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Abstract

Following the idea proposed by S.Badger and J. Bullock to train neural networks on
scattering amplitudes to optimise LHC simulations we investigate how the approach
can be further improved by making use of the uncertainty estimates provided by
Bayesian neural networks. We optimize the models performance by finding the best
architecture and analyse the behavior of uncertainties obtained by the network.
Finally, we use a "feedback" algorithm to increase the performance on problematic,
divergent phase-space regions.

Zusammenfassung

Aufbauend auf der Idee von S.Badger und J.Bullock, zur Optimisierung von LHC
Simulationen neuronale Netzwerke auf Streuamplituden zu trainieren, untersuchen
wir, wie dieser Ansatz mittels der Unsicherheiten von Bayesian Neural Networks
verbessert werden kann. Wir optimieren die Leistung dieses Models durch Finden
der besten Architektur und analysieren das Verhalten der Unsicherheiten des Net-
zwerks. Schlussendlich benutzen wir einen "feedback" Algorithmus um die Aus-
sagekraft auf problematischen, divergenten Phasenraumregionen zu verbessern.
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1 Introduction

In the field of theoretical particle physics and with higher energy runs at LHC, a
substantial effort is devoted to the increasingly analytically complex calculation of
scattering amplitudes of high multiplicity final states. These amplitudes play sig-
nificant roles in the generation of collider events via interfacing into Monte Carlo
event generators. To compute these values, numerous numerical methods already
exist [1, 2, 3, 4, 5]. While these methods allow for powerful predictions, they are
limited by the numerical workload required when upscaling to large datasets. Ma-
chine Learning methods do not encounter this problem by employing a separate
training and prediction process.
High energy physics offers a large number of possible applications for ML, such as
classification tasks using auto-encoders [6], capsule networks [7] or top tagging with
uncertainties [8]. Additionally phase space integration and sampling [9, 10, 11] have
been shown to be accelerated and improved by ML, while event generation is be-
ing improved by using generative Networks with uncertainties [12] or unweighting
events with Generative Adversarial Networks (GANs) [13, 14]. The prediction of
cross-sections [15] and scattering amplitudes for specific processes with Boosted De-
cision Trees (BDTs) [16] on the loop-induced gg → ZZ or an ensemble of networks
for divergent and non-divergent phase space regions on e−e+ → < 6 jets (see Ref.
[17]) and on diphoton processes gg → γγ+n(g) (see Ref. [18]) predicted with an
uncertainty have been proven to show reliable and good approximations.
In this thesis, I will further investigate the relevant gg → γγ+n(g) process, which is
loop-induced and has relevant contributions from high multiplicity matrix elements,
making it a challenging and interesting process to study. Concretely, I will begin to
firstly examine performances of different architectures and approaches, concretely
also examining the possible advantages and disadvantages of phase space partition-
ing and the Frixione, Kunszt, and Signer (FKS) [19] [20] pair methods. To do this,
I will use Bayesian Neural Networks (BNNs) [21] [12] [8] and in particular exploit
their feature to predict scattering amplitudes using fully connected network lay-
ers with learned Gaussian weight distributions, leading to a detailed exploration
of uncertainties whilst avoiding the training of an ensemble of networks. I will
further explore the impacts of decreased training data and duplication of features
and targets in critical, divergent phase space regions to increase performance. This
allows us to compute kinematic distributions, compute the cross section and lays
the foundation to an efficient reweighting / resampling.

2 Basics

2.1 Scattering Amplitudes, Cross Sections, Divergent Structures

In this chapter I will introduce the concepts of scattering amplitudes (matrix ele-
ments) and cross sections in order to give a mathematical and physical background
to the different concepts we will be using during the thesis. This chapter is based
on [22] [9] [23] [24] [25].
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2.1.1 Scattering Amplitudes

Since, in particle physics, we usually examine scattering processes with distinct
initial and final states, it makes sense to define a S-matrix, which encodes the
relation between the incoming and outgoing state which come from isomorphic
Fock spaces:

|out⟩ = S |in⟩ (1)

Alternatively, in the interaction picture one defines it as the limit of the time-
evolution operator U(t′, t) assuming the particles do not interact at very early or
very late times. This gives us a definition in relation to the interaction Lagrangian
if it can be split up into a interaction and non-interaction part:

S = lim
t→−∞t′→∞

U(t′, t) = T exp

{(
i

ˆ ∞

∞
d4xLI

int(x)

)}
(2)

In order to properly justify this limit, one uses LSZ-formalism to understand how to
describe single particles in the interacting theory(for a more detailed derivation see
for instance Ref. [22]).. If the particles do not interact at all, the S-matrix becomes
the identity matrix, such that is makes sense to split it up into the identity matrix
and a transition matrix T resulting from the interactions in our scattering process:

S = 1 + iT (3)

where the imaginary unit is added by convention. For a process with incoming
particles with momenta p1, ..., pi and outgoing momenta pi+1, ..., pn this then means:

⟨out| iT |in = (2π)δ(4)(p1 + ...+ pi − pi+1 − ...− pn)iM(p1, ..., pn) (4)

with the δ function ensuring conservation of momentum. M is then defined as
the matrix elements or scattering amplitudes and allow to compute observables in
particle scattering processes and e.g. the cross-section of the process. One can
now use LSZ-Formalism to compute the time ordered correlation functions of the
interaction theory with only the free field commutation relations using:

⟨0|Tφ(x1) · · · φ(xn) |0⟩ (5)

=
0 < TφI(x1) · · · φ(xn) exp

{(
−i
´∞
−∞ dτHint(φI(τ, x⃗))

)}
|0⟩0

0 ⟨0|T exp{(dτHint(φI(τ, x⃗))} |0⟩0
(6)

with the free field vacuum state |0⟩0 and the particle field φI in the interaction
picture. Additionally we use the Wick theorem to incorporate all contractions into
the the correlation function to finally calculate by expanding around the interaction
constant, which in the case of strong gluon coupling is given by:

αs =
g2s
4π

(7)

with the strong coupling gs, which relies on the assumption that αs << 1, which
turns out to be valid, especially at high energies achieved in a particle collider.
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After using a Fourier transformation we then get the Feynman rules which can be
used to compute all possible scattering channels which together make up the matrix
element of processes by using them as "building blocks" which together make up
the entire process. The squared matrix elements are then used for the calculation
of cross-sections.

2.1.2 Divergent Structures

When constructing the Feynman diagrams and the writing down the according
equations for the scattering amplitude with the Feynman rules, one finds that the
integral over loops do not disappear and together with other phenomenones (e.g.
soft / collinear particles) create divergences. Generally one decides between two
types of divergences: ultraviolet (UV) and infrared (IR), corresponding to high en-
ergy and low energy limits of the propagator integrals: While we can deal ultraviolet
divergences by using regularization and renormalization which become correction
terms in the QCD Lagrangian, the infrared divergences are more difficult to deal
with but usually not as problematic since all observable stay finite. Infrared diver-
gences appear in theories with massless particles (like the photon in our scattering
process). Since the networks have problems with the training of IR-divergencies
however, I will further examine them: As previously mentioned, there are several
cases that can create IR-divergencies: one is loop integrals which do not disap-
pear by using Fourier transformation as other propagators do, but remain and can
diverge (virtual IR divergences) and divergences resulting from soft and collinear
emissions (real IR divergences). The latter result from Matrix elements that have
the invariant mass of the particles in their denominator. In general, these two types
of IR-divergences would cancel another out. [26][27][28]. Since numerical methods
(Monte Carlo integration techniques are used to integrate the final states over the
entire phase space, one needs a different methodology for the calculations of in-
frared terms. In this theses I will be using the Frixione, Kinszt, and Signer (FKS)
subtraction [19] [20]. We are specifically using these methods to isolate divergent
regions in one-loop processes so that the split up data can be given to separate
networks for training.

2.1.3 Scattering Cross section

This chapter is based on lecture notes [29]. The cross section is similar to the chance
of an event to happen and as such can be derived in the following way: Consider a
fixed target experiment, with NB particles coming in over a area F while target A
is hit with Nevents particles. The cross section is then intuitively given as:

Nevents

NB

=
σ

F
. (8)

Now we consider the more realistic case of incoming wave packages

|fp⃗⟩ =
ˆ

dk̃fp⃗(k⃗) |k⟩ (9)
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where fp⃗ is localized around p⃗ and the Fourier transform is localized in real space
around x⃗ = 0. We can then define a state where the target A and the incoming
particle B are both localized around x⃗ = 0 for t=0:

|i⟩ =
ˆ

dk̃Adk̃Afp⃗A(k⃗A)fp⃗B(k⃗B) |kAkB⟩ (10)

now we want to account for the spread of incoming particles and define a impact
parameter b⃗ and, as in quantum mechanics, the momentum operator P̂ which gen-
erates the shift and satisfies:

P̂ |kB⟩ = kB, (11)

such that a shifted state is given by

e−i
ˆ⃗
P b⃗

ˆ
dk̃Bfp⃗B(k⃗B) |kB⟩ (12)

and therefore

|ib⟩ =
ˆ

dk̃Bdk̃Afp⃗A(k⃗A)fp⃗B(k⃗B)e
−ik⃗B b⃗ |kAkB⟩ . (13)

A particle approaching from far away at t=−∞ will then reach the desired state
|p1p2⟩ then Nevents times:

Nevents =
∑
b⃗

⟨p1p2|S |ib⟩ |2 ≈
NB

F

ˆ
F

d2b| ⟨p1p2|S |ib⟩ |2 (14)

where the approximation holds for a homogeneous, transverse distribution of NB

particles in the area F, and therefore:

σ(p⃗1, p⃗2) =
Nevents

(NB/F )
=

ˆ
F

d2b| ⟨p1p2|S |ib⟩ |2. (15)

Finally, if we want to consider a larger phase space area, we get the following cross-
section:

σ(Vf ) =

ˆ
Vf

dp̃1dp̃1σ(p⃗1, p⃗2), (16)

which can be rewritten as

dσ =
1

2s
|Mfi|2dX(n), dX(n) = (2π)4δ4(pf − pi)dp̃1...dp̃n (17)

which allows us to partially integrate the above expression and obtain a differential
cross-section.
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Fig. 1: Amplitude distribution before and after preprocessing

2.1.4 gg → γγg

This chapter is based on [30].The process gg → γγ + n(g) is a one-loop induced
process and has relevant contributions from high-multiplicity matrix elements. The
process pp → γγ+ ≤ 3 has been the object of current research[31] [32] [33] and
as such this process and the similar process with a second gluon in the final state
have become increasingly relevant. For the examined process of gg → γγg there
are analytic solutions available. However, this is not the case for the more difficult
process of two gluons in the final state, such that we aim for our network to later
be able to generalize to this scattering process. These analytic amplitudes entail a
fermion loop (compare Ref. [18]). The existence of a analytic solution allows us to
use use NJet [34] to compute the amplitudes for events we generate with RAMBO,
to then use supervised training. The advantage to the analytic methods and even
the numeric methods, which exist for the 2 → 4 process, is the better scaling of
the neural networks, which has been shown in Ref. [18]. As mentioned in the
Introduction, we are examining the process gg → γγ+n(g), in our case specifically
gg → γγg to find the scattering amplitudes in different phase space regions. In
the following thesis I will use "g" and "j" (for jet) analogously which corresponds
to the physical measurable quantity also stresses the fact that this network can in
general be used for more general processes, although specifics like cuts would have
to be changed. Our features consist of the four-momenta x ∈ R4 the five particles
each, creating a total 20 dimensional input size, while the targets are the scattering
amplitudes y ∈ R of each event. The amplitudes are computed by the NJet3
algorithm [34] using a rambo sampling algorithm [35] to generate flat phase-space
points. Until otherwise specified, the same integrator is used for training, validation
and testing. The validation set consists of 10% of the training set. We use a training
set of inital size 100k events and a test set of a size 1M events before cuts. The
size of these datasets will however be significantly shrinked to about one-third of
its original size by the physical cuts that have to be applied. We will use cuts on
the transverse momentum, the angular distance and the pseudorapidity. In order to
sort the data further, we make sure that the first photon 4-momenta in the dataset
is always corresponding to the photon with the higher transverse momentum. This
data is then split up into a divergent and a non-divergent part, using the quantity
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yij:

sij = (pi + pj)
2 (18)

yij =
sij

s12
(19)

where s12 is the center-of-mass energy by definition. The numbering of the particles
corresponds to the following one: gg → γγg. The divergent part corresponds to
phase space region we assume to contain divergent i.e. soft or collinear particles.
The data will be further split up to isolate specific divergent structures as will be
shown in the following chapter. This will lead to a weighting of the events in the
divergent phase-space regions. Each such region will then be used as the input for a
BNN, such that there will be a total of N+1 networks where N is the number of di-
vergent phase-space regions and we use one additional network for the non-divergent
phase space region.

Fig. 2: Amplitude distribution before and after
preprocessing

This approach is supposed to increase
the network performance, since the di-
vergent phase space regions often have
significantly different properties and as
such are harder to train on for conven-
tional networks [34, 18]. One of our
result will be that BNNs are able to
handle these phase space regions bet-
ter and even achieve better result when
only using a single network for the entire
training set. Since the amplitudes are
not Gaussian distributed and relatively
small, we will use a preprocessing on
both the data as well as the amplitudes
to avoid exploding/vanishing gradients
as is customary in ML literature. For
the 4-momenta, we standardize them
by subtracting the mean value of each
of the 20-dimensions and then dividing
by its standard deviation, leading to a
mean value of zero and a standard devi-
ation of one (compare figures 1, 2). We
will try out several different preprocessing methods for the scattering amplitudes,
since the performance does vary significantly (see results). The normal standardis-
ation to mean value zero and standard deviation one works works not as well here
when considering the distribution of the amplitudes. One finds there are naturally
a lot of smaller amplitudes, with several single outliers being significantly larger.
When we apply linear preprocessing:

A 7→ (A− ⟨A|A⟩)
σA

(20)

We can see that the scale of amplitude magnitude is significantly lower, thus reduc-
ing the risk of exploding/vanishing gradients, but still has outliers in high amplitude
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regions. This can be reduced, if we use a log preprocessing:

A 7→ log

(
1 +

A

σA

)
(21)

We essentially are able to differentiate more clearly amplitudes with lower mag-
nitude by splitting them up and decrease the extend of large amplitude outliers.
Additionally we can see that when we use a second log, this effect is further in-
creased. We do not use this last preprocessing method however, since it leads
to large numeric instability, when the amplitudes have to be exponentiated when
transforming back, once the network has predicted the preprocessed amplitudes.

2.2 Cuts and Phase Space Partitioning

For the partonic one-loop process we are trying to find the scattering amplitudes
for we use the following basic cuts:

pT,j > 20 GeV |ηj| > 5 Rjj,jγ,γγ > 0.4

pT,γ > 40, 30 GeV |ηj| > 2.37 . (22)

where pT is the transverse momentum of the particles, i.e. the momentum orthog-
onal to the beam axis:

pT =
√

p2x + p2y (23)

eta is the pseudorapidity which is a spartial coordinate describing the angle of the
particle relative to the beam axis θ, defined as:

η = − ln tan
θ

2
(24)

Rjj is the angular distance and is defined as:

Rjj =
√

(∆η)2 + (∆φ)2 (25)

where ∆φ marks the relative azimuthal angle between the two jets. These cuts
stem from physical backgrounds of the scattering process and the detector. For
example: the cut in the angular distance ensures that the jets have a minimal angle
between them. This makes sure that the detector is not interpreting a single jet
(or shower) as two separate events as easily. As previously mentioned, we use the
quantity yij is used to split the data into a divergent and a non-divergent part. This
yij is computed for both incoming, outgoing as well as mixed particle pairs:

Rdiv = {p|min(yij) < ycut, p = (p1, ..., pn), i, j ∈ {1, ..., n}} (26)
Rnon−div = {p|min(yij) > ycut, p = (p1, ..., pn), i, j ∈ {1, ..., n}} (27)

where p is an event, consisting of the two incoming gluons four-momenta {p1, p2}
and the outgoing momenta {p3, ..., pn}, where in our case n = 5. The value of ycut is
a hyperparameter and has further been examined in [34]. We use ycut=0.02 for our
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Fig. 3: Left: Amplitudes split up into divergent and non-divergent phase space regions; al-
though there are also smaller amplitudes in the "divergent" area, all high amplitudes
are exclusively in it; Right: Energy of all particles over their amplitudes; the highest
amplitudes are all contained in the divergent area

networks. It should be mentioned here, that these divergent regions also include
points which are not divergent and even particle pairs that can not be soft. This is
done to keep the uses general and not fit them to this very specific purpose, thereby
making it less appliable. Now we want to isolate IR-divergences, which appear from
soft or collinear real emissions and integrals over massless partons, by using FKS
subtraction [19] [20] as follows:

PFKS = {(i, j)|1 ≤ i ≤ n, 2 ≤j ≤ n, i ̸= j,

M(n,0) or M(n,1) → ∞ if p0i → 0orp0j → 0 or p⃗i||p⃗j}
(28)

With the partition sums:

Si,j =
1

D1sij
, D1 =

∑
i,j∈PFKS

1

sij
(29)

such that

dσ =
∑
i,j

Si,jdσ (30)

where σ is the cross section of the process. In our process this leads to ten regions,
where the scattering amplitudes in each region are then weighted by Si,j (for example
figure 4) and trained with a seperate network. Including even pairs that do not
produce singilarity structures helps with generalizability and has been shown in
Ref. [18] to not have damaging effects on the networks performance, nonetheless
adding redundancy.
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Fig. 4: Examplatory partition/weighing function Sg,g for first initial gluon and final gluon:
regions with low value of s (indicative of singularity structure) are weighted higher,
while other regions are suppressed; this network would mainly train on the regions
where g, g would indicate singularities

2.3 Neural Networks, Optimizers, Activation functions

2.3.1 Neural Networks

Neural Networks describe a collection of algorithms which are able to approximate
highly non-linear functions though fitting. Here I will give a short introduction to
Multi-Layer Perceptrons (MLP), comprised of a series of layers called Perceptrons
combined with a optimizer. The perceptron is a simple building clock for neural
netoworks [36]. These layers take as a input the point x = (x1,...,xn) and return:

f(x) = a

(
d∑

k=0

xk · ωk

)
(31)

where by definition x0 = 0 and x0·ωk gives a bias, while the other ωi give a weighting.
a is a activation function, which is used to introduce non-linearity into the network.
This is necessary since the output of the previous layer is always given to the next
layer and a series of linear layers would only have the expressiveness of a single linear
layer. In regression problems we will lay specific importance on the last layer, since
it has to be able to map onto our entire range of targets y. Often times this means
that the last layer is only a linear layer or no layer at all. Other than conventional
analytic algorithm, the use of a neural network is comprised of two distinct phases:
a training and a test phase. During supervised training, the network is given a
training data set comprised of features x and targets y. It then uses a Optimizer
(see next chapter) to approximate the training data i.e. attempt to align f(x) to
y. To achieve this, we need to define the Loss (next chapter) between f(x) and y
and minimize it through the use of gradients and chain rule. Depending on the
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amount of layers and the weights per layer, the network will be able to "learn" a
underlying relation between the features and the targets if such a relation exists.
However there is no reason to believe that there will only be one minima in the
loss function and the network might also simply "remember" the targets to the
features in the training set. This phenomenon is called overfitting and leads to a
minimal loss of zero, but at the same time to a complete lack of expressiveness on
new data. To avoid this, there exist several methods (dropout, early stopping), but
the detection can simply be achieved by designating a portion of the training set to
be a validation set, which the network then makes prediction on, but does not use
for training, allowing insight into the expressiveness of the network. Additionally to
this "validation loss", one might also define a "training loss", i.e. the loss produced
by the prediction on the training set and a "test loss" which is indicative on the
performance on a test set if the correct targets are available. During the test phase,
the weights ω are then held constant and the network is able to make prediction on
given data. As the name suggest, MLP use several layers where each layer takes a
input the output of the previous layer:

f(x) = f (o)(f (h)(f (h−1)(...(f (1)(x))...))), (32)

where f (i) are the inner layers, f (1) is the input and f (o) is the output layer. Usually
the choice is made to use the same activation function for all inner layers to reduce
the number of possible hyperparameter combinations. The striking advantage of
this method is the speed up in the required time during prediction, which has been
shown to speed up e.g. the integration of functions. This has made NN a attrac-
tive method to use for phase-space sampling and integration [37][38]. Recent work
[39][40][41] have used difference achitectures such as renormalizing flows Netoworks
and Generative Adversarial Networks (GANs) to achive better result than classical
algorithms.

2.3.2 Optimizers

To train a neural network, one needs a meassure of the performance or the lack
of performance of the network, given the available training data. With this "Loss
Function", one can then use gradients analysis to compute the required change of
the network parameters to minimize this this loss, thus maximizing the network
performance. This computation of the optimal change of network weights and
biases is done by a optimizer. We decided to use the commonly used Adam [42],
adaptive moment estimation, optimizer , which combines the adaptive learning rate
from RMSprop [43] and the use of a momentum implementation. This momentum
method is given by an additional term in the step equation of the optimizers, which
discourages sudden changes in the direction of the previous updates of weights and
biases, similar to the force a rolling sphere would experience in a physical system
if it would be pushed slightly in a direction different from its previous direction of
momentum. This helps to archive a smoother convergence, especially when dealing
with outliers, which can introduce false directions into the gradient and therefore
hinder the progress of optimization. Using this method to take into consideration
the previous gradients has been shown to lead to high performance SGD if used
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correctly [44]. The step function is then given as:

θt+1 = θt − η∇L(θt) +mt (33)
mt = ν∇L(θt−1) +mt−1 (34)

where θ are the learning parameter, η is a given hyperparameter, the learning rate,
L(θ) is the loss function, mt is the momentum and ν is another hyperparameter
corresponding to the influence previous gradiens have on the calculation of the cur-
rent gradient. Notice that the momentum at time t always carries the exponentially
decaying momentum of all previous momentum. When adding adaptive learning
rate / adaptive gradients, we aim to deal with the problem that different weights
often have very different gradient magnitudes, which makes the choice of a global
learning rate difficult. To solve this, we carry a moving average of the squared
average of each weight and then divide the gradient by the square root of it. This
leads to RMSprop, with the step function:

θt+1 = θt −
η∇L(θt)√
vt + ϵ

(35)

vt = (1− µ)(∇L(θt))
2 + µvt−1 (36)

where the term ϵ is small and has been added for numerical stability, vt is the
exponentially decaying average of squared gradients and µ is a hyperparameter
corresponding to the weight previous parameters have on the current computed
gradient. Adam combines these two concepts into the following step function:

θt+1 = θt −
ηm̂t√
vt + ϵ

(37)

m̂t =
mt

1− βt
1

(38)

v̂t =
vt

1− βt
2

(39)

mt = (1− β1)∇L(θt) + β1mt−1 (40)
vt = (1− β2)(∇L(θt))

2 + β2vt−1 (41)

with hyperparameters β and one division to remove biases.

2.3.3 Activation Functions

In the use of regression appliances it is crucial to use appropriate final activation
functions which are able to cover the entire realm of targets. Since we want to
predict scattering amplitudes, we need to use activation function with positive out-
put in the case of log preprocessing, and a activation function with positive and
negative outputs in the case of linear preprocessing. During our training we mainly
use three different final activation functions: ReLU [45], GeLU[46] and Softplus,
of which only GeLU is able to allow negative values. GeLU and Softplus are ap-
proximately linear for large input values are approach zero for small values, mainly
differing in the region around zero. Softplus and GeLU are differentiable while
ReLU is not at x = 0, which usually does not pose a problem. Between the inner
layers we use tanh activation function, as is done in Ref. [18].
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Fig. 5: Activation functions

2.4 Bayesian Neural Networks

Generally Bayesian Neural Networks (BNN) work similar to normal fully connected
linear network layers with two output dimensions - one dimension for the output and
an accompanying uncertainty. Additionally the BNN does not only learn the weights
ω, but rather a distribution for each network weight[47], which will be approximated
as a Gaussian, allowing for reduction to two parameters for each network weight.
For the prediction of scattering amplitudes of each phase space point we want to
sample the amplitudes and the uncertainty over the weight distributions assuming
p(A | ω) to be a Gaussian, such that the network output is given as:

BNN : x, ω →
(

A(ω)
σstoch(ω)

)
. (42)

where we define A(ω) and σstoch(ω) are the mean and the standard deviation of the
Gaussian and defined as follows:

A(ω) =

ˆ
dA A p(A|ω) (43)

σstoch(ω)
2 =

(
A2(ω)− A(ω)2

)
. (44)

This is then the output of a single network with sampled weights ω and since the
networks with different networks will, in general not have the same output, it is
clear that we will obtain another error corresponding to the weight distributions.
The output can then be sampled over the different weight distributions to obtain:

⟨A⟩ =
ˆ

dω p(ω|T )A(ω) (45)

σ2
stoch = ⟨σ2

stoch⟩ =
ˆ

dω p(ω|T )(A2(ω)− A(ω)2), (46)

where T is the training data. In reality this will be done by sampling from the
network weight distributions to get distinct networks and then averaging over the
output of these networks (compare figure 6). However, we do not have a closed form
for the network weight distributions p(ω|T ), which we solve by using the variational
ansatz do approximate it, such that the following holds true:

p(A|x) =
ˆ

dω p(A|ω)p(ω|T ) ≈
ˆ

dω p(A|ω)q(ω), (47)
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for the probability distributions for possible amplitudes (the dependence on the
phase-space point is implicitly included whenever A appears). Since the perfor-
mance of the network depends on how accurate this approximation is, we will define
the loss as the Kullback-Leibler divergence of the learned and the true probability
distribution:

LBNN = KL[q(ω), p(ω|T )]

=

ˆ
dω log

q(ω)

p(ω|T )

=

ˆ
dωq(ω) log

q(ω)p(T )

p(ω)p(T |ω)

= KL[q(ω), p(ω)]−
ˆ

dω q(ω) log p(T |ω) + log p(T )

ˆ
dω q(ω)

(48)

in the transformation from the second to the third term we use Bayes’ theorem,
and p(ω) is the prior distribution which we will later decide to set as Gaussian. In
general however, one could also choose different distributions here. The first loss
term acts as a regularization to q(ω) to p(ω) which essentially ensures that the
weight distribution keeps the given shape of the prior distribution, while the second
term is the expected likelihood which can be used to work in a frequentist sense.
We can disregard the last term since it does not depend on the network training
and will just add a constant loss term, leading to the final loss:

LBNN = KL[q(ω), p(ω)]−
ˆ

dω log p(T |ω), (49)

where the second term already includes the sum over all training points that are
being used in the batch. If the batch is smaller than the total training size, it
is important to scale the regularization term accordingly. Now we can make the
assumption that the weight distributions are Gaussians to further expand the KL
term:

KL[q(ω), p(ω)] =
σ2
q − σ2

p + (µq − µp)
2

2σ2
p

− log σq + log σp , (50)

where we can once again disregard the last term, since the standard deviation of
the prior is fixed and therefore not relevant in the loss. Finally, we can find the
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total error of the amplitudes by applying the Law of total variance:

σ2
tot = ⟨(A− ⟨A⟩)2⟩

=

ˆ
dA (A− ⟨A⟩)2 p(A|T )

=

ˆ
dAdω (A− ⟨A⟩)2 p(A|ω, T ) q(ω)

=

ˆ
dAdω

(
A2 − 2A⟨A⟩+ ⟨A⟩2

)
p(A|ω, T ) q(ω)

=

ˆ
dω q(ω)

[ˆ
dA A2 p(A|ω, T )− 2

ˆ
dA A⟨A⟩ p(A|ω, T ) +

ˆ
dA ⟨A⟩2 p(A|ω, T )

]
=

ˆ
dω q(ω)

[
A2(ω)− 2⟨A⟩A(ω) + ⟨A⟩2

]
=

ˆ
dω q(ω)

[
A2(ω)− A(ω)2 + A(ω)2 − 2⟨A⟩A(ω) + ⟨A⟩2

]
=

ˆ
dω q(ω)

[
A2(ω)− A(ω)2 +

(
A(ω)− ⟨A⟩

)2] ≡ σ2
stoch + σ2

pred . (51)

here we can identify the stochastic uncertainty which the network predicts since
it appears in the second term of the loss in equation 49, when we assume that
p(A|ω) is a Gaussian. This uncertainty appears even if we do not sample from the
weight distributions more than once, leading to the interpretation as a uncertainty
of not the weight distributions, but the output of a single sampled network. Since
our training and test data will be exact, one might assume that σstoch will vanish,
but this would only be the case if the network could also represent/interpolate the
data perfectly, which does not happen since the network has limited resolution and
capability to find the perfect loss minimum. The additional uncertainty, σpred does
however depend on ⟨A⟩ and therefore several sampled networks. σpred will approach
zero for increasing training data since the weight distributions of the BNN will be-
come delta distributions which leads to identical networks in the sampling process.
Accordingly, σpred can be interpreted as a uncertainty resulting from the predic-
tions of different sampled networks and therefore from the weight distributions. In
contrast σstoch approaches a constant value for unlimited training data. It is nice
to note here, that the calculation in equation 51 does neither assume Gaussian
weight distributions, nor Gaussian ω-dependent network output. If one would use
a different output however, σstoch might not be so readily available.
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Fig. 6: Bayesian Neural Networks: by sampling from the weighting distributions of the net-
work weights several conventional networks can be obtained. The resulting outputs
give a uncertainty of each network itself σstoch and a uncertainty from the difference
of the network predictions A: σpred (graph from [7])

2.4.1 Statistical quantity: "pull"

Another way to gauge the performance of the network is to examine the "pull",
where we define as the possible "pull" quantities:

tstoch
i =

⟨Ai⟩ − Atruth
i

σstoch,i

tpred
i =

⟨Ai⟩ − Atruth
i

σpred,i

ttot
i =

⟨Ai⟩ − Atruth
i

σtot,i

(52)

We will naturally expect these quantities to be centered around zero and Gaussian
distributed, such that the total uncertainty should agree with the standard deviation
of the Gaussian. We can now compute the variance of these pulls:

Var(t) = ⟨t2⟩ − ⟨t⟩2︸︷︷︸
≈0

(53)

= ⟨t2⟩ (54)

=
1

N

N∑
i=1

t2i (55)

=
1

N

N∑
i=1

(
⟨Ai⟩ − Atruth

i

)2
σ2
x,i

(56)

We can define another alternative pull, by not averaging over the network weight
samples to receive a term included in the loss function:

talti =
Āi(ω)− Atruth

i

σstoch,i(ω)
(57)
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with a variance under the assumption of approximately mean value zero of:

Var(talt)(ω) =
1

N

N∑
i=1

(
Āi(ω)− Atruth

i

)2
σ2
stoch,i(ω)

(58)

⟨Var(talt)⟩ =
ˆ

dω q(ω)Var(talti )(ω) (59)

=

ˆ
dω q(ω)

1

N

N∑
i=1

(
Āi(ω)− Atruth

i

)2
σ2
stoch,i(ω)︸ ︷︷ ︸

part of the loss function

(60)

Since this variance is directly included in the loss term, we would expect this quan-
tity to directly correlate with the performance of the BNN. For a well trained
network, we would expect the variance to come close to 1. We will investigate this
in chapter 3.2.
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3 Results

3.1 Previous results

Since this thesis heavily depends on the work previously done in Ref. [18], I will
begin by summarizing the results of this paper and the results achieved, we well
as the advantages our method could provide to the solution of this problem. This
paper used a similar approach, but instead of using Bayesian Neural Networks, used
a several different fully connected neural networks for the different divergent regions
using FKS-subtraction and additionally another ensemble in order to achieve a de-
scription of a uncertainty. While this method certainly has been shown to work well
and is able to both predict the amplitudes as well as the corresponding uncertain-
ties, this has some aspect which are problematic. One disadvantage stems from the
fact that the uncertainties will inevitably also contain a part which depends on the
different trainings of the networks. This makes it hard to distinguish between the
actutal physical errors of the test data and uncertainties which are created through
different initial weights and convergence behavior. This was actually addressed in
the paper and shown to be negligible, but this might not be as small of an effect of
different data, decreasing the generalizability of the model. Most important how-
ever are the long times required to train the large amount of networks. In the paper
the authors opted for an ensamble of 20 netwoks for each of the ten divergent plus
one non-divergent region. This means that one has to train a total of 220 networks,
which is even significantly larger for more complex processes since the number of
divergent regions scales with n2, where n are the number of total particles. This
happens because the divergent numbers are always all combinations of two particles
of initial and final state:

#divergent regions =
(
n

2

)
=

n · (n− 1)

2
= O(n2). (61)

Even if the training of a single network does not require much time, this is not
very scalable to scattering processes with higher number of particles involved. The
performance of the network is shown in figure 7 on the test set. We can see that
that the distribution is centered around zero and has only a slight asymmetry into
positive direction. The largest values seem to be around ln∆ = 1 which corresponds
to a factor of 2.7 between the targets and predicted values for the amplitudes. We
will later show on our own results, that the events with the largest deviation are
most likely also part of the divergent areas of the phase-space. Additionally, the we
can calculate the differential cross-sections with respect to certain key observables.
This can show the robustness of the predictions and the uncertainties, as we are
bound to find certain divergent areas in these distributions, which will proof to be
the most challenging to predict amplitudes for. However, one should not use these
as a primary scale for performance, as the individual binning can lead to vastly
different results depending on which events are binned together. If all bins which
overestimate the true amplitudes and all events which underestimate the amplitudes
are binned together the resulting diagram will look very shaky. However if the events
will be binned together in such a way that over- and underestimation cancel each
other out, even relatively bad performances can seem very stable. Additionally,
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Fig. 7: Performance of paper [18] on the test set

the number of events in a bin strongly changes the total error of the bin, since a
single event with very high error has only negligible effect on the total uncertainty,
if combined with a large amount of events with low uncertainty. Given all this, the
differential cross-sections of the paper are given in figure 8. The paper mentioned
two jets in this figure: j1, j2 which is due to the fact, that in this paper a anti-kT jet
detection algorithm is used as part of the implementation in a complete framework,
which is able to detect several jets from the output data. In our data, this will
not happen, such that our "jet" is always just the gluon. In Figure 8 we can see
larger errors in regions of different phase differential cross sections. Specifically, we
can observe, that the uncertainties and shaking difference of prediction and targets
grows larger in the regions of high transverse momenta and low ∆ϕj1j2 . This is
usually due to few data points in these regions as well as the fact that these regions
are often part of the divergent phase space regions. This usually means that in
these regions, few events with very large amplitudes make up the majority of the
bins, while in other regions, the bins are filled with more, but smaller amplitudes.

3.1.1 Activation functions

As previously mentioned in the chapter 2.3.3 there exist various activation function
which can be used for our BNNs. We start by using the splitting of the data which
cuts have been applied to into a divergent and non-divergent region according to
equation 262728. We then train our non-divergent network with batches of size 4096
and with 100000 epochs. During the training we use ten percent of the training
data to compute the validation loss and use this to make sure no convergence is
happening. The networks on the divergent phase-space regions are trained only
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Fig. 8: Kinematic distributions from our benchmark network, Fig. 3 from Ref. [18]
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Fig. 9: Exemplary validation loss terms for non divergent BNN with log-preprocessing and
Softplus activation function split up into different loss terms. The sum over the
batchsize is implicitly contained in terms which contain the the amplitudes, except
in the entire loss term, where the sum is explicitly written out

30000 epochs, since the training split after cuts is

ycut = 0.02 N train
div = 1099 N train

non-div = 31652 . (62)

This means that is is reasonable to assume that the training on the divergent re-
gions will be quicker in comparison. For each of the 11 networks we use the same
final activation functions and log-preprocessing to get the following results for the
quantity ∆(train) defined as follows:

∆(train) =
ANN

Atrain
− 1 (63)

The loss in figure 9 aligns with our expectations: the green line is indicative of the
training behavior, that the network very early on begins to match the difference of
target and prediction to the according error, such that:

(ANN − Atrain)
2

2σ2
stoch

→ 0.5 =⇒ |ANN − Astoch| → σstoch. (64)

The total loss term shows that the network will, after fitting the amplitudes to
a satisfactory degree, then concentrate on instead training with then intention to
decrease the loss. None of these plots show any sign of overfitting.
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Fig. 10: Performance of BNN networks with different final activation functions with FKS-
subtraction method; Left: Linear scale, Right: logarithmic scale

We can see that the performance plots 10 are in general centered around zero,
but are asymmetric towards overestimating the amplitudes. This might very well
be a artifact of the log-preprocessing, which we will discuss further in the following
section. If we instead plot the quantity which as given in the original paper (see
figure 7), we get the resulting distribution of figure 11.

Similar to the plot in the original paper, these distributions seem to be more
symmetric, apart from the model using ReLU. In the chapter on performance 3.2
we will further investigate why this log-preprocessing is nonetheless preferably com-
pared to a linear preprocessing when considering the gain in performance over the
entire phase-space. Both the above plots show us however that the Softplus acti-
vation function seems to give the best results and a increase in predictive accuracy
as compared to the networks used on the paper (see figure 7). Accordingly we will
continue to use in all following models. The ReLU activation function seems to have
more occurrences of events being predicted to low, which might be due to the fact
that ReLU, other than the other two activation functions has a zero-gradient for
negative output. While the amplitudes should all be positive, this might mean that
amplitudes which, by initialization, fall into negative areas are difficult to predict
properly.

3.1.2 Architecture & Preprocessing

For the networks we are given a input array of 5 particles, each with a 4-momentum,
giving us a total of 20 dimensions. We flatten this input and for the inner layers use
[20,30,40] dimensions similar to the previous networks in the paper. As discussed
in the previous chapter, we will use the Softplus activation function in the last
layer, whenever possible. For the preprocessing, we will now examine the difference
between the log-preprocessing (equation 21) and the linear preprocessing (equation
20) as seen in figure 2 and figure 5. Since we technically do not learn the σstoch, but
instead lnσ2 because this term is directly contained in the loss function, we only use
the final activation function on the amplitude output, ANN to avoid evaluating in
on a negative uncertainty. With the linear preprocessing, however, the normalized
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Fig. 11: ln∆ Performance of BNN networks with different final activation functions with
FKS-subtraction method; same data as in figure 10

amplitudes can also become negative, such that we do not use the activation function
on either output. Additionally, we can use two separate networks for the divergent
and non-divergent part but do not split up the divergent area using FKS subtraction
or we can even just use a single network for both the divergent and non-divergent
data. For the latter we use the expanded architecture of size [20,20,30,40] to make
sure the network is able to for the now more complex data. This gives the following
results of figure 12. As we can clearly see in the figure 12, the architecture and
the preprocessing have significant influence on the final performance of the BNN.
It would be expected for the network which simply split the data into a divergent
and a non-divergent part to perform badly, since the regions of different divergences
are in general disconnected and one would expect a fit to be rather difficult, but
the method of using FKS pairs seems to be even worse in comparison. Perhaps
one could further investigate this with different parameters for the hyperparameter
ycut, since this parameters is essential for the training of the divergent area. If it is
larger, the the divergent training set is larger, but might include points which do
not technically belong in this area. Additionally, with increasing size, the influence
on the final performance is of course also increased. If ycut is smaller, however, it
has less influence on the final performance of the network, but the quality of the
predictions is also decreased since the available training set is smaller. In this thesis
I did not investigate this further however, since the topic and the accompanying
optimization of this parameter has already been done in Ref. [18] for conventional
networks, which lead to a performance which is still worse than the performance
on on our BNN training on all data. This network seems to provide the best
performance on both the divergent as well as the non-divergent part of the test
data. A possible interpretation for the more significant increase in performance on
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Fig. 12: Performance of BNN networks with different architecture and preprocessing: "log,
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"linear, FKS" are networks of size [20,30,40] with a log preprocessing and a linear
preprocessing respectively and "log, DIV/NON-DIV" and "linear, DIV/NON-DIV"
are networks with separate networks for divergent and non-divergent phase-space
regions but no FKS-subtraction and log preprocessing and linear preprocessing re-
spectively
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Fig. 13: Validation loss of BNN trained on total training data split up into several loss terms

the divergent data would be, that this network was able to predict these amplitudes
better using the context of the non-divergent amplitudes. This would imply that
the networks which only had the divergent data to train on might had been better is
the hyperparameter ycut would had been chosen larger and therefore less restrictive
with respect to the data that would be classified as "divergent". The difference
between linear (equation 20) and logarithmic (equation 21) preprocessing is smaller
on the non-divergent data, which aligns with our expectations, since the advantage
of log-preprocessing is to bring very large amplitudes, which are usually in the
divergent region (see figure 3), close to the mean value of amplitudes and therefore
make it easier to predict. Since this means that the network on all data is not only
better with respect to training time, but also with respect to performance, we opt
to use this architecture from not on, paired with log-preprocessing.

3.2 Performance

Our final used network is a single network trained on the entire training data with
hidden layers [20,20,30,40], 20 input dimensions, two output dimensions correspond-
ing to the amplitude ANN,i and the corresponding stochastic uncertainty σstoch,i and
log preprocessing (equation 21). This network has been trained for 150000 epochs
with a batch size of 4096, after which no significant further improvement in the
training is visible (compare with figure 13). The training is similar to figure 9 and
once again it is visible, that the saturation in prediction is reached significantly
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Fig. 14: Performance of the BNN on all data on amplitudes of different size; in the plots
there is a added Gaussian distribution for the 100% histogram; the network performs
significantly worse on the largest data, which correspond to the part of the data that
is contained in the divergent regions

faster than the saturation in uncertainty. To get further insight into the perfor-
mance of the networks, it makes sense to take a look on the predictive capabilities
of the largest amplitudes, as shown in figure 14. We can clearly see, that the per-
formance for larger amplitudes is worse than for smaller amplitudes, which is to be
expected, since the large amplitudes are usually then ones in the divergent region
which are harder to fit. This is also the time to take a closer look at the pull (see
chapter 2.4.1) of the BNN as shown in figure 15 We can see that there seems to be
systematic upwards shift which corresponds to a tendency of the network to slightly
underestimate the amplitudes, although the execution over several runs shows that
this shift can change from run to run and does not seem to have a have a physical
background. As we would expect, the alternative pull has standard deviation of
approximately one, but deviates from a Gaussian distribution by having tails both
in positive as well as in negative direction. This means that there are still events
which are not well enough contained in the uncertainties given by the network.
Similar effects apply to the total and predictive uncertainty, although neither the
predictive uncertainty, nor the stochastic uncertainty are expected to contain the
entire uncertainty. The shift in the fitted Gaussian on the predictive uncertainty
is due to the fitting of the large width of it, there is no reason to expect a shift in
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Fig. 15: Different pull quantities of according to chapter 2.4.1; the second row with explicit
ω dependence correspond to the alternative pull definition of equation 57, while the
other rows correspond to the pull definitions in equation 52
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this distribution. The total uncertainty σtot is larger than it needs to be for the
majority of events, such that the standard deviation of the pull is smaller than one.
In the chapter on feedback training, 3.5 we will attempt to explicit deal with the
tails in these distributions.

3.3 Uncertainties & less training data

As we have already discussed before in chapter 2.4, we get two different uncertain-
ties, σstoch and σpred. We will take a closer look at them in this chapter.

3.3.1 Correlations

We can firstly take a look at the correlation between σstoch, σpred and the pull
defined in equation 52. We can see that in figure 16 that there is a correlation
between the uncertainties, although not a strict one. We can see, for example,
that in the left correlation plot there are no points where σpred would be very large
while σstoch is very small. This shows that the uncertainties do not seem to be
entirely independent and most likely both depend at least partly on the only source
of statistical uncertainty, the statistics of a limited training set. Additionally, we
can see that neither error goes all the way to zero. This is due to the clipping we
use on the standard deviations of the weight distributions for increased numeric
stability. The fact that the predictive uncertainty is significantly smaller than the
stochastical uncertainty is not uncommon for BNNs which have been sufficiently
trained. We will see a similar result in chapter 3.3.2. While there is definitely some
correlation visible in figure 17, we can see that there is a large portion of events
which do not follow a linear correlation. This is particularly clear when looking
at the stochastical uncertainty with respect to the amplitudes. In this case the
correlation is rather a condition which prohibits points in certain areas, than a
strict linear condition. This will be important in chapter 3.5, since we use σstoch

there to find points to duplicate/weight more in the loss function. If there was
a strict linear relation between this uncertainty and the amplitude, we would not
need the stochastical uncertainty at all and could just take the highest amplitudes

Fig. 16: Left: Correlation of σstoch and σpred; Right: Correlation of pulls defined in equation
52
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Fig. 17: Left: Correlation of σstoch and training amplitudes of the BNN; Right: Correlation
of σpred and training amplitudes of the BNN

instead.

3.3.2 Less Data

We have already mentioned, that σpred is defined in such a way that is is become
smaller as the size of training data is increased, since the weight distributions will
ultimately become delta distributions. We can explicitly examine this when we use
only a part of the training data for the training of the network. Of course there
will be a certain bias, depending how we choose this data, since some areas are
harder or easier to fit. To decrease the dependence on the amount of hard-to-learn
amplitudes, we are only using data from the non-divergent area here. Nonetheless,
a clear tendency is visible in figure 18. The first couple values of σstoch in this
figure are significantly higher than the others, but it should be considered, that the
performance in these regions already heavily depends on the specific subset of data
that was used (see figure 19). This is most abundant for the BNNs with less than
5% training data. The quadratic sum of the uncertainties, i.e. σtot, then adds up
to the MSE, while we can clearly see that the prediction uncertainty decreases as
expected, while the stochastic uncertainty stay approximately constant with smaller
training size.
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3.4 Kinematic distributions

While the kinematic distributions i.e. the differential cross-sections can sometimes
be misleading due to the strong dependence on chosen binning and the amount
of events per bin, they still give insight about critical phase-space regions. The
deviations in specific regions of chosen physical observables can furthermore line
out the divergent regions and predictions which need can be improved by feedback
training (see. chapter 3.5). We will see, that the prediction around ηj ≈ 0 are
decent, however the predictions in the outer region of this plot are significantly
worse. This is partly due to the few points in these regions (as can be seen by the
grey bars in the second and third panel), and also the worse predictions of the large
amplitudes in these areas. We have already shown this effect in the performance
plots (compare figure 14). Next, we can examine the distributions for the network,
which was trained on all data: There are still some outliers which have a strong
impact on the quality of the distributions. In the further plots, we will only show
the total uncertainty σall for better visibility. Apart from the peaks, one can also
observe some systematic differences between prediction and targets, most notably
the region of small ηj and the region of large Rγ1,j in which both training and
test predictions are systematically lower than the targets. These areas are part of
the divergent regions and one of the goals of the feedback training in chapter 3.5
will be to deal with these regions. We can furthermore take a closer look at the
prediction on the divergent and non-divergent area alone in figure 21, 22. We
can see that the peaks come mainly from the divergent, but partly also from the
non-divergent regions. In both regions, there the total error, however, is able to
cover large deviations of the prediction to the targets. Additionally, we are able to
see some interesting areas: In the non-divergent distributions (see figure 21), the
systematic difference in the area of low ηj is not there anymore, the targets now
align significantly better with the predictions of the network. This shows clearly,
that the distribution which is fitted by the network in figure 20 are resembling the
non-divergent distributions. This will be addressed in chapter 3.5. We can now try
to isolate and examine the events which cause the peaks to do further analysis on
them and the reasons for the caused peaks. If we filter only 16 events of the test
data (we choose the events with highest σstoch), we get the distributions in figure
23. Here we are able to decrease the amount of peaks significantly, however, this
also means, that problematic kinematic regions, like the low ηj or the high Rγ1,j

areas are still not good fits. The filter we used here was simply to filter out the
events with the highest σstoch which is risky, since the correlation between large
amplitudes and large errors means that the events with large uncertainties often
also have high amplitudes, making then particularly important in the kinematic
distributions. Instead of filtering events, we can rather use the fact, that the training
data does not have a physical uncertainty, such that σstoch can theoretically become
zero, if the BNN manages to fit them perfectly (interpolation). Since the network
does instead fits them, however, we can increase the weight of these events in the
loss function and thereby make the network put more priority on fitting these events
more precisely then other points i.e. decrease σstoch. This will be done in chapter
3.5.
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Fig. 20: Kinematic distributions of BNN with all data used for training; left column: σall,
middle column σpred , right column: σstoch; first panel shows the histograms of
cross-sections of the testing sample ("True"), the training sample "Training"), the
BNN evaluated on the Training Sample ("BNNtrain") and the BNN evaluated on the
test sample ("BNNtest"); the next two panels show the predictions on training and
test set respectively, normalized to the targets. The gray bars denote the statistical
error of the targets
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Fig. 21: Kinematic distributions of BNN with all data used for training; evaluated only on
non-divergent data; first panel shows the histograms of cross-sections of the testing
sample ("True"), the training sample "Training"), the BNN evaluated on the Train-
ing Sample ("BNNtrain") and the BNN evaluated on the test sample ("BNNtest");
the next two panels show the predictions on training and test set respectively, nor-
malized to the targets. The gray bars denote the statistical error of the targets
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Fig. 22: Kinematic distributions of BNN with all data used for training; evaluated only on
divergent data; first panel shows the histograms of cross-sections of the testing sam-
ple ("True"), the training sample "Training"), the BNN evaluated on the Training
Sample ("BNNtrain") and the BNN evaluated on the test sample ("BNNtest"); the
next two panels show the predictions on training and test set respectively, normal-
ized to the targets. The gray bars denote the statistical error of the targets
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Fig. 23: Kinematic distributions of test set of BNN with all data used for training; first panel
shows the histograms of cross-sections of the testing sample ("True"), the training
sample "Training"), the BNN evaluated on the Training Sample ("BNNtrain") and
the BNN evaluated on the test sample ("BNNtest"); the next two panels show the
predictions on training and test set respectively, normalized to the targets. The
gray bars denote the statistical error of the targets
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3.5 Boosted/Feedback Training

Following chapter 3.4, we can retrain events with high σstoch with increased weight in
the loss function to get rid of both the peaks, as well as the differences of predictions
and targets of large amplitudes, which are the cause of systematic problems in the
kinematic distributions (see figure 3.5). For this we retrain the network 20 times,
each time evaluating it on the training data and reweighting the 200 events with the
highest σstoch five times. The trainings consist of 2000 epochs with a batch size of
4096 each. In practice, the chosen data points are simply added several times back
into the training set. Therefore they will appear multiple times in the loss function,
giving them increased weight in the computation of the gradient. This method is
similar to methods (AdaBoost) used for boosted decision trees (see Ref. [48]). This
allows us to create the following plots in figure 25. In figure 25 we can see that all
almost all peaks have been removed, as well as the systematic differences between
prediction and targets. The first kinematic distribution has the worst performance,
which in part might be due to the fact that in this distribution the large majority
of points are contained in the first couple bins, such that the statistical error of the
training data is fairly big for the bins with larger amplitudes. We also see, that the
performance on the training sample is significantly better, while the performance
on the test set still has some areas of larger deviation, while still being significantly
better than on the previous set. It is also notable that the performance is well
within the statistical uncertainty of the training data and even the test data. This
also means that the strong increase in performance on the test set does not imply
overfitting, but rather simply a better fit that is closer to the interpolation. The
same result can be obtained by taking a closer look at the performance on high
amplitudes in the test and the training set: We can clearly see that in comparison
to figure 14, the distributions in figure 26 of the training sample have a significantly
narrower peak, such that we can even observe the 0.1% highest amplitudes. In
comparison, the performance on the test data does not undergo a increase of the
sample magnitude, but is nonetheless better. Particularly, we can observe that
the 0.1 % highest amplitudes are not significantly underestimated anymore, which
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Fig. 25: Kinematic distributions of test set of BNN with all data used for training after
feedback on 200 highest σstoch; first panel shows the histograms of cross-sections of
the testing sample ("True"), the training sample "Training"), the BNN evaluated
on the Training Sample ("BNNtrain") and the BNN evaluated on the test sample
("BNNtest"); the next two panels show the predictions on training and test set
respectively, normalized to the targets. The gray bars denote the statistical error
of the targets

36



0.75 0.50 0.25 0.00 0.25 0.50 0.75
(train) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed largest 0.1% ANN

largest 1% ANN

largest 100% ANN

: 2.6 10 3

0.75 0.50 0.25 0.00 0.25 0.50 0.75
(train) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed largest 0.1% ANN

largest 1% ANN

largest 100% ANNboosted BNN
training

: 4.9 10 3

0.75 0.50 0.25 0.00 0.25 0.50 0.75
(test) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed largest 0.1% ANN

largest 1% ANN

largest 100% ANN

: 2.6 10 3

0.75 0.50 0.25 0.00 0.25 0.50 0.75
(test) + overflow bin

10 3

10 2

10 1

100

101

102

no
rm

al
iz

ed largest 0.1% ANN

largest 1% ANN

largest 100% ANNboosted BNN
training

: 4.8 10 3

Fig. 26: Performance of a BNN trained on all data (left) and after a feedback training with
the events of the highest σstoch weighted 5 times as much in each run for 20 runs
with 2000 epochs of batch size 4096 each (right); Gaussian fitted to 100% data
histogram (left plots from 14)

37



0.04 0.02 0.00 0.02 0.04
(test) + overflow bin

0

20

40

60

80

100

120
no

rm
al

iz
ed

largest 0.1% ANN

largest 1% ANN

largest 100% ANN

= 2.6e 03

0.04 0.02 0.00 0.02 0.04
(test) + overflow bin

0

20

40

60

80

100

120

no
rm

al
iz

ed largest 0.1% ANN

largest 1% ANN

largest 100% ANNboosted BNN
training

= 4.8e 03

Fig. 27: same as 2nd row in figure 26 with linear scale: Performance of a BNN trained on
all +data (left) and after a feedback training with the events of the highest σstoch
weighted 5 times as much in each run for 20 runs with 2000 epochs of batch size
4096 each (right); Gaussian fitted to 100% data histogram (left plots from 14)

corresponds to the better performance in the problematic divergent regions in the
kinematic distributions. The peak of the 0.1% highest data is not also more defined
(compare figure 27), which seems to come at the cost of decreasing the peak of
total data. This can be interpreted as the fact, that the network lays more weight
on fitting the high amplitudes and thereby decreases the accuracy of the other
predictions. We have chosen 20 loops, since the performance did not get better after
this point. With this feedback training, there is no visible advantage in the "pull"
distributions compared to 15. Another approach is given, when we do not multiply
the training data with the highest σstoch, but instead the events in the tails of the
σstoch-pull distribution (second row in figure 52, equation 57). The resulting pull
distributions have a shape significantly more accurate to a Gaussian distribution
(see figure 28). Here we multiply each events will more than two standard deviations
from the mean value of talt

i (from equation 57) five times for a total of 10 iterations.
Most notably seen in the logarithmic plots, the distributions have become more in

accordance with the Gaussian distribution. The predictive distribution has become
wider, while the other distributions have become less wide. The total pull (last
row in figure 28) has also become more similar to a Gaussian distribution, with
a standard deviation smaller than one. This means, that the total error is larger
than it needs to be, when considering the difference between prediction and targets.
While this is not perfect, it is certainly better than the opposite. It should once again
be mentioned here, that neither the stochastical, nor the predictive uncertainty are
expected to cover the total difference between prediction and targets, such that it
is no problem, that their standard deviation is unequal one. This feedback training
has no influence on the performance of the network (e.g. distributions as in figure
26), however. The naive approach of simply doing a feedback training of the first
kind (multiply points with high σstoch to increase performance and then on the
second kind (multiply points in the tails of the pull distribution) to make the pull
more Gaussian does not work, since the second feedback training will undo the
progress of the first.
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Fig. 28: Different pull quantities of according to chapter 2.4.1 before (left) and after (right)
a feedback training has been applied where each event of the training set with a
σstoch(ω)-pull deviating two standard deviations from the mean value are multiplied
five times each feedback loop iteration for 10 iterations; the second row with explicit
ω dependence correspond to the alternative pull definition of equation 57, while the
other rows correspond to the pull definitions in equation 52. (same distributions
without feedback in figure 15)
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4 Conclusions

In this thesis, we firstly began by expanding on the network architecture of Ref.
[18] (results in chapter 3.1), which is used to predict scattering amplitudes (see
chapter. 2.1.1). Specifically, we were able to replace the original costly ensemble of
conventional neural networks by a Bayesian Neural Network (see chapter 2.4). We
tested the performance on this new approach with various different final activation
functions in chapter 2.3.3 and different architectures in chapter 3.1.2 to find the
optimal model for our purpose. This led us from the approach of a dataset, which
is being split into regions of distinct divergences (see chapter 2.2) to a BNN which is
able to train on the entire dataset (compare chapter 3.2). The performance of this
network could be measured both in the network output over the targets as well as
in the defined quantity "pull" (definition in chapter 2.4.1). In this setup, we made
different observations on the correlation of the uncertainties and their behavior
when decreasing the training size (compare chapter 3.3). As an additional measure
of performance, we took a look at the kinematic distributions of our network (see
chapter 3.4), which allowed us to identify problematic areas. When compared with
the performance of Ref. [18] our results were more accurate, but had problems
fitting the highest amplitudes, which constitute the divergent regions (see chapter
2.1.2) in large parts. To fix this, we introduced a recursive feedback loop, a method
used during training, in which certain training data is chosen and weighted stronger
in the loss function. The network is then retrained with this new weighting until it
is again evaluated and problematic data is once more reweighted/duplicated. This
process is repeated, until better performance is reached (see chapter 3.5). The
results showed the impact of this method: The training data can be fitted very
accurately and significantly better than the fit before the feedback training was
applied. On the test set, we found that the increase in performance is less than on
the training set, but the problematic divergent regions nonetheless have significantly
improved results. Alternatively, we can use the feedback method to make the pull-
quantity more consistent with a Gaussian distribution, but this method did not
increase the performance of the BNN.

4.1 Perspectives

The conditions, on which the events to reweight during the feedback training are
chosen, can be varied. Possible candidates are the different pulls, the relative un-
certainties etc. We have tried out some of them, which showed that they only had
mediocre impact on the total performance. Further analysis could be done on the
effects any of them (or the combinations of multiple) have on the performance. To
give a example: If we apply feedback training on the by duplicating then points of
large σstoch-pull, we bring the pull distributions in better accordance with a Gaus-
sian distribution, however, we do not increase the performance of the network. On
the other hand, using the current feedback training, where points with large σstoch

are weighted stronger in the loss function, does increase the performance of the
network, however, leaves the pull distributions at their previous shape. Logically,
one would now try to combine these, so as to first make the pull distributions more
Gaussian and then increase the performance. We have tried this, but the second
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feedback training undoes the effects of the first one (regardless of the order). One
perspective idea could now be to use these multiplication criteria alternatively. An-
other interesting topic is the further analysis of the performance of the BNN on the
test data after the feedback training: while the performance on the training data
has increased significantly, the performance on the test data has increased less and
still has some regions which are not perfect. We could investigate how much this
is limited by the statistics of the training set size and adopt our feedback training
to not only emphasize existing training data, but include new training data points
in problematic regions. A big and necessary step is also the widening of the scope
to the process gg → γγ + gg for which no analytic method to calculate the ampli-
tudes is available. Another interesting idea would be to incorporate a better way
to find the point, where the feedback training does not bring any further increase
in performance, since the amount of loops is currently a hyperparameter.
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