
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Simon Pijahn

born in Erlangen (Germany)

2000

EndINNg Vegas
Event generation and integration with INNs

This Bachelor Thesis has been carried out by Simon Pijahn at the
Institute for theoretical Physics in Heidelberg

under the supervision of
Prof. Tilman Plehn

ii

Abstract

In high Energy physics, integration of differential cross sections plays a major role, as
well as sampling single unit-weighted events for a process. Algorithms like Vegas provide
adaptive Monte Carlo techniques to do this, however still face the issue of not being fully
efficient in capturing non-factorizable integrands. With the raise of machine learning,
projects like i-flow made it their mission to gain improved efficiency, with success.
Nevertheless, training the implemented networks can take a long time, as evaluating the
differential cross section is computationally expensive. We present a way to shorten this
by generating less samples with invertible neural networks.

Zusammenfassung

In der Hochenergiephysik spielt die Integration von differentiellen Wirkungsquerschnitten
eine wichtige Rolle, ebenso wie das Generieren einzelner einheitsgewichteter Ereignisse für
einen Prozess. Algorithmen wie Vegas bieten hierfür adaptive Monte Carlo Techniken,
haben jedoch das Problem, dass sie bei der Erfassung nicht faktorisierbarer Integranden
nicht vollständig effizient sind. Mit dem Aufkommen des maschinellen Lernens haben es
sich Projekte wie i-flow zur Aufgabe gemacht, die Effizienz zu verbessern - mit Erfolg.
Dennoch kann das Training der implementierten Netze viel Zeit in Anspruch nehmen,
da die Auswertung des differentiellen Wirkungsquerschnitts sehr rechenintensiv ist. Wir
stellen eine Möglichkeit vor, diese zu verkürzen, indem wir mit neuronalen Netzen weniger
Ereignisse berechnen.

iv

Contents

1 Introduction 2

2 Essentials 3
2.1 Monte Carlo techniques . 3
2.2 Physical Background . 4
2.3 Unweighting . 9
2.4 INNs . 9

3 Program Pipelines 14
3.1 Vegas . 14
3.2 INN . 16

4 VEGAS 18
4.1 Digression: Plots . 18
4.2 Toy functions . 18
4.3 Cross sections . 19

5 INN 26
5.1 Toyfunctions . 26
5.2 Learning rate Schedulers . 26
5.3 Generative Training . 28
5.4 Recycling Training . 32
5.5 Combined Training . 32
5.6 Loss . 37
5.7 Benchmark . 37
5.8 Adding recycling . 42

6 Conclusion 47
6.1 Summary . 47
6.2 Outlook . 48

1

1 Introduction

Even though the Standart Model of particle physics describes very precisely the behavior of
elementary particles, it still seems to be incomplete, as it can’t yet describe some phenomena
like dark matter or gravity. In the case of dark matter, many theoretical ideas exist to explain
it, such as Axions, WIMPS or supersymmetric particles [1]. These beyond the Standart Model
theories are constrained by experimental measurements, for example data taken by particle
colliders like the LHC or astrophysical observations. The subject of connecting the theoretical
prediction of the behavior of particles known to exist with experimental data is called phe-
nomenology : Theoretical predictions of measurable quantities according to a new theory are
calculated and compared with experiments. The calculation of the cross section or sampling
unit weighted events for a certain process are widely used to check whether a theory is valid
or to be rejected. The first calculation boils down to the integration of high dimensional,
very complicated functions, the differential cross section, over the phase space of final state
particles. Because these integrands are so complex, only rarely an analytical solution exists,
raising the need of other means to obtain the integral. One common numerical and very stable
way to do this, is to use Monte Carlo integration, as it makes very few assumptions about
the integrand. It takes samples of the integrand and estimates the value of the integral with
them. As the standard deviation scales to the inverse square root of number of samples taken,
several variations of this approach exist to further minimize the error without the need of more
samples (which can be computationally very expencive to calculate); in this thesis, it will be
focused on importance sampling: By taking samples non uniformly in the integration space,
but proportional to the value of the integrand, the variance can be greatly reduced. This
has the side effect of greatly increasing the unweighting efficiency. There already exist some
algorithms to automatically adapt the sample probability density, like Vegas [2], however, it
still struggles with high dimensional integrals, as it assumes the integrand to be separable in
each dimension, which is most often not the case in interesting physical situations.
In recent years, the field of machine learning has made great progress, and neural networks
can be viable alternatives to previously mentioned algorithms, as they can provide a highly
adaptable mapping between two integration spaces. One existing program is i-flow [3], which
also is trained by taking samples of the function, but does not suffer from the separability
assumption of Vegas any more. However, in this thesis, it is proposed that this project can
be improved: As mentioned above, evaluating the function can take a lot of time, and i-flow
only trains by taking samples, but with invertible neural networks, another training direction
is possible by going over already sampled points again and still adapt the mapping, without
the need of an expensive calculation.

In this thesis, first, the theoretical background of Monte Carlo techniques, physical processes,
event generation and invertible neural networks are explained; after that, suitible program
pipelines are sketched. For a baseline, Vegas will be tested first on a toy function, then on
the physical process gg→ ggg. To keep things more tangible, the proposed invertible neural
network is also precisely examined on a toy function and compared to the benchmark produced
by i-flow. Even though the benchmark could not be achieved, to show the feasibility of this
project, the proposed innovation is shown to work.

2

2 Essentials

2.1 Monte Carlo techniques

Monte Carlo Integration

The integral can be illustraded by the area under the integrand. It equals the average value
of the function multiplied with the integration volume. Adapting Monte Carlo techniques,
random samples in the volume can be taken and the integrand evaluated at that point.
Repeated many times, this can produce an approximation of the Integral: Consider

I =

∫
Ω
f(u′)du′ (1)

where f : Ω ⊂ Rd → [0,∞), and Ω is typically an unit hypercube. The estimation of the
Integral, given N uniform random samples ui ∈ Ω, can be calculated via

I ≈ EN =
|Ω|
N

N∑
i=1

f(ui) = |Ω|⟨f⟩
|Ω|=1d

= ⟨f⟩ (2)

|Ω| denotes the Volume of Ω, which is in the unit hypercube case equal to 1d, hence it will
not longer be mentioned if not necessary. The standard deviation of EN is then given by

σN (f) =

√
VN (f)

N
=

√
⟨f2⟩ − ⟨f⟩2

N
(3)

with VN the corresponding variance. [4]

Importance sampling

Importance sampling aims to reduce the variance of the Monte Carlo Integral estimation
(taking the same number of Samples). Great variations in f(ui) lead to a great variance;
in the optimum case, f(ui) = const → VN (f) = 0. This can be achieved by a non-uniform
sampling probability density, taking more samples where the value of the function is bigger.
Mathematically, this corresponds to a change of variables. Instead of integrating directly
uniformly over Ω, a positive definite mapping G(u) : Ω→ Ω, is introduced, and

I =

∫
Ω

f(u′)

g(u′)
g(u′)du′ =

∫
Ω

f(u′)

g(u′)
dG(u′) = ⟨f

g
⟩ (4)

such that g is as close as possible to f . Samples are taken according to G(u) and weighted
inversly by g(u) = dG(u)/du. The optimum case of a constant integrand corresponds to
g = f , but this would require knowing the Integral beforehand. Finding the best choice of G
now is the main quest to minimalize the standard deviation of the integral estimation, which
is one measure of success for this project. [5] [6]

3

Figure 1: Vegas grid adapted to a double gaussian function: two artificial peaks visible

Vegas

A popular Monte Carlo integration alorithm utilizing importance sampling is Vegas. It was
invented in 1978 by G. P. Lepage [2] to automatically adapt the sampling density to the
integrand. To this end, it uses a grid in each dimesion, evaluates the mean value of the
integrand in each cell and adapts the cell volume inversely to it. After several iterations
(most times 5-10 iterations are sufficient and the grid is fully adapted), an adaptive monte
carlo integration using the adapted grid map and its inverse jacbobian jacvegasinv is performed.
As vegas assumes that the integrand is factorizable, it is a weakness of this algorithm, as
shown in Figure 1 . The function the map adapted to is:

f(x) =exp
(−((x1 − 0.25)2 + (x2 − 0.25)2)

0.252

)
+exp

(−((x1 − 0.75)2 + ((x2 − 0.75)2)

0.252

) (5)

featuring only two peaks, however Vegas "sees" four peaks, and therefore its efficiency suffers.

2.2 Physical Background

Crosssection and Matrix element

This section follows closely the derivation of [7].
In high energy physics, one important observable in scattering experiments is the probability
for a process to take place, for example in the case of two incoming particles:

P = | ⟨ϕ1ϕ2 . . .︸ ︷︷ ︸
future

|ϕAϕB︸ ︷︷ ︸
past

⟩ |2 (6)

4

One can describe this likelihood in terms of the cross section σ. It is defined as follows:
Consider two bunches A,B of lenth ℓA, ℓB, density ρA, ρB and identical cross-sectional Area
A, that are colliding with some velocity v. Then,

σ ≡ Number of scattering events
ρAρBℓAℓBA

(7)

To compute this quantity, one has to set up the incoming particles, evolve them in time with
the correct time evolution operator conatining information about the implemented theory,
and overlap overlap with the final-state particles.
A state is represented by its wavefunction:

|ϕ⟩ =
∫

d3k

(2π)3
1√
2Ek

ϕ(k) |k⟩

⟨ϕ|ϕ⟩ = 1 if
∫

d3k

(2π)3
|ϕ(k)|2 = 1

(8)

Where |k⟩ is a one-particle state of momentum k in the corresponding theory and ϕ(k) is the
Fourier transform of the spatial wavefunction. Adopting the convention of collinear Beams
(forced by setting the impact parameter b = 0) and writing an explicit factor exp(−ib · kB)
to take the spatial translation of the beams before the collision into account, setting up the
initial state is straightforward:

|ϕAϕB⟩in =

∫
d3kA
(2π)3

∫
d3kB
(2π)3

ϕA(kA)ϕB(kB)e
−ib·kB√

(2EA)(2EB)
|kAkB⟩ (9)

It is now convenient to set the initial and final state to a definite momentum, to be able to
calculate the transition amplitude between them. To compute it, the initial state is evolved
in time and the S-Matrix identified:

out ⟨p1p2 . . . |kAkB⟩in = lim
T→∞

⟨p1p2 . . .︸ ︷︷ ︸
T

|kAkB︸ ︷︷ ︸
−T

⟩

= lim
T→∞

⟨p1p2 . . .| e−iH(2T) |kAkB⟩

≡ ⟨p1p2 . . .|S |kAkB⟩

(10)

The S-Matrix contains a trivial non-interacting part, corresponding to no scattering taking
place, and an interesting part containing the interactions:

S = 1+ iT (11)

Therefore we can extract the interaction and implement 4-momentum conservation:

⟨p1p2 . . .| iT |kAkB⟩ = (2π)4δ(4)(kA + kB −
∑

pf) · iM(kAkB → pf) (12)

All 4-momenta correspond to real particles and are on-shell. M is the Matrix element spec-
ifying the process and calculated from Feynman Diagrams. In this thesis, this will not be
treated for longer; in the realization of the project, it will be computed by MadGraph [8].

5

To connect the Matrix element to the cross section, the probability for an initial state |ϕAϕB⟩
to scatter into an infititesimal final state phase space volume d3p1 . . . d

3pn is considered:

P(AB → 1 . . . n) =

∏
f

d3pf
(2π)3

1

2Ef

 |out ⟨p1 . . .pn|ϕAϕB⟩in |2 (13)

And for a single target A and many incident particles B with different impact parameters b,
the Number of events is

N =
∑

incident particles i

Pi =
∫

d2bnBP(b) (14)

Where nB is the area density of B. It is assumed to be constant to arrive at the cross section

σ =
N

nBNA
=

N

nB
=

∫
d2P(b) (15)

Now, puting the Equations 9, 13 and 15 together,

dσ =

∏
f

d3pf
(2π)3)

1

2Ef

∫ d2b

 ∏
i=A,B

∫
d3ki
(2π)3

ϕi(ki)√
2Ei

∫
d3k̃i
(2π)3

ϕ∗
i (k̃i)√
2Ẽi

×eib·(k̃i−ki)

(
out ⟨{pf}|{ki}⟩in

)(
out ⟨{pf}|{k̃i}⟩in

)∗ (16)

is obtained,
where k̃i are dummy integration variables. Investigating only interaction processes, the iden-
tity Matrix in Equation 11 can be dropped, and the 6 integrals can be performed. The one
with k̃zi gives a factor 1

|vA−vB| , wich is the relative beam velocity as viewed from the labora-
tory frame. In high energy physics, the beams travel with approximately c ≡ 1, the factor
approximates to one. The final form of the crosssection yields:

dσ = (2π)4δ4(pA + pB −
∑
f

pf)
|M(pA, pB → {pf})|2

2EAEB

∏
f

d3pf
(2π)3

1

2Ef

 (17)

Parton Distribution Function

As the name suggest, in hadron colliders like the LHC, hadrons are collided. They have
internal structure, as they are made out of quarks and gluons, its so-called Partons. The
probability that a hadron with momentum (P) contains a parton of type f with longitudal
momentum Fraction ξ ∈ [0, 1] is given by the Parton Distribution Function (short PDF, not
to be confused with probability density function) [7]:

PDFf (ξ)dξ (18)

6

gg→ ggg

The process of two colliding gluons, producing an additional gluon, is chosen because of
two reasons: Gluons dont have any rest mass, simplifying the phase space generation in
the project, and because it is a rather simple QCD process. As it has for each final state
particle three degrees of freedom, as they are on-shell, and also has to obey four momentum
conservation, it has in total five degrees of freedom. In real collider experiments, there are two
additional degrees of freedom for the input momenta. The Matrix elementM(gAgB → g1g2g3)
is provided by MadGraph. Paying attention to the PDFs, the differential cross section yields

dσ =
|M(gAgB → g1g2g3)|2PDFA(ξ1)PDFB(ξ2)

2ξ1ξ2
√
s
2 dX

dX = (2π)4δ(4)(gA + gB −
3∑

f=1

gf)

 3∏
f=1

d3gf
(2π)3

1

2Ef

 dξ1dξ2

(19)

Where
√
s is the collider energy, ξ1,2 ∈ [0, 1] are the momenta fractions from the hadron of

gA,B and the integration variable dX handling conservation laws and all factors of 2π.
It has two infrared divergences, obviously for ξ1,2 → 0, implicitly in the matrix element for
the angular seperation ∆R→ 0 of the final state particles. To take these into account, phase
space cuts in the pahse space generator described in the next section are implemented.

Phase Space Generators

Integration Volumes, such as the phase space for gg → ggg , rarely take the form of an unit
hypercube, yet most implementations work within this case to maintain flexibility over a wide
range of tasks. This introduces the need for a phase space generator. The mapping must be
surjective to guarantee full phase space coverage.
Calculations should be as easy as possible, so choosing the center of mass frame and boosting
the momenta to laboratory frame afterwards is instructive. Beginning with the 4-vector
(E, px, py, pz), first of all, the process has a rotational symmetry around the beamaxis (chosen
to be the z axis), so its convenient to parametrise the momentum components (px, py) of final
state particles to momentum in transversal direction, pT , and an azimuthal and longitudinal
angle (ϕ, θ). Now, the four components E, pT , θ, ϕ are obtained:

E =
√
1 + sin(θ) pT pT =

√
p2x + p2y

θ = sin−1(
pT√

p2T + p2z

) ϕ = sin−1(
px√

p2x + p2y

)
(20)

The longitudinal angle can be further parametrised to the commonly used pseudorapitity
η ≡ − log(tan(θ2)), where the difference of two values is Lorentz invariant under a boost along
the longitudinal axis. The angular seperation can then be defined as well:

∆Ri,j =
√

∆η2i,j +∆ϕ2
i,j (21)

For the boost to the laboratory frame in z-direction, knowledge of the input momenta fractions
(as viewed from the lab frame) ξ1,2 is required:

7

v

c
= β =

pz,lab
Elab

=
ξ1 − ξ2
ξ1 + ξ2

(ξ1 + ξ2)
√
2/2

(ξ1 + ξ2)
√
2/2

=
ξ1 − ξ2
ξ1 + ξ2

(22)

The "RAMBO on diet" [9] algorithm taking the code from [10] is adapted . It is a bijective
and (for massless particles, as in this project) flat. In this project, it takes seven random
numbers ri ∈ (0, 1) as input (edges are avoided, as they are a problem for most phase space
generators), five for the degrees if freedom of the final state particles, and two for the PDFs
of the incoming particles and produces valid sets of 4-momenta, associated with a weight
containing all factors of Equation 19, as well as the phase space volume for each event,

Vn =
(π
2

)n−1 (Q2)n−2

(n− 1)!(n− 2)!

Q = (ξ1 + ξ2)

√
s

2

wRAMBO =
(π/2)n−1Qn−2

(2π)(3n− 4)(n− 1)!(n− 2)!

(23)

to yield flat sampling. Phase space cuts, such as minimum colliding momenta fractions,
angular seperations to avoid infrared divergences or minimal transversal momentum to only
examine events with more interesting physics are implemented by multiplying the weight with
zero.
The Code for the creation of a set of 4-momenta at defined collision energy works (for two
final state particles) as follows:

Algorithm 1 Rambo for n=2
Require: r1, r2, Ecm

M1 ← Ecm, M2 ← 0
cos θ ← 2r1 − 1
sin θ ←

√
1− cos2θ

ϕ← 2πr2
q2 ← M1

2 = Ecm
2

ppp1 ← q2

cos ϕ sin θ
sin ϕ sin θ

cos θ

 = Ecm
2

cos ϕ sin θ
sin ϕ sin θ

cos θ

p1 ← (q2,p1), Q2 ← (q2,−ppp1)
(boost by (1,0,0,0))
p2 ← Q2

The Boost to the laboratory frame requires two additional random numbers to define the
input momenta fractions:

8

Algorithm 2 Boost to lab frame
Require: pin1, pin2, pout, r3, r4

reflab ← (pin1 · r3 + pin2 · r4)
if reflab[0] < 0 or (reflab)2 < 0 then

print(invalid boost)
βββ ← reflab[1 :]/reflab[0]
γ ← 1√

1−βββ2

for p in pout do
βp ← βββ · p[1 :]
p[0]← γ(p[0] + βp)
γ′ ← (γ − 1)/βββ2

f ← βpγ
′ + γp[0]

p[1 :]← p[1 :] + fβββ
return pout

2.3 Unweighting

As shown above, each phase space point has multiple weights associated: For the Integration
its weighted with the inverse jacobian of the variable transformantion jinv and the value of
the function to be integrated, here dσ(p1,p2,p3) as well as the weights from the phase space
generator wRambo. For the overall weight of an event, these are multiplied:

wevent = jinv · dσ(p1,p2,p3) · wRambo (24)

However, in real experiments, each event has unit weight, whereby the necessity of an un-
weighting procedure is presented. One algorithm is the hit-and-miss procedure: the weights
are scaled to [0, 1] and random number pairs are sampled: one to set the phase space point,
another one to compare the weight with. Only samples where the random number is lower
than the sample weight are saved. The unweighting efficiency is given by [4]

ϵunwgt =
⟨wevent⟩

max(wevent)
(25)

The procedure is illustrated in Figure 2. Out of 300 samples, 143 were accepted, resulting
in an unweighting efficiency of ≈ 48 %, with a mean weight of 0.49. Clearly, isolated events
with exceptionally high weight punish the unweighting procedure; in the optimum case each
event has already unit weight before the unweighting prcedure, resulting in a δ-distribution
of event weights. Approaching this form is another measure of success of this project.

2.4 INNs

In this project, invertible neural network’s (INNs) utilizing coupling layers are implemented.
First of all, the setup of a neural network is explained.

9

Figure 2: Hit-and-miss procedure

Neural Networks

A neural network is a function that can transform a vector. It consits of an input layer i, an
output layer o and at least one hidden layer. Each layer consists of nodes, that represent the
networks neurons. Nodes are connected between the layers, with an associated weight wj and
bias bj . Each node hj follows an activation function a,

hj = a

(∑
k

wj,khk + bj

)
(26)

where k is the summation index for all input nodes for the neuron j. The hyperparameter wj,k

for one layer can be expressed as matrix W, bj as vector b. One layer can now be expressed
as:

hlayer j = a (W hlayer k + b) (27)

Often, like in this project, the ReLU function is used for a. It vanishes for input smaller than
0 and grows linear for input bigger than 0. For the output layer the activation function is not
used, and the values are in the range (−∞,∞). To transform them to a unit hypercube, an
output function is used, e.g. a scaled tanh or the errorfunction.

10

Figure 3: ReLU activation function

Coupling layers

Figure 4 shows how an INN with an easy to compute jacobian can be achieved: The input
vector x is split into two parts. One part is used as input for a neural network. Its output vec-
tor is channeled through a softmax function to be normalized to [0, 1] and used as arguments
for a coupling transform C applied to xB. At the end, the vector is permuted randomly to
ensure that over the span over a few blocks, the whole vector x is transformed. The jacobian
for one such block G then evaluates to:

∣∣∣∣∂G(x)

∂x

∣∣∣∣−1

=

∣∣∣∣(1 0
∂C
∂m

∂m
∂xA

∂C
∂xB

)∣∣∣∣−1

=

∣∣∣∣∂C(xB;m(xA))

∂xB

∣∣∣∣−1

(28)

Evaluating Equation 28 does not require the computation of the gradient of (m(xA)), which

xA

xB

NN

C(xB;m(xA))

permutationx y

Figure 4: Schema of a coulping block

11

Figure 5: Rational Quadratic Spline Fit, [12]

would scale as O(D)3, with D the number of dimensions. This normalizing flow method only
scales lineary and is handy even for higher dimensions [11].
In practice, a Rational Quadratic Spline Coupling is used for C. Given the number of grid
points (bins) n it fits to, it needs 3n − 2 parameters, so this is the output dimensionality of
the neural network. 2n Dimensions are required to determine the location of the grid points,
and n− 2 Dimensions for the slope at the gridpoints, that are not on the edge (there it is set
to 1). In Figure 5 a sketch is drawn, arrows indicate the slope at grid points.

Loss and optimizer

The network structure however is not enough on its own, weights and biases are initalised
randomly resulting in a random output of the network. It has to be trained, the network
hyperparameters have to be adapted to the desired output. This is achieved by the loss and
the optimizer. The loss is a function of the measure of success, and can take many forms.
Indispensable is, that the loss is minimal, if the network is optimally tuned.

The loss function is minimalized with the optimizer, which tunes the hyperparameters. One
commonly used algorithm for this is the Adam-algorithm also implemented in this project. It
utilizes first-order gradient descent and adaptive momenta (hence the acronym) to minimize
the loss, requiring little memory. Typical and well-tested Values for the parameters of the
algorithm itself are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8 [13]:

12

Algorithm 3 Adam
Require: α: Stepsize
Require: β1β2 ∈ [0, 1): Exponential decay rates for the momentum estimates
Require: f(θ): Differentiable loss function with hyperparameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialise first momentum vector)
v0 ← 0 (Initialise second momentum vector)
t← 0 (Initialise timestep)
while θtnot converged do :

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients at timesstep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first momentum estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw momentum estimate)
m̂t ← mt/(1− βt

1) (compute bias-corrected first momentum estimate)
v̂t ← vt/(1− βt

2) (compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

return θt: (resulting parameters)

Training

As the invertible network can run in both directions, training can also take place in both
directions.
Generative Training: During the generative training, samples in the phase space are
taken according to the current probability distribution of the network: Points are sampled
randomly according to a Prior distribution in the latent space (unphysical space) and sent
through the network to determine the corresponding phase space point. The loss can be
directly one measure of success, like the standard deviation of the integral or some form of
the unweighting efficiency, or a more abstract divergence of the test probability distribution
of the network (Q) and the true probability distribution of the function (P), such as the
Kullback-Leibler-Divergence

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(29)

where X is the probability space [14].
Recycling Training: In the other direction, the network can be trained by iterating over
the during generative training sampled phase space points: It sends them in the other di-
rection through the network, calculating the corresponding latent space points (which are
not necessarily the same point they got sampled at, because the network is dynamic during
training), and uses the divergence of this latent space distribution and the Prior for the loss.
This is a big novelty in this project: The Program can benifit from the expensive calculation
it has already done before by evaluating the matrix element M with a relatively cheap and
fast computation. In theory, this could reduce training time for neural networks greatly.

13

3 Program Pipelines

3.1 Vegas

Now, everything can be put together. First of all, to obtain a widely used and well tested
baseline, a pipeline for the integration of the differential cross section is set up. For this
project, it is sufficient to produce weighted events, the unweighting will in practice be done
by implementation of other programs.
The pipeline for the Vegas implementation is shown in Figure 6. Vegas needs the dimen-
sionality d and the integrand with the center-of-mass energy Ecm as input. For each iteration
j, it produces a set number of samples in the unit hypercube according to its grid distribution
(r-space), which are then translated to the physical phasespace with Rambo. The differen-
tial cross section for each sample is evaluated; the matrix element M for the chosen process
(gg → ggg) is provided by MadGraph, the parton density functions should be provided
by LHAPDF, however later was found, that using the "Tilman gluon distribution function"
TDF(ri) = 1

r2i
produced more stable outputs. Then, an adaptive Monte Carlo integration

is performed and the evaluations of M together with the Rambo weights are returned, so
the grid cell volumes can be adapted, and the next iteration starts. After a set number of
iterations, the algorithm is stopped, and samples can be taken to be unweighted later. For the
final result of the integral, every integral evaluation is considered and weighted by its inverse
variance [15] [16]:

σ =
1∑

j

1
Var(σj)

·
∑
j

σj
Var(σj)

Var(σ) =
1∑

j

1
Var(σj)

(30)

14

pa
ra

m
s:

E
cm

,d

V
eg

a
s

r-
sp

ac
e

[0
,1
]d

R
a
m

bo
ph

as
e

sp
ac

e

E
va

lu
at

io
n:

d
σ
i
·w

i r
a
m
bo

=
|M

(p
i
)|
2
w

r
a
m

i
P

D
F
(r

1
)P

D
F
(r

2
)

2
sr

1
r 2

σ
j
=

1 N

N ∑ i=
1
d
σ
i
·w

r
a
m

i
·j

ac
v
eg

a
s

in
v
,i

R
es

ul
t
σ

r i
p
i

L
H

A
P
D

F
,T

D
F

M
a
d
G

r
a
ph

T
ra

in
in

g

1.
T

im
e:

In
te

gr
an

d

w
i r
a
m

P
D

Fs

ja
cv

eg
a
s

in
v

M

F
ig

ur
e

6:
P

ro
gr

am
pi

pe
lin

e
fo

r
V

eg
a
s-

P
ro

gr
am

15

3.2 INN

The INN pipeline (Figure 7) is quite similar, as the network takes the place of Vegas.
During generative training, the INN samples batches of random points according to the Prior
in the latent space and transforms them; after the output function, they are in the unit
hypercube and Rambo will take them as input. The loss is evaluated and the hyperparameters
are adjusted after each batch; if a divergence is used for the loss, it is the inverse of the inverse
network jacobian (this is a detail: The inverse network jacobian is automatically calculated
when a point is transformed from the latent into physical space, therefore it is used. However,
the network jacobian could be taken as well (if the hyperparameters weren’t adjusted in
between), but that would require an extra computation) and the target function.
When the training direction is switched, the points from the phasespace associated with the
value of the differential cross section are traced back to the latent space. As loss, a divergence
of the network jacobian and the differential cross section is taken, and the hyperparamters
are adjusted. The network tries to adjust itself in such a way, that, if the phasespace points
are transformed back into the latentspace, they distribute like the Prior.
After every generation period, the Integral is evaluated with all function values that were
sampled during that period. After the training has ended, the final evaluation of the integral
is computed according to Equation 30

16

la
te

nt
(p

ri
or

)
IN

N
ou

tp
ut

fu
nc

-
ti

on
R

a
m

bo
d
σ
·w

r
a
m

i
=

|M
|2
(p

i
)P

D
F
(r

1
)P

D
F
(r

2
)ω

r
a
m

i
2
sr

1
r 2

M
a
d
G

r
a
ph

L
H

A
P
D

F
,T

D
F

σ
j
=

1 N

N ∑ i=
1
d
σ
i
·w

r
a
m

i
·j

ac
I
N
N
,i
n
v
,i

R
es

ul
t
σ

Lo
ss
(

1
ja

c I
N

N
,i
n
v
,d
σ
·w

r
a
m

i
)

Lo
ss
(j

ac
I
N
N
,d
σ
·w

r
a
m

i
)

z i R
d

x
i

R
d

r i

[0
,1
]d

p
i

w
r
a
m

i

|M
|2

P
D

F
’s

ja
c I

N
N
,i
n
v

ja
c I

N
N

Θ

Θ

F
ig

ur
e

7:
P

ip
el

in
e

fo
r

IN
N

-P
ro

gr
am

17

4 VEGAS

To have a solid working ground to begin with, the Vegas integration pipeline was set up.
However, it turned out, it was more complicated than previously thought and some issues
were to be tracked down. Therfore it was decided, to go to an easier toy function to have a
better understanding what was going on.

4.1 Digression: Plots

In this thesis, often many lines of a model are shown in one figure. The lines most times
correspond to the same samples associated with differnt weights obtained by a model, most
importantly the inverse jacobian of the variable transformateion and the value of the inte-
grand at the sampeled point. Plots labeled by "samples", "phasespace samples" or "pure
samples" are not weighted at all and represent the raw output of the model. Labels like "inv
vegas weight" or "inverse INN Jac" denote, that the samples obtained are weighted by the
inverse of the variable transformation. The corresponding plot should be flat, as this reverses
the effect of the transformation; this serves as sanity check. "All weights" and "integrand
weights" show, that the samples produced are weighted by all available weights, namely the
inverse transformation jacobian, the value of the integrand ant the point, and, in the physical
examples, the phase space volume calculated by Rambo. This can be seen as the true target
distribution. In the optimal case, the plot without any weights is identical to the plot with
all weights, as this indicates that the model has adapted perfectly to the target distribution.
Heat maps are shown to qualitatively analyze the output distributions, as all details are shown
directly and are not averaged out by a projection to a lower number of dimensions; the sam-
ples here are not associated with any weights. Additionally, the distribution of weights are
plotted. This is the value of the inverse jacobian multiplied by the value of the integrand
(and, if possible, the phase space volume). They are the values that the raw samples are
weighted with for the "all weights" distributions. In the optimal case, it resemples a delta
peak, because then, the jacobian of the model is identical to the integrand and therefore
contains all information.

4.2 Toy functions

During this phase, several parts of the pipeline (Figure 6) were omitted: Rambo, MadGraph
and LHAPDF. To keep things simple and easy to understand, the toy function was chosen to
exist in a one-dimensional hypercube and to be linear, f(x) = x, with a corresponding target
probability density of p(x) = 2x. Plots show the target probability density (red), the raw
number of samples (green), the number of samples weighted by the inverse transformation
jacobian (blue) and the samples weighted with the function value as well (orange). If the grid
is adjusted perfectly, it is expected that the green and the orange plot follow the target density
in red, and that the blue histogram is uniformly distributed. Note, that for the histograms,
their ’integrals’ are normalized to one, such that they are easier to compare in one plot, as
they can then also be interpreted as probability density.
After some difficulties with getting to know how this implementation works, the toy-function
was modeled correctly (Figure 8).

18

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 inv vegas weight
all weights
samples
Target

Figure 8: Vegas adapted to a linear toy function

Later in this thesis, the INN will be mostly trained on the double gaussian function of equation
5. To be able to compare it to Vegas directly and to demonstrate its seperability assump-
tion, it is showcased in Figure 9. While in the 1D-projection the unweighted and weighted
distributions are reasonably close, clearly, in the heatmap without any weights, four peaks
are visible, resulting in a weight distribution ranging more than three orders of magnitude.

4.3 Cross sections

With a correctly working Vegas, the physical function is again implemented. As with any
physical prediction, an error is associated to the value. Several histograms are plotted: In
green the distribution obtained by MadGraph, which is the reference to control the output
and considered to be true; blue are the raw phase space samples produced, without the
consideration of any weights. The closer it is to the true (green) distribution, the more
efficient will the unweighting be and the faster the variance of the integral converges. In
red, the phase space samples are weighted with all weights, (inverse transformation jacobian,
phase space weights/cuts and function value) are shown as sanity check. It should be within
the errorbars to the true distribution, ensuring that the system produces correct results. For
the output of Vegas and MadGraph, the fraction between then and the relative deviation
from 1 is shown as well. For each graph without any weights, 1√

N
errors for any bin are used.

For weighted events, the error for each bin calculated according to:

N√ ∑
weights

max(weights)

(31)

19

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure samples

(a) Heatmap of samples without any weights

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
inv vegas weight
all weights
samples

(b) 1D Projection

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

all weights

(c) Heatmap of samples with all weights

10 9 10 8 10 7 10 6 10 5 10 4

Weight

105

106

no
rm

al
ize

d

(d) Weight distribution

Figure 9: Vegas trained on the double gaussian function

20

Observable Name Number of occurances
2r1r2

√
s 1

pz 3
pT 3
η 3
ϕ 3

∆R 3
r (Momenta fraction) 1

Table 1: plotted Observables

Parameter Name Value√
s 13 TeV

pT -mincut 20GeV
∆R-mincut 0.4 GeV
η-maxcut None
PDF-set MSTW2009lo68cl_nf3

Table 2: parameters for the Process

With this calculation, if one bin is dominated by a single high-weighted event, the error goes
to N , if all weights are equal, it reduces to the case without weights.
In general, a total of 17 observables is plotted (Table 1); some observables appear multiple
time for each particle or particle pair respectively. For these, only one case is shown, as they
distribute very similary (dσ is invariant under final state particle exchange of the same kind:
Here, exchange of bosons will only give a factor of one, but even for fermions with a factor of
minus one in the matrix element, the squared absolute Value is still invariant). Each time, the
distribution of the center-of-mass energy (root(s)), the momentum in beam- and transversal
direction (pz, pT), the pseudorapidity (η), azimuthal angle (ϕ), angular separation (∆R) and
the momenta fractions are plotted. The paramters for Vegas are the same as in the toy
example; phase space cuts and th PDF set are listed in Table 2.
Even with the fixes to Vegas, the result of the observable distributions are not in accordance
with MadGraph (Figure 10a).
To enclose the error, individual parts of the pipeline are deactivated, by setting their corre-
sponding values in the calculation to one. To still be able to compare to MadGraph, the
corresponding factors in its code are also set to one.
As sanity check for Rambo, the PDFs and the matrix element are disabled, leaving only

wRambo

2r1r2
√
s
2 (32)

for the integrand. The distributions in Figure 10b are in perfect accordance. Note that the
samples were taken uniformly in the phase space, as Vegas was already ensured to work
correctly.

Next, the Matrix element M is activated again. The distributions of Vegas’ samples with

21

10−9

10−8

10−7

10−6

10−5

10−4

10−3

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 1000 2000 3000 4000 5000

root(s)

0.1

1.0

10.0

δ[
%

]

10−7

10−6

10−5

10−4

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 1000 2000 3000 4000 5000

root(s)

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−2000 −1000 0 1000 2000

pz,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−4

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−4000 −2000 0 2000 4000

pz,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

10−2

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−3

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

(a) Cross section with Vegas fixes

0.0

0.1

0.2

0.3

0.4

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

(b) Cross section without Matrix element and
PDFs

Figure 10: Progress of correctly setting up the cross section for Vegas

22

all associated weights is within the errorbars of MadGraph. The raw number of phase space
samples only roughly represents the true distribution, but this can be expected in such com-
plex high-dimensional functions. So, with Figure 11b can be shown that madGraph works
correctly.

Having checked the Matrix element, it is deactivated again, and the parton distribution func-
tions provided by LHAPDF are next on the list. The source of evil is now found, as the
all-weighted and the true distribution in Figure 11a differ a lot. Trying do identify the source
of error, it was found, that in this project a slightly different parton distribution function was
used than in MadGraph, but changing it to the identical didnt yield much difference. Also
hardcoding the Energy scale of the PDFs to the mass of the Z-Boson didnt produce the desired
results. After consulting the supervisor of this project, it was decided to use a quite simple
function for the parton distribution function (’Tilman gluon distribution function’ TDF):

TDF(x) =
1

x2
(33)

With this change, the final results are sufficiently satisfactory (Figure 12). The weight distri-
bution is still quite broad, spanning almost 12 orders of magnitude. The predicted Values of
the cross sections are shown in Equation 34. While they differ by ≈ 15.7 standard deviations,
they are at least in the same order of magnitude.

σMadGraph
gg→ggg = 15.296(15)GeV−2 σVegas

gg→ggg = 12.78(16)GeV−2 (34)

23

10−7

10−6

10−5

10−4

10−3

10−2

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 1000 2000 3000 4000 5000

root(s)

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 1000 2000 3000 4000 5000

root(s)

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−1500 −1000 −500 0 500 1000 1500

pz,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−4

10−3

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6000 −4000 −2000 0 2000 4000 6000

pz,1 [GeV]

0.1

1.0

10.0
δ[

%
]

10−4

10−3

10−2

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

n
or

m
al

iz
ed

integrandweights

uniform

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

(a) Cross section without Matrix Element

0.00

0.05

0.10

0.15

0.20

0.25

n
or

m
al

iz
ed

All weights

Number phasespace samples

MadGraph

0.95
1.00
1.05

W
ei

g
h
te

d
U

n
w

ei
g
h
te

d

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

(b) Uniform phase space sampling without
LHAPDF

24

10−8

10−6

10−4

10−2

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

0 1000 2000 3000 4000 5000

root(s)

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000

pz,1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

10−2

10−1

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

0 50 100 150 200 250

pT,1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

0.4

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

−6 −4 −2 0 2 4 6

η1

0.1

1.0

10.0

δ[
%

]

10−1

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

−3 −2 −1 0 1 2 3

φ1

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

0.6

n
or

m
al

iz
ed

MadGraph

All weights

Number phasespace samples

0.9
1.0
1.1

A
ll

w
ei

g
h
ts

M
a
d

G
r
a
p
h

0 2 4 6 8

∆R12

0.1

1.0

10.0

δ[
%

]

10−9 10−7 10−5 10−3 10−1 101 103

weights

10−6

10−4

10−2

100

102

104

106

n
or

m
al

iz
ed

Figure 12: Vegas adapted to the cross section with TDFs

25

5 INN

Having set up the Vegas Baseline, it was time to actually get to work with the INNs. As
described earlier, training can take place in two directions, with the recycling training being
the proposed innovation of this project. Therefore, the i-flow package [3] can be used as
benchmark. It utilizes only the generative training and an attempt was made to copy this
part here.
To first get a feeling for both training directions, they were examined on their own respec-
tively. To have more control of what was going on and having learned from the difficulties
with the Vegas pipeline, the INN was trained on a toy function. It again lives in an unit
hypercube and was chosen to be two dimensional, to allow for some complexity, yet retaining
the possibility of viewing the details directly by using heat maps.

5.1 Toyfunctions

Two different toy functions were used. One of them is the doublegauss first described in
Equation 5, illustrated with a heatmap and a projection to 1D in Figure 13.

Another function used is the gaussian ring (Figure 14):

fring(x1, x2) = exp

(−√(x1 − 0.5)2 + (x2 − 0.5)2 − 0.25√
0.03

)2
+ 0.01 (35)

5.2 Learning rate Schedulers

The learning rate descibes, how much the hyperparameters are adapted within each step
of the optimizer. It can change during the training to help the network to quickly find a
strong minimum in the loss landscape and settle on a low Value. In this project, two different
approaches were tried One Cycle Learning rate and Step Learning rate

One Cycle Learning rate

With this Scheduler, the learning rate starts on a low value, increases in the first third of the
training to a maximum and smoothly decreases down again. It aims to stabilize the network
with a low beginning learning rate, then speeds up the traing to minimize the training time
needed. The low ending learning rate helps to settle in a minimum [17]. The progress is
illustrated in Figure 15. The beginning and maximum learning rate can be adjusted.

Step Learning rate

The step learning rate can be either hardcoded or automatically adjusted. The key how it
works is, that it multiplies the learning rate with some factor once a condition is fulfilled,
either after a set number of epochs, of if learning stagnates. Often, the automatic version
is also called "reduce learning rate on plateau". So, the learning rate follows an exponential

26

Figure 13: Double gaussian toy-function

Figure 14: Gaussian ring toy-function

27

0 20 40 60 80 100
batches

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

le
ar

ni
ng

 ra
te

Figure 15: Progress of the One Cycle learning rate

(decay). If hardcoded, the beginning learning rate, the number of epochs after which it is
reduced, and the factor with which it is multiplied can be set. In the automatic version,
typical parameters are patience (The number of epochs the scheduler waits on the plateau
before it reduces the learning rate), threshold (Value for measuring the new optimum to
only focus on significant changes) or cooldown(Number of epochs the learning rate is frozen
after being reduced) [18].

5.3 Generative Training

First, the network is trained only by generating events. The size of the network was chosen to
be rather big at first (Table 3). This made training longer but easier to control. The network
is evaluated regulary during training to visualize the dynamics of the adaption to the target
function. Both toy functions and learning rate schedulers are shown. Furthermore, the value

Parameter Value Comment
batch size 5000 number of samples per evaluation of the loss
batches 1000 longer training than needed for illustration

number of coupling block 15
internal neural network size 256 see Figure 4

layers per block 3 see Figure 4
number of bins 60 see Figure 5
gradient clip 0.1
latent space R2 effectively cut at ± 10

prior gauss

Table 3: Network parameters for the 2-dimensional toy function

28

0.2 0.4 0.6 0.8
x0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x1

pure_samples

Figure 16: Negative example: Network falls apart with too high generating learning rate

of the loss, together with the absolute deviation of the integral evaluation to the true value
are plotted on a log-scale (If the integral is very close to the true value, it doesnt show up
anymore because of a mincut in the Integraldeviation); an evaluation if the reduced χ2 sum
is drawn as well as the distribution of weights.
In Figure 17, the network adapts in the beginning very fast to the target function. After circa
170 batches, the loss starts to become noisy, but in general still decreases. At this time, the
network has capured most of the structure, and only needs to model minor details in itself.
This took some time, but this could be because of the automatic reduce-on-plateau scheduler,
that already lowered the learning rate from 1 · 10−4 in the beginning to 4 · 10−5 after ≈500
and lastly 1.6 · 10−5 for the last 200 batches. The Weight distributions are shown at each
evaluation of the network; a nearly untrained network spans about 3 orders of magnitude,
decreasing to less than one order of magnitude in the end. The projection to one dimension
in the end shows, that the network (blue, "Pure samples") adapts the target function (red,
"All Weights") really good. The samples weighted with the inverse network jacobian produce
a flat distribution, as expected. Only at the integration edges, there is some noise, but there,
the function value is generally lower, resulting in less samples produced in that region, and
lead to larger statistical errors, so this can be expected.
The doublegaussian toy function was combined with the One Cycle learning rate in Figure
18. The beginning learning rate was set to 1 · 10−5, with a maximum of 2 · 10−4. Although
the loss is smoother for a longer amount of time, it takes long for the network to even capture
the rough for of the target, and also quite long to smoothen out the details. This is not the
problem of the scheduler, it is also true for combining this function with other schedulers. In
the end, the function is yet still well approximated.
Generally, it was found out by combining different learning rate schedulers with the toy
functions, and experimanting with the learning rates, that the double gaussian toy function
seems to be harder for the network to adapt to. With the One Cycle learning rate, higher
maximum learning rates could be achieved: If the learning rate is too high, the network makes
a wrong turn in the loss landscape and begins to not sample some regions in the physical space
and doesn’t adapt the target where it samples at all (e.g. Figure 16 : One Cycle learning rate
with a maximum of 5 · 10−4).

29

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(a) 25 Batches

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(b) 50 Batches

10 3

10 2

10 1

100

lo
ss

generate

0 200 400 600 800 1000
batches

0.5
1.0

ch
i2

gen

10 3

10 2

10 1

100

101

Tr
ue

gen

(c) Generating Loss

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(d) 100 Batches

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(e) 200 Batches

10 3 10 1 100 101 103>104

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1
2
3
4
5
6
7
8
9
10
11
12

(f) Progress of the weight dis-
tributions narrowing down

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(g) 600 Batches

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(h) 1000 Batches

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(i) 1D-Projection

Figure 17: Gaussian ring adapted with reduce on plateau scheduler

30

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(a) 300 Batches

10 2

10 1

100

lo
ss

generate

0 200 400 600 800 1000
batches

0.5
1.0ch

i2
gen

10 3

10 2

Tr
ue

gen

(b) Generating Loss

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(c) 1000 Batches

10 3 10 1 100 101 103>104

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

0
1
2
3
4
5
6
7
8
9

(d) Weight Distributions

Figure 18: Double gauss adapted with the One Cycle lr scheduler

31

5.4 Recycling Training

The recycling training needs data to even begin with. To this end, some data is generated
in the beginning with an untrained Network (essentially flat in the integration space), and
the loss isn’t evaluated during this phase; the optimizer doesn’t change any hyperparameters.
Then, the network can iterate over those data points. One iteration over all provided Data
points is called an epoch.
For Figure 19, 125000 function evaluations were provided and the network iterated over them
using the step scheduler with a reducing factor of 1, resulting in a constant learning rate of
2·10−4. While the adaption is okay and in the beginning quite fast, it quickly reaches a plateau
in the loss landscape. The structure is less pronounced than with generative training and not
as accurate to the target distribution; this is not a problem of a too high learning rate, the One
Cycle scheduler produces similar results. To the loss, 0.1 is added so it remains positive and
plottable on a log-scale. The weight distributions narrow down similary to generative training.

One idea is to provide more samples for the network to learn from, Figure 20. Here, the
network was trainined with 1.25 Million samples and for 50 epochs. Indeed, this improves
the distribution; however the amount of more samples needed is quite big compared to the
improvement in the result, and also scales the time needed to recycle for an epoch accordingly.

If the learning rate is set to a relatively high Value (2 · 10−3 in Figure 21), the result still
looks okay. However, this can lead to peaks in the loss early in the training, indicating the
optimizer has changed the hyperparameters too much, so that the minimum is missed and
overshot. Additionally, a relatively high learning rate in the end makes it very hard to settle
low in a minimum. If the value is set too high, it behaves similar to generative training, but
it immediately only samples a very small region in the center of the integration space (Figure
22), and does not manage to recover. Generally, the learning rate during recycling can be set
a bit bigger than during generating.
In the end, an example of overfitting is shown in Figure 23. This happens, if very few
function evaluations are provided (here 1500) and the network recycles them for a very long
time (160 epochs). Instead of adapting to the function, it begins to fit the individual points
and memorizes them.

5.5 Combined Training

When combining the training directions, the author of this thesis proposes the name Bioflow
(BIjective nOrmal distributed flow), although no official name was chosen within the research
group.
The training schedule, i.e. when the network is trainied by generating and when it recycles the
data produced, is experimented with, as it turns out to be quite influential. The generating
loss is evaluated during the recycling epochs and visible when the curve is piecewise flat (one
flat region represents one evalutaion of the loss for better visibility). For better comparability
(although not perfect), it was chosen to generate 250 batches and recycle 4 epochs.

First, for Figure 24, the training directrions were interchanged repeatedly with 50 generating
batches and 1 recycling epochs. The generating loss is evaluated after every recycling epoch.

32

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1
pure_samples

(a) Pure sample Distribution

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(b) 1D Projection

0 200 400 600 800 1000 1200
batches

10 1

9.5 × 10 2

1.05 × 10 1

1.1 × 10 1

lo
ss

+0
.1

recycle

(c) Recycling Loss

10 3 10 1 100 101 103>104

weights

10 6

10 4

10 2

100

no
rm

al
ize

d

0
1
2
3
4
5
6
7
8
9
10

(d) Weight Distributions

Figure 19: Double gauss trained by 50 epochs of recycling

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

Figure 20: Recycling training with 1.25 Million Data points

33

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1
pure_samples

0 200 400 600 800 1000 1200
batches

10 1

2 × 10 1

3 × 10 1

lo
ss

+0
.1

recycle

Figure 21: Relatively high recycling learning rate for 30 epochs

0.6 0.8 1.0 1.2 1.4
x0

0.6

0.8

1.0

1.2

1.4

x1

pure_samples

0 200 400 600 800 1000 1200
batches

10 1

100

lo
ss

+0
.1

recycle

Figure 22: Way too high learning rate during recycling (2 · 10−4) after 5 epochs

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0 500 1000 1500 2000
batches

10 4

10 3

10 2

10 1

lo
ss

+0
.1

recycle

Figure 23: Overfitting

34

10 3 10 1 100 101 103>104

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

101
no

rm
al

ize
d

1
2

(a) After recycling

10 2

10 1

100

lo
ss

generate

0 100 200 300
batches total

0

1

ch
i2

10 6

10 5

10 4

10 3

10 2

Tr
ue

Integral

(b) Generating loss also evaluated during recycling

10 3 10 1 100 101 103>104

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

8
9

(c) After generating

0 100 200 300 400 500
batches rec

10 1

9.7 × 10 2

9.8 × 10 2

9.9 × 10 2

1.01 × 10 1

1.02 × 10 1

1.03 × 10 1

1.04 × 10 1

lo
ss

+0
.1

recycle

(d) Recycling loss

Figure 24: Repeatedly interchanged Training directions

Two things can be figured out: First, the weight distribution get primarily narrowed down
by the recycling training, while generating points might even broaden it again (Figure 24a:
Weights before (red) and after (green): First recycling step: great improvement; Figure 24c:
After before/after last generation: slight detoriation) Second, the value of the recycling loss
does not neccessarily correlate with the quality of the adaption, as it increases with training,
though the recycling loss increases after each training direction change; furthermore, while
the recycling loss is constant during training in the end, and the net work doesn’t seam to
learn anymore, the generating loss still decreases after each recycling period. The sample
distribution is very close to the target (Figure 25a)

Another option is to first only generate a few batches, recycle over them, and then generate
the rest. This method is quite similar to pure recycling training: During the first generating
phase, the net hardly learns anything due to the short duration. In the next period, the
network gets quiet well and fast trained given a good number of function evaluations. The
final generating phase then resembles training on and already reasonably trained network.
Note that this is the fastest setup in this section, but it also produces the least well output

35

0.0

0.5

1.0

1.5

2.0
no

rm
al

ize
d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(a) Interchanged Training

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(b) Recycle in the beginning

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(c) Recycle in the end

10 3 10 1 100 101 103>104

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

6

(d) Weight distribution for recycling in the
end

Figure 25: Output distributions for different training schedules

(Figure 25b).

Then, first all batches were generated and then recycled. Note that this is more training than
the runs before, since during recycling, it sees all batches during recycling, instead of first
only 50, then 100 etc. This is the longest training method in this chapter, but also produces
the best results (Figure 25c); especially the final weight distribution is very narrow (Figure
25d).

In Summary, interchanged training with ending on recycling training is a good midway be-
tween moderate training time and good output distributions, though each setup has its ad-
vantages and disadvantages.

36

Parameter Value
learning rate 1 · 10−3

batch size 5000
number of coupling blocks 2
internal neural network size 32

layers per block 4
number of bins 16
gradient clip 10
latent space [0, 1]d

prior uniform

Table 4: i-flow Architecture

5.6 Loss

With the now working combined training, many different Loss functions were tested on the
double gaussian function. Most of them were divergences inspired by i_flow [3] [19]. About
half of them produced satisfactory results similar to the exponential loss, but not noticeably
better, so it was kept for the future investigation, also to keep compareability. The others
weren’t as true to the target distribution and seemed to require some more work to function
nicely, so they were omitted. Furthermore, as they are the measures of success for this work,
directly the variance of the integral was used for the loss, and some implementations of the
weight distribution. The variance-loss worked okay, but suprsingly, didn’t reduce the variance
more than the exponential loss, but narrowed down the weight distribution a little bit more,
which seems counterintuitive. Unfortunately, no way with meaningful output to use the weight
distribution as loss could be found. The idea was to punish weights assymetrically, with an
exponential increasing part at high values and a not so extreme scaling function on low values
(linear and one-over-square were tried).

5.7 Benchmark

Now, that everything was working properly, it was decided to test i-flow on the double gaus-
sian toy function to get a benchmark for the generation training in Bioflow, that should be
roughly achieved and then beaten with the combination of generative and recycling training.
This was done before implementing the cross section again, because the ultimate goal of this
project is no proof-of-concept, but to actually improve an existing program and do meaningful
work.
It was soon found, that this would be no easy task. The network used by i-flow was sig-
nificantly smaller than the networks built until now, allowing for a high learning rate (see
Table 4), yet produced impressive accurate output (Figure 26: 1000 Batches with a constant
learning rate of 1 · 10−3). Note the very little tail of the weight distribution at high values
in Figure 26a indicating high efficiency for unweighting. The evaluation of the integral is
accurate to 0.0042 % of the true value (≈ 0.333349), with a deviation of 0.53 σ.

But the learning rate could be set even an order of magnitude higher, requiring about one
tenth of the batches used before to obtain a similar result of the final distribution (Figure 27).

37

10 4 10 3 10 2 10 1 100 101 102 103

weights

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

(a) i-flow weights

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Pure samples

(b) i-flow samples

0 200 400 600 800 1000
Batches

10 3

10 2

10 1

lo
ss

Generating

(c) i-flow loss

Figure 26: i-flow out of the box

38

10 4 10 3 10 2 10 1 100 101 102 103

weights

10 3

10 2

10 1

100

no
rm

al
ize

d

(a) i-flow weights

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Pure samples

(b) i-flow samples

Figure 27: i-flow with high lr

This has the side effect, that the training is very fast, taking only a few seconds, while the
integral evaluation gets clearly worse, now achiving 0.034% to the true value, yet comfortably
within 1 σ. The distribution of weights gets even narrower.
With a network setup of the same size and learning rate, the setup of Bioflow is not so
stable and behaves differently from run to run with the same setup (Figure 28). Yet even in
lucky runs, it is not quite as efficient as i-flow, the loss is more noisy and the weight distri-
bution is not so good. For the high learning rate of 1 · 10−2, the network seems overwhelmed
(Figure 29). Because i-flow is clearly better in generating training, the next search for the
error began.

Soon it was found, that the initialisation of the splines was not correct: Instead of forming
the identity transformation, the derivatives at the bin edges were set to ≈ 0.6941 instead to
1, resulting in a "wavy" function. This behavior in 2 Dimensions (For the original network
architecture) in the physical space can be seen in Figure 30a. After fixing this, the samples
in the physical space in the beginning are uniformly distributed (Figure 30b). Furthermore,
i-flow uses an uniform sampling from an unit hypercube in the latent space. The permuta-
tion applied after the spline coupling is different: i-flow works with hardcoded masks that
flip the input vector, in Bioflow, the rotation matrix was taken from SO(N). This explains
the "lucky" and "unlucky" runs in Figure 28: Since, with two coupling blocks, only one rota-
tion is effective and until now continously and random, theres a chance, that one part of the
vector is only slightly affected by the transformation of the network, making it very hard to
adapt to the target. Furthermore, in this project, the variation AdamW of Adam was used.
AdamW should handle the weight decay slightly better, but this is a minor detail.

Implementing these changes yield results with mixed results. In the beginning, both programs
behave very similary, showing that these fixes indeed were reasons for the long training time
needed. However, while the loss of i-flow monotonically decreases with training time (Figure
26c), producing very good weight distributions (Figure 26a), in Bioflow, the loss increases
again (Figure 31a), which damages the network output distribution and unweighting efficiency
(Figures 31b, 31c, 31d). With the high learning rate of 1 · 10−2 the setup doesnt produce any

39

10 2

10 1

100

lo
ss

generate

0 200 400 600 800 1000
batches

0

1

ch
i2

10 6

10 5

10 4

10 3

Tr
ue

integral
101

105

109

1013

1017

lo
ss

generate

0 200 400 600 800 1000
batches

0
25

ch
i2

gen

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ue

gen

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8
x1

pure_samples

10 3 10 1 100 101 103>104

weights

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

10

(a) Lucky run with small net

10 3 10 1 100 101 103>104

weights

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

10

(b) Bad run with small net

Figure 28: bioflow generation with small network setup

40

10 1

100

101

lo
ss

generate

0 20 40 60 80 100
batches

2
4

ch
i2

gen

10 6

10 5

10 4

10 3

Tr
ue

gen

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

Figure 29: Small network setup with high learning rate

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(a) Non-uniform initialisation

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

(b) Uniform initialisation

Figure 30: Sample Distributions without training

41

10 2

10 1

100

lo
ss

generate

0 200 400 600 800 1000
batches

0
1

ch
i2

10 6

10 5

10 4

10 3

Tr
ue

integral

(a) loss increases
0.2 0.4 0.6 0.8

x0

0.2

0.4

0.6

0.8

x1

pure_samples

(b) Artifacts visible

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

(c) Artifacts in 1-D

10 3 10 1 100 101 103>104

weights

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

10

(d) Distorted Weight distribution

Figure 31: Small Network after i-flow changes

meaningful results.

This is the current state of Bioflow: Because it suffers from increasing and more noisy loss,
and falls apart for high learing rates, the result obtained cannot achieve the benchmark.

5.8 Adding recycling

Anyways, to show that the idea of adding recycling training indeed optimizes the procedure, it
is implemented again with the small network setup. For only two coupling blocks, taking the
rotation matrix form SO(N) doesnt seem to make much sense. For the remaining network
setup, gaussian latent space with uniform initialisation (to not be too close to the target
function in the beginning, for two coupling blocks the non-uniform initialisation resembles
the double gauss already quite a bit) was chosen. For the integration schedule, three setups
were tested: One setup is designed to train for a compareable time as i-flow with the lower
learning rate, one for the fast adaption, and another one aims for a very narrow weight

42

distribution without paying much attention to runtime.
Note that comparing single runs of Bioflow and i-flow is difficult, since they were done on
changing devices, with also other groups running their code on them, so the programs dont
run continoously. For this reason, it was tested once, that recycling one data point takes
roughly 2

3 of the time generataing one, and this is the measure of time.
For the "standard" Bioflow setup, the output sample distribution does not look quite per-
fect, but is reasonably close to the target. Especially the weight distribution is significantly
narrower than i-flow. The issue with increasing loss during generating training once the
network is reasonably adapted still exists, but by recycling, this gets more than counteracted.

For the Fast Bioflow setup (Figure 33), the output distribution is, as expected with less
training, a bit worse, but the sampled weights still outperform i-flow.
Running Bioflow for quiet a long time results in a nearly perfect output distribution as well
as a very narrow weight distribution (Figure 34).

43

10 2

10 1

100

lo
ss

generate

0 20 40 60 80 100
batches total

0.0
2.5

ch
i2

10 6

10 5

10 4

10 3

10 2

Tr
ue

Integral

0 100 200 300 400
batches rec

10 1

8.75 × 10 2

9 × 10 2

9.25 × 10 2

9.5 × 10 2

9.75 × 10 2

1.025 × 10 1

lo
ss

+0
.1

recycle

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

10 3 10 1 100 101 103>104

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

14

Figure 32: ’Standard’ Bioflow training

44

10 2

10 1

100

lo
ss

generate

0 10 20 30 40
batches total

0
1

ch
i2

10 6

10 5

10 4

10 3

Tr
ue

Integral

0 10 20 30 40 50 60
batches rec

10 1

8.8 × 10 2

9 × 10 2

9.2 × 10 2

9.4 × 10 2

9.6 × 10 2

9.8 × 10 2

1.02 × 10 1

1.04 × 10 1

lo
ss

+0
.1

recycle

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d

All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1
1.0

10.0

[%
]

10 3 10 1 100 101 103>104

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

4

Figure 33: Fast Bioflow training

45

10 3

10 2

10 1

100

lo
ss

generate

0 100 200 300 400 500
batches total

0

1

ch
i2

10 6

10 5

10 4

10 3

Tr
ue

Integral

0 2000 4000 6000 8000 10000
batches rec

10 1

9.6 × 10 2

9.7 × 10 2

9.8 × 10 2

9.9 × 10 2

1.01 × 10 1

1.02 × 10 1

1.03 × 10 1

1.04 × 10 1

lo
ss

+0
.1

recycle

0.2 0.4 0.6 0.8
x0

0.2

0.4

0.6

0.8

x1

pure_samples

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d
All weights
Pure samples
Inv INN Jac

0.951.001.05

Pu
re

Al
lw

ei
gh

ts

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.1
1.0

10.0

[%
]

10 3 10 1 100 101 103>104

weights

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d

6

Figure 34: Long Bioflow training

46

6 Conclusion

6.1 Summary

After pointing out all essential theoretical background, program pipelines for integrating dif-
ferential crosssections and generating weighted events with adaptive monte carlo techniques
using Vegas and INNs were sketched. They resemble each other much, as the INN takes
essentially the place of Vegas, while the rest of the pipeline, most importantly the phase
space generator Rambo, the source for the matrix elementM, MadGraph, the provider of
PDFs (first LHAPDF, later the TDFs) and the final calculation of the integral.
Vegas was ensured to work as intended by using it on simple toy functions. One important
result for later comparison is the distribution of weights for the double gaussian function; it
spans about 3.5 orders of magnitude. Then, the whole pipeline was applied to the gg→ ggg
process. There it turned out, that LHAPDF was an unexpected source of error, that wasnt
able to be fixed by simple means. So, the simple "Tilman gluon distribution function" was
used to approximate the PDFs. After this fix, everything was working acceptable. With
the chosen phase space cuts, the cross section was calculated to 12.78(16)GeV−2. Unfortu-
nately, this differs multiple standard deviations to the result of the MadGraph framework
(15.296(15)GeV−2). After some investigation for this reason, it was suspicious that the final
result of Vegas was fluctuating noticeably more than the estimated error, so maybe the
estimation for the standard deviation of Vegas is incorrect.
Next, having learned from the difficulties working with the whole Vegas pipeline, the INN
was trained on toy functions first. To keep things comprehensible, but allow for some complex-
ity, they were chosen to be two dimensional, but generalizable to higher dimensions, namely
the gaussian ring and the double gaussian function. It was soon found out, that the double
gaussian was more difficult for the network to adapt to, and that’s why it was focused from
that time on. In the beginning, a relatively big network architecture was chosen and both
training directions were examined on their own, ensuring that both have the ability to improve
the network distribution properly. Setting the learning rates too high, the network fails to
learn the function, resulting in regions in the integration space, where so samples are taken.
Combining both training directions, very good adaptions were achieved and the final weight
distributions outperform Vegas by a long shot, spanning less than two orders of magnitude;
however it should be mentioned, that the integrand is chosen, such that the drawbacks of Ve-
gas are heavily punished. The best results are obtained by a training scheduler that recycles
data in the end; this is expectable, as in this way, the network iterates over the most data
points and the training takes the longest. It was found out that the value of the recycling loss
is not so expressive for the quality of the trained distribution.
Next, some different loss functions for generative training were tried out. Many of them were
divergences motivated by i-flow, and about half of them worked right out of the box, but the
until now used exponential loss had a slight edge over them all. The others either produced
distorted or entirely unrecognizeable distributions, indicating that some tuning of the network
or sometimes of tunable parameters in the losses themselfe would be needed. However, as
one very well working loss was already identified, this was not pursuit further. Lastly, for less
abstract loss functions, directly the variance of the integral and a asymetric punishment of
extreme weight values were used. While the variance-loss worked great, competing with the
exponential loss, no good working implementation of the weight punishment was found.

47

A very similar project to Bioflow is i-flow. It only implements generative training and is
the perfect choice to create a benchmark for this direction, to have a gauge, how fast good
adaption is possible. Its standard architecture is quite different from Bioflow, especially be-
ing way smaller allowing for stable training with a high training rate. With this setup, training
can take a very short amount of time, yet still produces impressive output: The weight dis-
tribution only spans about two orders of magnitude and having very little tail on high weight
values. Impressively, the weight distribution slightly improves with higher learning rate and
correspondingly less data. Changing Bioflow accordingly, it suffers from increasing loss once
the network is reasonably adapted, preventing it from reaching that benchmark. The reason
for that is still searched for. There might be an error in the implementation of the spline
coupling, as for very high learning rates, there occurs an error if a discriminant is smaller
than zero. It is suspected, that the network tries to not be invertible any more.
Nevertheless, even though the benchmark was not achieved, recycling training was added
again. In contrast to the generative training, it behaves very similary with the small network
architecture, always improving the distribution and lowering the generative loss again. This
counteracted the problem of increasing generative loss during generative training so much,
that Bioflow is able to produce even narrower weight distributions than i-flow, spanning
significantly less than two orders of magnitude with compareable training time, although the
resulting sampling distribution is not in perfect accordance with the target in the case of fast
training with high learning rate. Very long training improves the network output even more.

6.2 Outlook

It was shown, that the task Vegas performs can be done by neural networks better, as
they make less assumptions about the integrand. Unfortunately, as mentioned, the i-flow
benchmark could not be achieved with Bioflow, however, it was shown, that the alterna-
tive training direction indeed in principle improves the network performance. Reaching the
benchmark will be an important milestone for Bioflow; the reason for staying behind is still
searched for. If it won’t be found for some time, perhaps some help will be contributed by
one of the co-workers on i-flow joining the ressearch group anticipated later this year. Next
to that, going from a two dimensional toy function to the physical process will be an essential
task that will take some time: Slowly increasing the dimesnionality of thye integrand, the
optimal parameters for the network will be seaerched for and tried to find a rule how they
develope, to gain maximum efficiency. Furthermore, the training schedule was hardcoded all
the way. A primitive auto scheduler, switching the training directions as deemed appropriate
was developed, but until now not further pursuited. Improving this scheduler might yield
optimal results for a wide range of functions without much necessity for tuning by hand. It
also might be worth a try, if pretraining the network will make generalisation to other pro-
cesses more efficient and effective. Lastly, Bioflow might be a candidate for a surrogate for
rejection sampling proposed by [4] for computationally very expensive processes, as it needs
due to recycling training very few samples to capture the rough shape of the integrand.

48

References
1Bergström, Dark matter candidates, 2009.
2G. Peter Lepage, “A new algorithm for adaptive multidimensional integration”, Journal of
Computational Physics 27, 192–203 (1978).

3Gao, Isaacson, and Krause, I-flow: high-dimensional integration and sampling with noraml-
izing flows, 2020.

4Danyiger, Janßen, Schumann, and Siegert, Accelerating monte carlo event generation - re-
jection sampling using neural network event-weight estimates, 2021.

5Bothmann, Janßen, Knobbe, Schmale, and Schumann, Exploring phase space with neural
importance sampling, 2020.

6F. James, Monte carlo theory and practice, 1980.
7Peskin and Schroeder, An introduction to quantum field theory (CRC Press, 1995).
8Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelter, Torielli, and Zaro, The
automated computation of tree-level and next-to-leading order differential cross sections, and
their matching to parton shower simulations, 2014.

9Plätzer, Rambo on diet, 2018.
10NGoetz, Nf, (2020) https://github.com/NGoetz/NF/tree/master/nisrep/PhaseSpace

(visited on 02/16/2022).
11Gao, Höche, Isaacson, Krause, and Schulz, Event generation with normalizing flows, 2020.
12Stienen and Verheyen, Phase space sampling and inference from weighted events with au-

toregressive flows, 2020.
13Kingma and L. Ba, Adam: a method for stochastic opimization, 2015.
14D. J. C. MacKay, Information theory, inference, and learning algorithms (Cambridge Uni-

versity Press, 2003).
15G. P. Lepage, Vegas 5.1.1 documentation, (2021) https://vegas.readthedocs.io/en/
latest/tutorial.html (visited on 02/21/2022).

16Hartung, Knapp, and Sinah, Statistical meta-analysis with applications (Wiley, 2008).
17Smith and Topin, Super-convergence: very fast training of neural networks using large learn-

ing rates, 2018.
18T. Contributors, Pytorch documentation, (2019) https://pytorch.org/docs/stable/
generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html (visited on 02/24/2022).

19Gao, Isaacson, and Krause, I-flow, (2020) https : / / gitlab . com / i - flow / i - flow/ -
/tree/master (visited on 03/04/2022).

49

https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://github.com/NGoetz/NF/tree/master/nisrep/PhaseSpace
https://vegas.readthedocs.io/en/latest/tutorial.html
https://vegas.readthedocs.io/en/latest/tutorial.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://gitlab.com/i-flow/i-flow/-/tree/master
https://gitlab.com/i-flow/i-flow/-/tree/master

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe.
Erlangen, den 17.03.2022,

50

	Introduction
	Essentials
	Monte Carlo techniques
	Physical Background
	Unweighting
	INNs

	Program Pipelines
	Vegas
	INN

	VEGAS
	Digression: Plots
	Toy functions
	Cross sections

	INN
	Toyfunctions
	Learning rate Schedulers
	Generative Training
	Recycling Training
	Combined Training
	Loss
	Benchmark
	Adding recycling

	Conclusion
	Summary
	Outlook

