
Ruprecht-Karls-Universität Heidelberg

Fakultät für Mathematik und Informatik

Institut für Informatik

Bachelorarbeit

Invertieren von LHC Detektoreffekten mit Konditionalen INNs

Inverting LHC Detector Effects with Conditional INNs

Name: Armand Rousselot

Matrikelnummer: 3462443

Betreuer: U. Köthe

Datum der Abgabe: 16.03.2020

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Hilfsmittel benutzt habe. Sowohl inhaltlich als auch wörtlich
entnommene Inhalte wurden als solche kenntlich gemacht. Die Arbeit ist in gleicher
oder vergleichbarer Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Heidelberg, den 16.03.2020

2

Zusammenfassung

Generative Modellierung hat in aktuellen Studien die Fähigkeit bewiesen simulierte
Interaktionen, wie z.B. Detektoreffekte, in Large Hadron Collider (LHC) Analysen zu
invertieren. Diese Modelle eröffnen vielfältige Methoden, um neue Informationen über
Prozesse, die während der Kollision von Partikeln stattfinden, zu gewinnen. Kürzlich
haben Konditionale Invertierbare Neuronale Netzwerke (cINNs) wettbewerbsfähige Leis-
tungen in diversen generativen Aufgaben gezeigt. Per Konstruktion leiden diese nicht
unter mode collapse wie Conditional Generative Adversarial Networks (cGANs). In
dieser Arbeit zeigen wir, dass cINNs die Ergebnisse von cGANs in der Aufgabe Detek-
toreffekte zu invertieren in vielen Aspekten übertreffen. Wir demonstrieren die Fähigkeit
unseres Modells der Leistung des cGAN im gesamten und in Teilen des Phasenraums
gleichzukommen. Unser Modell erlangt verbesserte Resultate für die invarianten Massen
von Teilen des Phasenraums. Zusätzlich zeigen wir, dass das cINN statistisch stimmigere
Ergebnisse liefert. Wir stellen die Limitierungen dieser neuen Architektur dar, indem
wir zusätzliche Störeffekte in der Form von initial state radiation in die Simulation
einführen. Zuletzt evaluieren wir die Fähigkeit des cINNs physikalische Strukturen in
Testdaten zu erkennen, die in den Trainingsdaten nicht präsent waren.

Abstract

Generative modeling has recently been shown capable of inverting simulated physical
interactions such as detector effects in Large Hadron Collider (LHC) analyses. These
models provide a powerful tool for gaining new information about the processes during
particle collisions. Recently, Conditional Invertible Neural Networks (cINNs) have shown
competitive performance in several generative tasks. By construction they don’t suffer
from mode collapse as Conditional Generative Adversarial Networks (cGANs) do. In
this work we show that cINNs surpass the results recently achieved with cGANs in
several aspects in the task of inverting detector effects. We demonstrate that our model
matches the cGAN’s performance on the full and parts of the phase space. We achieve
improvements on the invariant mass of cuts of the phase space. Additionally, we show
that the cINN creates statistically more coherent results. We outline the limits of the
new architecture when introducing new disruptive effects in the form of initial state
radiation. Finally we evaluate the cINN’s ability to recognize physical structures in test
data which were not present in its training data.

Contents

1. Introduction 6

2. Physics Background 7
2.1. Invariant Mass . 9
2.2. Initial State Radiation . 9

3. Machine Learning Background 11
3.1. Neural Networks . 11

3.1.1. Layers . 11
3.1.2. Optimizers . 12
3.1.3. Activation Functions . 16
3.1.4. Overfitting . 18

4. Related Work 20
4.1. Generative Adversarial Networks . 20
4.2. Conditional GANs . 22

5. Method 23
5.1. Invertible Neural Networks . 23

5.1.1. Coupling Blocks . 23
5.1.2. Loss Functions . 26
5.1.3. Parton-Noise Correlation . 26

5.2. Conditional INNs . 28
5.2.1. Transformation of Distributions 28
5.2.2. Conditioning Networks . 29

5.3. All-In-One Coupling Block . 30
5.4. Maximum Mean Discrepancy . 31

5.4.1. Kernels . 32
5.4.2. Conditional MMD . 33

5.5. Whitening . 33

4

Contents

6. Results 35
6.1. Full Distributions . 35
6.2. Slices . 37
6.3. Calibration Curves . 38
6.4. Single Points . 38
6.5. Initial State Radiation . 40
6.6. Non-Conditional INN . 41
6.7. Shifted Masses . 42
6.8. Hidden Mother Particle . 43

7. Conclusion 45

A. Appendix 46

5

1. Introduction

One of the pillars of modern physics are the experiments and insights gained at particle
colliders. These colliders launch particles at each other at velocities close to the speed of
light. In each collision the Large Hadron Collider (LHC) accelerates two protons, which
belong to the class of hadrons, composites made up of quarks among other particles [1].
When these protons hit each other, they produce a wide range of new particles that give
us an insight into the relations and interactions of matter at the scale of quarks. Large
amounts of data are produced at particle colliders, which brings the need of automated
processing. In 2018 the LHC alone produced upwards of 88 PB of data, even after
filtering out over 99% of it [9]. The processes at colliders where substantial amounts
of momentum are transferred are called hard processes. We need to be able to inspect
measured data with as little disruptive effects as possible to gain information about the
processes and find new relations, e.g. by detecting anomalies or unexpected data peaks.

Removing the particles’ interactions on the way to the detector and measurement
errors introduced in particle colliders (unfolding) and simulating collision data have
already been attempted using Generative Adversarial Networks [5][7]. However, these
models deal with limitations. Most importantly they are incapable of correctly capturing
mass correlations of particles over parts of the distributions. We propose a new model to
improve the results on this task, based on Invertible Neural Networks [14] [2] [21]. These
networks are related to Normalizing Flows, which have been used in event generation
before [15][22]. Invertible Neural Networks have recently been adapted to a conditional
architecture for generative tasks [3]. The target distribution, in this case the distribution
of the particles before any of the interactions on the way to the detector and without
any measurement error, is transformed into a prescribed latent distribution, e.g. a gaus-
sian normal distribution. This mapping is conditioned on the measured detector data,
which can be transformed by an arbitrary subnetwork beforehand. Generating events is
easily achieved, due to the invertibility of the network. Samples from the known latent
distribution can efficiently be transformed back to the target domain, thus providing a
prediction for the particles shortly after the collision conditioned on the noisy detector
data. In this work, we show the Conditional Invertible Neural Networks’ performance
in the task of removing disruptive effects from simulated events and compare them to
the results of the cGAN built by [5]. We show that our new approach outperforms the
adversarial networks in several points and apply it to data with additional sources of
uncertainties.

6

2. Physics Background

For a better description and understanding of the task introduced in the previous chapter
it is necessary to take a basic look at the physics inside a particle collider. As mentioned
in Chapter 1 we specifically look at the collision of protons. Their constituents interact
with each other, creating new particles. We call the physical quantities of the particles
directly created by the interaction of two hadrons the parton-level observables. These
observables can provide an insight into the interactions between particles and guide the
way to gaining new knowledge about physics.

The process that will be discussed in this thesis is the production of a Z and a W
Boson, resulting from a collision of two protons at the LHC [1]. In our experiments we
only consider events where the Z Boson decays into two leptons, while the W Boson
decays into quarks [6]. Each quark undergoes a process called showering, where due to
the emission of gluons many hadrons are created. These particles are then clustered into
a single object, a so-called jet. The process is given by pp→ ZW± → (`+`−)(q1q2) and
can be described by a feynman diagram 2.1. We represent this process by a simulation
we call the parton shower.

W

Z

q1

q2

`+

`−

Figure 2.1.: A feynman diagram of the ZW production process. On the left, the initial
state particles collide, resulting in a Z and a W Boson, which decay further
into two leptons (`+/`−) and two jets (q1/q2) respectively.

Each of these particles can be represented as a four-vector [38]. The first entry contains
the particle’s energy, which is always non-negative, while the following three entries
signify the x-, y- and z-momentum respectively, meaning we can write any particle xp
as

xp =

E
px
py
pz

 . (2.1)

Additionally, via the fact that energy and momentum are conserved in a closed system
[38], if a particle decays, the sum of all of its decay products’ four-vectors will result in
the original particle’s four-vector. Finally, special relativity states that the energy of a
system can be calculated using its momentum ~p and total resting mass m, as well as

7

2. Physics Background

the speed of light c.

E2 = ||~p||22c2 + m2c4 (2.2)

This means the energy of a particle is computable if its mass and momentum are known.
This only holds true as long as the calculations are performed in a closed system, i.e.
no energy or momentum can be given off to another particle that is not considered. In
the case of the quarks and leptons produced by the process, their masses are negligible,
therefore their energies can be estimated by E2 ≈ ||~p||22c2. This means they can be
represented using only the lower three entries of a four-vector. Furthermore, to ease
the notation, every time a mass or momentum is written, it can instead be expressed in

terms of an energy, so for example ~p =
(
pxc, pyc, pzc

)T
, instead of Equation 2.1. In

the same way masses can be written as m = mc2. All of the following equations will be
given in these quantities.

The hard process itself is not directly observable. We need to measure the prod-
ucts that resulted from the collision. Among other methods, particle colliders employ
calorimeters to absorb jets and measure their energies, as well as trackers, to follow the
paths of charged particles. A calorimeter forms a cylinder around the accelerator at the
collision site, which is divided into multiple cells. Each of these cells is able to absorb
and measure the energy given off by a particle [26]. Trackers operate via a magnetic field
that bends the paths of charged particles moving across. This effect can be measured
and used to calculate the momentum of the particles [31]. The combined measurements
are then used to reconstruct four-vectors of each jet, creating the detector-level observ-
ables. While we can determine the momentum and energy of the particles at that point
in time to reasonable accuracy, we do not immediately know how the observables looked
on parton-level. As the decay products travel the distance from the collision site to the
calorimeter until they are absorbed, they interact on the way. For example, uncharged
particles can be created, which are hard to detect and might not be attributed to the
jet. Additionally, errors in the detector measurement lead to further ”smearing” of the
result. Problematically, our main interest lies in the parton-level observables.

It is important to point out that the process of measuring particles is probabilistic by
nature, once one simulates the particle and detector interactions realistically. There are
many parton-level events that can be the origin of a given detector measurement. As a
consequence we do not just need a way to undo the smearing and particle interactions
and create a single set of parton-level observables. Instead we want a probabilistic map-
ping from detector to parton. There already exist Monte-Carlo methods to simulate
the process from parton- to detector-level, such as Pythia and Delphes [34][12]. These
programs use physical relations to estimate probability distributions of certain interac-
tions. By repeatedly sampling from these distributions it is possible to create realistic
data for parton- and detector-level measurements. However, these methods only allow
for the simulation of the direction from parton- to detector-level, inverting them is not
feasible [5]. The goal of this work is to create a model that can simulate the reverse
direction via machine learning, more specifically via an architecture called Conditional
Invertible Neural Networks, introduced in Chapter 5. Pythia and Delphes are used to
create events for training this model.

8

2. Physics Background

2.1. Invariant Mass

Transforming Equation 2.2 yields that the mass of each particle can be calculated as

m2 = E2 − ||~p||22. (2.3)

On parton-level, the invariant mass of the W Boson can be approximated by a breit-
wigner distribution [34]

p(x) ∝ Γ2

(x2 −M2)2 +M2Γ2
. (2.4)

A breit-wigner distribution does not possess a finite standard deviation. Therefore Γ,
which controls the width of the distribution, is called the scale parameter and M , which
controls the location of the peak, is called the location parameter. The error in jet
reconstruction leads to the distribution of the masses changing to be wider spread than
before (see Figure 2.2).

Figure 2.2.: Invariant mass distributions of the W Boson on parton- (blue) and detector-
level (green).

As has been found by [5] and reconfirmed during this work, it is quite hard for models
to learn this original mass distribution on their own. A solution will be introduced in
Section 5.4.

2.2. Initial State Radiation

Before the collision, the partons involved in the hard process have a chance to give
off radiation in their initial state (ISR) [34]. While the effect of this radiation on the
hard process that occurs afterwards does not change the fundamental kinematics, ISR
can introduce disturbances in the measurement in another way. In a calorimeter the
measurements of each cell are clustered into jets using algorithms such as the anti-kt
algorithm [8]. If the ISR hits the detector in close proximity to the jets created by the
W Boson, some of the particles in either jet might be falsely attributed by the clustering
algorithm. Additionally, while the ISR is rarely as hard (i.e. its transverse momentum is

9

2. Physics Background

as high) as the W jets, they sometimes lie in the same order of magnitude. In this case,
it is hard to differentiate which quarks are created by the W and which stem from ISR.
Picking the wrong detector-level jet to predict the parton-level jets from obviously ends
up preventing a correct reconstruction. For the baseline results, ISR is not included in
the data. In Section 6.5 we train our model on a separate dataset with ISR.

10

3. Machine Learning Background

3.1. Neural Networks

Artificial Neural Networks are a form of learning algorithm that is loosely based on the
way the brain processes information. In the brain, inputs are processed by a multitude
of neurons that form internal connections. As soon as a neuron receives signals that
exceed a certain threshold, the neuron sends a signal to all other neurons connected to
it.

3.1.1. Layers

Inspired by the parallels to the brain, the basic building blocks of every neural network
are called neurons. A neuron transforms its input data vector by assigning a weight
to each entry, then summing over the weighted data. Finally an activation function is
applied to the output, to introduce non-linearity to the network [37]. Each neuron can
thus be described by the transformation [30]

y = φ(wTx). (3.1)

Where φ is the activation function, w the weight vector and x and y the inputs and

output respectively. By extending the weight and input vector ŵ =

(
b
w

)
, x̂ =

(
1
x

)
we

can introduce a bias, to account for non-centered data. The simplest neural network, is
built of only a single neuron (Figure 3.1).

ŵT

1

x1

xn

φ
...

Figure 3.1.: A single neuron. The inputs x1, ..., xn are concatenated with a constant
input 1 to form the input vector. Its vector product with ŵT is then used
as the input for the activation function φ to form the output of the neuron.

Looking again at Equation 3.1, it becomes apparent that, no matter the dimensional-
ity of x, the output of a single neuron is one-dimensional. In case a higher-dimensional
output is required, multiple different neurons have to be stacked on top of each other,

11

3. Machine Learning Background

which is called a (fully connected) layer. The activation function can also be separated
from the weight multiplication to further specify the layers. The former is then called an
activation layer, the latter a linear layer. We may also concatenate multiple layers later-
ally to increase the predictive power of the neural network. The inner layers (or hidden
layers) widths (i.e. number of neurons) are usually chosen larger than the input/output
layer width. Otherwise we would force the network to compress information while pass-
ing data through these layers. A simple neural network might now look something like
illustrated in Figure 3.2. Training the neural network means finding the optimal weight
vector ŵi for each of the neurons ni in the network.

x2

x1

x3

· · · y2

y1

y3

Figure 3.2.: A sketch of a small neural network. Each circle represents a neuron. The
input layer on the left is marked in blue, the hidden layers in green and the
output layer on the right in orange.

3.1.2. Optimizers

Before training a neural network the goal of the training has to be defined first. This is
done by a short function that scores the network outputs based on the inputs it received.
Such a function is called a loss function. Traditionally the loss is minimized, i.e. the
output of the loss function should decrease the better the network gets. The gradient of
the loss function is calculated and propagated backwards through the network to find
out how the trainable parameters of the model (e.g. the weight matrices of each neuron)
need to be tuned in order to minimize the loss. This can be done recursively, starting
from the last layer, the gradient of the loss with respect to each layer can be calculated
from the gradient of the following layer and the weights of the current layer. With xl
being the input to layer l and Wl the weight matrix of the same layer we can express
this by the equation

δ̃l :=
∂Loss

∂(Wlxl)
=

∂Loss

∂(Wl+1xl+1)

∂(Wl+1xl+1)

∂φ(Wlxl)

∂φ(Wlxl)

∂(Wlxl)

∇Wl
L :=

∂Loss

∂Wl

=
∂Loss

∂(Wlxl)

∂Wlxl
∂Wl

= xlδ̃
T
l . (3.2)

12

3. Machine Learning Background

Assuming the gradient of the loss with respect to the output is known, we can now find
the gradient to minimize the loss for each layer. As a consequence of Formula 3.2, every
step of the prediction process and loss function must be differentiable. Updating each
parameter according to its gradient directly often results in unstable training or hinders
proper convergence. This can be combated by using optimizers that recalculate the size
of each gradient update, preventing overstepping [11]. The loss function can have mul-
tiple local minima over the model parameter space. However, the optimization process
always aims for a global minimum. The optimizing algorithm’s ability to find new, bet-
ter minima is called exploration. On the other hand, once the global minimum has been
found, the goal is to descend into it as accurately as possible. This is called exploitation.
There typically exists a trade-off between the two, i.e. the more improvements are made
to exploration, the worse the optimizer gets with respect to exploitation and vice-versa.
A visualization of the exploration-exploitation trade-off is shown in Figure 3.3

Figure 3.3.: A visualization of the exploration-exploitation trade-off. The blue line shows
an exemplified loss function over the parameter space. The orange line
shows an optimizer that cannot find the global minimum, as its exploration
capability is too bad. The purple line shows an optimizer that has too little
exploitation potential and therefore is unable to descend further into the
global minimum.

Gradient Descent is the naive approach to optimizing the network’s trainable param-
eters. After the gradient of the loss {Li}Ni=1 for the whole training set of size N is
calculated at update step t, we update the model parameters θ according to a learning
rate η.

θt+1 = θt −
η

N

N∑
i=1

∇θtLi (3.3)

13

3. Machine Learning Background

This approach comes with several problems. The gradients for the whole dataset need to
be stored in memory simultaneously. If the network, the data dimensions or the dataset
size is too large, this approach is not feasible. Additionally the exploration potential of
gradient descent is very limited [11].

Stochastic Gradient Descent (SGD) solves this problem by performing the gradient
update after every single prediction.

for i from 1, ..., N:

θt+1 = θt − η∇θtLi (3.4)

This not only removes the need to load the gradients of the whole dataset into memory
at once, but increases the ability of the algorithm to find a better global optimum. This
is due to the fluctuations in the updates introduced by only considering the outcomes of
single data points, which increase the exploration potential. The trade-off is that these
fluctuations can also prevent the algorithm to properly converge to a minimum.

Mini-Batch Gradient Descent forms a compromise of SGD and Gradient Descent by
averaging the gradient not over the whole dataset but over a small subset, or batch,
with a fixed size b.

for i from 1, ...,
N

b
:

θt+1 = θt −
η

b

i+b∑
j=i

∇θtLj (3.5)

Momentum aims to reduce the erratic nature of SGD and smooth out the updates by
introducing a fraction γ of the previous update to the next one (moving average).

mt+1 = γmt + η∇θtL

θt+1 = θt −mt+1 (3.6)

This especially helps reduce the oscillation of updates in regions of the parameter
space where large gradients in some dimensions are paired with low gradients in other
dimensions (see Figure 3.4). The disadvantage of this method can also be extrapolated
from the illustration. Once we reach the minimum, the momentum we have accumulated
might be so big that we overshoot it entirely.

The Nesterov accelerated gradient is built to prevent this overshooting of the min-
ima by performing a prospective gradient update [29]. Instead of calculating the gradient
from the point in the parameter space the model parameters are currently located at,
we first apply the momentum term. Only then is the gradient calculated, which takes

14

3. Machine Learning Background

Figure 3.4.: An illustration of the advantage that momentum provides. In the top panel,
the optimizer oscillates a lot in the vertical direction, whereas on the bottom
the momentum gradually amplifies the horizontal direction of the updates

the anticipated step by momentum into account. If the momentum term now overshoots
the minimum, the gradient will compensate for this.

mt+1 = γmt + η∇θt+γmtL

θt+1 = θt −mt+1 (3.7)

RMSProp is founded on the idea that it is not just enough to have a global learning
rate, but instead a separate learning rate for each parameter is required. This is mo-
tivated by the observation that magnitudes of gradients can vary from layer to layer
within a neural network. Bigger updates in the early layers, where the gradients can
become very small, are advantageous. Another factor constitute the input numbers
(fan-in) of each neuron. When the weight of each of the inputs of a neuron is updated
simultaneously the risk of overcompensating exists if the fan-in is large. As the fan-in
can vary greatly throughout the network, we need to be able to adapt the gradient
updates accordingly. RMSProp enables this by keeping track of the moving average of
the squared gradient updates. If a certain parameter is constantly updated by a low
gradient, the root of the mean gradient squares (RMS) will be small, and vice-versa.
Consequently dividing by the RMS will adjust the gradient updates for each parameter.

vt+1 = γvt + (1− γ)(∇θtL)2

θt+1 = θt −
η√

vt+1 + ε
∇θtL (3.8)

Here, ε is a regularization parameter, to avoid instabilities from small gradients.

15

3. Machine Learning Background

ADAM combines momentum and RMSProp to adaptively estimate the moment of
each gradient in an update [20]. Additionally, it addresses another problem with both
RMSProp and momentum. Their moving averages are biased towards the gradients of
the first batches at the start of the training. ADAM divides the moving averages by a
bias correction factor that decreases with training time to account for this.

mt+1 = β1mt + (1− β1)∇θtL

vt+1 = β2vt + (1− β2)(∇θtL)2

m̂t+1 =
mt+1

1− βt1

v̂t+1 =
vt+1

1− βt2

θt+1 = θt −
η√

v̂t+1 + ε
m̂t+1 (3.9)

Apart from choosing a smart optimization function, it is advisable to additionally
decrease the overall learning rate during training. There are many different methods
to adjust the learning rate, e.g. exponential decay, decaying in steps at set epochs or
reducing the learning rate once the validation loss reaches a plateau. On one hand, not
reducing the learning rate can obviously lead to overshooting the loss minimum. Re-
ducing the learning rate too early on the other hand might leave us in a local minimum,
unable to reach the global one. This is another example of the exploration-exploitation
trade-off. For the training performed in this work, we used the ADAM optimizer, com-
bined with a learning rate decay by a factor of 0.4 on loss plateaus.

3.1.3. Activation Functions

When creating the activation layers there are several popular choices regarding the func-
tion φ(x) [30]. In the following section, some of the most important ones are showcased.

The Sigmoid function is given by the formula

φ(x) =
1

1 + e−x
. (3.10)

This function provides a lot of advantageous properties. Its derivative is positive ev-
erywhere and it is bounded, which prevents the explosion of values in the forward pass.
However, it has proven to also introduce some problems, especially when training deep
networks. Since its derivative approaches zero at both edges, the gradient gets dampened
and when back-propagating through many layers we quickly encounter the ”vanishing
gradient” problem. The gradient for the layers in front becomes so small that they
converge very slowly to the optimum.

16

3. Machine Learning Background

The ReLU function is given by the formula

φ(x) = max(0, x). (3.11)

The ReLU function rectifies negative inputs to 0, but leaves positives inputs untouched.
It thereby solves the vanishing gradient problem. Another big advantage of the ReLU
function is that it is very easy to compute, compared to the exponentiation and division
in the sigmoid function. Another property that can sometimes be used is that it intro-
duces sparsity in its outputs, as all negative numbers are set to 0. However, this very
effect can also become a disadvantage. As training progresses, some neurons effectively
”die” meaning their output is always set to 0 and the neuron is completely ignored.

The leaky ReLU function is given by the formula

φ(x) =

{
x x ≥ 0
αx else

(3.12)

The leaky ReLU function tackles the problem of dead neurons, as the contributions
of negative outputs are now non-zero. Typically α is chosen very small, as to not
significantly change the results of the training procedure apart from the dead neuron
problem. On the downside, we obviously loose the sparsity introduced by ReLU.

The parametric ReLU (PReLU) function is given by the formula

φi(x) =

{
x x ≥ 0
αix else

(3.13)

Improvements over the standard leaky ReLU have been found by allowing the network
to learn a different factor αi for each of the neurons ni during training.

The Softmax function is given by the formula

φ(xi) =
exi

l∑
j=1

exj
. (3.14)

where the current layer contains neurons n1, ..., nl. This activation function produces an
output that ranges between 0 and 1, based on the amplitude of xi in relation to the rest
of the layer’s outputs. This definition yields a probability distribution over the outputs

φ(x1), ...φ(xl), i.e.
l∑

j=1

φ(xj) = 1. As such, it is used for creating the class probability

output in the final layer of a model trained on classifying tasks.

The SoftPlus function is given by the formula

φ(x) = log(1 + ex). (3.15)

This function constitutes a smooth version of the ReLU function.

17

3. Machine Learning Background

A visualization of the Sigmoid, (Leaky /P)ReLU and SoftPlus functions can be found
in Figure 3.5. For this work, we utilized the ReLU function as the network activation
functions. In Section 6.5 we use a classifying network to differentiate the origin of jets.
We apply the Softmax function in the final layer of the classifier to create the label
probabilities.

Figure 3.5.: A visualization of the different activation functions described in this section. The difference
between Leaky ReLU and PRelU lies only in the slope of the negative x side of the function
being learnable in the latter. The Softmax function is not depicted as its concrete form
depends on the output of all of the layer’s neurons.

3.1.4. Overfitting

A common problem that arises during the training of neural networks is overfitting. In
an optimal setting, we would like to generate new data for every batch to train the
model with. Realistically this is of course rarely possible. Thus, after a certain point,
it becomes necessary to reiterate over the entire dataset from the start. As the model
tailors its predictions on the training data that it sees repeatedly it can ”overspecialize”,

18

3. Machine Learning Background

or in other words it overfits. Overfitting is easily detectable by using a separate test set to
evaluate the model performance. If the loss for the training set is significantly lower than
for the test set, the model has learned to base its predictions on details about the training
data that are insignificant for the process that the network is trained on. However, by
remembering these natural variations in the data, the model can differentiate between
individual data points and provide the predictions that are associated with them. The
bigger and more powerful our model is, the larger its capability to overfit becomes, as
it can remember more single data points.

The obvious first solution to this problem is to either reduce the model size or use
more training data. This is oftentimes not possible. When a model is trained to perform
a complex task, we can not resort to shrinking it beyond a certain point, as its predictive
power will become too small. Increasing the dataset size in real world applications can
be very expensive, both in terms of time and money.

Dropout is a more sophisticated method to reduce overfitting of neural networks [18].
As mentioned earlier, overfitting can occur when the predictions of the model are based
on a (intermediate) feature of the data that is insignificant for the underlying correlation.
By randomly setting single features (neuron activations or input features) within the
network to 0 for every batch, we take away the network’s ability to rely on just a single
aspect of the data. Unfortunately, this does not come without a disadvantage. Choosing
the chance of dropout too low might not lead to the desired impact, choosing it too high
can severely decrease the training success.

Regularization or weight decay stems from the observation that overfitting networks
oftentimes have disproportionally big weights [24]. With the right combination of fea-
tures, which might be present in the training data, the effect of these weights can cancel
out. Once the network is applied on the test data, where the feature combination is not
always present, the difference is amplified by the big weights and the effect of overfitting
becomes worse. Using weight regularization an additional constraint is added to our
training objective in the form of the mean squared value of the network weights. Mini-
mizing the loss now also inevitably forces the model to retain small weights, otherwise
the regularization term would grow. This method suffers from the same disadvantage
as dropout.

Early Stopping can also combat overfitting [35]. Even if the optimizer manages to
find the global optimum the model can still overfit if the training continues for too
long. After learning the true correlation as accurately as possible, the only way for the
model to improve its predictions is to incorporate additional features into its prediction
process, which are unique to the training data. When using a test set we can track the
difference of test and training loss and quit once the test loss starts to rise.

In this work, we use a small weight decay of 1e-5. We found that early stopping and
dropout were not necessary, as overfitting did not have much of an effect once we used
adequately sized datasets.

19

4. Related Work

4.1. Generative Adversarial Networks

A promising way to learn detector unfolding are Generative Adversarial Networks (GANs).
The authors of [5] set up a GAN for the task of unfolding detector effects. This form of
network consists of two opposing parts, a generator and a discriminator, which compete
in a min-max game. In their version, the former part receives a detector-level event
xd as its input and outputs generated parton-level events xgen. In other words, the
generator transforms the detector distribution into the generated parton distribution
G : xd ∼ pd(xd) → xp ∼ pgen(xp). The discriminator on the other hand takes events
from parton-level, either real or generated, as an input. It outputs the probability that
the given event stemmed from preal(xp), i.e. D : xp ∼ preal/gen(xp) → [0, 1]. The objec-
tive of the discriminator is to correctly tell apart samples from either distribution, while
the generator’s objective is to fool the discriminator. As a consequence, over the course
of the training, the generator will create more realistic samples, as the discriminator
learns more defining features about the true distribution preal(xp). We can formulate
this goal in terms of the loss function [16]

LD = Exp∼preal(xp) [log(D(xp))] + Exd∼pd(xd) [log (1−D (G (xd)))] . (4.1)

The two parts of the network work against each other, meaning that the generator is
trained to minimize this loss function, while the discriminator tries to maximize it.

Looking at each term separately we find the goals defined beforehand. The first term
Exp∼preal(xp) [log(D(xp))] represents the objective of the discriminator to correctly identify
the true distribution. The higher D(xp), meaning the more confident the discriminator
is about real events being real, the bigger the expected value will be. As a consequence,
training to maximize this term will contribute to our first goal. Likewise, in the second
term Exd∼pd(xd) [log (1−D (G (xd)))] the discriminator is expected to output values close
to 0, which means that the event was not sampled from the true distribution. The
closer to 0, the bigger the term will be. This represents the second half of our first goal.
The generator on the other hand learns to minimize the second term, meaning it tries
to create samples that the discriminator cannot tell apart from the real distribution
preal(xp), and as a consequence will not classify correctly. The better the generator
can fool the discriminator, meaning the closer its output will be to 1, the smaller the
second term will become. The generator has to be trained on an additional loss function
LMMD in order to correctly capture the invariant mass distribution of the particles.
The invariant mass distributions of the generated and real events are compared using
MMD, which will be explained in Section 5.4. Weight decay is used as well to stabilize
the training.

The two big advantages with this method are showcased in this example. The first
one comes in the form of a problem independent loss function. The discriminator, over

20

4. Related Work

G {xG}{xd} D

{xp}detector parton

LD

LGMMD

Figure 4.1.: Structure of a naive unfolding GAN. The simulation with Pythia (parton)
and Delphes (detector) creates the input events xp and xd on parton- and
detector-level respectively. The generator produces a generated event xG,
with the goal of resembling the the distribution of xp. The discriminator
classifies the two events and is trained to maximize LD. The generator is
trained to minimize LD and additionally maximize LMMD, which compares
the invariant mass distribution of the generated and real events. Taken from
[5]

the course of the training, learns adequate features to differentiate the two distributions
pgen(xp) and preal(xp) and penalizes the generator accordingly, no matter the form that
the true distribution takes. This means Equation 4.1 does in principle not have to be
modified to learn any distribution. The second advantage is the free choice we have
for the latent space of the generator. The generator describes an arbitrary function
that is not dependent on the latent space distribution by construction. Only during
the training does the generator adapt to the sampling we use. This lets us utilize
advantageous distributions for said latent space, like the detector-level observables in
this case.

A big issue that oftentimes arises is that training a GAN like this is very dependent on
a lot of hyperparameters and getting the ratio of generator and discriminator training
just right. If this is not the case, one of the networks can overpower the other which
won’t be able to train correctly, as its gradients become too small. Another known
problem of GANs is that they often suffer from mode collapse. This will manifest by
the generator only being able to predict a very narrow part of the full distribution that
the GAN was trained on. Wasserstein GANs [4] can help to reduce these problems,
however for this task they were not used. Apart from this, GANs can pose even further

challenges during training. In an optimal training scenario, we get preal(xp)
!

= pgen(xp).
The discriminator should have an exactly 50% chance for a correct prediction for samples
from either distribution [16]. Using D(x) = D(G(z)) = 0.5 in Equation 4.1 we get an
optimal loss value of log(2) for each half of the loss function. The problem arises from
the fact that, to achieve this loss value, we do not in fact have to successfully have
trained the GAN to the optimal configuration. We can only tell that something is going
wrong when the loss values diverge from their optimal state, but cannot confidently say
that the training succeeded when the loss value reached log(2) on both losses.

21

4. Related Work

G{r} {xG} D

Condition

{xd}

{xp}

detector

parton

LD

LGMMD

Figure 4.2.: Structure of the cGAN. Compared to the naive unfolding GAN, the detector
event xd is now distributed to both the generator and the discriminator. The
generator also receives additional noise r as input. Taken from [5]

4.2. Conditional GANs

The work of [5] has shown that a standard GAN works for generating parton-level events
for the full phase space, but it cannot correctly predict the distribution when we only
look at part of it. The reason for this is that the discriminator cannot exploit the fact
that the events are paired, i.e. that there exists a link between xp and xd. A possible
solution consists of two steps. Firstly we need to provide the generator with additional
gaussian noise, to enable probabilistic predictions by sampling over the noise. This
also corresponds with the picture we get from the physical nature of the problem, as
mentioned in Chapter 2. The second step is to introduce a fully conditional architecture,
now providing also the discriminator with the detector event. This means the network
functions now depend on additional parameters G : z ∼ pz(z), xd → pgen(xp|xd) and
D : xp ∼ preal/gen(xp|xd), xd → [0, 1]. There exist different approaches on how to provide
the GAN with the condition xd [10]. The simplest one is to just concatenate it to the
input of both the generator and the discriminator [27]. [13] have found more success in
conditioning the hidden layers directly, by using conditional batch normalization. This
also allows for processing the condition by a feature network, which will present the data
to the GAN in a more usable form. The conditional GAN in [5] uses the simpler of the
two approaches. This new architecture solves the problem the GAN encounters with
slicing to a large extent. However the generated invariant mass is still off in some cuts of
the phase space, as shown in Section 6.2. The probabilistic interpretation of unfolding
is also violated by the cGANs, as they experienced mode collapse. Sampling over the
latent space of the generator will not result in a meaningful probability distribution,
which is demonstrated in Section 6.3.

22

5. Method

5.1. Invertible Neural Networks

Invertible Neural Networks (INNs) learn a bijective mapping from input to output and
back simultaneously. As we can run the model in any direction, we gain predictive
capabilities in the inverse direction that we trained in. Using INNs is advantageous,
even in cases when we are not particularly interested in both sides of the mapping
simultaneously. If we can define a loss on both sides, network updates that include
gradients from both directions are possible. This has been shown to increase training
stability and convergence speed [2]. INNs are constructed to fulfill three goals:

• The mapping from input to output is invertible

• The Jacobians for both directions are tractable

• Both directions can be evaluated efficiently

While INNs are closely related to normalizing flows [22], the third restriction is unique
to INNs. The nature of our problem is probabilistic, meaning we do not want to map
the same detector event to the same value on the parton side every time. As will become
clear shortly, this cannot be achieved via a normal INN, as it is deterministic by itself.
However, the INN will still be introduced with a deterministic version of the problem for
illustrative purposes and later be adapted to a probabilistic architecture. An overview
of the INN architecture can be seen in Figure 5.1

5.1.1. Coupling Blocks

The network architecture has to be built specifically to be easily invertible to ensure
the properties of an INN mentioned above. This can be achieved via so-called coupling
blocks. Each of these coupling blocks is invertible and a model can be constructed
by stacking multiple of these blocks laterally. The work of [14] introduces real-valued
non-volume preserving transformations (Real NVP), a set of stably invertible, learnable
transformations in the form of coupling blocks. The basic idea starts with splitting the
input vector u in two parts, u1 and u2. The output v will also be computed in two steps

v1 = u1 × s1(u2) + t1(u2) v2 = u2 × s2(v1) + t2(v1). (5.1)

Here, s1, s2, t1 and t2 describe arbitrary transformations on the input that are usually
implemented by a neural network. These are the functions we are trying to optimize
during training. Note that they can be arbitrarily complex and do not need to be

23

5. Method

INN

{x̃p, r̃p}

{x̃d, r̃d}{xp, r}

parton

LMMD, MSE

{xd, r}

detector

LMMD, MSE

Figure 5.1.: Structure of our regular INN. On the parton side we train the model by
comparing the true parton events xp to the ones generated by the INN x̃p
from the detector data xd. This is done via Mean Squared Error (MSE)
and MMD simultaneously. The gaussian distribution of the generated noise
r̃p is enforced with MMD only. On the detector side, the same process is
mirrored.

invertible, since we can express the inverse direction v → u only using their forward
directions

u2 =
v2 − t2(v1)
s2(v1)

u1 =
v1 − t1(u2)
s1(u2)

. (5.2)

The only restriction that arises from this (as from any bijective) mapping is that u and
v need to have the same dimensionality. Otherwise, we can not split them into parts of
equivalent sizes, which is required to apply the same functions si, ti on both the forward
and backward pass. For numerical reasons, we want to avoid the direct division by
s2(v1) and s1(u2). Thus this basic coupling block is modified to include an exponential
function

v1 = u1 × es1(u2) + t1(u2) v2 = u2 × es2(v1) + t2(v1) (5.3)

u2 = (v2 − t2(v1))× e−s2(v1) u1 = (v1 − t1(u2))× e−s1(u2). (5.4)

An illustration of the basic transformation applied inside a coupling block can be
found in Figure 5.2.

The coupling blocks also need to ensure that the Jacobian is tractable throughout the
network. The Jacobian of each coupling block takes the following form after the first
half of the forward pass [14]

J1 =

∂

(
v1
u2

)
∂u

=

[
diag(es1(u2)) ∂v1

∂u2

0 I

]
. (5.5)

24

5. Method

v1+
⊙

⊙
+

u1

u2 v2

Condition

s1 t1 s2 t2in out

Figure 5.2.: Structure of a coupling block. On the left, the input u is split in two parts
u1 and u2. The former is transformed via Equation 5.1 into v1, with the
coefficients predicted by the subnetworks s1 and t1. This process is then
mirrored to transform u2 into v2. In the end v1 and v2 are concatenated to
form the output v

We can look at each quadrant of the matrix individually to understand this fact. The
lower half of the matrix consists of ∂u2

∂u
. After the first half of the pass the lower half

of the Jacobian is just the identity matrix, since the corresponding data vector has not
changed. In the upper half, we get ∂v1

∂u1
in the left quadrant and ∂v1

∂u2
in the right quadrant.

Substituting Equation 5.3 for v1 in the upper left quadrant, we get ∂v1
∂u1

= diag(es1(u2)).
Therefore we end up with an upper right triangular Jacobian after the first half of the
forward pass. The same argument applied to the second half of the forward pass results
in

J2 =
∂v

∂

(
v1
u2

) =

[
I 0
∂v2
∂v1

diag(es2(v1))

]
. (5.6)

For the complete coupling block, the Jacobian is given by ∂v
∂u

= J2 ∗ J1. While this is no
longer a triangular matrix, as will be explained in Section 5.2, we are only interested in
the Jacobian (logarithmic) determinant. Despite the Jacobian taking a non-triangular
form, by using det(A∗B) = det(A) det(B) we still can efficiently calculate its logarithmic
determinant

log (det(J)) = log (det(J1)) + log (det(J2)) =

log

(
dim u2∏
i=1

es1(u2)i

)
+ log

(
dim v1∏
i=1

es2(v1)i

)
= (5.7)

sum{s1(u2)}+ sum{s2(v1)}.

We can use the same factorization rule to calculate the Jacobian determinants through-
out multiple successive coupling blocks. In principle, the backwards pass works the
same as the forward pass, therefore the same argument for the triangular shape of the
Jacobians holds here as well. From this, we can see that a network built from these
coupling blocks has tractable Jacobians.

25

5. Method

5.1.2. Loss Functions

The standard INN combines three different contributions to the loss function. Each of
them can be exemplified by picking the naive approach to detector unfolding as a toy
example. In this approach, we try to learn a deterministic mapping from the detector-
level to parton-level. Explicitly, this means we take a detector event xd ∈ RDd of
dimensionality Dd and want to transform it into its corresponding parton event xp ∈ RDp

of dimensionality Dp. Since we assume that the conservation of energy-momentum holds
for particles on the parton-level, the energy can be calculated by their momenta and
the masses with the help of Equation 2.2. For this reason, we remove the energy from
the four-vectors of the parton level events. However, the same can not be done for
the detector level, due to particles that are not measured or wrongly attributed and
detector smearing. We are no longer in a closed system, preventing us from using the
energy-momentum conservation to remove the energies. This leaves us with Dp < Dd.
However, the inputs of our INN need to have the same dimensionality by construction.
We pad the smaller input vector xp with random numbers z from a gaussian distribution
of dimensionality Dr = Dd −Dp to fix this issue. These additional degrees of freedom,
in some sense, describe the additional information gain that is created by the stochastic
nature of the detector simulation. In a nutshell, our INN describes the mapping:(

xp
r

)
← INN → xd . (5.8)

For training this network represented by the functions gy : RDd → RDp and ḡy :
RDp+Dr → RDd and gz : RDd → RDr , we define three different loss functions:

Ly = ||xp − gy(xd)||

Lx = ||xd − ḡy(xp, z)|| (5.9)

Lz =< gz(xd),NDr(0, 1) >

Ly describes our goal to correctly map each detector-level event to the corresponding
parton-level event, while Lx describes the inverse direction from parton- to detector-
level. As our network is bijective, once Lx reaches zero, so will Ly. This means Ly is not
vital for training, still it helps with convergence and training stability [2]. Lz describes
our restraint that the random numbers follow a gaussian normal distribution. We only
look at the marginalized distribution p(z) =

∫
RDp p(z|y)p(y)dy. This means the random

numbers should (in the limit of infinite training time) become independent of the parton
output xp and the network will not encode redundant information in them. Ly and Lx

could be implemented using the L2 norm, while Lz could be realized utilizing MMD,
which will be explained in Section 5.4.

5.1.3. Parton-Noise Correlation

The problem of this approach should become apparent when we repeatedly unfold the
same detector event. We always get the same output of xp for a fixed input xd. This
contradicts the probabilistic nature of the physical background described in Chapter 2.

26

5. Method

While there exists the possibility of padding both sides with additional gaussian noise,
we also need a way to guarantee that this noise correlates with the network output in
such a way as to create a meaningful parton-level distribution when we sample from it.
In the results Section 6.6 we show that training an INN with a regular MMD loss on
the noise does not create a correct distribution when we sample over the latent space.
This is due to the fact that the MMD loss marginalizes over a batch of data, with the
effect of decorrelating the input noise with the parton-level outputs.

A solution to this problem is to utilize the network Jacobian to ensure a correlation
between the input noise and the output four-vectors. However, while we showed that
the Jacobian determinants of the whole network are easily tractable, the same does not
apply for parts of it. If we want to ensure a correlation between the four-vectors xp on
parton and noise rd on detector side, we need to know the Jacobian determinant of the
first Dp output entries with respect to the last Drd input entries. This corresponds to

the (generally non-quadratic) Jacobian sub-matrix Ĵ = J [1 : Dp, Dd : Dd +Drd], which
only contains the columns corresponding to the input noise and the lines corresponding
to the output four-vectors. While we know Ĵ = ∂xp

∂r
, the problem lies in acquiring this

matrix in the first place. As discussed earlier, we are only able to efficiently propagate
the Jacobian determinant through the network, not the whole matrix itself. However,
this is required for calculating the sub-matrix determinant. We can look at the simple
case of three consecutive operations, which result in the Jacobian J = J1 ∗ J2 ∗ J3 to
understand this. The sub-matrix determinant follows the formula

det(Ĵ) = det (J [1 : Dp, Dd : Dd +Drd])

= det (J1[1 : Dp] ∗ J2 ∗ J3[:, Dd : Dd +Drd]) . (5.10)

As we can see, we can not use the factorization rule we used in Equation 5.7 for
the determinant since the left- and rightmost matrices are not quadratic. This in turn
means that we have to calculate the product of all the matrices inside the determinant of
Equation 5.10. Doing this is inefficient, as we loose the triangular form of the matrices
during the multiplication. As shown in Equations 5.5 and 5.6, the two Jacobians of
a coupling block take an upper right and lower left triangular form respectively. It is
easily verified that multiplying two matrices of these forms in general does not lead to
a triangular result matrix.[

I 0
∂v2
∂v1

diag(es2(v1))

]
∗
[
diag(es1(u2)) ∂v1

∂u2

0 I

]
=

[
diag(es1(u2)) ∂v1

∂u2

diag(es1(u2)) ∗ ∂v2
∂v1

∂v2
∂v1
∗ ∂v1
∂u2

+ diag(es2(v1))

]
(5.11)

On top of that, permuting the data vectors in between coupling blocks during the
forward pass is often crucial to achieve good results [3]. This permutation matrix would
destroy the triangular form, even if we managed to construct the coupling block such
that the product of its Jacobians was triangular. Therefore, we can only use the full
Jacobian determinant to ensure input and output correlation.

27

5. Method

cINN

{xG}

{rG}{xp}

parton

LMMD

{r}
LG

Condition

conditioning
network

{xd}detector

Figure 5.3.: Structure of the conditional INN. The parton-level inputs xp are transformed
into gaussian noise rG under the condition of the detector event xd processed
by the conditioning network. This noise is the input to the loss function
LG from Equation 5.15. In the other direction, gaussian noise r is used as
input to generate parton events xG (under the same condition of xd). Their
mass distribution is then compared to the one of xp via LMMD.

5.2. Conditional INNs

We can utilize a conditional INN (cINN) [3] to achieve a fully probabilistic mapping
on parton side. Instead of mapping the detector-level directly to the parton-level, the
cINN uses the detector-level data as condition for the subnets in each coupling block.
Its inputs consist of the parton-level data on one side and gaussian noise of the same
dimensionality on the other side. An overview of the cINN architecture can be found in
Figure 5.3

5.2.1. Transformation of Distributions

Our goal while training is to map the parton-level events to a gaussian distribution under
the condition of the detector measurements. From the discussion in the previous section
we know that we can not just use a MMD loss to match the shape of the distributions.
We require the features xp to be correlated with the noise r, such that sampling over
r will represent the full distribution of xp. In other words, we want to transform the
gaussian distributions on one side of the network to the correct parton distributions on
the other side. The formula that describes this transformation is the change of variables
formula

ppart(xp|xd, θ) = pgauss(f(xp|xd, θ))
∣∣∣∣det

(
∂f

∂xp

)∣∣∣∣ . (5.12)

Where f is the network function f : xp → r and θ are the network parameters. Our
goal is to fit these network parameters such that they maximize the posterior over the

28

5. Method

parameter space

max
θ
p(θ|xp, xd) ∝ ppart(xp|xd, θ)pθ(θ) (5.13)

via Bayes theorem. As our training set and therefore the number samples from our
distributions are finite, we define our objective as minimizing the negative log-likelihood
of the expected probability over the whole dataset of size N.

L = Ei∈1,...N [− log (ppart(xp,i|xd,i, θ))]− log (pθ(θ)) (5.14)

This objective is the same as for non-invertible networks. However, we can now use
the invertibility of the network to substitute ppart(xp|xd, θ) via Equation 5.12, to get an
expression for our loss dependent on only the r side output of the network. Additionally,
we also assume a gaussian prior N (0, σ) on the network weights θ, which means we can

substitute pθ(θ) ∝ exp (− ||θ||22
2σ2). For notational purposes we introduce 1

2σ2 = τ . Finally,

the substitution for Equation 5.12 introduces the term
∣∣∣det

(
∂f
∂xp

∣∣
xp,i

)∣∣∣, which we can

express using the Jacobian determinant Ji of the network at point xp,i. Summing up we
get the loss function

L = Ei∈1,...,N
[||f(xp,i|xd,i, θ)||22

2
− log |Ji|

]
+ τ ||θ||22. (5.15)

As described in 5.1.1, the Jacobian determinants of the network are easy to compute.
Thus, we can easily utilize them for the loss function. The term τ ||θ||22 describes a
regular L2 weight decay with strength τ .

As we can see in Equation 5.15, we include no extra information about the distribution
of xp. Therefore, the big advantage of using a cINN is that we can train to fit the known
gaussian distribution of r, for which we can define a loss without having to know anything
about the distribution of xp beforehand. Afterwards, we can still predict in the inverse
direction r → xp, which would not be possible with other networks.

5.2.2. Conditioning Networks

As all of the subnetworks in the coupling blocks receive the same conditioning input
xd, it is vital that its structure is not too complex for the networks s and t to extract
information from. For this reason, it is beneficial to first preprocess the condition input
with a conditioning network. This is a small subnetwork that extracts higher level
features from xd, and is trained simultaneously with the whole cINN. It should be noted
that, as the condition input for the same data point during the forward and backward
pass is identical, the conditioning network can be chosen arbitrarily and is not required
to be invertible or fulfill any other special characteristics. A practical problem is that, if
the conditioning network architecture is chosen too deep, its output is often degraded.
After initialization, the condition features are unusable for the cINN and over the course
of the training, they are ignored completely. We can choose two approaches to avoid
this problem:

• Keep the conditioning network architecture shallow and wide

29

5. Method

• Initialize the conditioning network advantageously for the cINN

The former solution should be self-explanatory, the latter can be achieved by pre-training
the conditioning network, e.g. as an Autoencoder. An Autoencoder is a neural network,
used to learn an efficient encoding for a certain data domain [23]. It consists of two parts
an encoder and a decoder, which are typically structural mirror images of each other.
In the center between them, we find an intermediate latent space output z, which is of
lower dimensionality than the input. The decoder then decompresses the encoding to
match the original input as closely as possible. The network is trained to minimize the
reconstruction loss

Lrecon = ||xgen − xreal||22 = ||D(E(xreal))− xreal||22. (5.16)

with D as the decoder and E as the encoder. This combines two goals: We want the
encoder to preserve as much information as possible in the latent variable z and the
decoder should then be able to reconstruct the compressed information to its original
state. Training a network like this can help us to find a good initialization for the
conditioning network. By cutting off the encoder right before the final layer, in which
the dimensionality is reduced and the information compressed we can use it as our
initial conditioning network. An illustration of this can be found in Figure 5.4. This
allows us to choose a deeper architecture than before, and thus extract more meaningful
correlations from the detector level data xd, which was necessary to improve the results
in Section 6.5.

{xreal} {xgen}

parton

Lrecon

Encoder Decoder

Figure 5.4.: Schematic of an Autoencoder. The input xreal is compressed by the encoder
to an encoding of lower dimensionality in the central layer. The decoder
then decompresses this encoding to create the generated datapoint xgen.
The network is trained to minimize the reconstruction loss Lrecon

5.3. All-In-One Coupling Block

For the specific coupling block architecture we use the All-In-One (AIO) coupling block.
This coupling block combines several additional features that aid the training of INNs.

30

5. Method

The basic transformation described by Equations 5.3 and 5.4 is now predicted by a
single subnet in its entirety. This enables the network to share weights for the prediction
of the transformation parameters.

Soft clamping is applied to the exponential scale subnetwork output si(u2/v1) to pre-
vent instabilities resulting from large values in the exponential function. This clamping
takes the form of

sclamp = α tanh(
1

γ
s). (5.17)

This restricts the value of sclamp ∈ [−α,+α]. At small |s|, tanh is approximately the
identity function, meaning sclamp ≈ α

γ
s. We find α = 0.8 and γ = 10 to be good values

for the clamping.

Only one half of the input is replaced by the coupling block. In terms of the previously

introduced Equations 5.3 and 5.4, we instead use v̂ =

(
v1
u2

)
as the coupling block output

[14].

A global affine transformation (scaling and bias) is used on the output of each cou-
pling block, which is introduced as actnorm in [21]. In this transformation of the form
v̂ = sv+b and inverse v = (v̂−b)s−1 the parameters s and b are fixed and do not change
over the course of the training.

Finally, the coupling block output is permuted to allow the two splits u1 and u2
to interact more between coupling blocks. This becomes especially important, as we
don’t change u2 during the learned transformation of the AIO coupling block. The
permutation is performed by multiplication with fixed unitary matrices, which remain
unchanged during training.

v̂ = Uv v = UT v̂ (5.18)

It is possible to use any random unitary matrix to perform this permutation, which in
general is called ”soft permutation” [3]. However, we found that ”hard permutation”,
meaning using shuffled unit matrices, works best for our case.

5.4. Maximum Mean Discrepancy

We often want to compare a true to a generated distribution and measure how closely
they match to define our loss function. For example, in the loss of the regular INN in
Equation 5.9, for Lz we want to compute a distance measure between the generated
latent space distribution gz(xd) and the target gaussian normal distribution N Dr(0, 1).
Maximum Mean Discrepancy (MMD) provides a solution for this. Given samples from

31

5. Method

two distributions X = {xi}Ni=1 ∼ PX and Y = {yj}Mj=1 ∼ PY the MMD is defined as [25]

L 2
MMD =

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∣∣∣∣∣
∣∣∣∣∣
2

2

= (5.19)

1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′) +

1

M2

M∑
j=1

M∑
j′=1

φ(yj)
Tφ(yj′)− 2

1

MN

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj).

Given the right choice of function φ, MMD is a metric on the space of probability
distributions [17]. This especially means that LMMD ≥ 0 and (in the limit of M,N →
∞) LMMD = 0 ⇔ PX = PY . In essence, this allows us to use it to compare the
proximity of any two distributions and minimizing it during training will lead to the
two distributions matching exactly. Taking a look at Equation 5.19, we see that all sums
involve the inner product of φ(·)Tφ(·). We can use the kernel trick to substitute these
vector products by a kernel that represents the φ induced scalar product, < ·, · >φ.

L 2
MMD =< X,X > + < Y, Y > −2 < X, Y >

= k(X,X) + k(Y, Y)− 2k(X, Y) (5.20)

5.4.1. Kernels

There exist a wide variety of established kernel functions to choose from [36]. The
restriction for the choice of φ, and consequently for our kernel, is that MMD has to
be a metric on the space of probability distributions. We have to choose our kernel
such that it is positive-definite in order to fulfill this condition. The specific choice of
kernel always depends on the distributions we are trying to compare. For example, if
we want to make sure the generated latent space distribution of our regular INN follows
the target gaussian distribution a gaussian kernel would be a natural first choice, seen
in Equation 5.21. While training our cINN to unfold detector events xd → xp, like in [7]
and [5] we encountered problems with the invariant mass (see Section 2.1) distribution
of the partons. As a solution, we use the MMD to help the model learn this correlation.
Two choices for the kernel of this MMD compared in the work of [7] are the gaussian
kernel and the breit-wigner/cauchy kernel

kgauss(x, y) = exp

(
−||x− y||

2
2

2σ2

)
kbreit-wigner(x, y) =

σ2

σ2 + ||x− y||22
. (5.21)

We found the breit-wigner kernel to work slightly better than the gaussian kernel. This
is to be expected, as the invariant mass of the partons follows a breit-wigner distribu-
tion. We also used summed kernels over different widths σ [5], to ensure the generated
distribution would not fall out of the scope of the kernel at any stage of the training.
Choosing σ � ||x−y||2 results in kbreit-wigner ≈ 0, likewise, choosing a σ � ||x−y||2 leads
to kbreit-wigner ≈ 1. In both cases, we end up with LMMD ≈ 0, despite the distributions
not matching up. Using the sum over many different kernel widths ideally ensures that
at any point during the training, we have some σi ∼ ||x− y||2.

32

5. Method

5.4.2. Conditional MMD

Even though we use MMD to ensure the invariant mass distribution is learned correctly,
we always marginalize over the data of a whole training batch. Therefore, the model
might only learn to fit the invariant mass correctly under the condition that the input
batch represents the full phase space adequately. However, we want to be able to re-
construct the invariant mass of any part of the phase space accurately. This problem
becomes apparent in Section 6.2, where we can see deviations in the invariant masses
when slicing. Optimally, the MMD loss should therefore not marginalize over the con-
dition but take it into account as well. This idea is called conditional MMD, introduced
in [32]. We start with two conditional distributions PX|C1 , PY |C2 , which we can sam-

ple, resulting in two sets DX|C1 = {(xi, c1,i)}Ni=1 and DY |C2 = {(yi, c2,i)}Mi=1. We define
KX = k(C1, C1), KY = k(C2, C2) and KXY = k(C1, C2) as the kernel matrices of the
sampled conditions, as well as LX = k(X,X), LY = k(Y, Y) and LXY = k(X, Y) as the
kernel matrices of the sampled data points. As the condition kernel matrices need to
be inverted, we usually need to add regularization to ensure that the matrices have full
rank. We denote this as K̃ = K + λI. The authors [32] show that the target function
of the conditional MMD can now be written as:

LcMMD = KXK̃
−1
X LXK̃

−1
X +KY K̃

−1
Y LY K̃

−1
Y − 2KXY K̃

−1
X LXY K̃

−1
Y (5.22)

While this approach should in theory solve the problem that we encountered with
the invariant masses when slicing, in practice it turned out that the inversion of the
condition kernel matrices is too unstable and requires both a lot of computing time
and regularization. Thus, with reasonable training time, we could not achieve results
comparable to those of the cINN trained on regular MMD.

5.5. Whitening

When training a model with the loss function of Equation 5.15 it is actually possible to
reduce the loss below 0. The minimum that the loss function can reach is dependent on
the network Jacobian. This not only depends on the architecture itself but especially
on the correlation within the input data. We can understand this by examining the
extreme case in which two variables xi, xj are correlated completely. Since ∂f(x)

∂xi
= ∂f(x)

∂xj
,

these two columns of the Jacobian are identical, i.e. linearly dependent. Therefore the
Jacobian determinant is 0, its logarithm goes towards −∞. If the loss reaches very
low values it can lead to issues during training. We can apply whitening to the data
to decorrelate its features beforehand in order to combat this problem. Whitening is a
linear transformation, given by multiplication with a whitening matrix W , which has
the goal to transform a given dataset matrix X = (x1, ..., xN) ∈ Rd×Nso that its new
covariance matrix is the identity matrix[19].

cov(Z) = cov(WX)
!

= IN×N (5.23)

33

5. Method

Given the covariance matrix cov(X) = Σ, any W such that W TW = Σ−1 satisfies the
condition. We can estimate the covariance matrix of a given dataset as follows [28]:

cov(X)jk = Σ̂jk =
1

N − 1

N∑
i=1

(Xij −Xj)(Xik −Xk) (5.24)

However, this does not uniquely define the whitening matrix, but we have multiple
possibilities to choose from. Two of the most common choices constitute Zero-Phase
Component Analysis (ZCA) and Principal Component Analysis (PCA).
ZCA uses the inverse square root of the covariance matrix W = Σ−1/2. Since Σ is

symmetric (and therefore also W) we get W TW = W 2 =
(
Σ−1/2

)2
= Σ−1. The authors

of [19] showed that this approach to whitening leaves the whitened data Z as similar as
possible to the original data X, in terms of total squared distance.
PCA defines the whitening matrix, using the eigenvalue decomposition of the covariance
matrix Σ = UΛUT , with unitary eigenvector matrix U and diagonal eigenvalue matrix Λ.
Since Σ is symmetric and we can add regularization to ensure the matrix has full rank we
know that such a decomposition must exist. The whitening matrix is now given by W =
Λ−1/2UT . This fulfills the whitening matrix constraint W TW = (Λ−1/2UT)TΛ−1/2UT =

U(Λ−1/2)TΛ−1/2UT = UΛ−1UT = Σ−1
T

= Σ−1. The authors of [19] showed that this
best encodes the variation from the original data X in the first entries of the whitened
data Z in terms of the cross-covariance.

Experimentation has shown that ZCA is better choice for our cINN, which fits with
the property of leaving the data as similar as possible to the original. Using whitening
we improve the results in Chapter 6, when the data gets too complex in Section 6.5, we
found that whitening can not help to improve the results anymore.

34

6. Results

We compare the cINN to the cGAN used in [5] to evaluate its performance. We make
sure to keep the training times and number of parameters on the same order of magni-
tude for both networks to ensure comparability. Our network is build out of the AIO
coupling blocks (Section 5.3). For training, we use a summed MMD loss over 4 widths
with a breit-wigner kernel on the generated W and Z Boson masses. We apply ZCA
whitening to the data and use a regular shallow but wide conditioning network with
no Autoencoder pretraining. The training data is generated using Pythia and Delphes,
with no additional disruptive effects like ISR. Pythia creates the parton-level events,
which serve as the input during training to be transformed into the gaussian latent
distribution. Delphes simulates the showering, creating detector-level events, which are
matched to the parton events. The matching detector-level event serves as a conditional
input to each parton-level event. When passing samples from the latent distribution
back through the network under the condition of the detector events, we get an approx-
imated parton event distribution of the observables shortly after the hard process. A
setup comparison of the cGAN and the cINN can be found in Table 6.1.

Parameter cINN cGAN

Blocks 24 -
Layers per Block 2 12
Units per Layer 256 512
Trainable weights ∼2M ∼3M
Condition Subnet Layers 2 0
Whitening ZCA -

Batch Size 512 512
Epochs 1000 1200
Number of Training Events 3× 105 3× 105

Kernel Widths ∼ 2, 8, 25, 67 20, 30, 40
Test/Train Split 10% / 90% 0% / 100%
λMMD 0.5 1

Table 6.1.: Setup of the cINN compared to the setup of the cGAN

6.1. Full Distributions

Firstly, in Figure 6.1 we take a look at the full phase space to check whether both the
cINN and the cGAN can correctly generate events in the full range of the observables

35

6. Results

0.000

0.005

0.010

0.015

0.020

0.025
1 σ

d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

FCGAN

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.01

0.02

0.03

0.04

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

FCGAN

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

FCGAN

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

FCGAN

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure 6.1.: Full Phase Space distributions for the cINN (blue) and cGAN (green). Both models predict
the distributions of pT,q1 (upper left), pT,q2 (upper right), EW (lower left) and MW (lower
right) accurately in the bulk.

and capture their correlations. We include a cINN that has been trained without MMD
on the invariant mass in Figure A.1.

As can be seen, the cINN without the additional MMD loss is learning the masses to
some extent, but the MMD is very necessary to match the sharp peak. The masses of
the particles at the detector are very smeared resulting in a much wider distribution.
In contrast, the W Boson mass distribution has a very sharp peak, completely undoing
the smearing is very hard for the model to learn. On top of this, the invariant mass is
a more complex correlation compared to observables such as momentum or energy of a
single jet, thus the difficulty to form said correlation is much higher for the model.

The differences between the cGAN and the cINN trained with MMD lie in the range
of statistical fluctuations for the most part. From the ratio plots we can see that there is
some systematic underestimation of the events with low pT,q1 , pT,q2 from both networks.
These occur in regions of the phase space with very low statistics, which is likely the
reason both models are not performing as well as in the bulk. In the invariant mass plot
we can see that the cINN manages to follow the tail of the distribution for longer than
the cGAN.

36

6. Results

In Figure A.2 we provide a correlation plot of the cINN between PT,Z and Ej1 that
shows the cINN captures the relations correctly. The main differences occur at the outer
edges of the correlation, at low pT,Z or low Ej1 , which points towards a lack of statistics
as the reason for the deviations.

6.2. Slices

One problem that the cGAN exhibited were the mismatched masses when considering
only part of the phase space. As indicated by the name, the invariant mass distribution
should not change when we only consider particles within a certain range of momentum
or energy. If the models build up some correlations between these quantities and the
invariant mass they generate for the event, this condition is not met. We evaluate
the models’ generated distributions on events that fall into specific ranges of detector-
level measurements for multiple observables to check for these correlations. We test the
following restrictions on events, called slices, in analogy to [5]:

• Slice I: pT,j1 = 30 ... 100 GeV (6.1)

• Slice II: pT,j1 = 30 ... 60 GeV; pT,j2 = 30 ... 50 GeV (6.2)

• Slice III: pT,j1 = 30 ... 50 GeV; pT,j2 = 30 ... 40 GeV;

pT,`− = 20 ... 50 GeV (6.3)

• Slice IV: pT,j1 > 60 GeV (6.4)

From Figure A.3-A.6 it is apparent that, while the cINN still does not correctly
disjoin the invariant mass from the region of phase space, especially in the harder slices
(III and IV), it outperforms the cGAN. Both models always over-/ underestimate the
mass distribution in the same direction, but the invariant mass curves of the cINN
lie systematically closer to the true peak every time. Interestingly, this deviation in
the slices only concerns the masses, as the other observables do not show any sign
of degeneration. This means that the models have correctly learned the overall low
level observable distribution even for slices of the phase space, but their higher level
correlations do not match the truth. This is potentially a byproduct of using the MMD
to enforce the mass distribution, as this does not force the model to correctly learn this
correlation. Instead, all that is needed to reduce this loss is to match the distributions.
If the sampled training data for each batch typically represents the whole phase space
to a certain extent, the learned correlation does not have to be independent of the phase
space region of the event. We tried using a conditional MMD to address this problem,
however we encountered problems with the inversion of the kernel matrices in Equation
5.22. The amounts of regularization we needed to add, as well as the computing power
the matrix inversion required made so that this approach was not executable within
reasonable training times.

37

6. Results

6.3. Calibration Curves

We take a look at calibration curves for some observables in Figure 6.2 to test the
integrity of the cINN’s predicted distributions. For this, we randomly pick 1500 different
events and do inference 60 times for each of them. Since we re-sample from the latent
space every time we do inference, in the end we approximate a probability distribution
for each event with this method. Consequently, for each of the input events, we can
now calculate the quantile that it falls into in its generated probability distribution.
For the posterior distributions to be statistically sound, we would expect 10 % of the
events to be in the 10 % quantile, 20 % of events to be in the 20 % quantile, etc.
Plotting each quantile against the percentage of points that landed in it, the optimal
outcome is a diagonal line. In the figure, it becomes pretty clear that the cINN does
create statistically meaningful probability distributions in which the points follow the
expected quantile frequencies. We see slight deviations in the Z and W mass, which
might correspond to the problem with the sliced masses. While the mean of these
distributions is correct (the cINN and optimal curves cut in the center), the cINN’s
distribution is a bit too narrow and consequently more points land in very high/low
quantiles.

When looking at the cGAN, we find that the true parton-level event completely falls
to the right or left of the distribution most of the time. In other words, while the cGAN’s
generated distributions might have the correct mean when averaging over many events
(the cGAN and optimal curves cut in the center), it is way too narrow to meaningfully
approximate the true distribution of the parton level event. It is worth noting that,
while calibration curves show that on average the true parton-level events follow the
generated distributions, it does not guarantee that overall, they are the true distribu-
tions on parton-level. This could only be tested if we could generate multiple different
parton-level events, which all lead to exactly the same detector measurement, which is
impossible.

6.4. Single Points

The difference we see between the cGAN and the cINN in the calibration curves can be
further illustrated by looking at the distributions created for a single point in Figure
6.3. While not as statistically significant, we can get a good look at the problem with
the cGAN’s predictions.

We also use Approximate Bayesian Computation (ABC) to estimate the true prob-
ability distribution of the parton-level, based on the entire dataset [33]. For this, we
define a distance measure d(xd, x

′
d) = ||(pT , px, py, pz)Txd − (pT , px, py, pz)

T
x′d
||22, based on

the difference between two detector level measurements. We first divide each momentum
by its standard deviation to equalize their scales. We then apply ZCA whitening, to
better separate the dataset. We also include an additional term in the distance measure
with a weak influence d̃(xd, x

′
d) = d(xd, x

′
d) + λ||((pT , px, py, pz)Txp − (pT , px, py, pz)

T
xd

) −
((pT , px, py, pz)

T
x′p
− (pT , px, py, pz)

T
x′d

)||22. This term signifies the proximity of the pertur-

bation each event experienced between parton- and detector-level. We naturally apply
the same whitening and scaling to each of these momentum vectors as before. With this

38

6. Results0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Energy Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Px Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Py Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Pz Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Energy W

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Px W

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Py W

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Pz W

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Mass Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Mass W

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Mass Z

cINN

FCGAN

optimal

0.0 0.2 0.4 0.6 0.8 1.0

quantile

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

Quantiles of Mass W

cINN

FCGAN

optimal

Figure 6.2.: Calibration curves on the full Phase Space for the cINN (blue) and cGAN (green). The
cINN generates distributions that create realistic quantiles for the input events. The cGAN
predicts distributions that lie either completely to the right or to the left of the points, which
shows as exactly half of the points always lie in the 0 % or 100 % quantile respectively.

distance measure we compute the 400 most similar events in the dataset and use their
parton-level data to approximate the true distribution.

We stress that this is only one of many choices possible to define such a distance
measure. Changing the whitening, scaling or observables we use will considerably change
the outcome of the distribution ABC predicts for a single point. The cause of this
is an insufficient dataset size for ABC. We can check this by picking a single point
from the bulk of the distribution. We then firstly approximate the range of events on
parton-level that can lead to a detector-level event in the region of the phase space
that our point lies in by looking at the correlations between parton and detector data.
Secondly, we compute the standard deviation of the 400 events with the closest parton-
level observables to the point we picked. We find that the latter value is usually higher
by a factor of 1.5−2.5. This means that the smearing introduced by the detector lies on

39

6. Results

a smaller scale than what our dataset allows us to unfold via ABC. Therefore, without
further verification, it should not be considered the true parton-level distribution of a
single point. Nevertheless, it acts as a point of reference for the models.

Figure 6.3.: Predictions for a single event’s pT,q2 when iterating 3200 times. The cGAN
(green) generates a distribution that is too narrow, while the cINN (blue)
and ABC (orange) generate a possibly viable distribution around the event.

From the figure we immediately see that the cGAN’s predicted distributions are way
narrower than the cINN’s, which we already expected from the previous section. While
the cINN’s distribution is shifted towards lower pT,q2 w.r.t. ABC, the shapes and widths
created by both are very similar. From the dataset we determined that for the range of
pT,det,q2 this point is located at, the parton-level events that can produce these detector
measurements lie in the range from ∼ 18 − 42GeV for pT,part,q2 . These widths roughly
correspond to the generated distributions, but both distributions estimate the range on
the lower side. This could be entirely valid, as the particular event might show some
correlations which point towards a lower range of pT,part,q2 . While in no way a proof
for the correctness of the cINN’s parton-level distribution, this puts into contrast the
viability of the predictions compared to the cGAN. From this section’s and the previous
section’s results we can assume that the cGAN has experienced mode collapse, described
in Chapter 4. As a consequence its generated distribution is extremely narrow. This
contradicts the physical nature of the task, as explained in Chapter 2.

6.5. Initial State Radiation

We also test our model on the task of unfolding ISR, which was introduced in Chapter
2. We introduce additional disruptive effects in the form of radiation that is given off
before the collision in some events. This might result in events where, instead of only
two jets from the W Boson, we measure three or four jets. The parton-level inputs still
only consist of the two jets of the W Boson and the two leptons created by the Z Boson,

40

6. Results

but the detector-level condition inputs now gain two additional four-vector entries. This
task required us to modify the model architecture, especially with a focus on increasing
the size of the model. The model needs to filter out the disturbances from the condition
input, and thus we specifically increased the size of the conditioning network. For this
reason we also had to utilize the Autoencoder pretraining trick, mentioned in Section
5.2. Whitening also showed no positive effect on the training anymore, consequently it
was turned off. We separate the plots by event type, meaning all events with two, three
and four jets are plotted individually. We first trained a regular cINN with no other
augmentations than the increased size on unfolding the ISR as a baseline (Figures A.7 -
A.9). It can be seen that for four jets, the peaks in pT,q1 and pT,q2 are systematically too
low. The same also shows in the invariant mass for four jets, which has too many events
in its tails. We can also see in the two jet plot that the model is overcompensating for
this to overall match the invariant mass distribution.

Since the cINN’s problems mainly lie in the ISR jet events, it might be natural to
assume that the difficulty lies within telling the ISR and W jets apart. Having this
additional task to solve during training might be too hard for the network to learn. We
trained a classifier that labels the jets as either a W or ISR jet to reduce the complexity
of the task. Afterwards we can choose the right order for the jets, so that the network
will automatically learn that only the first two jets are the ones to reconstruct the W
Boson from. Results for the four jet events are provided in Figure A.10. They show
that this approach unfortunately did not ease the training for the cINN.

Finally, getting ISR jet events is not as common as normal events (∼ 80k/180k).
Getting two ISR jets at the same time is even rarer (∼ 30k/180k). This might also
contribute to the cINN not being able to learn this correlation as its occurrence is just
too low. For this reason we trained a model on a dataset in which the prior probabilities
of each, two, three and four jet events, are adjusted to be identical. It is important
to point out that, since we provide the number of jets in the condition for the cINN,
predicting data with different priors than the training data should theoretically not pose
a problem.

From the two jet plots in Figure A.11 it is obvious that the new model performs similar
for two jets to the first model. Notably, the mass distribution is not overestimated
anymore to compensate for the low mass peak in the four jet case. We can also see
improvements over the first model in Figures A.12 and A.13 where the invariant mass
is now considerably better than before. However, this model shows anomalies in px,q1
among other observables in the form of an asymmetric peak (Figure A.14).

6.6. Non-Conditional INN

While the basic INN does not suffice for our purposes, we can still take a look at its
ability to learn the bijective mapping as a way to incorporate both detector unfolding
and simulation in a single model. We train two versions of the INN, the first one follows
the first structure described in Chapter 5. We add noise to the parton side inputs, to
adjust the dimensionality. Then we train the model to reduce the mean-squared distance
between the predicted and true events on either side of the network. We found that it
is beneficial, to reduce the influence of this loss and additionally introduce an MMD

41

6. Results

loss on all of the observables. The network (at least in detector to parton direction) has
no way of incorporating stochastic processes into its predictions. The MMD allows for
some freedom while purely using MSE does not account for this. We also use an MMD
loss on all of the masses, as with the cINN before. We show the results for this model
in Figure A.15.

Since the missing degrees of freedom on either side limit the network in its predictive
power, for the second version of the INN we add additional noise padding of 10 dimen-
sions to either side of the input. We now also include an MMD loss on the noise on
either side to ensure the predicted noise follows the input distribution. In Figure A.16
the results for this model are provided.

We can see that the masses are well approximated by both models. The cut we apply
in the data creation to the pT,j2 of the detector seems to be very hard for the models to
learn. Especially the first model has severe problems learning the detector-level pT,j2 ,
which is likely impelled by the lack of degrees of freedom. It should also be noted
that balancing all of these loss functions adds a considerable amount of hyperparameter
search to the training process.

In Figure 6.4 we also show some calibration curves of the INN with added noise, to
showcase the issue with a regular INN. Even though the mapping is probabilistic, the
distribution we get when sampling from latent space does not take a realistic shape.

Figure 6.4.: Calibration Curves for the INN with noise on the detector distribution of py,W (left) and
the parton distribution of py,W (right). These curves show the INN’s inability to create
meaningful distributions over the events when sampling from its latent space after being
trained with MMD.

6.7. Shifted Masses

The behavior of the model is obviously based on the training dataset we use. This
simulated dataset on the other hand depends on the simulation and the parameters we
use for it. Finally our parameter choice is influenced by our assumptions and intuition

42

6. Results

for physics. However, this can be misleading in some cases, when our model will have a
bias towards predicting the process that we already assumed to be true. We check to see
how big the ability of the model is to correctly predict the underlying process, despite
being trained on data that assumes a different process. For this, we train a model on the
standard dataset and create testing data where the masses of each particle are shifted.

Figure 6.5.: Invariant Masses of the cINN (blue, solid) and the cGAN (green, solid),
when the data deviates from the original training data. Both of the models
stay very close to the old mass peak (red, dashed). Training a cINN without
MMD reduces this bias (blue, dashed). However, it is still very much shifted
towards the old mass peak.

As can be seen in Figure 6.5, the invariant mass distribution generated by the cINN
and the cGAN very closely follow the unshifted distribution. When we use no MMD
to train the model, the peak is still way closer to the old mass peak, but we can see a
clear shift towards the new mass peak, which could help spot the shift in distributions.
The reason for why the models trained with MMD do not respond to the shifted mass
is likely the fact that we marginalize over a batch of events when calculating the MMD
during training. By doing this, as explained in Section 5.4, we decorrelate the invariant
mass distribution of the particles from the detector-level input. A working conditional
MMD could potentially fix this problem.

6.8. Hidden Mother Particle

We simulate a process where sometimes a hidden particle W’ is created before the W
and Z Bosons to showcase how we could find new particles with the help of the cINN.
This W’ particle then decays into the W and Z particles, which individually follow the
same distributions as before. The difference is the correlation between W and Z, more
specifically adding the four-vectors of W and Z back together will result in a very specific
mass peak in the cases where the W’ was created. We again use a model that has been
trained on data without any W’ production.

Figure 6.6 shows that both the cINN and cGAN detect the mass peak, the cINN’s
response is considerably more pronounced. In this case, even though the sharp peak is

43

6. Results

Figure 6.6.: Masses of the sum of the Z and W Boson for the cINN (blue) and the cGAN
(green), on a dataset where a W’ particle has been created in some events.
Both models capture the new mass peak, the cINN predicts the shape more
accurately.

not matched exactly, both networks would have shown some anomaly that could help
us detect the particle.

44

7. Conclusion

In this work, we used cINNs to unfold detector effects and showering on simulated
data, introduced during the measurement of ZW production. We showed that the cINN
outperforms the cGAN when slicing and creates statistically more coherent results. Our
model can accurately map distributions of low level observables on the sliced and full
phase space, as well as the invariant masses of the full phase space. While the cINN
contributes to reducing the error in comparison to the cGAN, the masses of the sliced
phase space still show deviations from the true distribution. We show the limits of the
new architecture when introducing new disruptive effects in the form of ISR. The bias
affinity when training the cINN with MMD was depicted as it was not able to detect a
mass shift in a test dataset. We show that the cINN is able to detect a hidden mother
particle from collision data, by reconstructing its mass peak, even if it wasn’t present
in its training data. Employing new techniques from generative tasks will likely be
able to improve these results even further. A next step could consist of improving the
conditional MMD to address the problems with slicing and possibly the bias we acquired
from using regular MMD.

45

A. Appendix

In the following pages, additional figures for the results from Chapter 6 are provided.

Figure A.1.: Invariant masses of the W Boson generated by a cINN trained without
MMD.

0 100 200 300 400
Ej1 [GeV]

0

20

40

60

80

100

120

140

p T
,Z

[G
eV

]

Real

0 100 200 300 400
Ej1 [GeV]

0

20

40

60

80

100

120

140

p T
,Z

[G
eV

]

Generated

0 100 200 300 400
Ej1 [GeV]

0

20

40

60

80

100

120

140

p T
,Z

[G
eV

]

0

100

200

300

400

500

0

100

200

300

400

−1.0

−0.5

0.0

0.5

1.0

Figure A.2.: Correlation plot of the cINN. The left panel shows the true correlation, the middle panel
the generated correlation and the right panel the difference between the two.

46

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.01

0.02

0.03

0.04

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.3.: Slice I distributions for the cINN (blue) and GAN (green). Only events with the detector
measurements in the range of pT,j1 = 30 ... 100 GeV are used.

47

A. Appendix

0.00

0.01

0.02

0.03

0.04

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.4.: Slice II distributions for the cINN (blue) and GAN (green). Only events with the detector
measurements in the range of pT,j1 = 30 ... 60 GeV and pT,j2 = 30 ... 50 GeV are used.

48

A. Appendix

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.002

0.004

0.006

0.008

0.010

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.0

0.1

0.2

0.3

0.4

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.5.: Slice III distributions for the cINN (blue) and GAN (green). Only events with the detector
measurements in the range of pT,j1 = 30 ... 50 GeV, pT,j2 = 30 ... 40 GeV and pT,`− =
20 ... 50 GeV are used.

49

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.01

0.02

0.03

0.04

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

FCGAN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

FCGAN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.6.: Slice IV distributions for the cINN (blue) and GAN (green). Only events with the detector
measurements in the range of pT,j1 > 60 GeV are used.

50

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

Truth

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

Truth

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

Truth

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

cINN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.7.: Predictions of the cINN trained on a dataset with ISR. Only events where two jets were
measured at the detector are shown.

51

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

Truth

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

Truth

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

Truth

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

cINN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.8.: Predictions of the cINN trained on a dataset with ISR. Only events where three jets were
measured at the detector are shown.

52

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

Truth

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

Truth

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

Truth

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

cINN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.9.: Predictions of the cINN trained on a dataset with ISR. Only events where four jets were
measured at the detector are shown.

53

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

Truth

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

Truth

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

Truth

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

cINN

no Slice

65 70 75 80 85 90 95 100 105
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.10.: Predictions on data with ISR for the events where four jets were measured by a cINN
augmented by the classifier labels

54

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

no Slice

65 70 75 80 85 90 95
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.11.: Predictions on data with ISR of the cINN with adjusted priors for the events where two
jets were measured at the detector

55

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

no Slice

65 70 75 80 85 90 95
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.12.: Predictions on data with ISR of the cINN with adjusted priors for the events where three
jets were measured at the detector

56

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025
1 σ

d
σ

d
p
T
,q

1
[G

eV
−

1
]

True

cINN

no Slice

0 25 50 75 100 125 150 175 200
pT,q1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

True

cINN

no Slice

0 20 40 60 80 100 120 140
pT,q2 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 σ
d
σ

d
E
W

[G
eV
−

1
]

True

cINN

no Slice

0 200 400 600 800
EW [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

True

cINN

no Slice

65 70 75 80 85 90 95
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.13.: Predictions on data with ISR of the cINN with adjusted priors for the events where four
jets were measured at the detector

0.000

0.002

0.004

0.006

0.008

0.010

1 σ
d
σ

d
p
x
,q

1
[G

eV
−

1
]

True

cINN

no Slice

−200 −100 0 100 200
px,q1 [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.14.: Generated distribution by the cINN with adjusted ratios on ISR data
of px,q1 for events where two jets were measured. The model shows an
asymmetric peak at the positive bulk of px,q1 .

57

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

1 σ
d
σ

d
p
T
,j

1
[G

eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

0 25 50 75 100 125 150 175 200
pT,j1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 σ
d
σ

d
p
T
,j

2
[G

eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

0 20 40 60 80 100 120
pT,j2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

65 70 75 80 85 90 95
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.15.: Full Phase Space Distributions for the INN without noise. The model does not learn the
detector distribution pT,j2 where a cut was applied.

58

A. Appendix

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1 σ
d
σ

d
p
T
,j

1
[G

eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

0 25 50 75 100 125 150 175 200
pT,j1 [GeV]

0.8

1.0

1.2

m
o
d

el
T

ru
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 σ
d
σ

d
p
T
,j

2
[G

eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

0 20 40 60 80 100 120
pT,j2 [GeV]

0.8

1.0

1.2
m

o
d
el

T
ru

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 σ
d
σ

d
M
W

[G
eV
−

1
]

Truth

INN Parton

Delphes

INN Delphes

65 70 75 80 85 90 95
MW [GeV]

0.8

1.0

1.2

m
o
d
el

T
ru

e

Figure A.16.: Full Phase Space Distributions for the INN with noise. While improvements are made in
pT,j2 compared to the INN without noise, the peak still does not fit the sharp cut of the
dataset.

59

Bibliography

[1] Altarelli, G., & Wells, J. (n.d.). Collider physics within the standard model : a
primer.

[2] Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E. W., Klessen, R. S.,
. . . Köthe, U. (2018). Analyzing Inverse Problems with Invertible Neural Networks.
Retrieved from http://arxiv.org/abs/1808.04730

[3] Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided
Image Generation with Conditional Invertible Neural Networks. Retrieved from
http://arxiv.org/abs/1907.02392

[4] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN.
http://arxiv.org/abs/1701.07875

[5] Bellagente, M., Butter, A., Kasieczka, G., Plehn, T., & Winterhalder, R. (2019). How
to GAN away Detector Effects. Retrieved from http://arxiv.org/abs/1912.00477

[6] Beringer, J., Arguin, J. F., Barnett, R. M., Copic, K., Dahl, O., Groom,
D. E., . . . Schaffner, P. (2012). Review of particle physics. Physical Re-
view D - Particles, Fields, Gravitation and Cosmology, 86(1), 010001.
https://doi.org/10.1103/PhysRevD.86.010001

[7] Butter, A., Plehn, T., & Winterhalder, R. (2019). How to GAN LHC Events. SciPost
Physics, 7(6). https://doi.org/10.21468/SciPostPhys.7.6.075

[8] Cacciari, M., Salam, G. P., & Soyez, G. (2008). The anti-k t jet clustering algorithm.
https://doi.org/10.1088/1126-6708/2008/04/063

[9] Cern. About — Worldwide LHC Computing Grid. (n.d.). Retrieved February 28,
2020, from https://wlcg-public.web.cern.ch/about

[10] Chen, T., Lucic, M., Houlsby, N., & Gelly, S. (2018). On Self Modulation for
Generative Adversarial Networks. 7th International Conference on Learning Repre-
sentations, ICLR 2019. http://arxiv.org/abs/1810.01365

[11] Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E.
(2019). On Empirical Comparisons of Optimizers for Deep Learning. Retrieved from
http://arxiv.org/abs/1910.05446

[12] de Favereau, J., Delaere, C., Demin, P., Giammanco, A., Lemâıtre, V., Mertens,
A., & Selvaggi, M. (2013). DELPHES 3, A modular framework for fast simula-
tion of a generic collider experiment. Journal of High Energy Physics, 2014(2).
https://doi.org/10.1007/JHEP02(2014)057

60

Bibliography

[13] de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., &
Courville, A. (2017). Modulating early visual processing by language. Ad-
vances in Neural Information Processing Systems, 2017-December, 6595–6605.
http://arxiv.org/abs/1707.00683

[14] Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using Real
NVP. Retrieved from http://arxiv.org/abs/1605.08803

[15] Gao, C., Hoeche, S., Isaacson, J., Krause, C., & Schulz, H. (2020). Event Generation
with Normalizing Flows. Retrieved from http://arxiv.org/abs/2001.10028

[16] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., . . . Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (Vol. 3, pp. 2672–2680). Neural information processing
systems foundation. https://doi.org/10.3156/jsoft.29.5 177 2

[17] Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. J. (2012). A
Kernel Two-Sample Test. The Journal of Machine Learning Research, 13, 723–773.

[18] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
http://arxiv.org/abs/1207.0580

[19] Kessy, A., Lewin, A., & Strimmer, K. (2015). Optimal whiten-
ing and decorrelation. American Statistician, 72(4), 309–314.
https://doi.org/10.1080/00031305.2016.1277159

[20] Kingma, D. P., & Ba, J. L. (2015, December 22). Adam: A method for stochastic
optimization. 3rd International Conference on Learning Representations, ICLR 2015
- Conference Track Proceedings.

[21] Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative Flow with Invertible 1x1
Convolutions. Advances in Neural Information Processing Systems, 2018-December,
10215–10224. Retrieved from http://arxiv.org/abs/1807.03039

[22] Kobyzev, I., Prince, S., & Brubaker, M. A. (2019). Normalizing
Flows: An Introduction and Review of Current Methods. Retrieved from
http://arxiv.org/abs/1908.09257

[23] Kramer, M. A. (1991). Nonlinear principal component analysis us-
ing autoassociative neural networks. AIChE Journal, 37(2), 233–243.
https://doi.org/10.1002/aic.690370209

[24] Krogh·, A., & Hertz, J. A. (1992). A Simple Weight Decay Can Improve General-
ization.

[25] Li, Y., Swersky, K., & Zemel, R. (2015). Generative Moment Matching Networks.
32nd International Conference on Machine Learning, ICML 2015, 3, 1718–1727.
Retrieved from http://arxiv.org/abs/1502.02761

61

Bibliography

[26] Livan, M., & Wigmans, R. (2019). Calorimetry for Collider Physics, an Introduc-
tion. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-
23653-3

[27] Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. Re-
trieved from http://arxiv.org/abs/1411.1784

[28] Montgomery, D. C., & Runger, G. C. (2011). Applied statistics and probability for
engineers. Wiley.

[29] NESTEROV, & E., Y. (1983). A method for solving the convex programming prob-
lem with convergence rate O(1/k2̂). Dokl. Akad. Nauk SSSR, 269, 543–547.

[30] Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning. Retrieved
from http://arxiv.org/abs/1811.03378

[31] Ragusa, F., & Rolandi, L. (2007). Tracking at LHC. New Journal of Physics, 9(9),
336. https://doi.org/10.1088/1367-2630/9/9/336

[32] Ren, Y., Li, J., Luo, Y., & Zhu, J. (2016). Conditional Generative Moment-
Matching Networks. Retrieved from http://arxiv.org/abs/1606.04218

[33] Sisson, S. A., Fan, Y., & Beaumont, M. A. (2018). Overview of Approximate
Bayesian Computation. http://arxiv.org/abs/1802.09720

[34] Sjöstrand, T., Lönnblad, L., & Mrenna, S. (2001). PYTHIA 6.2 Physics and Man-
ual. Retrieved from http://arxiv.org/abs/hep-ph/0108264

[35] Song, H., Kim, M., Park, D., & Lee, J.-G. (2019). Prestopping: How Does Early
Stopping Help Generalization against Label Noise? http://arxiv.org/abs/1911.08059

[36] Souza, César R. “Kernel Functions for Machine Learning Applications.”
17 Mar. 2010. Web. http://crsouza.blogspot.com/2010/03/kernel-functions-for-
machine-learning.html .

[37] Subramanian, V. (n.d.). Deep learning with PyTorch : a practical approach to
building neural network models using PyTorch.

[38] Tsamparlis, M. (2019). Special Relativity. Cham: Springer International Publish-
ing. https://doi.org/10.1007/978-3-030-27347-7

62

	Introduction
	Physics Background
	Invariant Mass
	Initial State Radiation

	Machine Learning Background
	Neural Networks
	Layers
	Optimizers
	Activation Functions
	Overfitting

	Related Work
	Generative Adversarial Networks
	Conditional GANs

	Method
	Invertible Neural Networks
	Coupling Blocks
	Loss Functions
	Parton-Noise Correlation

	Conditional INNs
	Transformation of Distributions
	Conditioning Networks

	All-In-One Coupling Block
	Maximum Mean Discrepancy
	Kernels
	Conditional MMD

	Whitening

	Results
	Full Distributions
	Slices
	Calibration Curves
	Single Points
	Initial State Radiation
	Non-Conditional INN
	Shifted Masses
	Hidden Mother Particle

	Conclusion
	Appendix

