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Einschränkung der Inflation mit dem Square Kilometer Array:

Das Square Kilometer Array (SKA) ermöglicht es, die Verteilung der Wasser-
stoffatome im Universum über große Rotverschiebungsskalen hinweg zu messen.
Mit dem dreidimensionalen 21 cm Spektrum können nicht nur Präzisionsmes-
sungen von astrophysikalischen Phänomenen, sondern auch von kosmologischen
Größen vorgenommen werden. Bereits für einen kleinen Rotverschiebungsbereich
kann das SKA Hubble slow-roll Parameter bedeutend stärker einschränken als die
Cosmic Micorwave Background (CMB) Messungen der Temperaturanisotropien
des Planck Satelliten. Diese Arbeit liefert eine kurze Einführung in die Physik
der Inflation, erklärt wie das Krümmungsspektrum direkt nach der Inflation
durch die Hubble slow-roll Parameter konstruiert werden kann und stellt eine
Möglichkeit vor, SKA Daten zu simulieren. Mit Hilfe dieser simulierten Daten
werden schließlich Grenzen für die Hubble slow-roll Parameter aus den kom-
binierten Planck und simulierten SKA Daten berechnet.

Constraining Single Field Inflation with the Square Kilometer Array:

The Square Kilometer Array (SKA) will map the distribution of neutral hydrogen
in the Universe over a vast redshift range. The three-dimensional 21 cm power
spectrum found through this map can be used to perform precision tests not only
in astrophysics but also in cosmology. Even considering only a small redshift
range it will allow to significantly improve current constraints on the Hubble
slow-roll parameters when combined with the Cosmic Microwave Background
(CMB) anisotropies measurement of the Planck satellite. This thesis will give
a short introduction into the physics of inflation, explore how to construct a
primordial power spectrum based on the Hubble slow-roll parameters, present
a way to construct a likelihood for the SKA and provide improved constraints
on the Hubble slow-roll parameters when combining this likelihood with the one
computed with the Planck 2018 data.
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1 Introduction

Inflation is a period in the early Universe first proposed by Guth [1981] to explain
some of the open questions in the standard model of cosmology. It postulates a
phase of accelerated expansion in the early Universe, explaining the isotropy of the
Cosmic Microwave Background (CMB) even on scales that were never in causal
contact in the standard cosmological model (ΛCDM). Cosmological perturbations
during inflation give a way to seed structure formation. Thus, inflation can on
the one hand be probed by considering the temperature anisotropies in the CMB
Akrami et al. [2020], which reflect the cosmological perturbations during inflation.
On the other hand, the density power spectrum encoding the distribution of dark
and luminous matter yields additional information on this period of accelerated
expansion.

In this thesis single field inflation is considered, which can be constrained through
the properties of the curvature power spectrum at the end of inflation. For that
purpose, it is parameterized as a Taylor series around an arbitrarily chosen pivot
scale k∗. The parameters influencing the shape of the spectrum are the scalar am-
plitude As, the spectral index ns and further logarithmic derivatives of the spectral
index with respect to the comoving wave number. This approach allows to derive
constraints on inflationary models by computing these quantities in the model con-
sidered. Single field inflation can also be studied in a model independent way by
constraining the Hubble function during inflation through its derivatives with re-
spect to the inflaton field. For more desirable statistical properties so called Hubble
slow-roll parameters have been constructed from these derivatives. An early de-
scription of the Hubble slow-roll parameters can be found in Liddle et al. [1994] and
Stewart and Gong [2001]. The focus of this thesis will be on the second approach
with the exact method described in Lesgourgues et al. [2008]. Here, the Hubble
function is approximated as a Taylor series in the inflaton field values, which is then
used to compute the background evolution and the solution to the mode equation
described in Mukhanov et al. [1992].

In addition to the original paper, this approach has been used in the generation
of constraints for the Hubble slow-roll in Hamann et al. [2008], Ade et al. [2016]
and Akrami et al. [2020]. This thesis will reproduce the Planck 2018 result, and
also give a forecast for the constraints that can be obtained by applying the same
method to the Square Kilometer Array (SKA) which being constructed in Australia
and South Africa. The SKA will be able to measure the 21 cm hyperfine line of
neutral hydrogen during the Epoch of Reionization and into the dark ages Dewdney
[2015]. Useful descriptions of the SKA and its properties can be found in Dewdney
[2015], Pritchard et al. [2015] and Bacon et al. [2020].
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Forecasts for the noise level, foreground removal and likelihoods for SKA have
been found by Bowman et al. [2007], McQuinn et al. [2006], Mao et al. [2008] and
Tegmark and Zaldarriaga [2009]. Similar to Muñoz et al. [2017], this thesis focuses
on the redshift region of 8 to 10 and bases the construction of the SKA likelihoods
on their analysis. However, the parameters used to constrain inflation as well as the
method to compute the contours are chosen differently.

There are several works on constraining inflation using the SKA Kohri et al.
[2013], Muñoz et al. [2017], Pourtsidou [2016] where the formalism used relies on
constraining the curvature spectrum after inflation. In Barger et al. [2009b], the
Hubble slow-roll parameters are constrained, however, the formalism used in that
work relies on computing the spectral index and its running from them. All three
of these rely on the Fisher matrix approximation in their analysis. In addition to
constraining the Hubble function during inflation directly, the approach in this thesis
uses Markov chain Monte Carlo to derive the contours. This provides a method to
probe the parameter space in a more detailed way. Recently Sprenger et al. [2019]
have used the same method to find constraints on cosmological parameters using
the SKA, however, they consider only the scalar amplitude and spectral index to
constrain the primordial spectrum. They also consider a different redshift region to
derive their constraints.

Chapter 2 of the thesis is meant to give a short overview over single field inflation
and provide an overall intuition for the more exact calculations presented in chapter
3. It deals with primordial fluctuations as the origin of structures in the Universe
and describes the evolution of the fluctuations using the mode equation until the
end of inflation. Chapter 4 briefly describes the angular power spectra measured by
the Planck satellite, the power spectrum associated with large scale structures and
how they are linked to the primordial power spectrum.

Chapters 5 and 6 give a short overview over the methods used and the differ-
ent codes and packages relevant to find the power spectra at arbitrary redshifts.
This includes a description of the slow-roll parameters used in the analysis as well
as how the mode equation and background equation are solved using them as an
approximation.

The last three chapters focus on the results obtained through the setup described
in 6. In chapter 7 the setup is used to reproduce the Planck 2018 Akrami et al.
[2020] results to verify that it is viable to use it for different experiments. The
spectral index and its runnings as well as the Hubble slow-roll parameters are then
constrained using only the SKA in chapter 8 and finally using both of them combined
in chapter 9.
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2 Inflation
The inflationary paradigm was first proposed by Guth [1981] to cure the standard
cosmological model (ΛCDM) of both the horizon and the flatness problem. Instead
of setting an initial condition for the ΛCDM such that the Universe is homogeneous
at early times even over distances that were not in causal contact, the inflationary
paradigm postulates a period of accelerated expansion of a causally connected region
which then makes up the entire observed Universe. This would also explain the small
curvatures observed today.

This chapter is devoted to the basics of single field inflation, how it solves the
problems mentioned above and forms a foundation upon which all further discussion
in this thesis can be based.

2.1 Geometry and Dynamics
For the purpose of this thesis the Universe will be considered as a Friedmann-
Lemaître-Robertson-Walker (FLRW) Universe, here the metric is defined as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(2.1)

where a is the scale factor, k ∈ {−1, 0, 1} characterizes the spatial curvature and
the speed of light is set for the rest of this thesis. Here, k = −1 corresponds to
negative, k = 0 to zero and k = 1 to positive curvature. The metric described in
(2.1) exhibits a rescaling symmetry

a→ λa, r → r

λ
, k → λ2k.

Spacetime remains unchanged under the simultaneous rescaling of these quantities.
This allows to set a value for the scale factor today as a0 = a(t0) = 1 which in turn
means that the scale factor is set to be dimensionless while r and k−1/2 inherit the
dimension of length. By a variable transformation

r2 = Φk(χ
2) =


sinh2 χ k = −1

χ2 k = 0

sin2 χ k = +1

(2.2)

the metric can be rewritten as

ds2 = −dt2 + a2(t)(dχ2 + Φk(χ
2))(dθ2 + sin2 θdφ2). (2.3)
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Since the causal structure of the Universe depends on the propagation of light which
travels along null geodesics ds2 = 0, it is convenient to define conformal time as

τ =

∫
dt

a(t)
. (2.4)

The metric then takes the form

ds2 = a(τ)2
[
−dτ 2 + (dχ2 + Φk(χ

2))(dθ2 + sin2 θdφ2)
]
. (2.5)

For the metric defined as above the dynamics of the Universe can be found by
considering the Einstein equation

Gµν = 8πGTµν − Λgµν

where the Einstein tensor is governed by the spacetime curvature and the stress-
energy tensor depends on the matter content of the Universe. In the following, units
are chosen such that 8πG = 1.

The stress energy-tensor can be derived using the isotropy and homogeneity of the
Universe to be the stress-energy tensor of a perfect fluid. It follows a four component
conservation equation ∇µT

µ
ν = 0, which for a perfect fluid, can be written as

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (2.6)

where ρ is the energy density and P the pressure in the fluid rest frame. Combining
this with the Einstein tensor for FLRW-space yields the Friedmann equations

H2 =
ρ

3
− k

a2
(2.7)

ä

a
= −1

6
(ρ+ 3P ). (2.8)

Here; the H = ȧ
a

denotes the Hubble parameter. In a flat Universe one can define
the critical density as

ρcrit,0 = 3H2
0

where the 0 denotes present time.

2.2 The Horizon Problem
In order to understand the motivation for postulating a period of accelerated expan-
sion, the concept of horizons, the particle horizon in particular, becomes relevant.
It is the greatest comoving coordinate distance from which an observer at time t is
able to receive signals moving at the speed of light.
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Since radial propagation with the speed of light is governed by

ds2 = a(τ)2
[
dτ 2 − dχ2

]
= 0. (2.9)

Radial null geodesics satisfy χ(τ) = ±τ+const. This allows to quantify the definition
of the comoving particle horizon as

χph = τ − τi =

∫ t

ti

dt

a(t)
. (2.10)

Here, τi is some initial comoving time, typically the time of the Big Bang. The
comoving particle horizon can also be defined in terms of the comoving Hubble
radius (aH)−1 via

χph =

∫ t

ti

dt

a(t)
=

∫ a

ai

da

aȧ
=

∫ ln a

ln ai

(aH)−1d ln a, (2.11)

where ai = 0 is the scale factor at the Big Bang singularity.
In a Universe dominated by a perfect fluid with constant equation of state ω = P

ρ

the comoving Hubble radius can be expressed as

(aH)−1 = H−1
0 a

1
2
(1+3ω), (2.12)

where H0 denotes the current Hubble parameter. For the radiation and matter
dominated epochs the equation of state fulfills (1 + 3ω) > 0. The integral equation
for the particle horizon can then be solved, which yields

χph =
2H−1

0

1 + 3ω
[a

1
2
(1+3ω) − a

1
2
(1+3ω)

i ] (2.13)

=
2

1 + 3ω
[(aH)−1 − (aH)−1

i ]. (2.14)

Particles that are at comoving coordinate distance greater than the particle horizon
can never have communicated. Particles that are at greater comoving coordinate
distance than the comoving Hubble radius (aH)−1 cannot communicate in one ex-
pansion time tH = H−1. For standard Big Bang cosmology the particle horizon is
dominated by the Hubble radius at late times. This can be seen by setting ai → 0
while keeping in mind that the equation of state still fulfills (1 + 3ω) > 0.

The horizon problem arises when considering two points in the Cosmic Microwave
Background (CMB), the light emitted right after the recombination of electrons
and protons, in opposite directions in the sky. Using equation (2.13) it is possible
to construct a particle horizon for each of these points. Comparing the size of
the particle horizons with the spatial difference of the points at the time of CMB
emission results in the conclusion that they were not in causal contact at any time in
standard Big Bang cosmology. However, the CMB is almost perfectly isotropic, the
points in opposite directions of the sky are almost exactly at the same temperature.
This observation seems to imply that, contrary to the result obtained by assuming
standard Big Bang cosmology, at least all of the observable points in the CMB
appear to have been in causal contact at some point in the history of the Universe.
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2.2.1 Solution to the Horizon Problem
The horizon problem can be solved if there is some process that increases the size
of the particle horizon in the early Universe. A possible way of achieving this is to
assume a shrinking Hubble radius with

d

dt
(aH)−1 < 0. (2.15)

If this period of decreasing Hubble radius lasts long enough, it can significantly
expand the particle horizon of any point. This condition requires a fluid with (1 +
3ω) < 0. Taking this into account and letting the scale factor go to zero in equation
2.13 will lead to the conclusion that the size of the particle horizon must now be
dominated by the early time Hubble radius. This pushes the beginning of the
Universe to negative conformal times and τ = 0 is the transition point between
ordinary Big Bang cosmology and inflationary cosmology Baumann [2012]. The
statement that the period of decreasing Hubble radius must last long enough can
be made more precise by assuming that at least all of the observable Universe today
must have been in causal contact at some point to solve the horizon problem. The
Hubble radius of the Universe today must then fit into the Hubble radius at the
beginning of inflation.

(a0H0)
−1 < (aIHI)

−1 (2.16)

To get an estimate of how much the Hubble radius needs to decrease during inflation
the expansion of the Universe after inflation needs to be estimated. This can be done
by assuming the Universe to be radiation dominated after inflation (ω = 1/3) and
that its expansion is adiabatic. In that case equation (2.12) can be used to find

a0H0

aEHE

=
a0
aE

a2E
a20

=
aE
a0

∼ T0
TE

∼ 10−28. (2.17)

Here the temperature at the end of inflation, the reheating temperature, is estimated
as TE ∼ 1015 GeV and the current temperature of the Universe is T0 = 10−13 eV
Baumann [2012]. This allows to find by how much the Hubble radius has decreased
during inflation

(aIHI)
−1

(aEHE)−1
> 1028 (2.18)

Under the assumption that the Hubble parameter is constant during inflation, which
will be motivated later, this can be rewritten as

aE
aI

> 1028, ln

(
aE
aI

)
> 64. (2.19)

Thus, the scale factor increases by a factor of e64 or by 64 e-folds.
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2.3 The Flatness Problem

In addition to the horizon problem, there is another puzzle in the ΛCDM which
inflation is able to address. By defining the critical density in a time dependent way
as ρcrit > (a) ≡ 3H(a)2 and considering the curvature parameter Ωk ≡ Ω−1 = ρ−ρcrit

ρcrit
it is possible to find

Ω− 1 =
3k

a2ρcrit
=

k

(aH)2
(2.20)

by utilizing the Friedmann equation (2.7). This curvature parameter can be mea-
sured at current time to be of order one. As the Hubble radius increases in the
standard cosmological model, the value of the curvature parameter must be fine
tuned to a very small value in order to explain its value today. In fact, at the
Planck scale assumes the value Baumann [2012]

|Ω(apl)− 1| ≤ O(10−61). (2.21)

Similarly to the horizon problem, the flatness problem can be solved by requiring
a period in the evolution of the Universe where the Hubble radius decreases. As with
the horizon problem the amount the Hubble function needs to decrease to solve the
flatness problem can be estimated. This is done by setting the curvature parameter
at the beginning of the radiation phase, i.e. the end of inflation to the value in
expression (2.21). Its value at the beginning of inflation should be of order one to
avoid having to fine tune its initial value. This allows to find

(
Ω(aI)− 1

Ω(aE)− 1

) 1
2

=
(aIHI)

−1

(aEHE)−1
∼ O(1030), (2.22)

which is consistent with the number found in expression 2.18.

2.4 Equivalent Ways of Characterizing Inflation

Both the horizon problem and the flatness problem can be solved by assuming a
period of decreasing Hubble radius in the early Universe. This period is called
inflation and can also be characterized as either a period of accelerated expansion,
slowly varying Hubble parameter or negative pressure. All of these are equivalent
and can be derived from the original assumption of a decreasing Hubble radius.
This also allows to recover tools to describe inflation more conveniently for the later
chapters.
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• Accelerated expansion: Taking the time derivative of the Hubble radius yields

d

dt
(aH)−1 =

d

dt

1

ȧ
(2.23)

= − ä

ȧ2
(2.24)

= − ä

(aH)2
. (2.25)

The condition d
dt
(aH)−1 < 0 then translates into ä > 0 which means that the

Universe undergoes an accelerated expansion during inflation.

• Slowly varying Hubble parameter: The Hubble parameter must be slowly
varying since d

dt
H = ä

a
−H2 can be rewritten as

ä

a
= H2

(
Ḣ

H2
+ 1

)
(2.26)

which in turn can be brought to the form

− ä

(aH)2
=

1

a

(
Ḣ

H2
+ 1

)
. (2.27)

Since the left hand side is now the time derivative of the Hubble radius, this
gives the condition − Ḣ

H2 < 1. In terms of e-folds, this can be rewritten into

− Ḣ

H2
= −d lnH

dN
< 1, (2.28)

where the measure for the number of e-folds is defined as dN = Hdt = d ln a.

• Negative pressure (P < −1
3
ρ): Combining the first Friedmann equations (2.7)

in a Universe with no or negligible curvature H2 = 8πG
3
ρ with the four compo-

nent conservation equation 2.6 ρ̇ = −3H(ρ+P ) allows to give a condition for
the pressure during inflation. By taking the time derivative of the Friedmann
equation and inserting the continuity equation one obtains

Ḣ = −1

2
(ρ+ P ). (2.29)

Inserting this and equation (2.7) into expression (2.28) yields

3

2

(
1 +

P

ρ

)
≤ 1. (2.30)

This can be used to find the equation of state parameter during inflation as
ω = P

ρ
< −1

3
. Since the density is always positive, this results in negative

pressure during inflation.
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2.5 Scalar Field Inflation
For a simple model of inflation it is sufficient to consider a scalar field φ, the inflaton
and couples it to gravity as described in this action

Sφ =

∫
d4x

√
−g
[
1

2
gµν∇µφ∇νφ− V (φ)

]
. (2.31)

Here g denotes the determinant of the metric gµν and V (φ) is a potential describing
the self interaction of the inflaton field. Given this action, it is possible to find condi-
tions for the inflaton field and its potential that allow for an accelerated expansion.
To that end, the energy-momentum tensor Tµν can be found by varying the metric
by some δgµν in the expression Sφ. This leads to

Tµν = ∇µφ∇νφ− gµν

(
1

2
gαβ∇αφ∇βφ− V (φ)

)
. (2.32)

In the FLRW metric (2.1) spatial homogeneity was assumed. Restricting the inflaton
field to also be homogeneous, which is equivalent to considering only the background
field without quantum fluctuations, allows to simplify the energy-momentum tensor.
Considering the time time component yields

T 0
0 = V (φ) +

1

2
φ̇2. (2.33)

The time space components all yield T 0
i = 0, while the space space components give

T ij = −δij(V (φ)− 1

2
φ̇2). (2.34)

The energy-momentum tensor thus takes the form of perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) (2.35)

Pφ =
1

2
φ̇2 − V (φ). (2.36)

This results in the equation of state parameter

ωφ =
Pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.37)

From the discussion on negative pressure during inflation in the previous section it
is clear that ωφ < −1

3
must hold to have a period of accelerated expansion. Thus,

inflation happens when the potential energy dominates over the kinetic energy of
the inflaton field.

The field equation of motion can be obtained by varying the action (2.31) with
respect to the inflaton field. This gives

1√
−g

∂µ(
√
−g∂µφ) + dV

dφ
= 0, (2.38)
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finding the determinant of the metric as √
−g = a3 yields

∂µ∂
µφ+

3

a
(∂µa)(∂

µφ) +
dV

dφ
= 0. (2.39)

With a homogeneous inflaton field φ = φ(t) this results in

φ̈+ 3Hφ̇+
dV

dφ
= 0, (2.40)

as the equation of motion of the inflaton field. Together with the Friedmann equation

H2 =
1

3
ρ =

1

3

(
1

2
φ̇2 + V (φ)

)
, (2.41)

this determines the dynamics of the scalar field and the FLRW geometry. The same
result can be obtained by taking a time derivative of the first Friedmann equation
and inserting the second Friedmann equation.

2.6 Slow-Roll Inflation
By considering expression (2.27) it becomes clear that inflation can only be sustained
if the Hubble function varies slowly. To quantify this, the first slow-roll parameter
is defined as

ε ≡ − Ḣ

H2
. (2.42)

The condition for accelerated expansion can then be concisely written as ε < 1. In
terms of the inflaton field and the potential this parameter can be expressed as

ε = 3
1
2
φ̇

1
2
φ̇+ V (φ)

= 3
1
2
φ̇

ρ
=

1
2
φ̇

H2
. (2.43)

The first slow-roll parameter thus remains small as long as the potential energy is
much larger than the kinetic energy

φ̇2 � V (φ). (2.44)

From the discussion in sections 2.2 and 2.3 it is clear that this phase of accelerated
expansion needs to last long enough to solve the horizon and the flatness problem.
Thus, the potential energy needs to dominate over kinetic energy during that period.
This can only be true if the acceleration of the scalar field remains small. The
dimensionless acceleration per Hubble time quantifies this as

δ = − φ̈

Hφ̇
. (2.45)
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By taking the time derivative of the first slow-roll parameter

ε̇ =
φ̈φ̇

H2
− φ̇2 Ḣ

H3
(2.46)

it is possible to link the dimensionless acceleration per Hubble time δ to the second
slow-roll parameter η defined by

η ≡ ε̇

Hε
= 2

φ̈

Hφ̇
− 2

Ḣ

H2
= 2(ε− δ). (2.47)

The conditions for slow-roll inflation then read ε, |δ| � 1 or equivalently ε, |η| � 1.
These guarantee that there is a sustained period of accelerated expansion.

For small slow-roll parameters it is possible to simplify the equations of motion
using the slow-roll approximation. In the regime where slow-roll inflation happens
the potential energy dominates over the kinetic energy, see 2.43, so V (φ) � 1

2
φ̇.

This allows to approximate the first Friedmann equation (2.41) as

H2 =
1

3
V (φ). (2.48)

The Hubble parameter during slow-roll inflation can then be completely determined
by the potential energy of the inflaton field. Since it is clear from (2.28) that the
Hubble parameter must vary slowly, the same must be true for the potential. Since
in addition to ε � 1 slow-roll inflation satisfies |δ| � 1 which implies

∣∣∣φ̈∣∣∣ � ∣∣∣Hφ̇∣∣∣.
The equation of motion can be simplified to

3Hφ̇ = −dV

dφ
(φ) = −V ′(φ). (2.49)

Here and in the following, primes denote derivatives with respect to the inflaton
field. It is convenient to define approximate slow-roll parameters solely based on the
potential of the inflaton field as

εV =
M2

pl

2

(
V ′

V

)2

(2.50)

ηV =M2
pl

V ′′

V
. (2.51)

The reduced Planck mass Mpl = 1/
√
8πG was temporarily reintroduced to make

the parameters dimensionless. Indeed, by inserting the slow-roll approximation of
the equations of motion into the expressions for ε and η, the relations

ε = εV η = ηV − εV (2.52)

can be recovered. The parameters εV and ηV are called potential slow-roll parame-
ters.
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It is often useful to give a description of the amount of inflation happening before
the end of inflation tend as the number of e-folds N that the scale factor a grows,

aend = aeN . (2.53)

In slow-roll inflation this quantity can be expressed as

N(φ) = ln
aend
a

=

∫ tend

t

Hdt =

∫ φend

φ

H

φ̇
dφ ≈

∫ φ

φend

V

V ′ (φ)dφ. (2.54)

In terms of the slow-roll parameters this reads as

N(φ) =

∫ φend

φ

dφ√
2ε

≈
∫ φ

φend

dφ√
2εV

. (2.55)

The total amount of e-folds during inflation can then be obtained by integrating up
to the inflaton field value at the end of inflation or up to the time when inflation
ends. This time or field value is characterized by ε(φend) = 1 since the accelerated
expansion of the Universe stops at that point, see equations (2.27) and (2.25).

2.7 Reheating
In order for the expansion of the Universe to resume as postulated by the standard
cosmological model, inflation needs to end. Thus, the slow-roll parameter ε must
approach one

ε = 3
1
2
φ̇

1
2
φ̇+ V (φ)

≈ 1. (2.56)

The potential steepens towards the end of inflation, the inflaton field picks up kinetic
energy until the kinetic energy of the inflaton dominates over the potential energy.

After the end of inflation the inflaton oscillates around the minimum of its po-
tential V (φ). At this point any entropy that the Universe had at the beginning of
inflation has been inflated away, and the energy of the Universe is entirely in the
oscillation of the inflaton around the minimum Riotto [2003]. Thus, during this
phase the inflaton behaves like pressureless matter Baumann [2012]

ρ̇φ + 3Hρφ = 0. (2.57)

In order for the cosmic history to resume with the hot Big Bang scenario, the low
entropy Universe at the end of inflation must transform into a high entropy Universe
dominated by radiation. The process transforming the energy of the inflaton field
into standard model degrees of freedom is referred to as reheating. A very simple
model of reheating would be for the inflaton to decay into other particles with a
decay width Γφ. These particles then scatter off each other and thermalize to form
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a thermal background Riotto [2003]. The average inflaton energy density can then
be described by

ρ̇φ + (3H + Γφ)ρφ = 0. (2.58)

The inflaton energy density thus decays while producing standard model particles
through the term Γφρφ. Eventually, all the inflaton energy density is converted
into standard model degrees of freedom and the hot Big Bang scenario commences
Baumann [2012].
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3 Cosmological Perturbations
The previous chapter dealt with the classical background evolution of the inflation-
ary Universe. However, in order to understand many of the observations used to
test inflation, e.g. the Cosmic Microwave Background (CMB), it is necessary to
study the effects of quantum fluctuations around this background. This section will
be the first step towards that goal, as it will give a brief introduction into cosmo-
logical perturbations and the effects the gauge choice has on them. For more exact
treatments read Baumann [2012] and Mukhanov [2005].

3.1 Generalities
3.1.1 Linear Perturbations
At the time of photon decoupling observation of the CMB shows that the Universe
was nearly homogeneous with homogeneities at 10−5 smaller than the background.
It is then possible to describe all quantities of interest X(t,x) by a homogeneous
background part X(t) and a space dependent perturbation δX(t,x). They then
read

X(x, t) = X(t) + δX(t,x). (3.1)

Since the perturbations are small δX � X, many equations can be significantly
simplified by expanding only to the first order in δX.

3.1.2 Gauge Choice
While it is possible to describe all quantities as a background field and a space de-
pendent perturbation, the choice of the background field depends on the coordinate
choice. This constitutes a gauge choice. Since in inhomogeneous spacetime there
is no preferred coordinate choice, the gauge choice performed to choose coordinates
also fixes what constitutes the background field and the perturbation.

In order to obtain physically meaningful results, it is necessary to consider gauge
independent quantities and study their perturbations, as these are invariant under
coordinate changes.

3.1.3 Types of Perturbations
For a spatially flat, homogeneous and isotropic spacetime it is possible to decompose
metric and stress-energy perturbations into independent scalar (S), vector (V) and
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tensor (T) perturbations. This SVT-decomposition can be understood by going to
Fourier space, where

δX(t,k) =

∫
d3xδX(t,x)e−ik·x. (3.2)

The Fourier modes δX(t,k) evolve independently as a consequence of the translation
invariance of the associated equations of motion. Thus, each Fourier mode can be
studied independently.

Perturbations can be classified by considering the behavior of their Fourier modes
under the rotation around k with an angle Ψ. A perturbation has helicity m if its
amplitude is multiplied by eimΨ under this rotation. Thus,

δX(t,k) → eimΨδX(t,k). (3.3)

As a consequence of the rotation invariance of the background perturbations with
different helicities evolve independently Baumann [2012]. Scalar, tensor and vector
components are then identified by their helicities, where perturbations with helicity
0 are scalar, those with helicity ±1 are vector and those with helicity ±2 are tensor
perturbations. With this it is possible to decompose any perturbation into scalar,
vector and tensor perturbations that evolve independently. On top of that each of
their Fourier modes also evolve independently.

3.2 The Inhomogeneous Universe
3.2.1 Scalar Metric Perturbations
According to Baumann [2012], the most general first order perturbation of the flat
FLRW metric, made up of only helicity scalars and their derivatives, is

ds2 = −(1 + 2Φ)dt2 + 2a(t)B,idx
idt+ a2(t) [(1− 2Ψ)δij + 2E,ij] dx

idxj. (3.4)

Here, Φ and Ψ are 3-scalars called lapse and curvature perturbation, B,i is a 3-vector
called shift and E,ij is a symmetric and traceless spatial 3-tensor called shear. The
comma in the subscript denotes that the quantity is a derivative with respect to the
spatial coordinates following it.

Under the two scalar gauge transformations

t→ t+ α (3.5)
xi → xi + δijβ,j (3.6)

the scalar metric perturbations transform as

Φ → Φ− α̇ (3.7)
B → B + a−1α− aβ̇ (3.8)
E → E − β (3.9)
Ψ → Ψ+Hα. (3.10)
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While it is possible to modify (3.4) to also include vector and tensor perturbations,
it is not useful to determine gauge invariant quantities of interest since the vector
perturbations are not created by inflation and decay with the expansion of the
Universe and the tensor perturbations are gauge invariant Baumann [2012].

3.2.2 Matter Perturbations
The matter perturbations, i.e. the perturbations of the density, the pressure and the
momentum density and their behavior under gauge transformations may be found
by considering the stress-energy tensor. It can be constructed from a density ρ, a
pressure p, the 4-velocity uµ and an anisotropic stress tensor Σµν in the frame in
which the 3-momentum density vanishes. The pressure and density perturbations
may be defined by taking the background fields ρ and p to be homogeneous and
defining all the inhomogeneity as perturbations δρ and δp. Since the 4-velocity has
to satisfy gµνu

µuν = −1 its perturbation has only three independent components.
The perturbed 4-velocity can be written as

uµ = (−1− Φ, avi) uµ = (1− Φ, a−1(vi −Bi)). (3.11)

Anisotropic stress is a traceless symmetric 3-tensor and vanishes in the unperturbed
Universe.

The perturbed stress energy tensor reads Baumann [2012]

T 0
0 = −(ρ+ δρ) (3.12)
T 0
i = (ρ+ p)avi (3.13)
T i0 = −(ρ+ p)(vi −Bi)/a (3.14)
T ij = δij(p+ δp) + Σi

j. (3.15)

The momentum density perturbation is defined as (δq)i = (ρ + p)vi. With this
definition it is possible to find the effect of gauge transformations on the matter
perturbations as

δρ→ δρ− ρ̇α (3.16)
δp→ δp− ṗα (3.17)
δq → δq + (ρ+ p)α. (3.18)

Here, q is the scalar part of the 3-momentum density.

3.2.3 Gauge Invariant Variables
With the definitions of the different fluctuations and their behavior under gauge
transformations above it is possible to construct gauge invariant variables by com-
bining matter and metric perturbations. One of these is the curvature perturbation
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on uniform density hypersurfaces

−ξ ≡ Ψ+
H

ρ̇
δρ, (3.19)

a scalar quantity which measures spatial curvature of constant density hypersurfaces.
The gauge invariance of this quantity can be checked by inserting (3.16) and (3.10)
into the expression.

For the remainder of this thesis matter perturbations are assumed to be adiabatic.
They fulfill the condition

δpen ≡ δp− ṗ

ρ̇
δρ = 0. (3.20)

This is typically the case for single field inflation.
The next gauge invariant quantity of interest is the comoving curvature pertur-

bation

R ≡ Ψ− H

ρ+ p
δq. (3.21)

Since δq is the scalar part of the 3-momentum density T 0
i , the comoving curvature

perturbations can be expressed as

R = Ψ+
H

Φ̇
δΦ (3.22)

during inflation.
Both curvature perturbations ξ and R are constant on superhorizon scale k � aH

for adiabatic matter perturbations. Here, k is the comoving wave number.

3.3 The Quantum Origins of Structure
Allowing for quantum fluctuations during inflation gives a way to generate inho-
mogeneities in the Universe. This can be understood as the origin of structures in
the Universe. The expansion parameter H determines the scale of the fluctuations
during inflation and while fluctuations are created at all length scales with a spec-
trum of wave number k, they only become relevant if they are inside the comoving
Hubble radius at their creation. The relevant fluctuations are created on subhori-
zon scales k � aH. Their wave number stays constant while the comoving Hubble
radius (aH)−1 decreases during inflation. They thus exit the horizon to exist on
superhorizon scales k < aH.

Since cosmic inhomogeneity is characterized by the intrinsic curvature of spatial
hypersurfaces, the perturbations of interest are R and ξ. As mentioned in the
previous section, these fluctuations are gauge invariant and remain constant on
superhorizon scales. Their amplitudes are not affected by the physics right after
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inflation. After the end of inflation the comoving Hubble radius begins to grow and
the different fluctuations re-enter the horizon. This allows to probe the physics of
inflation from observables such as Large Scale Structures and the Cosmic Microwave
Background without detailed knowledge of the physics right after the end of inflation.

A statistical measure of the primordial fluctuations is provided by the power
spectrum of R. It can be found by taking the ensemble average over the fluctuations
for different comoving wavevectors k and k′

〈RkRk′〉 = (2π)3δ(k+ k′)PR(k), (3.23)

where the scalar power spectrum is defined as

∆2
s ≡ ∆2

R =
k3

2π2
PR(k). (3.24)

It is often characterized by its scale dependence through the scalar spectral index

ns − 1 ≡ d ln∆2
s

d ln k
. (3.25)

Here scale invariance corresponds to ns = 1 and the running of the spectral index

αs ≡
dns
d ln k

. (3.26)

The power spectrum can then be approximated in the proximity of an arbitrary
pivot scale k∗ as

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k∗)−1+ 1
2
αs(k∗) ln

(
k
k∗

)
. (3.27)

For better approximations to the power spectrum higher order derivatives of the
scalar spectral index may be considered.

The tensor power spectrum for the polarization modes of hij can be computed in
a similar way as

〈hkhk′〉 = (2π)3δ(k+ k′)Ph(k). (3.28)

The power spectrum of the tensor perturbations is defined as the sum of the power
spectra for the two polarizations

∆2
t ≡ 2∆2

h = 2
k3

2π2
Ph(k). (3.29)

Similar to the case of scalar perturbations its scale dependence can be defined as

nt ≡
d ln∆2

t

d ln k
. (3.30)

In the following chapters the power spectra of the scalar and tensor perturbations
will be computed exactly.
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3.4 The Mode Equation
In order to obtain an exact expression for the power spectrum, the action for single
field slow-roll inflation, which reads as

S =
1

2

∫
d4x

√
−g
[
R− (∇φ)2 − 2V (φ)

]
, (3.31)

is expanded in terms of the fluctuations R. A convenient gauge to perform the
calculation in is

δφ = 0 gij = a2((1− 2R)δij + hij) ∂ihij = hii = 0 (3.32)

Maldacena [2003]. In this gauge all of the scalar degrees of freedom are parameter-
ized by R. This is useful, since the fluctuations R are constant outside the horizon
which allows to restrict the calculation to times before horizon crossing. Following
the calculations by Maldacena allows to expand the action to second order in the
fluctuations R. The second order perturbation of the action then reads

S(2) =
1

2

∫
d4xa3

φ̇2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (3.33)

Setting the variables

z2 ≡ a2
φ̇2

H2
u = zR (3.34)

allows to rewrite this expression into the form

S(2) =
1

2

∫
dτd3x

[
(u′)2 + (∂iu)

2 +
z′′

z
u2
]
. (3.35)

Partially integrating with respect to τ in the first term and xi in the second allows
to find the mode equation as

u′′k +

(
k2 − z′′

z

)
uk = 0. (3.36)

Here, uk are the Fourier modes of the perturbations u, obtained as

u(τ,x) =

∫
d3k

(2π)3
vk(τ)e

ik·x. (3.37)

3.4.1 Quantization and Boundary Conditions
In order to obtain the full time evolution of the Fourier modes of the perturba-
tions u through the mode equation, the two initial conditions for this second order
differential equation need to be found. Since the field u and with it its Fourier
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components uk are fluctuating fields, they are quantized in the following to obtain
these initial conditions. Since equation (3.36) is a harmonic oscillator equation, the
Fourier modes uk can be promoted to operators ûk and then be expanded in terms
of creation and annihilation operators as

ûk = uk(τ)âk + v∗−kâ
†
−k. (3.38)

Requiring that the canonical commutation relations

[ûk, û
′
k̃
] = i(2π)3~δ(k − k̃) (3.39)

and

[âk, â
†
k̃
] = (2π)3δ(k − k̃) (3.40)

hold fixes one of the initial conditions as
i

~

(
u′ku

∗
k − uku

′∗
k

)
= 1. (3.41)

This can be verified by inserting the expansion (3.38) into the commutation relation
(3.39) while requiring (3.40) to hold.

The second boundary condition is typically chosen as the Bunch-Davies vacuum,
which corresponds to choosing a vacuum state for the fluctuations Birrell and Davies
[1982]. For the rest of the thesis the boundary condition is chosen in the far past,
where t → −∞ or k � aH. In this limit the mode equation (3.36) becomes the
simple harmonic oscillator equation u′′k + kuk = 0 Baumann [2012]. This allows to
use the unique solution in the infinite past as the initial condition for the mode
equation. The initial condition then reads

uk(τ → −∞) =
e−ikτ√
2k
. (3.42)

Together with expression (3.41) this fixes the initial conditions for the mode equa-
tions. After solving the differential equation for the mode equations the scalar power
spectrum can be computed as Powell and Kinney [2007]

∆R(k) =
k3

2π2

∣∣∣uk
z

∣∣∣2. (3.43)

Further computations to simulate the distribution of the observable structures in
the Universe can be based on this primordial power spectrum.

3.5 Tensor Perturbations
Similarly to the scalar case the Einstein-Hilbert action can be expanded in the tensor
perturbations which allows to find the second order action as Baumann [2012]

S(2) =
M2

pl

8

∫
dτd3xa2

[
(h′ij)

2 − (∂lhij)
2
]
. (3.44)
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The Fourier transformation of the tensor fluctuations read as

hij =

∫
d3k

(2π)3

∑
s=+,×

εsij(k)h
s
k(τ)e

ik·x. (3.45)

Here, +,× represent the two polarization modes of the gravitational perturbations.
The coefficients fulfill the relations εii = kiεij = 0 and εsijε

s′
ij = 2δss′ . With this the

second order action can be expressed as

S(2) =
∑
s

1

2

∫
dτd3k

[
(vsk

′)2 −
(
k2 − a′′

a

)
(vsk)

2

]
. (3.46)

The perturbation modes vsk are defined as vsk ≡ a
2
Mplh

s
k. This allows to extract a

differential equation for the modes of the perturbations as

v′′k +

(
k2 − a′′

a

)
vk = 0, (3.47)

where the polarization indices have been omitted. This is consistent with the mode
equation used in Powell and Kinney [2007]. The initial conditions can be found in
the same way as for the scalar perturbations. Since the differential equation is still
a harmonic oscillator equation, the first condition, reading as

i

~

(
v′kv

∗
k − vkv

′∗
k

)
= 1, (3.48)

holds with the same argument. Similarly to the derivation of (3.42) for τ → −∞
the term a′′

a
vsk also vanishes for sufficiently early conformal times Baumann [2012].

This allows to find the second initial condition as

vk(τ → −∞) =
e−ikτ√
2k
. (3.49)

As for the scalar case, these allow to find the complete time evolution of the tensor
perturbation modes. These in turn allow to find the tensor power spectrum as Powell
and Kinney [2007]

∆2
t =

32k3

π

∣∣∣vk
a

∣∣∣2. (3.50)

The normalization of the tensor fluctuations is typically chosen relative to the
amplitude of the scalar perturbations. The tensor to scalar ratio r describes how
this normalization is performed.It is defined as

r ≡ ∆2
t (k)

∆2
s(k)

. (3.51)
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4 Contact with the Observation
In the previous chapter cosmological perturbations were used to find the scalar and
tensor power spectrum at any time during inflation. The different modes described
through expressions (3.36) and (3.47) exit the horizon when k = a(τ∗)H(τ∗) and
then freeze retaining the value they had shortly after horizon crossing. After the
end of inflation the comoving Hubble radius (aH)−1 increases allowing the different
modes to reenter the horizon. They then start to evolve again and give rise to
the anisotropies in the CMB and the fluctuations in the matter power spectrum at
later time. This chapter gives a short introduction into the physics and calculations
involved in obtaining the CMB and Large scale structures (LSS) based on given
primordial power spectra. In the analysis chapters these computations are performed
with the Boltzmann code CLASS Audren et al. [2013].

The general idea this chapter will follow is that the primordial fluctuations, which
are known at horizon reentry, are used to compute an observable Q. The fluctuations
and the observables time evolve after horizon reentry. The evolution is performed
with a transfer function T . Schematically the observable Q at conformal time τ is
computed from the fluctuations at horizon exit R(τ∗) as

Qk = TQ(k, τ, τ∗)Rk(τ∗). (4.1)

As indicated by the arguments, the transfer function may depend on the scale of
the fluctuations k.

4.1 Contact with the CMB
4.1.1 Temperature Fluctuations
One of the observables in the CMB is the variation of the temperatures at specific
directions in the sky n̂ relative to the background temperature T0 = 2.73 K. The
harmonic expansion of the quantity Θ(n̂) ≡ ∆T (n̂)

T0
can then be used to construct an

angular power spectrum. The harmonic expansion reads

Θ(n̂) =
∑
`m

a`mY`m(n̂), (4.2)

where Y`m are the spherical harmonics, and the multipole moments a`m are con-
structed as follows

a`m =

∫
dΩY ∗

`m(n̂)Θ(n̂). (4.3)
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These can be used to estimate the angular power spectrum as

CTT
` =

1

2`+ 1

∑
m

〈a∗`ma`m〉. (4.4)

These equations can be used to find the angular power spectrum of the CMB based
on experimental data. The most recent Planck measurement is depicted in Figure
4.1.

In order to compare the experimental data with a theory prediction, it is necessary
to also compute the multipole moments and the angular power spectrum based on a
predicted primordial spectrum PR and a transfer function ∆T`(k), linking the scalar
modes R to the temperature fluctuations ∆T at the time of the CMB. According
to Baumann [2012], the multipole moments can be found by

a`m = 4π(−i)`
∫

d3k

(2π)3
∆T`(k)RkY`m(k̂). (4.5)

This allows to compute the angular power spectrum according to (4.4) as

CTT
` =

2

π

∫
k2dkPR(k)∆T`(k)∆T`(k). (4.6)

The transfer functions ∆T`(k) depend on the background cosmology and are com-
puted numerically using CLASS.

4.1.2 Polarization
This section will give a very brief introduction to CMB polarization, for a more
detailed introduction into the topic see Hu and White [1997].

The polarization of the CMB photons arises through Thompson scattering during
recombination. In this process the net linear polarization of the CMB is generated,
since the photons obtain a quadrupole moment during decoupling from electrons
and protons Baumann et al. [2009]. The velocity field of the electrons that the
CMB photons scatter off has an influence on Thompson scattering. Therefore, the
anisotropies in the temperature polarization offer a way to track the primordial
density perturbations and to probe inflation. In addition, this also explains why
correlations between the polarization anisotropies and temperature anisotropies may
arise.

Since polarization is not a scalar field, the expansion into spherical harmonics is
not as straightforward as with the temperature. To get a sensible expansion, the
2× 2 intensity tensor Iij(n̂) is considered, where n̂ denotes the direction in the sky.
Linear polarization can then be described by the Stokes parameters Q = 1

4
(I11−I22)

and U = 1
2
I12, temperature anisotropy is described as T = 1

4
(I11 + I22). While the

quantity T is invariant under rotation in the plane perpendicular to n̂ the Stokes
parameters Q and U transform under rotations by an angle ψ as a spin-2 field,
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such that (Q± iU)(n̂) → e∓2iψ(Q± iU)(n̂). The quantity (Q± iU)(n̂) can thus be
described by tensor spherical harmonics as Dodelson [2003]

(Q± iU)(n̂) =
∑
l,m

a±2,lmY±2,lm(n̂). (4.7)

Descriptions of the tensor spherical harmonics can be found in Kamionkowski et al.
[1997] and Zaldarriaga and Seljak [1997].

Instead of using the spin-2 quantities Q and U it is possible to characterize the
polarization anisotropies with two scalar fields using

aE,lm = −1

2
(a2,lm + a−2,lm) aB,lm = − 1

2i
(a2,lm − a−2,lm). (4.8)

This results in the curl-free modes E and the divergence-free modes B defined as

E(n̂) =
∑
l,m

aE,lmYlm(n̂) B(n̂) =
∑
l,m

aB,lmYlm(n̂). (4.9)

The symmetries of the temperature and the E- and B-mode anisotropies allow for
the correlations TT , EE, BB and TE while, according to Baumann et al. [2009],
all other correlations are zero.

Similar to the angular power spectrum for the temperature anisotropies the an-
gular power spectra for these correlations can be defined as

CXY
` ≡ 1

2`+ 1

∑
m

〈a∗X,lmaY,lm〉, X, Y ∈ {T,E,B}. (4.10)

The spectra for the polarization modes are also measured by Akrami et al. [2020]
and are depicted in Figure 4.1.

As with the TT angular power spectrum, the EE and TE angular power spec-
tra can also be computed from the curvature power spectrum PR. They can be
computed via

CEE
` ≈ (4π)2

∫
k2dkPR(k)∆

2
E`(k) (4.11)

CTE
` ≈ (4π)2

∫
k2dkPR(k)∆T`(k)∆E`(k) (4.12)

using the transfer functions ∆E` and ∆T`. For the computations in this thesis the
transfer functions are numerically found using CLASS.

The B-modes are solely generated by the tensor modes of inflation as

CBB
` = (4π)2

∫
k2dkPh(k)∆

2
B`(k), (4.13)

allowing to use the angular power spectrum of the B-modes as a probe for primordial
tensor fluctuations.
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Figure 4.1: Angular power spectra as measured by the Planck experiment in 2018
Akrami et al. [2020]. The blue line represents a ΛCDM best fit, D` =
`(`+ 1)C`/(2π). The lower part of the panel shows the residuals.

4.2 Contact with Large Scale Structures
While the angular power spectra found with the CMB data already provide a good
way to probe inflation, it can be complemented by measuring the Large Scale Struc-
tures in the Universe. The underlying idea is that, if the evolution of the Universe is
known well enough after horizon reentry of the curvature modes, the density power
spectrum in the Universe can be predicted from the primordial power spectrum at
the end of inflation. In this way mapping the power spectrum of the dark matter
density contrast δ = δρ

ρ
the curvature spectrum PR can be probed. According to

Baumann [2012], the late time density perturbation power spectrum of dark matter
can be linked to the curvature spectrum right after inflation through

Pδ(k, τ) =
4

25

(
k

aH

)4

T 2
δ (k, τ)PR. (4.14)

Here, Tδ is the dark matter transport function. It can either be approximated fol-
lowing Eisenstein and Hu [1998] or calculated numerically with CLASS Brinckmann
and Lesgourgues [2018]. Throughout this thesis, the dark matter transfer function
is computed numerically.
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Since the density of dark matter can only be observed through lensing, it is useful
to consider quantities which can be measured by current or future experiments that
allow to find clues to the distribution of the dark matter density in the Universe.

4.2.1 Galaxy Surveys
Instead of focusing on dark matter directly, it is possible to measure the density of
luminous matter in the Universe instead. This can be done through galaxy surveys
in the low redshift Universe. In the most simple models the galaxy distribution
is linked to the dark matter density with a bias parameter bg, such that δg = bgδ
Baumann [2012]. This in turn means that the power spectra can be related by

Pδg = b2gPδ. (4.15)

A more exact approach to linking the galaxy power spectrum to the matter power
spectrum can be found in Sprenger et al. [2019]. The density power spectrum of the
luminous matter in the Universe can then be computed using equations (4.14) and
(4.15). In addition, it can be measured using galaxy surveys which then allows to
test predictions for the primordial spectrum as well as the quantities involved in the
computation of the transfer functions.

4.2.2 21cm Intensity Mapping
Instead of measuring the position of all luminous matter through mapping the galax-
ies in the sky, 21cm tomography aims to find the distribution of neutral hydrogen
in the Universe. This is done by measuring the signal from the 21cm transition of
neutral hydrogen. Depending on the intensity of the signal in different regions in the
sky the density of the neutral hydrogen in that region can be found. A big advantage
of this approach is that a three-dimensional map of the neutral hydrogen density
can be obtained by simply varying the frequency of the survey which corresponds
to varying the redshift at which one is looking for the 21cm signal. Compared to
galaxy surveys 21cm tomography can probe larger redshift region as even redshifts
at which stars have not yet formed can be taken into account.

For this thesis the redshift region of interest will be during the epoch of reion-
ization, between redshifts 8 and 10. At lower redshifts reionization starts to affect
the measured 21cm spectrum significantly. Similar to galaxy surveys the simplest
models assume that the density of the neutral hydrogen is related to the matter
power spectrum through a bias parameter b21 such that

PHI = b221Pδ. (4.16)

This again allows to compare the experimental data found with 21cm intensity
mapping to predictions made using a primordial spectrum and a dark matter transfer
function. The approximation of the 21cm power spectrum is made more precise in
section 6.4.
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5 Brief Introduction to MCMC

In the previous chapter the computation of the different observable quantities that
contain information on the physics of inflation is introduced. The overall goal of this
thesis is to obtain constraints on some of the parameters used in this computation.
Based on current or future experiments it is possible to find how likely a given power
spectrum is to describe the data. Effectively, this allows to give each combination of
parameters θ a likelihood value by computing the power spectra explained in chapter
4 and then compare to the data found in experiments. The following chapter gives
a short introduction into Markov chain Monte Carlo (MCMC) techniques, which
allow to find constraints on each of the parameters θj separately. It is based on
Lewis and Bridle [2002], Padilla et al. [2021] and MacKay [2003].

The probability that the model, given the set of parameters θ, describes the data
is called posterior and is denoted as P (θ|D,M). The probability that a given set
of parameters describes the data is called likelihood and is denoted as P (D|θ,M).
The probability distribution which is used to sample the parameter space is called
the prior which is denoted as P (θ|M) and the evidence of the model is denoted as
P (D|M). According to Bayes theorem the posterior distribution can be described
as

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
. (5.1)

The evidence does not depend on the parameter values and can be thought of as
a normalizing factor for the posterior distribution. The overall idea of MCMC al-
gorithms is to find a Markov chain that converges to the posterior P (θ|D,M) by
making use of randomly sampled parameter values. In order to ensure this conver-
gence the algorithm makes use of the likelihood P (D|θ,M), which can be computed
based on the current parameter values θ and the data found through experiment.
The prior P (θ|M) needs to be defined as a fixed distribution in the algorithm. This
could be some distribution found with the results of a different experiment. For the
rest of this thesis the priors are uniformly distributed, in this way it effectively only
modifies the posterior as a normalizing factor. If the distribution of the points in
the Markov chain follows the posterior distribution, the normalizing factor can be
found by summing over all Markov chain points. This allows to approximate the
posterior distribution as long as the Markov chain converges to it.

In the course of this thesis this is ensured by using the Metropolis-Hastings algo-
rithm Metropolis et al. [1953], Hastings [1970]. The starting point for this algorithm
is a random initial point θi with an associated, as of yet not normalized, posterior
distribution P ∗(θi). Based on this point a new position in the parameter space θc
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is chosen according to an arbitrary proposal distribution q(θi,θc) which generates a
random next step. This proposed new position is accepted with a probability

α(θi,θc) = min

{
1,
P (θc)q(θi,θc)

P (θi)q(θc,θi)

}
, (5.2)

where P (θ) denotes the normalized posterior distribution. The transition probabil-
ity to go from θi to θc is then T (θi,θc) = α(θi,θc)q(θi,θc) this ensures that the
condition

P (θc)T (θc,θi) = min{P (θi)q(θc,θi), P (θc)q(θi,θc)} = P (θi)T (θi,θc) (5.3)

holds. With this detailed balance condition fulfilled, the stationary distribution of
the Markov chain is P (θ), after performing a large enough number of steps the
points in the Markov chain will be distributed according it Lewis and Bridle [2002].
Written concisely the steps in the algorithm are Padilla et al. [2021]:

1. Choose initial point θi and compute posterior distribution

2. Generate new candidate θc using the proposal distribution q(θc−1,θc) and
compute its posterior distribution

3. Accept or reject the point according to the acceptance rate α

4. If the point is not accepted, repeat the previous point in the chain

5. Repeat steps 2-3 until the chain has the desired length.

For a random initial point θi the Markov chain will take a number of steps to
equilibrate before it starts sampling from the posterior distribution. This part of
the chain is referred to as burn in and is removed before analyzing the rest of the
chain. This method allows to sample from a multidimensional probability distribu-
tion to obtain a large number of points from this distribution. In order to derive
mean values and confidence regions for a single parameter (θj)j=1,2,...,N the marginal-
ized one-dimensional distributions can be found by counting the number of samples
within binned ranges of parameter values. Based on the binned one-dimensional
distributions the mean values of the parameters as well as the limits for 68% and
95% confidence regions can be found. For this thesis the Markov chain Monte Carlo
is performed using the Metropolis-Hastings method implemented in MontePython,
for more specific information on the computation and algorithm see Brinckmann and
Lesgourgues [2018]. The analysis of the Markov chains is performed with GetDist,
for more precise information on the computations performed to obtain contours and
confidence limits see Lewis [2019].
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6 Numerical Analysis

In the previous chapters the underlying physical theory and the basic framework
of a Monte Carlo Markov chain where introduced. This chapter will give a sum-
mary of which tools are used to perform the analysis of the Planck 2018 data and
subsequently the simulated data of the Square Kilometer Array.

The overall structure of the computation is similar regardless of which specific
packages are used. In a first step, a set of parameters are generated by a Monte
Carlo Markov chain code. For the purpose of this thesis the code used is Mon-
tePython Brinckmann and Lesgourgues [2018]. This set of parameters is then given
to a Boltzmann code which computes a primordial spectrum from some of these
parameters. Following this the code time evolves this spectrum up to the redshift of
interest. The time evolution may also depend on the parameters generated by the
Markov chain code. In this thesis the time evolution of the spectrum is performed
by the Boltzmann code CLASS Blas et al. [2011]. Inflation, and in particular the
generation of the primordial spectrum is treated separately and more in-depth than
the time evolution using the transfer functions described in chapter 4. CLASS itself
also treats the generation of the primordial spectrum in a separate module which
allows to use a custom code to compute the primordial spectrum separately or set
different ways to compute the primordial power spectrum. In the later analysis the
computation described in Lesgourgues et al. [2008] is used to construct the primor-
dial power spectrum based on a model independent approximation of the Hubble
function.

6.1 Primordial Power Spectra
The power spectrum of the curvature perturbation at the end of inflation is the seed
of structure formation in our analysis. This primordial power spectrum can be used
as an input for CLASS which computes the CMB spectra and the matter power
spectrum at all relevant redshifts z. There are several different ways to approximate
the primordial power spectrum, a selection of which are presented in the following.

6.1.1 Spectral Index and its Runnings
The primordial power spectrum around some reference scale k∗ can be approximated
using a power series expansion in ln

(
k
k∗

)
, where k is the comoving wave number.

Up to second order the expression is given in (3.27). To better model the primordial
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power spectrum, the following third order expression is used

∆2
har = As exp

([
(ns − 1) ln

(
k

k∗

)
+
α

2

(
ln

(
k

k∗

))2

+
β

6

(
ln

(
k

k∗

))3
])

. (6.1)

For the remainder of this thesis the reference scale is chosen as k∗ = 0.05(Mpc)−1

to match the choice in Akrami et al. [2020]. The spectral index ns and its running
α are defined in (3.25) and (3.26), respectively. The running of the running β is
defined in similar way as

β ≡ dα

d ln k
. (6.2)

Choosing values of the spectral index evaluated at the pivot scale different from
one as well as parameters α and β different from zero allows to depart from the scale
invariant Harrison-Zel’dovich spectrum. This is clearly visible in Figure 6.1 where
the primordial power spectrum is computed with equation (6.1) and the Planck
2018 mean values for ns, α and β for subsequent orders in the perturbation series.
In this figure the primordial power spectrum is plotted in logarithmic comoving
wave number k. Assuming ns 6= 1 allows to introduce a slope into the power
spectrum. The parameter α allows to bend it into a parabolic shape in logarithmic
wave number, while β allows the power spectrum to take the shape of a third order
polynomial.

Performing the whole analysis with this approach to the primordial power spec-
trum allows to approximate the curvature power spectrum right after inflation, the
angular power spectra at the time of recombination and the Large Scale Structures
in the Universe. However, it does not directly encode any information on the infla-
ton field or the shape of its potential. The information is instead encoded in the
logarithmic derivatives of the primordial spectrum. For a given inflationary model
these have to be calculated separately.

6.1.2 Integration of the Mode Equation
The approaches described in the previous section relies on the approximation of the
primordial power spectrum using expression (6.1). Instead, the primordial power
spectrum can be computed by the mode equation (3.36). In the approach described
below this is done in a model independent way by approximating the Hubble function
during and right after inflation with a Taylor series in the inflaton field value. The
parameters sampled by the MCMC algorithm can be used to directly compute the
Taylor series coefficients at horizon crossing of the pivot scale. This essentially allows
to constrain the Hubble function during inflation. The formalism described below
is already implemented in CLASS and authored by Lesgourgues et al. [2008].

For inflation driven by a single scalar field φ with a potential V (φ) in a spatially
flat FLRW Universe the background evolution of the Universe can be described by
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Figure 6.1: Approximated primordial power spectrum allowing for different order
in the power series expansion. The spectral index and its runnings are
chosen according to the mean values in Akrami et al. [2020]

Salopek and Bond [1990]

φ̇ = −
M2

pl

4π
H ′(φ) (6.3)

−32π3

M4
pl

V (φ) = [H ′(φ)]
2 − 12π

M2
pl

H2(φ). (6.4)

Here the primes denote derivatives with respect to the field φ, while dots denote
derivatives with respect to cosmic time. The value φ∗ denotes the field value at
horizon crossing of the pivot scale k∗. In order to acquire a set of model independent
parameters the Hubble function H(φ−φ∗) is expanded as a Taylor series in the field
φ− φ∗. For the analysis with this method the Hubble function simply reads

H(φ) =
N∑
n=0

1

n!

dnH

dφn

∣∣∣∣∣
φ∗

(φ− φ∗)
n, (6.5)

where the subscript star means evaluated at the field value φ∗ at the pivot scale. To
avoid parameter degeneracies the Hubble slow-roll parameters are used instead of
the coefficients in the Taylor series Lesgourgues et al. [2008]. To that end the first
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four Hubble slow-roll parameters are defined as

εH = 2M2
pl

(
H ′

∗
H∗

)2

(6.6)

ηH = 2M2
pl

H ′′
∗

H∗
(6.7)

ξ2H = (2M2
pl)

2H
′
∗H

(3)
∗

H2
∗

(6.8)

ω3
H = (2M2

pl)
3 (H

′
∗)

2H
(4)
∗

H3
∗

. (6.9)

These are then sampled over in the MCMC algorithm. In addition a 0th slow-roll
parameter is defined as

Ãs =
4H4

∗
(8π)3(H ′

∗)
2M6

pl

. (6.10)

However, in the computation the slow-roll parameters are used to compute the
Taylor series coefficients as

H∗ =

√
ÃsεHπ (6.11)

H ′
∗ = −

√
4πεHH∗ (6.12)

H ′′
∗ = 4πηHH∗ (6.13)

H(3)
∗ = (4π)2ξ2H

H2
∗

H ′
∗

(6.14)

H(4)
∗ = (4π)3ω3

H

H3
∗

(H ′
∗)

2
. (6.15)

These in turn are then inserted into (6.5) to obtain the Hubble function. As a
consistency check the Hubble function can then be inserted into (6.4) to reconstruct
the potential. This is illustrated in Figure 6.2.

For each set of parameters a period of slow-roll can be identified for small de-
viations of the inflaton field values φ from the reference value φ∗. The regime of
slow-roll is then followed by a period during which the potential falls steeply, this
is expected if slow-roll breaks down and inflation ends. The field values at which
this breakdown happens varies for the different sets of parameters. In combination
with equation (6.3) this can be seen as inflation lasting for a different amount of
time. The amount of inflation happening and the time it takes is not restricted in
this general scenario.

The background evolution of the inflaton field can be found by integrating equa-
tion (6.3) numerically after inserting the approximation for the Hubble function.
The field φ can then in turn be used to integrate the mode equation for the scalar
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Figure 6.2: Inflaton potentials reconstructed from elements of a Monte Carlo Markov
chain used to constrain Planck

perturbations as well as the tensor perturbations. These read

d2uS,Tk
dτ 2

+

(
k2 − 1

zS,T
d2zS,T

dτ 2

)
uS,Tk = 0, (6.16)

where zS = a φ̇
H

for the scalar modes and zT = a for the tensor modes. The initial
condition for the integration is taken to be the Bunch-Davies vacuum

uS,Tk =
e−ikτ√
2k

(6.17)

duS,Tk
dτ

=
−ike−ikτ√

2k
, (6.18)

at the time when k
aH

= 50. The integration stops when the scalar and tensor power
spectra freeze out for long wavelengths. The power spectra are then computed as

PR(k) =
k3

2π2

∣∣∣∣uSkzS
∣∣∣∣2 (6.19)

Ph(k) =
32k3

πm2
pl

∣∣∣∣uTkzT
∣∣∣∣2. (6.20)

Based on the Hubble slow-roll parameters it is possible to compute the spectral
runnings of the spectral index following the formalism in Stewart and Lyth [1993b].
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The exact formula to derive the scalar index up to second order in the Hubble
slow-roll parameters is given in Powell and Kinney [2007]. By making use of the
e-folds evolution of the Hubble slow-roll parameters a conversion formula from the
Hubble slow-roll parameters to the spectral index ns, its running α and the running
of its running β can be found. Up to second order in the slow-roll parameters the
conversion formula reads as

ns = 1 + 2ηH − 4εH − 1

2
(3− 5C)ηHεH +

1

2
(3− C)ξ2H (6.21)

α = −2ξ2H − 1

2
(3− C)ω3

H + 10εHηH − 8ε2H − 1

2
(1 + 5C)εHξ

2
H

− 1

4
(3− C)(2ηH − 4εH)ξ

2
H − 1

2
(3− C)εHω

3
H (6.22)

β = 2ω3
H + 2εHω

3
H + 2ηHξ

2
H − 14εHξ

2
H +

1

2
(1 + 5C)εHω

3
H

+
1

4
(3− C)(ξ2H)

2 +
3

2
(3− C)ηHω

3
H − 5

2
(3− C)εHω

3
H , (6.23)

where C = 4(ln(2) + γe) − 5 and γe ≈ 0.577. Figures 6.3 and 6.4 illustrates how
closely this approach approximates a power spectrum computed through direct in-
tegration using the Hubble slow-roll parameters. For the purpose of illustration the
approximation is first done using only the spectral index and then adding the two
runnings with the values found in Akrami et al. [2020] step by step.

In addition to the Hubble slow-roll parameters described above, it is possible to
define potential slow-roll parameters that approximate the inflaton potential. They
can be defined as Kohri et al. [2013]

εV =
1

2
M2

pl

(
V ′

V

)2

(6.24)

ηV =M2
pl

V ′′

V
(6.25)

ξ2V =M4
pl

V ′V ′′′

V 2
(6.26)

ω3
V =M6

pl

(V ′)2V (4)

V 3
. (6.27)

Following the discussion in Stewart and Lyth [1993a], Stewart and Gong [2001]
and Leach et al. [2002] then allows to find approximate expressions for the scalar
spectral index ns and the running of the spectral index α. In Kohri et al. [2013]
these expressions in addition to the running of the running of the scalar index, β,
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Figure 6.3: Simulated 21cm power spectrum according to section 6.4. The primor-
dial spectrum is constructed using equation (6.1), the evolution until
redshift 9 is performed by CLASS.

are given as

ns − 1 = 6εV + 2ηV +

(
−10

3
+ 24C

)
ε2V +

2

3
η2V

− (2 + 16C)εV ηV +

(
2

3
+ 2C

)
ξ2V (6.28)

α = −24ε2V + 16εV ηV − 2ξ2V (6.29)
β = −192ε3V + 192ε2V ηV − 32εV η

2
V + (−24εV + 2ηV )ξ

2
V + 2ω3

V . (6.30)

In some of the previous work on constraining inflation with the Square Kilometer
Array the Hubble or potential slow-roll parameters are used to approximate the
spectral index and its runnings Barger et al. [2009a], Kohri et al. [2013], Pourtsidou
[2016]. They can then be used to compute the primordial power spectrum using
expression (6.1).

6.2 CLASS
Once the computation of the primordial power spectrum is done, either through the
code described in Lesgourgues et al. [2008] or through an approximation following
equation (6.1), the power spectrum needs to be time evolved up to the redshift it
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Figure 6.4: Relative difference of the approximations to the direct solution. The
primordial spectrum is constructed using equation (6.1), the evolution
until redshift 9 is performed by CLASS. The grey dot marks the position
of the pivot scale.

is measured at. This is done using the Boltzmann code CLASS Blas et al. [2011].
In the context of this thesis the power spectrum is compared to simulated or real
data at two different redshifts. The power spectrum and the angular spectra for the
computations involving the Cosmic Microwave Background need to be computed at
redshift z ≈ 1100. To include secondary effects on the temperature anisotropies, the
different spectra then need to be evolved up to present time at redshift zero. The
simulated measurement with the SKA is performed at present time but considers
a signal originating between redshift z = 8 and z = 10. In the code used to com-
pute the spectrum secondary effects on the 21cm photons emitted in the hydrogen
transition are considered only as noise. The power spectrum for this analysis is thus
only computed until the redshifts mentioned above.

CLASS has a wide range of capabilities, including the ability to compute the power
spectrum at any redshift needed and for many different sets of parameters, describing
not only the standard cosmological model but also effects due to the inclusion of the
slow-roll parameters mentioned above, massive neutrinos and different reionization
histories. All computations are performed fast enough for the result to be used by
a MCMC code to perform parameter estimation in reasonable time scales.
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6.3 MontePython
The Markov chain Monte Carlo code used in the analysis part of this thesis is
MontePython Brinckmann and Lesgourgues [2018]. It samples a set of parameters
and computes how likely this combination of parameters is to describe a given set
of data. The computation of the likelihood is in the case of the CMB observables
performed by the likelihood code used in Akrami et al. [2020]. For the SKA the
computation of the likelihoods is performed as described in section 6.4. Here the
preexisting likelihood class in MontePython was used. In addition MontePython
also has a built in plotting script that allows to visualize the results of a given
MCMC run, however, for the all of the plots in this thesis the external plotting
script GetDist Lewis [2019] was used.

6.4 SKA Likelihood
Since no real data has been collected by the SKA as of today the likelihoods needed
to run a MCMC algorithm are generated by computing a 21cm power spectrum
based on the Planck 2018 results and by modeling the noise entering in a future
measurement. These likelihoods are then used to find how the SKA would constrain
single field inflation. This project focuses on the epoch of reionization and redshifts
of about z ≈ 8 to z ≈ 10. The upper redshift bound is chosen to avoid the po-
sition dependence of the spin temperature, since the spin temperature couples to
the gas temperature due to the Wouthuysen-Field Effect at this redshift range Mao
et al. [2008]. The lower redshift bound is chosen such that no position dependent
reionization fraction has to be introduced as there still is nearly no reionized helium.

The SKA likelihood is computed based on the 21cm power spectrum defined as
the two-point correlation

〈∆T21(k)∆T21(k′)〉 ≡ P21(k, z)(2π)
3δ(k− k′), (6.31)

where ∆T21(k) is the Fourier transformation of the difference between the 21cm
temperature T21(x) and the average 21cm temperature T 21(z).

According to Muñoz et al. [2017] the 21cm power spectrum can be computed as

P21(k) =
[
A(z) + T 21(z)µ

2
]2
PHI(k). (6.32)

The parameter µ ≡ k‖
k

is the cosine between the line of sight k‖ and the absolute
value k. Since the redshift region was chosen to ensure that the data obtained is from
before reionization started, the neutral hydrogen fraction is xH = 1. This allows
to set the power spectrum of the neutral hydrogen perturbations PHI(k) to equal
the matter power spectrum Pδ(k). Before the beginning of reionization the function
A(z) and the average temperature at a specific redshift can be approximated as
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Muñoz et al. [2017]

A(z) = T 21(z) = 27.3mK × xH
Ts − Tγ
Ts

(
1 + z

10

)1/2

. (6.33)

This form of A(z) can be assumed before the beginning of reionization only, since
during reionization the ionization power spectrum and the density-ionization power
spectrum from Mao et al. [2008] have a significant impact. During the epoch of
reionization the spin temperature can be taken to be much larger than the pho-
ton temperature due to the Wouthuysen-Field Effect. The gas temperature in the
intergalactic medium is heated by X-ray photons up to hundreds of Kelvin Mao
et al. [2008]. This allows to drop the temperature factor, which reduces the previous
expression to

A(z) = T 21(z) = 27.3mK × xH

(
1 + z

10

)1/2

. (6.34)

The instrumental noise power spectrum in Fourier space for an antenna array with
baseline Dbase, uniformly covered up to a fraction fcover with an observation time to
can be expressed as Tegmark and Zaldarriaga [2009]

PN
21 =

πT 2
sys

tof 2
cover

d2A(z)yν(z)
λ2(z)

D2
base

(6.35)

where λ(z) is the 21cm-transition wavelength at redshift z. The conversion func-
tion from frequency ν to line of sight k‖ is yν = 18.5

(
1+z
10

)
Mpc
MHz

while the system
temperature can be parameterized as Muñoz et al. [2017]

Tsys = 180K ×
( ν

180MHz

)−2.6

. (6.36)

Here, the frequency is the 21cm transition at redshift z, ν = ν0
1+z

. The observation
time is chosen as to = 10000h, while the baseline Dbase = 1km is taken to be the
baseline as specified for SKA-LOW in Bacon et al. [2020]. The coverage fraction
in the nucleus of the antenna array can be computed as Tegmark and Zaldarriaga
[2009]

fcover = Na
D2

D2
base

, (6.37)

where Na is the number of antennas while D is their diameter. For the values given
for SKA-LOW in Bacon et al. [2020] the coverage fraction can be computed to be
approximately fcover ≈ 0.0091. The following plot 6.5 contains the 21 cm spectra
computed from a MCMC run used to compute the Hubble slow-roll parameters for
the Planck reproduction. Both the noise described in (6.35) and the minimal and
maximal wave numbers have to be taken into account in the computation of the SKA
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Figure 6.5: Comparison between 21cm power spectrum and the noise power spec-
trum computed through (6.35). The grey lines denote the maximal and
minimal scales considered.

likelihood. The signal to noise ratio is approximately 100 at the peak of the 21cm
power spectrum. Note that the units used in this plot are Mpc and not Mpc/h since
the implementation is meant to work with CLASS which uses these units internally.

In order to construct a likelihood based on the 21cm power spectrum computed
through expression (6.32) and the noise power spectrum in equation (6.35), a redshift
and comoving wave number region have to be chosen. In principle, the χ2 value is
then found by computing the χ2 value for each redshift and comoving wave number
and then integrating over both quantities. The redshift integration is approximated
by defining a set of redshift bins in which each of the quantities are set to be constant.
The contribution of each of the redshift bins is then computed separately and added
up to give the overall χ2. In the analysis section the number of equally spaced
redshift bins in the region z ∈ [8, 10] is set to 22.

The comoving wave numbers that can be used in this analysis during the epoch
of reionization are bounded from above by the non-linear scale which will be set as
kNL = 1Mpc−1 for consistency with Muñoz et al. [2017]. Astrophysical foregrounds
will cut off line-of-sight wave numbers smaller than

kmin‖ ≈ 2π

yν∆ν
. (6.38)

Here, ∆ν is the bandwidth probed by SKA. According to Muñoz et al. [2017], the
likelihoods do not depend sensitively on this cutoff, thus the minimal value for the
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wave number is fixed to kmin‖ = kmin⊥ = kmin = 10−2Mpc−1.
For a specific redshift bin centered at zi the computation of the χ2 value is based

on the Fisher matrix computation in Muñoz et al. [2017] and reads

χ2
i =

fsky
2

V oli
(2π)3

∫ kmax

kmin

dk(2πk2)

∫ 1

−1

dµ
[P21(k, z, θ)− P fid

21 (k, z, θfid)]
2

[P21(k, z, θ) + PN
21(z)]

2
. (6.39)

In the formula above the subscripts i denote the redshift bin. The comoving volume
of the redshift bin V oli can be computed as a spherical shell in comoving distance
r(zi) and r(zi−1), where zi and zi−1 are the edges of the redshift bin of interest. The
expression to compute the volume reads as

V oli =
4

3
π
(
r(zi)

3 − r(zi−1)
3
)
. (6.40)

All of the different χ2
i at different redshifts are finally summed up to give the overall

χ2 as

χ2 =
∑
i

χ2
i . (6.41)

The fiducial power spectrum P fid
21 (k, z, θfid) is computed according to (6.32) and

fsky is set to 0.58 according to Sprenger et al. [2019]. The parameters θ are used
to compute the matter power spectrum. In the earlier chapters the examples θ =
{Ãs, ε, η, ξ, ω} and θ = {As, ns, α, β} are discussed in expressions (3.36) and (6.1),
respectively. For the computation of the fiducial power spectrum the mean values
for these parameters based on only the Planck mean values are chosen.

45



7 Comparison to Planck Results

In order to verify that the methods, the code and the parameters chosen are sensi-
ble the Markov chain Monte Carlo code MontePython Brinckmann and Lesgourgues
[2018], Audren et al. [2013] is used to compute contours for the ΛCDM parameters.
In addition the spectral index and its runnings ns, α and β using the parametriza-
tion described in expression (6.1) are used to constrain inflation. For all of these
parameters the Planck 2018 paper on inflation Akrami et al. [2020] finds limits and
contours as well. Finally, a parameter estimation of the Hubble slow-roll parameters
is performed using the formalism in Lesgourgues et al. [2008]. This result can also
be compared to the results in Akrami et al. [2020]. The same formalism will later
be used to find constraints on the slow-roll parameters which might result from the
Square Kilometer Array. MontePython computes likelihoods for different parameter
sets by first drawing a set of parameters at random, based on the previous position
of the chain. It then computes a matter power spectrum and the angular power
spectra for the CMB using the Boltzmann code CLASS Blas et al. [2011]. The
CMB spectra are then compared to the Planck data, and the likelihood for each
of them is computed. Based on this likelihood the proposed step is either assumed
or rejected as described in chapter 5. This allows to sample the likelihood in a
multi-dimensional parameter space.

7.1 ΛCDM Contours
In a first step, the parameter estimation for the ΛCDM parameters only is performed.
The parameters depicted in figure 7.2 are chosen to match the parameters of Figure
7.1 which is taken from Akrami et al. [2020]. The derived parameters as well as the
parameter θMC which differs between MontePython and CosmoMC were removed.

Figure 7.2 depicts the marginalized contours obtained by performing 100000 steps
on 16 chains in parallel. The Monte Carlo Markov chain engine is run twice. The first
run, performed without a covariance matrix, suffers from a relatively low acceptance
rate. For the second run the covariance matrix generated in the first run is used to
obtain a better proposal distribution, resulting in a higher rate of accepted steps.
Once the Markov chains have been computed, the analysis code GetDist Lewis [2019]
is used to plot the marginalized contours and find the 95% confidence regions.

For the generation of these contours the TT, TE and EE likelihoods in addition to
the EE likelihood at low multipoles and the TT likelihood at high multipoles were
used. The best fit values and confidence limits for these parameters are summarized
in Table 7.1. Comparing the values to Table 2 in Akrami et al. [2020] allows to find
that both the mean values and the error bars of this analysis are very similar to those

46



Figure 7.1: Contours of the ΛCDM parameters taken from Akrami et al. [2020]. The
different colors in the plot represent different sets of modes considered.

found by the Planck collaboration. Comparing the two-dimensional marginalized
contours allows to additionally verify that the directions of the correlations and
anticorrelations of the distributions generated for this thesis match with the Planck
2018 results.
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Figure 7.2: 68% (dark blue) and 95% (blue) confidence limits for the ΛCDM param-
eters. Used joint TT, TE, EE data, EE likelihood at low multipoles and
TT likelihood at high multipoles.
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Table 7.1: Mean values 95% confidence interval for the ΛCDM found with Planck
2018 data

Param mean 95% interval
ωb 0.02235 [0.02206, 0.02265]
ωcdm 0.1202 [0.1174, 0.1229]
ln1010As 3.046 [3.013, 3.078]
ns 0.9648 [0.956, 0.9736]
τ reio 0.05458 [0.03855, 0.07048]
H0 67.31 [66.09, 68.53]
σ8 0.8114 [0.7966, 0.8264]

49



7.2 Spectral Index and its Runnings
After the confirmation in the previous section that the setup is computing ΛCDM
parameters consistent with Akrami et al. [2020], a first method of constraining the
primordial spectrum using this experiment can be tested. For the contours depicted
in Figure 7.2 the primordial power spectrum was computed using the parametriza-
tion (6.1) while keeping the running of the spectral index α fixed and setting the
running of the running β = 0. The scalar power spectrum As and the spectral
index ns were varied. In order to gain more information on inflation, the next step
is to choose all parameters in (6.1) at random and then use the whole setup of
MontePython and CLASS to constrain them.

In practice this is done by defining an external power spectrum in CLASS accord-
ing to expression (6.1) and then sampling over the custom variables used to define
it. MontePython then samples these additional parameters and calls CLASS with
them, which in turn calls the external code that computes the primordial power
spectrum. This is then used to compute the CMB spectra. These are compared
to the Planck 2018 data which allows MontePython to compute likelihoods. The
resulting 68% and 95% confidence limits are plotted in Figure 7.3. Note that all the
ΛCDM parameters are also sampled over, however, in the generation of the figures
they are marginalized over.

The best fit values and 68% error bars for all of the involved parameters are
summarized in Table 7.2.

Table 7.2: Mean values 95% confidence interval for the spectral index and its run-
nings using Planck 2018 data

Param mean 95% interval
ωb 0.02233 [0.02202, 0.02264]
ωcdm 0.1207 [0.1179, 0.1236]
h 0.6708 [0.6584, 0.6833]
1010As 21.14 [20.5, 21.81]
ns 0.9615 [0.952, 0.971]
α 0.003182 [−0.01681, 0.02386]
β 0.01256 [−0.01122, 0.03706]

The parameters used to describe the form of the primordial spectrum are As, ns,
α and β. They are within the error bars given in Akrami et al. [2020]. It is worth
noting at this point that the values here are constrained only by the TT, TE, EE
data in addition to the EE likelihoods for low multipoles and the TT likelihoods
for high multipoles. The Planck 2018 values are also constrained by lensing. Figure
7.3 shows that the different parameters describing the primordial power spectrum in
expression (6.1) are for the most part uncorrelated. There is a slight anticorrelation
in {ns, β} and a somewhat stronger correlation in {α, β}. Adding the data obtained
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Figure 7.3: 68% (dark blue) and 95% (blue) confidence limits for the ΛCDM param-
eters and a modified power spectrum. Used joint TT, TE, EE data, EE
likelihood at low multipoles, the TT likelihood at high multipoles.

through lensing would decrease the size of the contours as well as possibly change
the mean values. Depending on the correlation of the parameters in the lensing data
only, it might also change the orientation of the marginalized contours.
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7.3 Slow-roll Parameters
The approach described in the previous section allows to find constraints on the
primordial spectrum by parametrizing it using the spectral index and its runnings.
In order to gain an even better understanding of the physics of inflation, the primor-
dial spectrum is generated as described in chapter 6.1. This approach integrates the
mode equations (3.36) to derive the primordial spectrum directly from the Hubble
slow-roll parameters. Based on the allowed regions for the Hubble slow-roll param-
eters, inflationary models can then be checked for their consistency with a given
experiment.

In practice the computation is performed using the typical setup of MontePython
interfaced with CLASS, while the primordial spectrum is computed using the module
described in Lesgourgues et al. [2008]. The 68% and 95% confidence limits for the
Hubble slow-roll parameters using the Planck 2018 data (TT, TE, EE, lowE) are
depicted in Figure 7.5. In addition to the slow-roll parameters plotted, the baryon
density, cold dark matter density, Hubble parameter, the reionization optical depth
and the nuisance parameters needed for the Planck data are sampled over. All of
these are marginalized over to obtain Figure 7.5.

The contours found by this method and setup reproduce the results in Akrami
et al. [2020]. This can be seen by comparing them to Figure 7.4 which was taken
from Akrami et al. [2020]. Note that the contours derived in this analysis need to
be compared to the dashed contours in Figure 7.4, as it does not include data from
the BK15 experiment. The effect varying the slow-roll parameters in the parameter
space allowed by Figure 7.5 and Table 7.3 has on the angular power spectra can
be seen in figures 7.6b and 7.6a. Here, every thousandth Markov chain element
from the Markov chains used to derive the constraints in Figure 7.5 is used as input
parameters in CLASS to find the angular TT and EE power spectra associated
to them. The different angular power spectrum realizations are largely similar for
multipole order higher than 100 while the effect of choosing different Hubble slow-
roll and cosmological parameters becomes apparent for low multipole orders. Since
the different parameters chosen are the ones constrained by the Planck 2018 data,
this also visualizes that in the region of multipole order 2 to 30 the data is not
as constraining as for higher multipoles. A similar observation can be made when
considering Figure 4.1 where the likelihoods at low multipole order are calculated
using a different likelihood computation Akrami et al. [2020].

The noise model for the blue dotted lines in figures 7.6b and 7.6a is taken from
Merkel and Schäfer [2017] and Knox [1995], it reads as

NTT (`) =

(
∆T

TCMB

)2

e
θ2FWHM`(`+1)

8 ln(2)
π`(`+ 1)

2
(7.1)

NEE(`) =

(
∆P

TCMB

)2

e
θ2FWHM`(`+1)

8 ln(2)
π`(`+ 1)

2
. (7.2)

Here, the CMB temperature was chosen as TCMB = 2.7255, the Gaussian beam size
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as θFWHM = 7.1 arcmin and the sensitivity with respect to temperature and polar-
ization as ∆T = 42.6 µK arcmin and ∆P = 81.65 µK arcmin. The increasing noise
level for higher order multipoles restricts the Planck experiment to the multipole
order range depicted in Figure 4.1.

Figure 7.4: Contours for Hubble slow-roll parameters taken from Akrami et al.
[2020]. Solid contours are Planck TT, TE, EE, lowE, lensing and BK15.
Dashed contours are Planck TT, TE, EE, lowE.

Table 7.3: Mean values and 95% intervals for the cosmological and slow-roll param-
eters using Planck 2018 TT, TE, EE, lowE data

Parameter mean 95% interval
10−2ωb 2.242 [2.211, 2.54]
ωcdm 0.1200 [0.1173, 0.1227]
h 0.6724 [0.662, 0.686]
τ reio 0.05678 [0.041, 0.075]

109Ãs 2.084 [1.978, 2.197]
εH 0.006095 [0.000000, 0.01518]
ηH −0.005849 [−0.02804, 0.02104]
ξ2H 0.01133 [−0.1498, 0.1797]
ω3
H 0.5182 [−1.213, 2.309]

In order to gain some insight into the individual correlations between the different
slow-roll parameters without the influence of the cosmological and the nuisance pa-
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Figure 7.5: 68% (dark blue) and 95% (blue) confidence limits for the Hubble slow-
roll parameters. Used joint TT, TE, EE data and EE likelihood at low
multipoles and TT likelihood at high multipoles.

rameters, Figure 7.7 shows the correlation between the slow-roll parameters directly.
In addition, Table 7.4 gives an overview over the mean values computed in this way
and the 95% confidence regions. For the two-dimensional Planck correlations and
their respective mean values 109Ãs was treated as a slow-roll parameter, since it
modifies the amplitude of the Hubble parameter and with it the amplitude of the
potential as well as the primordial power spectrum. All possible two-dimensional
parameter correlations are plotted. For each correlation all parameters that are not
varied over, i.e. the cosmological and nuisance parameters as well as the other slow-
roll parameters, are set to the mean values obtained in generating Figure 7.4. The
fixed values for the nuisance parameters are listed in the appendix A.1. Comparing
the mean values from Table 7.4 to the values in Table 7.3 shows that they are con-
sistent with each other, as expected after fixing all other parameters to the mean
values from 7.3. The 95% confidence regions have decreased with the lower number
of parameters probed. The two-dimensional correlations between the different Hub-
ble slow-roll parameters give some insight which of the slow-roll parameters have a
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Figure 7.6: Different realizations of the angular CMB spectra, allowed by the Planck
TT, TE and EE data with Planck noise levels.

similar effect on the angular spectra in the CMB. Comparison between the {εH , ξ2H}
correlations between figures 7.7 and 7.4 allows to see that the direction and shape
of the two-dimensional correlations do not easily explain the higher dimensional
correlations.
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Table 7.4: Mean values and error bars for 2D Markov chains using Planck 2018 data
Param mean 95% interval

109Ãs 2.0842 [2.0792, 2.0892]
εH 0.0061 [0.0050, 0.0071]

109Ãs 2.0842 [2.0791, 2.0894]
ηH −0.0059 [−0.0081,−0.0037]

109Ãs 2.0843 [2.0791, 2.0897]
ξ2H 0.010 [−0.024, 0.044]

109Ãs 2.0841 [2.0782, 2.0898]
ω3
H 0.51 [−0.02, 0.97]

εH 0.0060 [0.0048, 0.0072]
ηH −0.0061 [−0.0085,−0.0037]

εH 0.0058 [0.0038, 0.0078]
ξ2H 0.002 [−0.059, 0.065]

εH 0.00606 [0.00513, 0.00699]
ω3
H 0.51 [0.07, 0.92]

ηH −0.0059 [−0.0080,−0.0038]
ξ2H 0.011 [−0.020, 0.043]

ηH −0.0059 [−0.0079,−0.0039]
ω3
H 0.52 [0.07, 0.94]

ξ2H 0.011 [−0.018, 0.040]
ω3
H 0.51 [0.09, 0.93]
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8 Square Kilometer Array Results

The previous chapter allowed to verify that the computation of contours for both
the spectral index and its runnings as well as the slow-roll parameters can be per-
formed using the combination of MontePython and CLASS described above and
obtain results that match with the Planck 2018 results. This chapter focuses on
applying these two methods to the SKA. To that end, the likelihood for the SKA
are constructed as described in 6.4. In the computation of the SKA likelihoods a
fiducial power spectrum is used, for computations involving the Hubble slow-roll
parameters this spectrum is chosen to be the spectrum resulting from setting all
cosmological parameters and Hubble slow-roll parameters to the ones found in the
generation of Figure 7.5. The explicit parameter values are shown in Table 7.3. For
computations involving the spectral index and its runnings the parameter values to
generate the fiducial spectrum are chosen according to the values found in Table
7.2.

This chapter will first present the results for a parametrization of the primordial
spectrum using the spectral index and its runnings. In a next step, the slow-roll
parameters are constrained using the formalism in Lesgourgues et al. [2008].

8.1 Spectral Index and its Runnings
First the contours for a ΛCDM model with a modified power spectrum according to
equation (6.1) are computed using only the SKA likelihoods constructed according
to chapter 6.4. Figure 8.1 contains all parameters that are sampled over. The opti-
cal depth to reionization τreio is not treated as a free parameter, since the simulated
data of SKA alone can not constrain it. This can be understood from the construc-
tion of the likelihood, where we assumed that the ionized fraction of the helium is
zero. Thus, at the time at which we simulate the power spectrum to get the 21cm
data reionization has not started yet. Consequently this simulated data cannot con-
strain the optical depth until the onset of reionization. However, the assumption
that reionization has not yet started at this redshift itself gives an upper limit on
the optical depth to reionization, depending on the model for reionization. For
instantaneous reionization at redshift zreio = 8 and using the approximate formula

τ(zreio) = 0.03
Ωbh

2
75√

Ωmh275
z

3
2
reio (8.1)

taken from Mukhanov [2005] together with the approximations Ωbh
2
75 ≈ 0.004 and

Ωmh
2
75 ≈ 0.3 allows to compute an optical depth of about 0.05. This gives a rough
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upper limit for the optical depth until reionization for which the approximations
made in sections 6.4 are valid. The dashed red contours in Figure 8.1 correspond
to the 68% and 95% marginalized contours for a shorter observation time of 1000
hours. This reduces the accuracy with which the SKA can constrain the different
parameters by roughly a factor two. It is worth noting that, while most of the
constraints on the cosmological parameters ωb and ωcdm are significantly stronger
than the constraints found when using the Planck 2018 data, the constraint on the
reduced Hubble parameter is weaker by more than an order of magnitude for both
1000 and 10000 hours of observation time. The SKA constraints on the reduced
Hubble parameter h are weaker than the Planck 2018 data.
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Figure 8.1: 68% and 95% level contours ΛCDM parameters and the spectral index
and its runnings for SKA with 10000 hours observation time (red filled)
and SKA with 1000 hours observation time (red dashed). Used the SKA
likelihood described in section 6.4.

The parameters describing the primordial power spectrum and thus contain infor-
mation on inflation are shown separately in Figure 8.2. Here, the filled red contours
correspond to the constraints on the scalar amplitude As, the spectral index ns and
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its runnings α and β using the likelihoods described in section 6.4. The dashed red
lines correspond to the contours obtained when the observation time is reduced by
a factor of ten to 1000 hours. Comparing the dashed red contours with the filled
contours and considering Table 8.1 allows to see that the reduced observation time
leads to somewhat weaker constraints in all parameters. For As, ns and α the con-
straints become weaker by about a factor 1.5, while the constraint on β is about a
factor two weaker.

Comparing to Figure 7.3 allows to find that SKA, with the likelihoods defined in
section 6.4, can constrain the quantities describing the primordial spectrum signifi-
cantly better than the Planck 2018 data. Some of the contours, especially the {α, β}
contour, also have different orientations. Considering in addition the 95% confidence
limits displayed in tables 7.2 and 8.1 reveals that As and ns are only slightly better
constrained, while and α and β are already better constrained only with SKA data
by about an order of magnitude. Overall, the simulated SKA likelihood seems to
exhibit more and stronger correlations between the parameters.

Table 8.1: Mean values and error bars for the spectral index and its runnings using
the SKA likelihoods constructed as in 6.4

SKA (10000 hrs) SKA (1000 hrs)
Parameter mean 95% interval mean 95% interval

10−10As 21.20 [21.07, 21.32] 21.19 [21.01, 21.38]
ns 0.9609 [0.9549, 0.9669] 0.9609 [0.9524, 0.9695]
α 0.0030 [−0.0006, 0.0066] 0.0030 [−0.0025, 0.0085]
β 0.0140 [0.0124, 0.0156] 0.0141 [0.0109, 0.0172]
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likelihood described in section 6.4.
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8.2 Slow-roll Parameters
Similarly to chapter 7 the SKA can also be used to constrain the shape of the
Hubble function during inflation directly. This is done using the Hubble slow-roll
parameters described in chapter 6. The analysis is performed by starting out with
exploring the two-dimensional correlations between pairs of slow-roll parameters
with fixed cosmological parameters. In a next step, three of the slow-roll parameters
are used as free parameters, which already yield very strong correlations in some
parameter combinations. These correlations make the analysis of the four and five-
dimensional combinations of slow-roll parameters very difficult, in fact, neither the
five-dimensional combination nor all of the four-dimensional combinations of slow-
roll parameters converge.

8.2.1 Two-dimensional Results
In a first step, the two-dimensional correlations between all parameter pairs are
found while keeping both the cosmological parameters as well as the slow-roll pa-
rameters not shown in the plots fixed. This analysis is shown in Figure 8.3. From
this and the 95% confidence regions shown in Table 8.2 it is already visible that
at least for two-dimensional correlations of the slow-roll parameters the SKA is
immensely more constraining than the Planck 2018 data. In addition, the differ-
ent two-dimensional contours exhibit strong correlations and anticorrelations. The
most notable ones of these are the correlation between {εH , ηH} and {109Ãs, εH} as
well as the anticorrelations between {109Ãs, ηH} and {εH , ξ2H}. The fourth slow-roll
parameter ω3

H does not appear to be correlated to the other slow-roll parameters in
the two-dimensional cases.
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Figure 8.3: Two-dimensional 68% and 95% level contours using SKA likelihoods as
computed in 6.4.
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Table 8.2: Mean values and error bars for 2D Markov chains using SKA likelihoods
as constructed in 6.4

Param mean 95% interval

109Ãs 2.08401 [2.08314, 2.08489]
εH 0.006096 [0.006050, 0.006141]

109Ãs 2.08400 [2.08331, 2.08469]
ηH −0.005849 [−0.005941,−0.005756]

109Ãs 2.08400 [2.08365, 2.08436]
ξ2H 0.01134 [0.01052, 0.01218]

109Ãs 2.08400 [2.08379, 2.08420]
ω3
H 0.518 [0.498, 0.537]

εH 0.00609 [0.00593, 0.00625]
ηH −0.00586 [−0.00627,−0.00545]

εH 0.006095 [0.006066, 0.006123]
ξ2H 0.0113 [0.0101, 0.0126]

εH 0.006095 [0.006085, 0.006105]
ω3
H 0.518 [0.499, 0.536]

ηH −0.005848 [−0.005933,−0.005762]
ξ2H 0.0114 [0.0099, 0.0128]

ηH −0.005849 [−0.005875,−0.005822]
ω3
H 0.518 [0.498, 0.537]

ξ2H 0.01133 [0.01083, 0.01183]
ω3
H 0.518 [0.497, 0.538]
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8.2.2 Three-dimensional Results

In a next step, three parameters are varied at the same time to gain insight into
the impact an additional parameter has on the contours. The ten different combi-
nations are plotted as scatter plots of the Markov chain points in Figure 8.4. This
gives a good impression of the position and orientation of the Markov chain in the
parameter space and quantifies degeneracies between parameters. The shadows on
the parameter walls are marginalizations onto planes keeping one parameter fixed.
For the three-dimensional results parameter triplets with strong correlations can be
identified, these include {Ãs, εH , ξ2H}, {Ãs, ηH , ξ2H}, {εH , ξ2H , ω3

H}, {ηH , ξ2H , ω3
H} and,

most notably, the correlations between the first three slow-roll parameters in which
the accumulated points are just a thin line in three-dimensional space. While all
of these parameter combinations exhibit directions in which they appear correlated
only for the {Ãs, εH , ηH} combination, the likelihood cloud seems to bend slightly
in the negative ηH direction for large values of Ãs and εH .

The three-dimensional plots in 8.4 give a good intuition of the position of the
Monte Carlo Markov chain in space. However, it is not very easy to do further
analysis with it and especially not possible to give constraints on single parameters.
Instead, Figure 8.5 shows the marginalized contours when varying three slow-roll
parameters at the same time. The upper-most plot in each column is the marginal-
ized one-dimensional distribution of the Markov chain points for the parameter that
this column corresponds to. In addition to the correlations found by varying three
parameters, plotted in green, the correlations found by varying only two parameters
are superimposed in red and blue. This allows to track the influence of a third
parameter on the different parameter correlations. In fact, it is possible to predict
some of the behavior of the contours generated using three parameters from the
shape of the contours in 8.3. Taking the {Ãs, εH , ω3

H} plot as an example it is pos-
sible to see that the strong correlation between {Ãs, εH} leads to a correlation in
the previously uncorrelated {Ãs, ω3

H} and {εH , ω3
H} contours, since with a varying

third parameter the contour only moves in a very specific direction. Similarly, it
is not surprising that the direction of the {Ãs, εH} contour does not change a lot
upon introducing ω3

H as a free parameter because it is not correlated with either of
them. A similar argument can be made to explain the orientation of the contours
for any of the parameter combinations involving the fourth slow-roll parameter ωH .
For combinations that involve three parameters which are pairwise correlated or
anticorrelated with each other the situation gets somewhat more complicated. The
combination {Ãs, ηH , ξ2H} is an example where the correlation in {Ãs, ηH} for two
varying parameters seems to transition into an anticorrelation when varying ξ2H as
well. Similarly, the orientation of the other two contours in this plot are also altered
by the anticorrelation in {Ãs, ηH}. In principle, even for this case, the amount of
correlation and anticorrelation the contours for two free parameters exhibit should
provide some information on the respective contours when varying three parameters.
However, quantifying how strong the correlations are goes beyond the scope of this
work.
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Figure 8.4: Markov chain points in three-dimensional parameters space generated
with SKA likelihoods computed as described in 6.4.

The marginalized contours for {Ãs, εH , ηH} show an enhancement of the corre-
lations in {Ãs, εH} and {εH , ηH} while flipping the anticorrelation in {Ãs, ηH} into
a strong correlation. This might be explained by the fact that both {Ãs, εH} and
{εH , ηH} exhibit very strong correlations already for two free parameters. For this
particular three-dimensional combination of parameters the computational setup

66



struggles to find a proposal distribution that allows to find a good amount of ac-
cepted points, however, the three-dimensional Markov chain still converges.
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Figure 8.5: Three-dimensional 68% and 95% level contours using SKA likelihoods
as computed in 6.4..

Adding a third free parameter to the computation of the likelihoods and the con-
tours for the slow-roll parameters leads to much stronger marginalized correlations
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and with that much larger error bars for the individual parameters. Figures 8.6 to
8.8 show that this is indeed an effect of varying this additional parameter. In these
figures one parameter in the three-dimensional Markov chains is selected and only
those points within a small region around the mean value found in 7.3 are taken into
account to generate the figures. For each three-dimensional Markov chain three of
these sliced chains are generated. They can then be compared to the corresponding
two-dimensional Markov chains where the other three parameters are fixed to their
fiducial values from the beginning. As shown in figures 8.6 to 8.8 the cut chains
exhibit mean parameter values and correlations very similar to the two-dimensional
Markov chains. There are some differences between the cut chains and the two-
dimensional chains, for example the mean values in the {Ãs, ω3

H}, {ηH , ω3
H}, {ω3

H}
and {Ãs, ξ2H} cases do not match exactly. In addition, the shape of some of the
contours using the sliced chains are slightly wobbly. This can be explained by the
comparatively low number of points in the parameter slices. If more points are
included by increasing the interval around the fiducial values, for which points are
included in the cut chains, the effects of varying a third parameter can be seen di-
rectly. The contours then enlarge in the directions seen in 8.5. This shows that the
change of contours generated by varying three parameters and those generated with
only two free parameters are indeed consistent.

While it is possible to vary more than three Hubble slow-roll parameters and still
have converging Markov chains, the strong correlations seen for the combination
{Ãs, εH , ηH} is also present when varying more parameters at once, making their
analysis difficult. In the timescales considered for the analysis, i.e. 48 hours on
16 chains in parallel, it was not possible to collect enough Markov chain points to
find sensible constraints. In the four-dimensional case it is feasible to find contours
and parameter constraints for any of the combinations that do not include the
combination above. They are shown in Figure B.1 in the Appendix.

For the five-dimensional case no converging Markov chains using only the SKA
likelihoods could be obtained. It may be possible to address this problem by per-
forming a principal component analysis and redefining the parameters such that
there are weaker correlations.
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Figure 8.6: Comparison between slices and 2D SKA contours, each row corresponds
to slices taken from one 3D SKA chain.
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Figure 8.7: Comparison between slices and 2D SKA contours, each row corresponds
to slices taken from one 3D SKA chain.
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Figure 8.8: Comparison between slices and 2D SKA contours, each row corresponds
to slices taken from one 3D SKA chain.
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9 Combined Results

As shown in chapters 7 and 8 the two experiments show different behavior when
constraining parameters describing inflation. For the spectral index and its runnings
the constraints from the SKA are much stronger than the Planck 2018 constraints
leading to combined constraints at about the same level of the SKA constraints. In
the case of Hubble slow-roll parameters the situation is different since the Planck
2018 data allows to constrain the slow-roll parameters up to order four, while the
simulated SKA data can only constrain them well up to second order. However,
the slow-roll parameters are much stronger constrained by the SKA data. In the
following the likelihoods computed in the two experiments are combined to find con-
straints on the first four slow-roll parameters. This is done by adding the likelihoods
under the assumption that they are uncorrelated.

9.1 Spectral Index and its Runnings
The combination of the simulated SKA likelihood with the likelihood computed from
the 2018 Planck data allows to constrain the spectral amplitude, the spectral index
and its runnings slightly better than SKA alone and significantly better than the
Planck 2018 data alone. Figure 9.1 shows the marginalized one and two-dimensional
distributions for Planck alone in blue, for SKA alone in red and for their combina-
tion in purple. From the relative sizes of the contours it is clear that the much
stronger constraints of the SKA drives the combined constraints to their small val-
ues. However, adding the Planck 2018 likelihood values does have the impact of
slightly decreasing the contours only from SKA. The strength of the constraints due
to the SKA when compared to Planck 2018 alone can be explained by considering
the construction of the primordial spectrum in expression (6.1). The spectral index
and its runnings modify the primordial spectrum such that their influence is small
at comoving wave number values close to the pivot scale, while far away from the
pivot scale their influence is large. The SKA measures at comoving wave number
further away from the pivot scale, such that the spectral index and especially its
runnings can be constrained much better.
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Figure 9.1: 68% and 95% level contours for the scalar amplitude, the spectral index
and its runnings for SKA with 10000 hours observation time + Planck
2018 (TT, TE, EE, lowE, highT) (purple), SKA with 10000 hours obser-
vation time (red dashed) and Planck 2018 (TT, TE, EE, lowE, highT)
(blue dashed). Used the SKA likelihood described in section 6.4.

Table 9.1: Mean values and 95% intervals for the spectral amplitude, index and its
runnings using Planck 2018 and SKA combined.

Parameter mean 95% interval
10−10As 21.20 [21.09, 21.31]
ns 0.9608 [0.9562, 0.9653]
α 0.0030 [0.0003, 0.0058]
β 0.0140 [0.0127, 0.0154]

73



9.2 Slow-roll Parameters
Similarly to the analysis in the previous chapter this section will first consider the
two-dimensional results obtained when varying only two parameter and then go on
to dimension three. Considering the Planck 2018 data on top of the SKA likelihood
indeed allows to find decent amounts of Markov chain points for all three-dimensional
combinations.

In Figure 9.2 the two-dimensional contours obtained from combining the likeli-
hoods found using the Planck 2018 data and the SKA are shown. As can be seen
from the SKA contours plotted as red dashed lines, the addition of the Planck like-
lihoods does not have a large impact on the two-dimensional constraints. This can
be understood by comparing the 95% confidence intervals obtained in Table 7.4 and
8.2 or the overall sizes of the two-dimensional contours between figures 7.7 and 8.3.
Overall the SKA contours are about an order of magnitude more constraining than
the Planck contours. Adding the two likelihoods to obtain combined constraints
therefore does not add a lot of constraining power in the two-dimensional case. This
can also be verified by comparing the 95% confidence intervals in Table 9.2 to those
in Table 8.2. As was the case for the two-dimensional Planck and SKA contours, all
cosmological and nuisance parameters involved as well as those slow-roll parameters
not on the axes of the plots are kept fixed to their fiducial values.

In addition to the two-dimensional results the combination of the two likelihoods
allows to find converging contours for more than two free parameters. The contours
found when varying three slow-roll parameters are shown in Figure 9.3. Considering
the parameter combination {Ãs, εH , ηH} the effect of adding the Planck likelihoods
is clearly visible. The one-dimensional marginalized parameter distributions have
a cleaner peak. The acceptance rate for the combined likelihoods could be driven
to higher values, allowing to find an adequate amount of Markov chain points to
get a clear three-dimensional result. This is possible, since the Planck 2018 data
disallows some of the parameter space accessed by the strong correlations. The
other parameter combinations exhibit the same behavior as the ones found when
considering the SKA likelihood only as depicted in Figure 8.5. Adding the Planck
likelihoods to the simulated SKA likelihoods thus allows to find the behavior of the
{Ãs, εH , ηH} combination. The size of the contours and confidence limits found for
these and all other slow-roll parameters are at levels similar to the SKA results.

In fact, the combined SKA and Planck likelihoods allow to find parameter con-
straints for all of the Hubble slow-roll parameters at once. In order to compare
them to the results in Figure 7.5 the cosmological parameters, including the optical
depth until reionization τreio, as well as all nuisance parameters, were chosen as free
parameters. The results of this analysis are shown in Figure 9.4 and Table 9.3.

Considering Table 9.3 and comparing the mean values to the fiducial values in
7.3 allows to find a shift in the mean values for the first three Hubble slow-roll
parameters. This shift also already appears in the consideration of the contours
using three free parameters. It is likely due to the strong correlations in the first
three slow-roll parameters that lead to a region where the Markov chain finds very
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Figure 9.2: Two-dimensional contours from Planck and SKA combined (purple).
The two-dimensional SKA contours are overlaid in red.

likely parameter combinations.
Considering only the marginalized distributions for each of the parameters and

comparing them and the width of the 95% intervals to the Planck 2018 results allows
to find the impact SKA would have on their constraints. For the amplitude Ãs the
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Table 9.2: Mean values 95% confidence limits for 2D Markov chains using combined
SKA and Planck 2018 likelihoods

Param mean 95% interval

109Ãs 2.08403 [2.08318, 2.08491]
εH 0.006096 [0.006052, 0.006142]

109Ãs 2.08401 [2.08333, 2.08468]
ηH −0.005850 [−0.005940,−0.005758]

109Ãs 2.08400 [2.08365, 2.08436]
ξ2H 0.01134 [0.01055, 0.01215]

109Ãs 2.08400 [2.08381, 2.08420]
ω3
H 0.518 [0.498, 0.537]

εH 0.00609 [0.00593, 0.00624]
ηH −0.00587 [−0.00628,−0.00549]

εH 0.006095 [0.006066, 0.006123]
ξ2H 0.0113 [0.0101, 0.0126]

εH 0.006095 [0.006085, 0.006105]
ω3
H 0.517 [0.498, 0.536]

ηH −0.005848 [−0.005935,−0.005760]
ξ2H 0.0113 [0.0099, 0.0128]

ηH −0.005849 [−0.005875,−0.005822]
ω3
H 0.517 [0.498, 0.536]

ξ2H 0.01132 [0.01081, 0.01182]
ω3
H 0.517 [0.496, 0.538]

Table 9.3: Mean values and 95% intervals for Hubble slow-roll parameters using
Planck 2018 and SKA combined.

SKA+Planck (10000 hrs) SKA+Planck (1000 hrs)
Parameter mean 95% CL mean 95% CL

Ãs 2.075 [2.048, 2.106] 2.075 [2.046, 2.110]
εH 0.00410 < 0.00951 0.0043 < 0.0101
ηH −0.0101 [−0.0197, 0.0022] −0.0097 [−0.0198, 0.0032]
ξ2H 0.011 [0.000, 0.023] 0.011 [−0.002, 0.024]
ω3
H 0.51 [0.41, 0.61] 0.51 [0.33, 0.67]

one dimensional marginalized constraint is stronger by about a factor three, while
constraints on the first and second slow-roll parameter are improved by less than
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Figure 9.3: Three-dimensional contours from Planck and SKA combined.

a factor of two. In contrast to this relatively modest improvement the constraints
on the third and fourth slow-roll parameters are very strong. The 95% intervals
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Figure 9.4: Five-dimensional contours using the SKA likelihood in 6.4 and the TT,
TE, EE, lowE data from Planck 2018. Depicted are the combined con-
tours with observation time for SKA at 10000 hours (purple), at 1000
hours (purple dashed) as well as the contours from Planck alone (blue
dashed).

shrink by more than an order of magnitude. Comparing their values to the 95%
intervals found for two free parameters in Table 9.2 allows to find that, while all
of the constraints grow weaker when more parameters are included, the constraints
on Ãs, εH and ηH do so by a much larger factor than the other two. The reason
for that can be found by looking at the marginalized contours in figures 9.4 and
9.3 where the strong correlations between the parameters {Ãs, εH} and {εH , ηH}
lead to very strong correlations in the marginalized contours whenever all three of
these parameters are considered at the same time. This leads to comparatively wide
one-dimensional marginalized distributions and thus to large 95% confidence limits.

In order to understand why the SKA can constrain the slow-roll parameters this
much more precisely than the Planck 2018 data, it is necessary to consider the
construction of the primordial power spectrum in section 6.1.2. The approximation
of the Hubble function using the slow-roll parameters is designed as a Taylor series
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around the field value at horizon crossing of the pivot scale. Thus, any power
spectrum computed using this approximation takes approximately the same value
at the pivot scale. For comoving wave numbers close to the pivot scale the effect
of varying the slow-roll parameters and with them the coefficients in the Taylor
series in expression 6.5 is not very large since the field values at horizon crossing of
these scales are also close to the field value at horizon crossing of the pivot scale.
For comoving wave numbers far away from the pivot scale the effect of the slow-roll
parameters on the values of the power spectrum is large. From the figures comparing
the angular power spectra to the noise 7.6 it becomes clear that Planck can only
measure at low multipole order ` corresponding to low comoving wave numbers. In
contrast, the SKA can probe larger comoving wave numbers, see Figure 6.5. Here,
the impact different values for the slow-roll parameters have on the 21cm power
spectrum can be seen. Especially for large comoving wave numbers the values of the
power spectrum changes significantly. For the largest scales probed by the SKA the
signal is about a factor 100 stronger than the noise allowing to resolve the relatively
small differences due to varying slow-roll parameters.

The purple dashed lines in Figure 9.4 allow to find the impact of decreasing the
observation time for the SKA to 1000 hours. This leads to a higher noise level than
the one in Figure 6.5 and makes the results more comparable to Muñoz et al. [2017].
This decrease of the observation time leads to a slight increase in the sizes of the
marginalized one and two-dimensional distributions. Nevertheless, the constraints
on the slow-roll parameters do not appear to be impacted significantly. One of the
reasons might be that the likelihoods in this case are not perfectly Gaussian. In
addition the Planck likelihood is not impacted by the decrease in the observation
time, so the scaling would only impact the SKA likelihood and not necessarily the
combined likelihood.
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10 Summary and Conclusion

This thesis outlines a path from the beginning of single field inflation and quan-
tum fluctuations in the early Universe to large scale structures in the Universe at
redshift 8. First, the motivation for postulating a period of accelerated expansion
is explained. Then, working in the framework of single field inflation, quantum
fluctuations are used to explain curvature fluctuations in the primordial spectrum
after the end of inflation. These can explain the anisotropies in the CMB, which are
used as a first probe of the inflationary scenario. The fluctuations are then further
evolved with the Boltzmann code CLASS to derive the density power spectrum at
redshifts 8 to 10. At these redshifts the 21 cm power spectrum is computed and used
to demonstrate the usefulness of a measurement of the 21 cm brightness fluctuations
performed with the SKA.

The two-dimensional parameter distributions obtained using the SKA exhibit very
strong degeneracies making the analysis of SKA alone numerically challenging. In-
stead, the SKA likelihood was combined with the Planck 2018 data to demonstrate
that the inclusion of a simulated SKA survey of the redshift region from 8 to 10
allows to significantly decrease the constraints on the Hubble slow-roll parameters
as was shown in Figure 9.4. Similarly the spectral index and its runnings can be
much better constrained with the SKA as can be seen in Figure 9.1. The increase
in precision can be attributed to the larger comoving wave numbers probed by the
SKA. The construction of the primordial spectrum from the spectral index and its
runnings is an expansion around the pivot scale, while the construction using the
Hubble slow-roll parameters relies on the expansion of the Hubble function around
the field value at horizon crossing of the pivot scale. For both of these it is im-
mediately clear that changes in the parameters used to construct the primordial
spectrum have a small effect close to the pivot scale, while their effect becomes
more pronounced far away from it. This leads to the stronger constraining power of
the SKA compared to the CMB observations of the Planck satellite.

There are several ways to alter the analysis that might be interesting to explore.
One of them is to construct the primordial power spectrum following the method
described in Powell and Kinney [2007]. There the shape of the Hubble function is
not restricted to the polynomial shape assumed in this thesis. Another way might
be to consider the potential slow-roll parameters as in Lesgourgues and Valkenburg
[2007] to directly constrain the inflaton potential. The drawback in that case is that
the conditions defining the end of inflation are more precisely expressed in terms of
the Hubble slow-roll parameters.

While the redshift range chosen in the thesis allows for a relatively easy compu-
tation of the SKA likelihoods, it is possible to consider larger and different redshift
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ranges as shown in Mao et al. [2008] and Sprenger et al. [2019]. To incorporate these
regions the computation of the likelihood needs to be altered to include the effects
of a position dependent neutral hydrogen fraction for smaller redshifts as well as a
position dependent spin temperature for larger redshifts. This would allow to access
a larger amount of data, with an appropriate observation time this could lead to
stronger constraints on the slow-roll parameters. To access even lower redshift re-
gions other experiments probing the large scale structures at redshifts of order unity
could be considered. However, due to the effect of nonlinear structure formation
inferring the primordial power spectrum from these experiments is challenging.
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A Nuisance parameters

For the generation of the two and three-dimensional Markov chains the nuisance
parameters in the generation of the Planck 2018 likelihoods were fixed in order to
understand the correlation between two parameters separate from all others. Table
A.1 lists their mean values. In the generation of the two and three-dimensional
Markov chains they are fixed to the mean values in this table.

Table A.1: Mean values for the nuisance parameters used in the generation of the
2D and 3D Markov chains whenever Planck 2018 likelihoods are used.

Param mean
Acib217 47.6
xiszcib 0.511
Asz 5.228
psA100100 263.7
psA143143 49.15
psA143217 43.91
psA217217 116
ksznorm 3.712
gal545A100 8.887
gal545A143 10.94
gal545A143217 18.64
gal545A217 93.52
galfTEA100 0.1161
galfTEA100143 0.1361
galfTEA100217 0.4804
galfTEA143 0.2281
galfTEA143217 0.6651
galfTEA217 2.076
10+3calib100T 999.7
10+3calib217T 998.2
Aplanck 1.001
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B SKA with Four Slow-roll Parameters

Not all of the combinations containing four slow-roll parameters accumulated a
sensible number of points for a computation time of 48 hours. This is likely due
to the strong degeneracies identified in section 8.2.2. The four-dimensional Markov
chains that do not contain the combination {Ãs, εH , ηH} do not suffer from this
problem. They are shown in B.1.
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Figure B.1: SKA contours generated by varying four parameters at the same time.
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