From our observations above, we expect that for a given
singlet scenario, the significance of the interference and the height (difference) of its peak (and dip),
Ai, is lower when detecting b quarks in the final state instead of t-quarks. However, the general
dependence of the invariant mass distributions and their heights on the different parameters should
be the same.

This is in agreement with the results that we obtain when generating event samples of gg → bb
with Madgraph. We have varied the scalar-b-quark coupling, using the same singlet scenario as
the one where we varied the scalar-top-coupling in Sect 5.5 (ms = 500GeV, ggg = αs

12πv and
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Figure 31: Dependence of the significance of the different components over the continuum back-
ground on mq. We choose a singlet scenario with ggg = αs

12πv , ms = 500GeV, φ = π
2 and

Γs/ms = 0.04. The significance of the interference is shown in blue, the significance of the signal
in red and the significance of the signal including the interference in green. The right figure is a
zoomed in version of the left figure.

Br(S → bb) < 0.6). From thar, we calculated the S/B ratio as defined in Eq. (46) and found that
for φ = 0, when the interference does not contribute significantly to the S/B ratio, the ratio of S/B
is around 9 times lower when detecting b-quarks instead of top quarks (S/B = g2bb · 6.86× 10−5).
This can be explained by the fact the background of bb final states is larger. For φ = π

2 , the ratio
S/B is 64 times lower than for a decay into top quarks (S/B = −11× 10−5gbb). As explained above,
this is because the interference, which in the chosen benchmark scenario is dominant compared to
the signal, is suppressed by the quark mass (see Eq. (19)).

In Appendix B, Fig. 33 , Fig. 34 , Fig. 35 we show the significance over the continuum back-
ground as a function of φ, Γs and gbb for singlet scenarios using the default parameter defined in
Table 2 for the other parameters (ggg = αs

12πv , ms = 500GeV). We observe a similar dependence
of the significances on the different parameters as for the top-quark final state but with distinctly
lower significances below 5σ. The ratio of the signal significance and of As to the interference
significance and Ai is larger for a decay of the scalar into b quarks than for a decay into top
quarks (see Fig. 30). However, if we choose default parameters (ms = 500GeV, ggg = αs

12πv and
Br(S → bb) < 0.6), As is at a maximum of 20% of Ai. If we increase ms, the ratio of signal
to interference increases. At ms = 2TeV, Γs = 400GeV, ggg = 2 αs

12πv and Br(S → bb) = 0.6,
As and Ai have the same size. However, in that case, the significance of the signal including the
interference is only approximately 0.01σ.

If we choose a singlet scenario with Br(S → bb) = 0.6, Γs = 20GeV and ms = 500GeV, the
significance of the signal including the interference is above 5σ for ggg ≥ 0.000 056 1

GeV if φ = 0
and for ggg ≥ 0.000 09 1

GeV if φ = π
2 (see Appendix Fig. 36). As, in this parameter range even for

φ = π
2 , the contribution of the signal to the total counting rate is larger than the contribution of

the interference, we will not observe with a significance of above 5σ a dip in the total counting
rate. This would only be possible when increasing the luminosity or the detection efficiency.

Summary

In this section we observed that the height (difference) of the peak (and dip) of the interference
invariant mass distribution, Ai, is considerably larger when we detect a pair of top quarks in the
final state, than when we detect other types of quarks. In contrast, the height of the peak of the
signal invariant mass distribution, As, is larger for a decay into lighter quarks than for a decay
into top quarks. However, as also the cross section of the background and thus its statistical error
decreases with increasing quark mass, the significance over the continuum background of signal,
interference and signal including interference is distinctly larger, when detecting top quarks than
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when detecting lighter types of quarks. In our benchmark case, the significance of the signal includ-
ing the interference of a decay into b-quarks is only for singlet scenarios with ggg > 0.000 08 1

GeV
above 5σ. In these scenarios the contribution of the signal to the scalar signature is larger than the
contribution of the interference, so that, for the chosen luminosity and detection efficiencies and
even if φ = π

2 , we do not observe a dip below the continuum background. If we observed the decay
into even lighter quarks than b-quarks, we would obtain even lower significances. This motivates
our initial choice to use the decay channel into top quarks to investigate the dependence of the
interference on the singlet parameters.

6 Conclusion
In this thesis, we have systematically studied the interference effect in the production of a new
scalar particle during pp-collisions, which decays into a pair of quarks. We have calculated the
partonic cross section of the signal, interference and background analytically and generated, for
various different scalar singlet scenarios, the hadronic differential cross sections of the different
components using MadGraph. This allowed us to determine the dependence of the differential
cross sections and their sizes on the different parameters related to the scalar.

We found that the mass of the scalar and its width are the most important parameters for the
position and widening of the peak/dip of the invariant mass distribution for the interference and
the signal. Furthermore, the line-shape of the interference distribution strongly depends on the
difference of the complex phases of the signal and the background transition amplitudes: In the
case of φ = 0 or φ = π, the interference has an anti-symmetric bump-dip or dip-bump structure
around the resonance mass. In that case, the net effect of the interference on the total cross section
of the signal including the interference is small. However, the interference can shift the peak of
the differential cross section of the signal including the interference to lower/higher energies. For
a phase difference of φ = π

2 or φ = 3π
2 , the interference has a Breit-Wigner-shaped bump or dip at

the resonance mass. In that case the interference does not influence the position of the mass peak
but contributes to the total cross section.

To quantify the size of the interference and the signal and compare their sizes both to each
other and to the background, we calculated the height (difference) of the peak (and dip) of their
differential cross sections as a function of the different parameters. We found that the height of
the signal peak, As, increases as g2

qqg
2
gg

Γ2
s

and of the height (difference) of the peak (and dip) of the
interference, Ai, increases as gqqggg

Γs
. Thus, the smaller ggg, gqq and the larger Γs, the larger the

ratio of the height of the interference term, Ai to the height of the signal peak As and thus the
larger the relative contribution of the interference to the scalar signature. Furthermore, we found
that As and Ai do not depend on the signal and background phases. Moreover, Ai decreases with
the scalar mass and As reaches a maximum (in our benchmark scenario at ms = 600GeV) and
decreases afterwards. The ratio of Ai to As decreases with ms.

Using the described dependences, we found singlet scenarios where the interference term dom-
inates the signal component. If we choose, for example, a top quark final state, Γs = 20GeV,
ms = 500GeV, Br(S → tt) ≤ 0.6 and ggg < 0.0002 1

GeV , Ai is larger than As. For singlet scenarios
with ggg = gggH = αs

12πv , we found that Ai is considerably larger than As for all examined singlet
scenarios that are listed in Table 2. Thus, for these singlet scenarios and if φ = π

2 , the invariant
mass distribution of the signal including the interference includes a dip rather than the well-known
Breit-Wigner peak.

To answer the question whether the signatures of the scalar singlet are relevant for LHC mea-
surements, we calculated the significance of the different components over the continuum back-
ground on parton level. We found that, similar to the height (difference) of the peak (and dip),
the significance of interference and signal increase with gtt/Γs. We can find scenarios where the
signature of the scalar singlet is only relevant due to the interference contribution. For example,
for ms = 500GeV, ggg = αs

12πv , Br(S → tt) ≤ 0.6 and φ = 0, the significance of the signal includ-
ing the interference is below 5σ, because the sum over the peak-dip shaped interference vanishes.
However, using the same parameters but φ = π

2 , where the interference has the shape of a dip, the
significance of the signal including the interference is larger than 5σ if Br(S → tt) = 0.6. Even
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for branching ratios slightly smaller than 60% we got a significance above 5σ if we choose Γs/ms

between around 0.14 to 0.2. For these scenarios an analyzing method of experimental data that
includes the interference contribution and searches for a dip in the total counting rate instead of
the usual excess is necessary to discover the scalar. Concerning the dependence of the significance
on ms, we found that the significance of the signal increases with ms. For our benchmark scenario,
the significance of the interference and of signal including the interference increase slightly until
ms is around 550GeV, but decreases after this point. In total, we obtain larger significance of the
signal and the interference terms by choosing a larger value for the scalar-gluon coupling ggg than
the default value of ggg = αs

12πv .
When detecting a pair of lighter quarks than top-quarks in the final state, we obtain consider-

ably smaller heights (differences) of the peaks (and dips) of the interference, Ai, but larger heights
of the signal peak, As and thus larger values for the ratio signal to interference. However, the
signal to background ratio and thus also the significance of the signal and of the interference over
the background is distinctly lower than for the top-pair final state. For our benchmark singlet sce-
narios where we chose a large enough value of ggg, so that the significance of the signal including
the interference is larger than 5σ, As was larger than Ai.

A list of the maximum and minimum significances of the interference over the continuum
background, that we found when varying the different scalar parameters within the ranges defined
in Table 2 can be found in Appendix C in Tab. 4.

When taking detector resolution effects into account, we observe that the invariant mass distri-
bution gets wider with lower Ai and As and lower significance. This is more pronounced for small
width and for a peak-dip shaped interference term instead of the Breit-Wiegner shaped one.

We were able to predict the dependence of the shape, height (difference) of the peak (and dip)
and significance of the signal, interference and signal including interference on different parameters.
The next step for this study is to include parton showers, detector simulations and more background
events e.g. fake tops (a pair of b-quarks that has been misidentified as top pair). This would allow
to compare our results to experimental findings. Furthermore, one could take into account the
possibility of QCD radiation in the final state. Hespel et. al. found that the relative size of the
interference does not change when taking QCD radiation into account by including an extra jet in
the final state [10]. Our results could also be influenced by NLO contributions. Including the NLO
leads to large QCD corrections of the signal [10]. The ratio signal to background and interference
to background is larger when including NLO corrections [10].

The decay of the scalar into top quarks is not the only decay channel that could possibly be
observed at the LHC. Another possible decay mode of the scalar would be a decay into a lepton
pair. In general, we expect to obtain similar results as for the decay into a quark pair but with
considerably lower cross sections of the signal and interference. This is because the lepton masses
are a lot smaller than the top quark mass and thus the coupling to the scalar particle is lower.
Furthermore, we have observed that the interference term decreases to zero in the limit of negligible
fermion masses.

The scalar could also decay into pair of Higgs bosons. However, in that case, we would obtain
almost no interference contribution because the background, meaning the SM rate of a Higgs pair
production, is very low [10].

Another interesting channel would be the decay of the scalar into vector bosons. Vector bosons
have a fundamentally different structure than the fermions. Thus, it is not possible to apply
predictions based on the study of the interference of the scalar with the QCD background to the
interference between the scalar and vector bosons. An example that has been studied in literature
is the interference between a scalar decaying into γγ and the loop-induced background [8]. It
has been shown that the line-shape of the interference distribution for a γγ final state is similar
to the one of the interference term with the QCD background [8]. Especially if the signal cross
section is small compared to the background, the γγ-interference can have a significant influence
on the shape of the invariant mass distribution and on the total counting rate [8]. However, the
interference effects have a smaller impact than in the case of a top-pair final state [8].

Various BSM models not only predict new scalar particles but also other new particles that could
be produced at hadron colliders and whose amplitudes could interfere with SM processes. If we
consider, for example, the production of a pseudoscalar, the interference effects should be compa-
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rable to the interference between the scalar singlet and the QCD background. Hespel et. al. found
that the invariant mass distribution of the interference of a pseudoscalar with the tt background
indeed approximately resembles in line-shape and dependence on Γs to the one of a scalar [10].
The total cross section of the signal and interference of the pseudoscalar is a bit larger than the
one of the scalar when using the same resonance masses and width [10]. For the interference effects
in the production of new heavy fermions or new vector bosons predicted by BSM scenarios, the
structure of the signal and background is completely different to the one of the production of a
scalar. Thus, predictions of the interference terms would require new analyses.

To conclude, we found that interference effects in the production of a BSM scalar singlet
particle decaying into a pair of top quarks can influence the total cross section and the shape of
the key signature of the scalar resonance. We found scenarios where the interference dominates
and induced, for example, a dip below the continuum background. Thus, to obtain precise results,
inference effects should be taken into account when analyzing experimental data.
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Appendices
A. Feynman rules of the Scalar S

The Feynman rules for coupling of the scalar to SM particles are shown in Fig. 32.

(a) Coupling scalar S
to quarks.

(b) Coupling scalar S to gluons.

Figure 32: Feynman rules for vertices between two fermions and the Scalar S (left Figure) and the
Scalar S and two gluons (right Figure).

B. Simulations with a pair of b-quarks in the final state
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Figure 33: Dependence of the significance over the QCD background on φ. We show a singlet
scenario with Γs/ms = 0.04, ggg = αs

12πv , gbb = 0.41, Br(S → bb) = 0.5, ms = 500GeV and detect
a pair of b-quarks in the final state. The significance of the interference is shown in blue, the
significance of the signal in red, the significance of the signal including the interference in green
and the significance of the absolute value of the interference distribution in purple. The darker
coloured dots show the significance of the generated distributions, the lighter coloured dots show
the significance of the distributions including resolution effects.

46



0.00 0.05 0.10 0.15 0.20 0.25 0.30
Γs/ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
ig

ni
fi

ca
nc

e

|Interference|
|Interference| measured

Signal

Signal measured

Sig.+Interf.

Sig.+Interf. measured

Interference

Interference measured

inf 0.12 0.06 0.04 0.03 0.024 0.02

Br(S → bb)

Figure 34: Dependence of the significance over the QCD background on Γs/ms. We show a
singlet scenario with gbb = 0.22, ggg = αs

12πv , ms = 500GeV and detect a b-quarks final state.
The significance of the interference is shown in blue, the significance of the signal in red and
the significance of the signal including the interference in green and the purple dots show the
significance of the absolute value of the interference distribution. The darker coloured dots show
the significance of the generated distributions, the lighter coloured dots show the significance of
the distributions including resolution effects.
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Figure 35: Dependence of the significance over the QCD background on the ratio S/B. We show
a singlet scenario with Γs/ms = 0.04, ggg = αs

12πv , ms = 500GeV and detect a b-quarks final state.
The significance of the interference is shown in blue, the significance of the signal in red and the
significance of the signal including the interference in green and the purple dots in the left figure
show the significance of the absolute value of the interference distribution.
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Figure 36: Significance over the continuum background of the different components as a function of
ggg. We generated data with MadGraph for singlet scenarios with Γs/ms = 0.04, ms = 500GeV,
Br(S → bb) = 0.6 and φ = 0. The significance of the interference is shown in blue, the significance
of the signal in red, the significance of the signal including the interference in green and the purple
dots in the left figure show the significance of the absolute values of the interference distribution.

C. Overview over Significances
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