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Abstract
Physics searches at particle colliders rely on the analysis of high-dimensional measurement
data. Information describing complex physical processes, like the formation and decay of
particles in collision experiments, have to be represented in a way that exploits symmetries
while retaining discriminative features. Inspired by recent advances in contrastive representation
learning, we attempt to teach the task of finding such representations to a neural network in a
self-supervised fashion. We show how physical symmetries can be enforced with a transformer
architecture, contrastive loss and symmetry transformations. We train our method JetCLR to
learn representations for a dataset of QCD and top jets and compare the representations with
established jet substructure representations using a linear classifier test.

Zusammenfassung
Die Suche nach neuen physikalischen Phänomenen an Teilchenbeschleunigern beruht auf der
Analyse hochdimensionaler Messdaten. Daten von komplexen physikalischen Prozessen, wie
die Entstehung und der Zerfall von Teilchen in Kollisionsexperimenten, müssen so dargestellt
werden, dass Symmetrien ausgenutzt werden und gleichzeitig Unterscheidungsmerkmale er-
halten bleiben. Inspiriert von jüngsten Fortschritten im Lernen von Repräsentationen mittels
Kontrasten, versuchen wir einem neuronalen Netzwerk die Aufgabe, solche Repräsentationen zu
finden, mittels selbstüberwachtem Training beizubringen. Dafür zeigen wir, wie physikalische
Symmetrien mit einer Transformatorarchitektur, einer kontrastmaximierenden Kostenfunktion
und mittels der zugehörigen Transformationen durch ein neuronales Netzwerk realisiert werden
können. Wir stellen den Ansatz JetCLR vor, mit dem wir eine Representationsfunktion für
QCD- und Top-Jets erlernen. Schließlich werden die erhaltenden Repräsentationen mit etablier-
ten Jet-Substruktur-Representationen anhand ihrer Eignung zur linearen Klassifikation von
Top-Jets verglichen.
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1 Introduction

Contemporary physics research produces large amounts of measurement data. Particle physics
in particular has experiments at the Large Hadron Collider (LHC) that record millions of events
per day to allow the precise study of rare phenomena. General purpose detectors like ATLAS
and CMS measure the energies and tracks of particles produced during collision events to capture
the complex processes in detail.

The exponential increase of computational power during the last decades has been accompanied
by new techniques to analyse and learn from large data sets [1]. Specialised computing hardware
(such as GPUs) and powerful machine learning (ML) libraries are available to the public. Today,
modern machine learning techniques are a rapidly evolving field of research and are applied to a
broad range of commercial and scientific questions.

Bridging the gap between low-level single event measurements on the one hand and theoretical
predictions on the other hand, physicists have always used statistical methods. Thus, in
particle physics where large datasets are available, machine learning approaches naturally fit in.
ML applications in particle physics include signal/background discrimination using supervised
learning, generative modelling of probability densities, and unsupervised data mining to find
anomalies and ultimately new physics [2].

When ML systems process physical data, the question naturally arises, how physical processes
should be represented by data given the physics knowledge we have and given the analysis tools
we want to use. Raw measurement data is usually preprocessed to allow the analysis methods
to work, and there are universal characteristics of good input data that most analysis methods
benefit from. Thus, in this work we ask:

How can we organise high-dimensional information about physical processes?

The challenge is to define a representation in which the underlying symmetries are exploited,
that retains discriminative power, and that is new-physics agnostic.

We introduce JetCLR, in which the mapping of jet substructure measurements to representations
is formulated as a self-supervised machine learning task. JetCLR is derived from SimCLR [3]
and uses Contrastive Learning for Representations. The mapping function from measurements
to representations is realised by a neural network. The method allows to define symmetry
transformations that the mapping should be invariant to. The converged network will then be a
function, by which subspaces of measurement space that are related by those transformations
are collapsed (approximately) to single representation vectors.

First, we will go over the physics background and the basics of machine learning. Then we
will expand on which kinds of observables make up useful representations and present existing
representations for jet substructure. After that, we will explain the details of contrastive learning
for representations and the transformer architecture. We will then discuss results of the application
of JetCLR depending on different choices of hyperparameters, symmetry transformations and
architectures. Finally, we also summarise the insights gained through ongoing efforts to analyse
the inner workings of the network.

This thesis is based on the research done in close collaboration with Barry M. Dillon, Tilman
Plehn, Peter Sorrenson and Lorenz Vogel that also resulted in the publication of Ref. [4]. The
important results are in the paper; this thesis tries to give a more detailed account of the
development and its context.
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2 Physics background

2.1 Setting

Physics asks the question of what fundamentally constitutes the universe. The Standard
Model (SM) describes three out of four fundamental forces in the universe and classifies all
fundamental particles that we know of. It is believed to be mathematically self-consistent and
has successfully predicted experimental discoveries like the top quark [5–7] and the Higgs boson
[8–10]. Mathematically, it is formulated as a quantum field theory that incorporates special
relativity, contains the unification of the weak interaction with quantum electrodynamics (QED),
quantum chromodynamics (QCD) and the Higgs mechanism.

Despite these successes there are some phenomena the SM cannot explain and thus hint at
physics beyond the Standard Model (BSM). For example the most successful theory of gravity,
general relativity (GR), is not compatible with the SM. If dark matter – necessary to explain
observed galaxy rotation curves within the ΛCDM-model – consists of particles, there might be
a single hidden particle or even a whole hidden sector of particles [11] that remain unnoticed
until now. Additionally, many BSM models rely on supersymmetry (SUSY), which also predicts
the existence of additional particles.

Therefore, the Standard Model is treated as an effective field theory (EFT) of the underlying
more fundamental theory. Testing the limitations of the Standard Model and searching for
anomalies at large energy scales is the motivation for collider physics [12].

2.2 High energy regime

At collider accelerators, like the Large Hadron Collider (LHC) operated by CERN, two proton
beams are accelerated as close to the speed of light as currently possible. Pushing the energy
frontier is interesting for two main reasons. First, to analyse the inner structure of protons,
unprecedented resolutions are required. Since de Broglie found the wavelike properties of matter,
it is known that large resolutions are only possible with large frequencies and therefore large
energies. Second, the most interesting phenomena, like the spontaneous production of very
massive particles, only happen at energies several magnitudes above the normal energy levels of
our macroscopic world.
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2 Physics background

Figure 2.1: Collision event captured in CMS detector, cylinder is parametrised by η and φ,
extrusion is pT . Taken from [15].

2.3 Destroying protons to create new particles

Because protons are not among the fundamental building blocks of matter, but rather consist
of a sea of quarks and gluons held together by the strong nuclear force, they perform complex
scattering where the final state often contains hundreds of particles. At high energies, the
constituents of protons become asymptotically free [13], in which case they are well described
by the parton model [14]. It describes the protons that collide at the LHC as a collection of
partons each carrying a fraction of the total proton’s energy. During a deeply inelastic scattering,
a substantial momentum is transferred between a highly energetic parton of each proton. The
interaction of those two partons gives birth to a few elementary particles, like for example two
new partons, a top-anti-top pair or new particles. Those in turn decay quickly and produce
numerous hadrons that interact with the detector where they are recorded as measurements. It
should be noted that this is a simplification. A parton is not a well-defined object, rather it is a
part of a sea of partons, an excitation of the associated quantum field. This means, that there
can be arbitrarily more complex parton interactions of higher order.
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2 Physics background

2.4 Detector coordinates

In order to not make our lives harder than necessary, we choose kinematic variables that fit the
problem of particle collisions in a detector. As mentioned earlier, hard hadronic collisions are
actually the interaction of two partons, one from each beam, each of them carrying an arbitrary
fraction of the momentum of its proton. As the two partons usually do not carry the same
fraction of momentum, the centre of mass of the interaction is boosted along the beam direction
relative to the lab frame. Therefore, we want to use a coordinate system that is well-behaved
with respect to longitudinal boosts of the system and rotations about the beam axis.

A constituent’s four-vector (E, px, py, pz) can be described by its mass m, the radius pT and
azimuthal angle φ in the transverse plane, and rapidity y.

pT =
√

p2
x + p2

y y = 1
2 log

(
E + pz

E − pz

)
(2.1)

Rapidity differences are invariant to longitudinal boosts. Therefore, we can translate jets in the
y-φ-plane without changing the underlying physics.

When final state constituents are fast and thus can be approximated as massless, the pseudo-
rapidity η is used. It can be expressed as a function of the three-momentum ~p and the polar
angle θ.

η = 1
2 log

( |~p| + pz

|~p| − pz

)
= − log

(
tan θ

2

)
(2.2)

In the limit of massless constituents rapidity is the same as pseudo-rapidity. We thus have a
energy like variable pT and two variables with cylindrical geometry η and φ; see Figure 2.1. The
cylinder is also referred to as the η-φ-plane. On this plane we can define the angular separation

∆R =
√

∆η2 + ∆φ2 . (2.3)

2.5 Parton to jet

Many processes produce high energy quarks and gluons (partons). A parton can radiate from
the incoming partons, some particles like the W , Z and Higgs boson can decay into quarks and
the decay chain of new particles also might contain quarks and gluons [16].

However, the high energy quarks and gluons are not directly observed by the detector. Rather,
they undergo successive branching, producing a collimated shower of quarks and gluons. Below a
certain energy threshold, hadronisation takes place. At these energies the QCD coupling constant
αs is high enough to confine every object that carries colour charge, so that quarks and gluons
can only exist in a colourless (white) bound state. So when two partons get ripped apart in a
collision, the interaction energy rises until it is big enough to produce a new quark-anti-quark
pair. The ensemble of all those particles make up a jet. Thus, any high energy quark or gluon
will be measured as a jet.

When faced with a set of measured final state particles, these have to be clustered together
to reconstruct underlying jets. To recover the exact process and capture every particle that
originated from the same parton is clearly desirable, but also impossible. To see how to solve the
problem approximately, and to point out an important phenomenon of QCD, we will look at the
cross section of gluon radiation.
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2 Physics background

dσ ∝ αs
dE

E

dθ

θ
(2.4)

The cross section diverges in the limit of gluons with E → 0 which is called the soft/infrared
divergence, and the limit of θ → 0 which is called the collinear divergence. The collinear divergence
is in fact the reason why jets are collimated. This tendency to branch at low angles means that
we can define an angular distance R for the upper limit of separation of particles clustered in the
same jet. The soft/infrared divergence complicates the picture, as it means that unrelated soft
particles are ubiquitous.

There are multiple jet algorithms addressing the clustering difficulties in different ways, with the
anti-kT algorithm [17] being the current default for the LHC. Here, a constituent metric for the
distance between constituent i and j is defined by

dij = min
(

1
pT,i

,
1

pT,j

)
∆R2

ij

R2 , diB = 1
p2

T,i

. (2.5)

The algorithm sequentially combines the constituents with the smallest distance dij and declares
a constituent combination i a jet if diB turns out to be the smallest distance. This means that it
starts combining close and high pT constituents resulting in robust jets, and stops at a maximum
jet radius R.

2.6 IRC safety

Generally, a cross-section σ(v) with regard to a specific observable v is calculated perturbatively
as an integral over the full phase space. Thus, all infrared and collinear (IRC) singularities have
to cancel out at each perturbation order in order to get a finite result. Whenever a parton is
split into two collinear partons, or a vanishingly soft parton is added, the observable must not
change in order to achieve complete cancellation of the IRC singularities. This condition is called
IRC safety. Suppose the generic observable v has measurement functions Vn(k1, ..., kn) of that
observable in the n-body phase space. In order to achieve complete cancellation of the IRC
singularities, observables must satisfy the following conditions called IRC safety [16]:

IR safety: Vm+1(..., ki−1, ki, ki+1, ...) → Vm(..., ki−1, ki+1, ...) for ki → 0 (2.6)
C safety: Vm+1(..., ki, ki+1, ...) → Vm(..., ki + ki+1, ...) for ki ‖ ki+1 (2.7)

While IRC safety is originally motivated by perturbative calculation, it is used to assess observables
and algorithms also in an experimental context, because it can provide robustness in the context
of the calorimeter measurements in particle detectors, where the pixels detectors have finite
energy and space resolution. For example, the anti-kT algorithm that defines jets satisfies IRC
safety, because collinear constituents will be combined at the beginning of the sequence and soft
constituents have a marginal impact on the jets that already contain hard constituents.
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Figure 2.2: Example process for the production of a tt̄-pair. t decays leptonically, t̄ decays
hadronically. Taken from [18].

2.7 Top quark production and decay

The top quark is the heaviest of the six quarks in the SM. Being the only fermion heavier than
the W boson, it can decay semi-weakly into a W boson and a bottom quark. Therefore, it has a
very short lifespan and decays before it can hadronise [19]. Additionally, the top quark induces a
large quantum correction to the Higgs mass [12]. Because of this special role in SM and possibly
BSM physics, the high-energy physics community has studied the top quark extensively [20, 21].
It is produced predominantly in top-antitop pairs through the processes qq̄ → tt̄ and gg → tt̄.
Those decay predominantly into a bottom quark b and a W boson, which then in turn can decay
either into a lepton and antilepton, or a quark and an antiquark.

In the case of a leptonic decay, the reconstruction of top quarks from detector measurements can
be done with high sensitivity. However, the specificity regarding for example the distinction of
top quarks from new particles decaying to top and missing energy is low, because energy carrying
neutrinos of the leptonic decay cannot be measured, and thus are missing in the equation [12].

Top pairs decaying purely hadronically produce 6 quark jets. With a mass of (172.76 ± 0.30) GeV
[22] top quarks are still well below the TeV scale of the LHC and thus will be produced boosted
back-to-back with high transverse momentum pT . Geometrically, this means that the decay
products of each top quark are collimated into a fat jet consisting of three prongs.

For these reasons, the development of taggers to distinguish hadronic top jets from quark and
gluon jets (QCD jets) has been an active field of research [23–29].
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3 Machine learning background

3.1 Neural networks

Machine learning is the process in which a machine learns to do a task from data rather than
being explicitly programmed for the task. To do this, a family of candidate functions F with
parameters β is chosen and the parameters are inferred using training data such that fβ ∈ F
solves the desired task

y = fβ(X) . (3.1)

One approach to implement such systems is the paradigm of artificial neural networks. These
are networks of artificial neurones whose connections are modelled by trainable weights. The
most commonly used networks are feed forward neural networks, meaning neurons are organised
in successive layers. First, data is passed into the first layer. Then, each following neuron in
the hidden (middle) layers gets inputs from proceeding neurons, fires according to its activation
function and then passes its activation along the connections to the next layer of neurons. Thus,
information flows through the neurons according to their activation functions and weighted
connections to finally result in the network output. Effectively, the network is a function defined
by the neurons’ activation functions, the connections, and their weights.

Universal approximation theorems have been proven for various function families for different
conditions, including the most basic feed forward network with one hidden layer [30]. These
theorems state that neural networks can approximate all functions in a function space (e.g.
smooth functions) given that the networks are either wide, or deep enough. The ability to
approximate all smooth functions in the limit of large network sizes implies the theoretical
possibility to solve a wide range of tasks. However, the functions must be trained on data and
that data usually has a finite size. The finite dataset size leads to a sampling error, because the
data is just a sample from a true distribution. While infinite-size networks can approximate
a desired function to arbitrary precision, the bigger the network is, the more training data is
required to generalise beyond the training set.

Rather than memorising each data point and the expected outcome within the model, we want
it to realise the general task. To keep track of the generalisation error, we thus have to use
statistically independent data for training and for testing. In practice, this means the dataset is
split up into a train and a test set.

Training

To learn from data and achieve the purpose of the network, the parameters, e.g. weights of the
connections, are optimised to reduce a specifically designed loss function. The loss function
evaluates if the network achieved the desired result. It can be thought of as defining a loss
landscape for every possible configuration of the model’s parameters. In this framing, training a
model corresponds to finding a spot in the parameter landscape with minimal loss. Optimisers
designed to train neural networks, typically estimate the gradient of the loss with respect to the
current set of parameters [31] and determine slightly altered parameters.

7



3 Machine learning background

For example, a commonly used optimiser is stochastic gradient descent (SDG), where the new
parameters are obtained by estimating the gradient for every model parameter with the training
batch and taking a step along the gradient vector scaled by a learning rate. Thus, the learning
rate serves as a step size in the optimisation. Training with a constant learning rate can fails to
find the global minimum in the loss landscape, either because a suboptimal local minimum cannot
be left with a single step (learning rate too low) or because the global minimum is overstepped
repeatedly (learning rate too high). Another approach to the problem is to start of with a high
learning rate and reduce it automatically when the loss stops decreasing.

Usually, the whole training dataset is used repeatedly for several epochs. In each epoch, the
dataset is divided into batches and each batch is used to estimate the best possible optimisation
step.

Activation functions

The most commonly used activation function is the rectified linear unit (ReLU). In this work, all
neurons use ReLU activation.

ReLU(x) =
{

0, if x < 0
x, otherwise

(3.2)

The exception is the linear layer, which uses the identity instead.

We use the softmax function to normalise vectors x ∈ Rn such that sum the over their entries is
1. It can be thought of as a normalisation into a probability distribution where each probability
is proportional to the exponential of the input values.

softmaxi(x) = exi∑n
j=1 exj

(3.3)

3.2 Dimensionality reduction

t-SNE [32], i.e. t-distributed stochastic neighbour embedding, is a statistical method for visualising
high-dimensional data by assigning each data point a location in 2D space. The embedding is
done in a way such that closeness of data points is preserved as good as possible. t-SNE can reveal
structure at different scales because it is non-linear and can perform different transformations on
different regions in the high dimensional space. However, this flexibility comes with the cost of
being easy to misread [33]. In particular, apparent volumes of clusters are arbitrarily distorted
and thus not meaningful. Also, in some cases, different parameters give qualitatively different
results. Therefore, the hyperparameters must be varied to check the robustness of a t-SNE
mapping and the resulting images should be interpreted by their structure, rather than their
volumes.
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4 Finding well suited observables

We describe physical phenomena by measurable quantities. Defining useful observables is an
essential part of physics. Fruitful observables are well-defined and close enough to fundamental
reality, thus enabling us to use them in a mathematical structure, that in turn allows us to make
further predictions.

Recently however, observables have also been used in a machine learning setting. Here, the
challenge is to represent physical information in a way intelligible to a neural network. Neural
networks have no trouble using many observables at the same time. Therefore, rather than
choosing only the most informative features, we can set it up to incorporate all potentially
interesting information, e.g. using low level (high dimensional) inputs. However, it is often
infeasible to just use the raw experimental data directly. Usually, task-specific preprocessing of
the data is necessary.

With a nice input data structure the necessary network size can be greatly reduced and training
can become more stable. Conversely, if the input data is poorly structured, accuracy will suffer
even with the best architectures.

Generally, in well structured data each dimension/observable adds important information rather
than noise and follows a distribution of similar magnitude, i.e. is normalized. The latter is easily
accomplished by rescaling the dimensions. The former however, might be very difficult when it
is not an option to craft every single observable by hand. Additionally, the distance between
instances of the dataset should reflect their true similarity to each other.

One well established test employed by the representation learning community is to check the linear
separability of certain classes of instances in the dataset. If a hyperplane in the representation
space is able to separate instances from the class (signal) from instances outside the class
(background), linear separability would be perfect, which corresponds to the maximal possible
discriminative power. In this spirit, we use the performance measures of the binary classifier
as proxies of the discriminative power of representations. For binary classification, each data
point is assigned a score in the range of 0 to 1 and a threshold is chosen above which data points
are classified as signal. In the receiver operating characteristic (ROC) curve, the true positive
rate, i.e. the efficiency εs to correctly tag signal as signal, is plotted against the false positive
rate, i.e. the efficiency εb to wrongly tag background as signal. This captures the discriminative
power over a the full range of threshold values. The area under the ROC curve (AUC) as well as
the inverse background efficiency, ε−1

b (εs = 0.5), at a fixed signal efficiency of εs = 0.5 condense
the curve to two numerical values that can be referenced in tables. For the linear classifier tests
(LCTs) in this work, we use a linear neural network without hidden layers and no activation
function.

4.1 Jet substructure representations

In the following we will survey the existing representations for jet substructure and evaluate
them according to the desirable properties described above. The representations are defined both
by the raw data, and the function that maps the raw data into a representation space.

f : J → R , (4.1)

The raw data will consist of sets of final state constituents that together constitute a jet. Each
constituent is defined by their transverse momentum pT, pseudorapidity η and azimuthal angle

9
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Figure 4.1: Jet image representation. Left: mean of QCD jets, Right: mean of top jets.

φ.
xi = { (pT, η, φ) | (pT, η, φ) is constituent of jet i } (4.2)

Rather than biasing the measurement towards a certain theoretic hypothesis, we want represen-
tations to only be informed by the most fundamental knowledge we have: symmetries. A good
representation must incorporate invariances in order to have highly informative dimensions. For
example, as we are mapping sets of constituents to the representation space, we should have
permutation invariance. A jet representation should not change if the ordering of its constituents
is shuffled. Failing to incorporate this symmetry means that the same underlying jet data will be
mapped to different representations, thus introducing noise.

High-level observables like invariant mass and N-subjettiness [34] are specifically designed to be
used to quantify jet phenomena, but using them for machine learning leaves the potential of
high-dimensional analysis untapped.

Jet images

A well-established jet substructure representation is the jet image [35, 36]. Here, the constituents
are binned into pixels of the η-φ-plane and the accumulated transverse momentum (or energy) for
each pixel gives us a permutation invariant representation. For illustration, Figure 4.1 shows the
mean of QCD and top jets in the fashion of jet images. While they are very intuitive to look at,
they are far from perfect. If the jet image resolution is increased, the size of that representation
scales quadratically and it gets sparse quickly, both of which are problems that the machine
learning architecture will struggle with. Moreover, the representation is not invariant to all
required symmetries and has to rely on preprocessing instead, e.g. rotations about the jet axis.

Energy flow polynomials

Another promising representation is the expansion of energy flow polynomials (EFPs) [37] to a
fixed order. EFPs are a set of substructure observables constructed around the principal of IRC
safety. They can be viewed as a set of C-correlators [38]

10



4 Finding well suited observables

CfN
N =

M∑
i1=1

· · ·
M∑

iN =1
Ei1 · · · EiN fN (pµ

i1 , ..., pµ
iN

) (4.3)

with a specific choice for fN .

EFPs provably span the whole space of IRC save observables in a linear way, thus form a
(over-)complete basis [37]. This property makes them particularly well suited for use as input
data representation in machine learning. However, this complete basis is an expansion with
infinitely many polynomials. Because any application can only use a finite number of inputs, the
expansion must stop at a fixed order.

To visualise and calculate the correlators, there is a one-to-one correspondence of EFPs and
loopless multigraphs. Those are graphs where two vertices can be connected by any number of
edges, but no vertex can have a single-edge circle that connects to itself. A multigraph G with
N vertices and edges (k, l) ∈ G corresponds to

EFPG =
M∑

i1=1
· · ·

M∑
iN =1

zi1 · · · ziN

∏
(k,l)∈G

∆Rikil
, (4.4)

with

zi = pT,i

pT,J
, pT,J =

M∑
i=1

pT,i. (4.5)

Here, zi is the transverse momentum fraction carried by particle i, ∆Rikil
is the angular distance

between the constituents ik and il and there is a total of M constituents in the jet. Each
edge (k, l) corresponds to a term ∆Rikil

and each vertex corresponds to a factor of zij , and a
summation over ij . Equation (4.6) shows an example of this.

=
M∑

i1=1

M∑
i2=1

M∑
i3=1

M∑
i4=1

zi1zi2zi3zi4∆Ri1i2∆Ri2i3∆Ri3i4∆R2
i2i4 (4.6)

While this is impressive, it is also a rigid system, where it is difficult to incorporate additional
particle level information like tracking and it is unclear whether the expansion to fixed order
contains the most useful observables.

After having established the problem and existing approaches, in the next chapter we discuss
how we can formulate the mapping instead as a self-supervised machine learning task.
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5 Contrastive learning of jet representations

The function f mapping jet phase space J into the representation space R will be a neural
network.

5.1 Contrastive loss

As usual for self-supervised learning, we set up a non-trivial task from the unlabelled data alone.
To successfully accomplish this task the network will have to extract relevant features from the
data. The task will be to map similar jets close to each other while pushing dissimilar jets apart.
For these pairs of similar jets, positive pairs (xi, x′

i), are generated from the original jet data
by applying random transformations to each jet. Negative pairs are defined as not matching,
i.e. pairs of two distinct jets {(xi, xj)} ∪ {(xi, x′

j)} for i 6= j. We will specify physics motivated
augmentations in Section 5.2.

Each jet xi and x′
i is passed through the network to obtain the network output zi and z′

i.

zi = f(xi)
z′

i = f(x′
i)

To measure similarity in the output space we define the cosine similarity s

s(zi, zj) := zi · zj

|zi||zj |
≡ cos θij , (5.1)

where θij is the angle between zi and zj .

By defining similarity in this way we have deliberately chosen that the extracted information
will be organised on a hypersphere, because s(zi, zj) is only a function of the angular distance of
two vectors. The magnitude of the vectors is irrelevant for their similarity.

For every pair in the batch the contrastive loss is computed as

Li = − log es(zi,z
′
i)/τ∑

j 6=i∈batch
[
es(zi,zj)/τ + es(zi,z′

j)/τ
] , (5.2)

with a temperature parameter τ .

The total loss is defined as the mean over all pairs, L = 〈Li〉, and is backpropagated through
the network to gradually adjust the network parameters. The loss is minimal if the similarity
of positive pairs is high and the similarity of negative pairs is low, as they scale the numerator
and denominator respectively and the fraction is the argument of the monotonically decreasing
negative logarithm.

Desirable properties

There are reasons to use a sphere as a representation space beyond the fact that it naturally
arises from this formulation of contrastive loss (5.2). First, for any machine learning task a fixed
norm is helpful for training stability. Normalising onto a unit sphere by ẑi = zi/|zi| thus will
make downstream tasks that use the representation more stable.

12



5 Contrastive learning of jet representations

Figure 5.1: Illustration of linear separability of image representations on the unit hypersphere.
Taken with permission from [39].

Second, if relevant classes of instances are sufficiently well clustered on a sphere, they are
automatically linearly separable, see Figure 5.1. The same does not hold for Euclidean spaces.
Obviously, the discriminative power is further increased the more of the sphere’s surface is used.
Wang et al. [39] call this property uniformity and quantify it with the uniformity loss

Luniform = 1
Nbatch

∑
i∈batch

log
∑
j 6=i

[
e−s(zi,zj) + e−s(zi,z

′
j)
]

. (5.3)

Indeed, we will later see that discriminative features are facilitated by uniformity when training
a network where we do not apply any augmentations so that positive pairs just have two
indistinguishable jets and the numerator does not play a role. Recently it was shown, that the
contrastive loss is particularly good at optimizing uniformity because it is hardness-aware, i.e.
the relative penalty for similarity of negative pairs is higher the closer they are [40]. Thus, the
loss incentivizes to push the most difficult negative pairs apart and thereby to fix the local
structure on the hypersphere.

But we do not stop at uniformity. By using augmentations inspired by symmetry transformations
in Section 5.2, we can actually encode physics knowledge to reduce irrelevant noise. The desirable
property that jets with the same underlying data are similar, thus point in the same direction, is
called alignment in the framework of Wang et al. [39] and can be quantified with the alignment
loss

Lalign = 1
Nbatch

∑
i∈batch

s(zi, z′
i) . (5.4)

Contrastive learning provably optimises for uniformity and alignment in the limit of large batch
sizes [39]. The trade-off between the two can be controlled with the temperature τ . For very low
temperatures, uniformity dominates over alignment. When the temperature increases, the latent
distribution becomes less uniform and alignment increases.
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5 Contrastive learning of jet representations

Figure 5.2: Illustration of contrastive learning goals: alignment of positive pairs and uniformity
of negative pairs. Taken from [4].

The contrastive loss, being unsupervised, treats every negative sample equally. However, with
strong augmentations and the ability of neural networks to find abstract features, we can hope
for a latent structure that somewhat resembles the true physical relationships of the data.

5.2 Symmetries and augmentations

By telling the network which kinds of jets are positive pairs and therefore should be similar
in R, we can flexibly learn (approximate) invariances to symmetry transformations (and data
augmentations).

The symmetry transformations we consider are rotations around the jet axis, reflections and
translations in the η-φ-plane. In the jet image representation, rotation, translation and flip
symmetries must be done in the preprocessing.

Additionally, we also apply data augmentations which are not strictly symmetry inspired, but
express prior knowledge about jet structure. Due to the infrared divergence soft activity is noisy.
The soft radiation noise is independent of the hard process at the core of the event. This is
encoded with an augmentation that smears soft constituents. We chose to sample distortions out
of a Gaussian distribution N (µ, σ) with a standard deviation σ of Λsoft

pT
, Λsoft = 100 MeV.

pT

η
φ

 →


pT

N
(
η, Λsoft

pT

)
N
(
φ, Λsoft

pT

)
 (5.5)

A collinear splitting augmentation finds motivation in different viewpoints. Collinear divergence
is the theoretic motivation. The fact that particle detectors bin measurements into pixels,
effectively treating multiple collinear jet constituents as one, is the experimental motivation.
Teaching the network different constituent dimension categories, i.e. η and φ are to be treated as
space coordinates, pT as an additive quantity, is the technical machine learning motivation. The
augmentation chooses jet constituents and splits them into two softer constituents such that the
combined pT measured by the (simulated) detector does not change because both constituents
have matching η and φ.
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5 Contrastive learning of jet representations

As the number of constituents in a jet varies, but jets have to be presented by a fixed length
vector in the dataset, any remaining empty constituents are zero-padded, i.e. filled with zeros.
There are two reasons why this is important. First, if nothing is done about it, the resulting jet
representations encode the number of jet constituents via the number of zero-pads. Aiming at
highly informative representations, this does not have to concern us, however we know that this
information is not IRC safe and very noisy.

Second, relying on zero-pads is suboptimal, because it means having two distinct classes of
constituents, nonzero and zero-pads, thus making the constituent space discontinuous, which
complicates the task the network has to fulfil. One way to address this is to apply an augmentation
that fills all zero-pads with soft noise, that is centred at the jet axis with a standard deviation
equal to the jet radius R. In the implementation used here soft constituents were sampled as

pT = |N (0, 0.1) |, η = N (0, R) , φ = N (0, R) . (5.6)

We can incorporate permutation invariance of jet constituents explicitly by architecture [41]. At
the core, we use that the sum over constituents is permutation invariant. Before summing up,
we process constituents in parallel, where information flow between constituents is mediated by
an attention mechanism in an equivariant way. The inner workings of the attention mechanism
are detailed in the next section.

5.3 Attention

The origin of attention in machine learning is in natural language processing. Here, sequence
information like sentences need to be processed such that the context of each word is paid
attention to. It works from the principal that embeddings of set elements can be contextualized
by performing a weighted sum that also includes every other element in the set. Thereby, each
embedding is altered according to its context; the higher the weight of an element, the higher
the attention to it. For JetCLR, we employ the scaled dot-product multi-headed self-attention of
Ref. [42].

Dot-product reweighting

Suppose we have constituent embeddings xi. If we calculate the weight wij of attention xj

pays to xi with the dot product, wij = xi · xj , aligned embeddings will be attended to, while
orthogonal ones are irrelevant. Applying a softmax ensures that the weights will sum to 1. Thus,
the reweighted embeddings would be calculated by

x′
i =

∑
j

softmaxj(xi · xj)xj . (5.7)

Single-head self-attention

To flexibly attend to more complex patterns, we can introduce learnable weight matrices W Q,
W K and W V , respectively for queries, keys and values. With d being the dimension of keys, the
dot-product single-headed self-attention is
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5 Contrastive learning of jet representations

x′
i =

∑
j

softmaxj

(
(W Qxi) · (W Kxj)√

d

)
W V xj . (5.8)

Multi-head self-attention

In a single attention mechanism, embeddings tend to only attend to themselves. Thus, multiple
matrices W Q

i , W K
i and W V

i linearly project queries, keys and values to a smaller dimension to
calculate the attention multiple times. The resulting reweighted value vectors are concatenated
and passed to a final linear layer, see Figure 5.3. This allows the network to attend to different
embedding subspaces of different constituents simultaneously.

Figure 5.3: Full information flow of multi-head self-attention. Reweighted embeddings of multiple
attention heads in parallel are concatenated and passed to a final linear layer.

5.4 Transformer

A typical transformer, e.g. for language translation, consists of an encoder and a decoder. For
our representation learning purposes, we only use an encoder. It is made up of N identical blocks,
each featuring multi-head self-attention with a skip connection and layer normalisation, followed
by a feed forward network also with a skip connection and layer normalisation.

Figure 5.4: Network architecture consists of embedding layer, transformer encoder layers with
multi-head self-attention and feed forward network, sum over constituents and head
layers. Taken from [4].
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5 Contrastive learning of jet representations

Figure 5.4 summarises the full architecture. Each constituent, at first only represented by its
kinematic variables (pT , η, φ) is embedded in a dmodel-dimensional space by a learnable linear
layer with the identity as activation function. The higher dimension increases the expressiveness
of constituent embeddings and thus jet representations. These embeddings are accumulating
context information by successive transformer encoder layers.

After the transformer encoder, all constituent embeddings are summed to achieve a permutation
invariant jet representation.

We found in accordance to Ref. [3] that it is beneficial for representation quality to separate the
layer from which jet representations are taken from the last layer, where the contrastive loss is
applied, by a non-linear function. This is realised by a small fully connected head network. In
practice it is not necessary to settle on a specific head layer from which to choose representations
at training time. Therefore, the head network is implemented in a way that allows to evaluate
the representation quality before, within and after the head network flexibly.
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6 Experiments and results

6.1 Data and tools

We work with the top tagging dataset [26], where collision events are simulated with Pythia8 [43]
(default tune) with a centre of mass energy of 14 TeV. Pile-up and multi parton interactions are
neglected. These simulated events are then converted into detector measurements with Delphes
[44], using the default ATLAS detector card. The simulated colorimeter measurements are used
to reconstruct jets defined by the anti-kT -algorithm [17] in FastJet [45] with a jet radius R = 0.8.
Finally, we keep the leading jet if its transverse momentum is between 550 and 650 GeV. Labels
indicating whether a jet is a top jet are included. For this, top jets are defined as jets that can
be matched to a parton-level top quark and contain all parton-level decay products within the
jet radius.

Neglecting the vanishing masses of jet constituents, we calculate the kinematic variables pT , η
and φ as detailed in Section 2.4. Then we centre the pT weighted centroid of each jet to be in
the origin of the η-φ-plane and order jet constituents by their pT .

The networks were implemented in Pytorch [46]. For the evaluation and analysis of learned
representation we used scikit-learn [47]. Finally, NumPy [48] allowed the vectorisation of on-the-fly
augmentations.

6.2 FCN as testing ground

The approach contains many hyper-parameters that we need to choose, such that the learnable
network parameters converge to a good model. As these optimal hyper-parameters are not known
to us, we have to systematically search the parameter space.

We start by simply using a small fully connected network (FCN), no head and few augmentations.
Compared to a large and complex transformer network, the FCN allows fast training and easier
troubleshooting. Furthermore, we initially crop the number of constituents in a jet to nC = 20,
thus dropping much of the difficult soft noise. The fully connected network consists of an input
layer of size 3nC , a single hidden layer of size 80 and an output layer of size 200 where both the
representations are taken from and the loss is applied to. We train for 750 epochs with a batch
size of 1000 on a dataset with signal to background ratio of 0.05. For the early tests we only use
the rotation symmetry transformation and the low pT distortion augmentation. Using the fully
connected network instead of the transformer means sacrificing permutation invariance. In this
setting, ordering the jets constituents by their transverse momentum as a preprocessing step
helps the fully connected network to still make out radiation patterns.

During training, we periodically evaluate not only the contrastive loss, but also uniformity,
alignment and representation quality. We find that all of these metrics are indeed correlated.
Training is done with the Adam optimizer and can take up to 500 epochs until convergence.

The temperature parameter τ of the contrastive loss function was shown to be crucial for
contrastive learning of representation to work [39, 40]. Figure 6.1 shows the results of a
systematic temperature scan on the FCN. Despite fluctuation, we see that temperatures of 0.1
to 0.2 perform best.
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Figure 6.1: Probing different temperatures τ in a systematic hyper-parameter scan. Representa-
tion quality is measured by proxy of Area Under the receiver operator Curve (AUC).

When the number of constituents is increased such that jets include more soft radiation, con-
stituents included in the representations become less relevant to the hard physics. We show in
Figure 6.2 that the low pT distortion augmentation counters the deterioration of representation
quality. With this augmentation more constituents add valuable information.

Chen et al. have stressed that large batch sizes are beneficial for contrastive learning [3]. Indeed,
tests with lower batch size proved to perform worse. Increasing the batch size further is not
possible due to memory constraints on the GPU, because the gradients for all parameters must
be stored for each jet instance in the batch to compute the next optimisation step.

Misalignment

A final lesson from the FCN tests, that later proved to generalise to the transformer architecture,
was that the separation of representation and loss layer really is useful. The introduction of
the head makes it possible to take jet representations on a different layer than the last one.
Empirically we observed, that the output layer, (even though) optimised for contrastive loss,
consistently resulted in representations far worse than earlier head layers. At first this might be
unexpected as the contrastive loss seems to be well aligned with the interests of representation
learning. After all, direct optimisation of alignment introduces physics knowledge, uniformity
forces to retain discriminative power and the hypersphere favours linear separability.

On the other hand, it is a known phenomenon that encodings in the middle of the network
are more general than at the end, both in contrastive learning [3] and elsewhere [49]. Rather
speculatively, this strategy to encode abstract representations a few layers before the last one
might be favoured because individual layers tend to do as little work as possible. Put differently,
learning well separated abstract features inside the model allows it to perform difficult mapping
tasks efficiently. It is also well-known from Computer Vision that successive layers encode
features which correspond to more and more abstract concepts (lines, curves, textures, objects,
..., geographic regions) [50]. Towards the end, the features become less general and more relevant
to the specific loss function [51].
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Figure 6.2: Low pT distortion augmentation makes larger number of constituents (nC ≡ NC)
possible. Only applying rotation symmetry transformations (circles) results in deteri-
orating representation quality with larger number of constituents. This is reversed if
the low pT distortion augmentation is added (crosses).

In our case, alignment and uniformity on a hypersphere might be just difficult enough to require
abstract feature formation, but already too constrained by the specific task to give an optimal
data representation in the last layer.

6.3 Building up from parts

With a working setup and after finding appropriate hyper-parameters for training with contrastive
loss, we can now introduce the transformer architecture. We use a model dimension of 1000 and
four attention heads. After early tests, four successive transformer encoder layers seemed promis-
ing. We started with rotational symmetry transformation and low pT distortion augmentation,
like with the FCN tests, and trained on batch sizes of 128 with a signal to background ratio of 1.

Because many tests were done and there are many important aspects of a well performing
contrastive learning transformer model, we will build up the performance from parts.

The truly first step is the freshly initialised neural network before any training is done. The
network at that stage is a random function that maps sets of 50 constituents to R1000. Because the
architecture contains summing up constituent embeddings, this mapping is already permutation
invariant. By passing jet data through this network and evaluating the linear separability of top
jets from QCD jets we quantify the representation quality. And we find it to be already higher
(AUC ∼ 0.87) than the quality of the raw constituent data (AUC ∼ 0.80).

Next, we train the network while not applying any augmentation. Thus, positive pairs are
identical jets and will invariably be mapped to the same representation. As the loss cannot
be reduced by optimising alignment, the network only learns to map jet data uniformly onto
a hypersphere. To reduce the problems of the noisy soft regime, the jets were cropped to only
include the hardest nC = 20 constituents. This network converges to a LCT performances of
AUC ∼ 0.93.
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6 Experiments and results

Again just like with the FCN, the transformer network also benefits from a nonlinear projection
head between the layer where the representations are taken from and the layer where the loss is
applied. This benefit seems to plateau at 2 ... 3 head layers. We also tested the effect of layer
normalisation on the head layers and found no significant deviation.

It is not obvious which augmentations work best. However, many different augmentations were
implemented to shape what is learnt by the network and to overcome specific issues. One
challenge was to be able to encode a high number of jet constituents nC without introducing more
noise than useful information. Figure 6.2 already established the efficacy of low pT distortion
augmentations. This addressed the distracting noisiness of η and φ in soft constituents.

The soft fill augmentation addresses another issue that arises when going to a higher number of
constituents. For technical reasons, jets have to be stored in a fixed length vector; remaining
entries of jets that have fewer than nC constituents are padded with zeros. We know from the
soft and collinear divergences of QCD, that the number of constituents is very noisy. If no
countermeasures are taken, constituent embeddings of zero-pads strongly differ from embeddings
of non-zero constituent. Thereby, the noisiness of the number of constituents has a high impact
on the jet representations. In our dataset, the number of constituents is a distribution with a
median ∼ 50, thus the magnitude of variation from this increases strongly when nC is increased
from 20 to 50. The soft fill augmentation tackles this by removing all zero-pads and replacing
them with random soft noise of order 100 MeV. Because the soft noise will differ between each
jet of a positive pair, this augmentation forces the representations to be irrelevant to any soft
activity below 100 MeV.

An orthogonal approach to address the noise problems of soft constituents is to prevent that
zero-pads are processed by the network in the first place. Of course the easy way to do this is to
crop off soft activity entirely and use a low fixed nC . However, this is not a solution we are seeking,
because it also disregards possibly relevant information. Rather, this naive approach is what we
are trying to circumvent. We prepare a boolean mask for separating non-zero constituents from
zero-pads. The application of this mask will be to selectively ignore zero-pads in the attention
mechanism. First, the mask decides which constituents are summed over and thus enter the jet
representation. Second, the mask must be applied to suppress attention to any zero-pads. We do
this by modifying the attention mechanism. Recall, that the attention mechanism, Equation (5.8),
uses a softmax to determine the attention weights for every constituent. To effectively ignore
constituents, we add negative infinity to the argument of that softmax function. Thus, regardless
of the product of key and query, the weight of a zero-pad constituent will be 0. This binary mask
makes sure that constituents with exactly pT = 0 get no attention. We also tested a continuous
version, where we added a function of pT that diverges to negative infinity at pT → 0 to the
softmax argument. For this, the binary function

binary masking a(pT ) =
{

−∞, if pT = 0
0, otherwise

(6.1)

was modified to be

IR masking a(pT ) = 1
2 log(pT ) . (6.2)

Continuous masking deserves the name IR masking because it ensures infrared safety of attention.
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Binary masking on the other hand, does not suppress soft activity and does not even suppress the
number of constituents. While it stops zero-pads from entering explicitly, the jet representation
will still encode the number of constituents. This is the case, because the embedding network
has bias nodes and dimensions with a non-zero expectation value. When summed up, those
dimensions will therefore invariably depend on the number of summands.

We find the effect of masking does not separate from other moving parts during the exploratory
testing phase. That is, binary masking as well as IR masking improves the discriminative features
of representations for some settings but also sometimes contributes to further worsen results. We
find however, that IR masking performs better than binary masking.

The arguments in favour of incorporating more symmetries into the representations are clear:
avoid pre-processing and reduce noise. To explore how this can be pushed further beyond our
setting, we try to achieve translation invariance. The dataset we use throughout this work only
contains jets that are already centred such that the pT weighted centroid is in the origin of the
η-φ-plane.

Because the data degeneracy corresponding to translations is already removed, there is no strong
reason that incorporating translation invariance would benefit the quality of representations
obtained from this dataset.

However, ultimately we are interested in developing the method and not the specific jet representa-
tions. Therefore, we explore if the method can be generalized to make another preprocessing step
obsolete. To simulate a setting where the dataset is not centred, we augment the dataset with the
translation symmetry transformation before evaluation. Translation invariance turned out to be a
difficult challenge. Experiments were done both with the FCN and the transformer, with different
amounts of translation and treatment of the circular structure of the η-φ-plane at φ = 2π as well
as increased FCN hidden layer size; all without success. The metrics for representation quality
were never comparably good as without translation invariance. Highlighting the interdependence
of the augmentations we found later that translations are only beneficial if accompanied by a
collinear splitting augmentation.

The collinear splitting of constituents to fill up zero-pads helped to push the performance of our
representations beyond the mark of background rejection ε−1

b (εs = 0.5) = 120.

The model that finally produced the best performing representations used rotation, low pT

distortion, translations, and collinear splitting to fill zero-pads. The hyper-parameters that
define the architecture and the learning of the network are given in Table 6.1. In Figure 6.3, the
corresponding linear classification performance is compared to the benchmark representations.
That comparison shows JetCLR can outcompete the established jet substructure representations.
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hyper-parameter value
model (embedding) dimension 1000
feed-forward hidden dimension 1000
output dimension 1000
# self-attention heads 4
# transformer layers 4
# layers 2
dropout rate 0.1
optimizer Adam(β1 = 0.9, β2 = 0.999)
learning rate 5 × 10−5

batch size 128
# epochs 500
continuous masking 3

rotation + translation 3

soft pT + collinear 3

Table 6.1: Hyper-parameters defining the transformer architecture and its training. Values are
the most successful combination.
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Figure 6.3: Toptagging performance of different jet representations. Taken from [4]
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7 Opening the box

Our networks contain 26 million learnable parameters. The deconstruction of the inner workings
of neural networks is important both for understanding by which algorithms networks determine
their output and for understanding shortcomings and side effects [52] in order to overcome them.
Additionally, we might be able to learn the essential parts of the networks mapping and apply
them for the creation or techniques that do not need to be trained at all.

Until now, we only know what is learnt in terms of what is optimised at the last layer, i.e. the
contrastive loss, and in terms of all possible ways information can be processed in the network,
i.e. the architecture.

7.1 Head

First of all, we measure the properties that were optimised through the minimisation of contrastive
loss: alignment and uniformity. Strictly, the properties are only optimised in the representations
of the last layer. However, as both properties are desirable for representations in general, we are
interested also in the other representation layers, namely before the head and between the two
head layers.

To evaluate the alignment of positive pairs in a controlled fashion we create rotated versions
of the same jet for equidistant angles between 0 and 2π. Moving around the full circle and
recording the similarity of the rotated jets to the original jet, we can directly measure how a
representation depends on its rotation angle. As can be seen in Figure 7.1, training a network
with symmetry transformations indeed leads to approximately invariant representations. Recall,
that ideal similarity corresponds to s(z, z′) = 1, as the chosen measure is the cosine of the angular
distance on the hypersphere (5.2). The green line is the similarity curve of a network trained
with rotated positive pairs. Its difference to 1 is several orders of magnitude lower than the red
line, which is the similarity curve of a network trained without rotated positive pairs. This proves
the effectiveness of the contrastive learning approach to align positive pairs.

Because rotating clockwise or anticlockwise cannot make a difference and rotating by an angle of
α = 0 leaves the jet unchanged, the similarity is minimal at α = π. We observed that, for the
network that was not trained with rotated positive pairs, this minimal similarity is ∼ 0.5.

As all jets are clusters of constituents centred at zero, they are, at first approximation, them-
selves already rotationally invariant. The more a jet resembles a cluster with equal density of
constituents at any angle, the more rotationally invariant it will be even before a pass through
our representation network. This is effect becomes visible, when we trace the similarity curves of
toy jets consisting of two prongs and three prongs, because they are less like circular clusters.
The similarity curves of the representations nicely show the periodicity. We also observe that
the minimal similarity is now ∼ 0. This is below the minimum of the similarity curve observed
for jets with more constituents, showing that indeed inherently rotational invariance of raw jets
data was the reason for their elevated similarity.

To complete the analysis of the network’s outputs, we also have to consider negative pairs.
In principle, their similarities will be contained in the interval [−1, 1], but the distribution of
similarities will depend on the trade-off between alignment and uniformity realised by the model.
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Figure 7.1: Visualisation of the rotational invariance in representation space. s(z, z′) = 1 indicates
identical representation. Top: representation trained without (left) and with (right)
rotational transformations. Bottom: toy jets consisting of two and three prongs,
similarity curves are green for training with rotational transformations, red for
training without rotational transformations

Empirically, we observed that the negative pair similarity varies significantly across the different
positions in the head. While the last representation and the intermediate representation have a
similarity distribution centred at zero, the representation before the head network has a higher
expected similarity, i.e. strong negative pair alignment.

This hints at an additional1 explanation for the virtue of the head network:

• It is costly to model uniformity just with transformer encoder layers.

• It is advantageous to outsource the fulfilment of this important aspect of the loss function
to the head network.

Figure 7.2 shows pairwise similarity matrices of a list of 100 QCD jets and 100 top jets for
different representations. The key insight from this figure is that representations before the
head network (upper right) have positive expected similarity (largely red upper triangle) and
presentations within and after the head network (bottom) have vanishing expected similarity
(largely grey upper triangle).

1The first explanation was the misalignment of the contrastive task with the LCT test, Section 6.2.
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7 Opening the box
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Figure 7.2: Pairwise similarity matrices of jet list. First 100 jets are QCD jets, last 100 are top
jets. Diagonal line is similarity of each jet with itself. White lines were drawn to
separate QCD-QCD, QCD-top, and top-top jet pairs. Four different representations
are shown. Upper left: theoretic jet representation that only encodes the class
label as opposing vectors on the hypersphere. Upper right: jet representation taken
before the head network. Note the high similarities between negative pairs. Bottom:
jet representation taken after the first, respectively the second head layer.

A rather trivial property of the representations becomes apparent when any of the three learned
representations is compared with the toy representation in the upper left of Figure 7.2. This toy
representation contains only the class label, such that there is perfect in-class alignment. This
manifests in the plot as a high in-class pairwise similarity (red) and low out-of-class pairwise
similarity (blue). However, as expected, in the actual representations the class label does not
dominate the similarities. During training the class label is not shown to the network and the
1000 observables predictably encode many different properties of substructure than just the class
label. Measuring the similarity compares all jet observables at once. To obtain the class label,
a linear classifier must be trained to classify top and QCD jets from the representations that
weight the observables appropriately.
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7 Opening the box

Figure 7.3: Manifold of constituent embeddings visualised with t-SNE and different colour filters.
Top: transverse momentum and distance from centroid of constituent, Bottom:
properties of the constituents’ parent jet: nC and if it is a top jet (signal=1).

7.2 Sum

To learn more about how the transformer processes constituent data, we will investigate the
constituent embeddings. An appropriate network position to take them from is before they are
summed to form a jet-level representation, because by then they will have accumulated context
information through the attention mechanisms. The summation constraints how constituent
level information can enter jet observables. The dimensions of constituent embedding vectors
should be viewed as additive contributions to the respective jet observable. Put differently, the
value xi

(m) of constituent embedding vector xi at index m is the additive contribution to jet
observable m of constituent i given the context of its jet.

The 1000 dimensional constituent embeddings are visualised via dimensionality reduction with
t-SNE; see Section 3.2. The specific t-SNE plots shown in Figure 7.3 use a perplexity of 130
and are trained until convergence with a learning rate of 200 for 1000 iterations. As metric for
t-SNE we use the default Euclidean distance. The specific parameter choice, however, had no
qualitative effect on the embedding. The constituents of 200 QCD and 200 top jets are prepared
as a dataset. Corresponding labels are prepared for transverse momentum pT and distance from
centre ∆R =

√
η2 + φ2, as well as the number of constituents nC of their jets and whether their

jet was a top (signal) or a QCD (background) jet. Using those labels as colour maps, allows us
to explore the embedding manifold.
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7 Opening the box
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Figure 7.4: Jet data going through the transformer. For each transformer layer, 50 constituent
embeddings with 1000 dimensions are shown as a matrix, with axes ordered by pT

and standard deviation of "trafo layer 3" embedding respectively. Note the first 24
embedding dimensions on the left in the last trafo layer.

From the t-SNE visualisation, we first observe that the constituents are mapped to a connected
space, rather than segregated in multiple distinct clusters. This space is ordered both by transverse
momentum and distance to the jet centre, as can be seen by the strong colour separation in
Figure 7.3 (top). We also observe that top jet constituents and QCD jet constituents form
separate spots (bottom right). Even though we masked-out zero-pads and thus do not show
them here, it was tested that they form a separate cluster, which fits their qualitatively different
nature. Note, it makes intuitive sense that the embedding manifold is predominantly ordered
by transverse momentum and distance to centre, as this is the basic information that defines
constituents. The context information acquired through the attention mechanism is more subtle.

From the connectedness of the constituent space, we can infer the connectedness of the jet
representation space. Specifically, the representation used throughout this work was taken
from before the head network, thus the jet representations are exactly the sums of constituent
embeddings from Figure 7.3.

7.3 Transformer

We will now follow the processing of all constituents of a single jet through the network. This
is not done to learn something specific about this jet or its constituents, but rather to get a
first grasp of how constituent embeddings are created and to see if something unexpected awaits
discovery.

Each of the 50 constituents of the same jet, initially defined by pT , η and φ, are embedded to a
1000 dimensional vector each. Thus, we process a matrix of the shape 50 × 1000, which we can
illustrate as an image where each pixel is a matrix entry. Within the matrix, constituents are
pT -ordered. Since also the embedding dimensions can be reordered to simplify our understanding,
we order them by the standard deviation of the embedding dimensions after the last transformer
encoder layer.
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7 Opening the box

We find that a small subset of embedding dimensions differ strongly from the rest. Interestingly,
the constituent embeddings after the transformer have 24 dimensions with a standard deviation
several orders of magnitude higher than the rest of the embedding dimensions. Moreover, these
dimensions only show negative entries that scale with a monotonous function of transverse
momentum. These 24 constituent-level jet-context-aware observables, and their jet-level counter-
parts should be studied more in detail at a later stage. In Figure 7.4 their values in a specific
jet can be viewed. The key insight from this figure is that the last transformer layer outputs
constituent embeddings, that have just a few dimensions with large magnitude, and that those
dimensions also vanish, when the transverse momentum vanishes. Apart from that, other layers
show dimensions that are not understood and are not the focus here. For this work, it must
suffice to say that the network appears to have learnt to scale the largest constituent observables
with transverse momentum.

It is an interesting question, why all of those observables show negative values. That a single
observable only realises same-sign values, makes sense insofar that it avoids the cancellation of
multiple constituents in the constituent sum. This tendency to avoid constituent cancellations
would also explain the strong alignment of negative pairs that was observed in Figure 7.2. When
contributions of constituents mostly have the same sign for any dimension, the expected value
will be different from zero. This in turn leads a positive expected value of pairwise similarity
(5.1).

This exploration should be closed by some remarks about the uncertainties and open questions.
First, it is very well possible that other representation dimensions than the 24 special ones encode
important information, just at a different scale. The existence of two types of representation
dimensions, separated by their magnitude, nevertheless implicates that the set of 24 observables
found in this analysis plays an important role. Second, the analysis only applies to the model
presented in Figure 6.3. While earlier models were evaluated similarly and some of the described
features are present in all of the analysed models, the detailed evaluation presented here is not
yet done fully for a separate model. And third, what context information exactly is accumulated
inside the transformer encoder layers, each 6 million parameters in size, is still unclear. More
explainablity research [53, 54] has to be done if one wants to harness the representation capability
of this machine learning model. In principle, this could be a research direction for developing
new analytical jet substructure observables.
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8 Conclusions

Modern physics produces large datasets of high dimensional measurement data. Analysing this
data for data driven research faces the challenge of how to represent high-dimensional information
about physical processes. We have explained why good representations must exploit fundamental
and approximate symmetries, retain discriminative features and be new-physics agnostic. We
have discussed existing high dimensional jet substructure representations, namely jet images
and energy flow polynomials (EFPs). The jet image must rely on preprocessing to account for
invariances and its size scales quadratically with resolution. EFPs include important symmetries,
but are inflexible compared to machine learning methods.

Proposing a method for learning representation, we have shown how symmetries can be incorpo-
rated into representations with contrastive learning and transformers, and have presented the
JetCLR tool1 to solve this task for jet substructure.

The evaluation of the discriminative features was done by training a linear classifier on the
representations. A good performance of said classifier indicates that the representation is powerful,
because the linear classifier itself is not expressive enough to untangle features from suboptimal
representations. We have shown that JetCLR can outcompete jet images and EFPs in these
tests.

Systematically, we have identified which hyperparameters, symmetry transformations and data
augmentations lead to the best representations. Because augmentations can be added flexibly
just by defining a transformation on the input data space and sampling augmented positive pairs
from it, they also became a handle to overcome obstacles by shaping the importance of different
features in the representation.

We found that a nonlinear projection head network separating the representation layer from
the output layer is crucial for contrastive learning to work in our setting. The benefit of it is
twofold: First, the contrastive loss is misaligned with the linear classifier test on the output
layer, i.e. optimising the contrastive loss directly on a representation is not optimal for LCT
performance. By separating the layers with a head, this can be remedied. Second, converged
models are avoiding the cancellation of constituent embedding dimensions in the summation
after the transformer, effectively leading to aligned jets representations before the head. This is
only possible when the summation is followed by a head network, because the loss punishes any
alignment of negative pairs.

Finally, first steps were taken to look at the processing of jet data within the neural network.

1The core code for JetCLR is maintained at https://github.com/bmdillon/JetCLR
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