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Abstract

Experiments such as Large Hadron Collider (LHC) provide us unique avenues to

understand nature at its fundamental level. For example, data produced by the LHC

could potentially hold intriguing signatures for some of the open mysteries such as

dark matter. To help uncover the underlying structure of such large amounts of

data, machine learning proved to be fruitful. This thesis studies the possibility to

detect elusive dark-jets, simulated through a model that could explain the observed

dark matter within the universe, by self-supervised learning methods. Doing so,

DarkCLR is introduced, a method which is data-driven and uses augmentations of

the background data to build a representation space that is invariant under symmetry

transformations and at the same time discriminative to certain, beyond the standard

model inspired, augmentations. A normalised autoencoder trained on background

representations then computes anomaly scores in the representation space.

Zusammenfassung

Experimente wie der Large Hadron Collider (LHC) bieten uns einzigartige

Möglichkeiten, die Natur auf ihrer fundamentalen Ebene zu verstehen. So könnten

die vom LHC erzeugten Daten möglicherweise verblüffende Hinweise auf einige der

offenen Rätsel wie die dunkle Materie liefern. Um die zugrunde liegende Struktur

solch großer Datenmengen aufzudecken, hat sich maschinelles Lernen als wertvoll

erwiesen. In dieser Arbeit wird die Möglichkeit untersucht, illusorische dunkle

Strahlen, die durch ein Modell simuliert werden, das die beobachtete dunkle Materie

im Universum erklären könnte, durch selbstüberwachte Lernmethoden zu entdecken.

Zu diesem Zweck wird DarkCLR eingeführt, eine Methode, die datengesteuert ist

und Erweiterungen der Hintergrunddaten verwendet, um einen Repräsentationsraum

aufzubauen, der unter Symmetrietransformationen invariant ist und gleichzeitig

bestimmte, über das Standardmodell hinausgehende Erweiterungen diskriminieren

kann. Ein normalisierter AutoEncoder, der auf Hintergrundrepräsentationen trainiert

wurde, berechnet dann Anomalie-Scores in dem Repräsentationsraum.
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1

Introduction

The Standard Model of particle physics has proven to be a highly successful theory,

providing a comprehensive and internally consistent explanation for the elementary par-

ticles observed to date, as well as three of the four fundamental forces. Many of the

predictions made by the Standard Model have been confirmed experimentally, further

validating its accuracy. After the experimental discovery of Higgs boson in 2012 the

Standard Model became complete in terms of particle content [1, 2].

The Standard Model precisely describes most of the observed phenomena at the fun-

damental level. However it cannot account for the existence of dark matter. Initially

postulated by Zwicky [3] in 1930 and subsequently explored by Rubin and Ford [4] in

the 1970s, the first evidence of dark matter emerged from the study rotational curves

of galaxies. Observations showed that stars in spiral galaxies maintain a near-constant

speed, regardless of their radial distance from the galaxy’s center – a finding at odds with

the predictions based on visible matter alone. The latter would propose a decrease in

speed with increasing distance from the center. This inconsistency suggests the presence

of an unobserved mass – now referred to as dark matter – which provides the additional

gravitational force necessary to maintain the observed stellar velocities.

Apart from rotational curves, phenomena such as gravitational lensing [5] and the pat-

terns discerned in the cosmic microwave background radiation [6] strongly endorse the

existence of dark matter. Subsequent to these findings, a multitude of dark matter can-

didates have been proposed within the scientific community [7–10].

This thesis narrows its focus to one such proposal, an augmentation of the Standard

Model that postulates a ”dark sector” with only faint interaction with Standard Model

particles, thereby preserving the observed constant dark matter density.

Despite several efforts focused on identifying the source of dark matter it remains undis-

covered. It is plausible that this lack of success should not be attributed to the limita-

tions of current particle accelerator technology but because the signs of new physics are
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1 Introduction

concealed within the copious data collected by colliders such as the Large Hadron Col-

lider. Machine learning has proven to be an efficient tool in decoding these large datasets.

This thesis presents a mapping that learns to construct a latent space from jet con-

stituents. Employing a self-supervised contrastive methodology, the mapping is trained

to create a representation space that encapsulates the differences between semi-visible

jets and background Quantum chromodynamic jets. The demarcation task between

these categories is undertaken through an unsupervised approach, without the reliance

on specific instruction or labeled data.

The training process aims to maximize the distinction between semi-visible jets and

background Quantum chromodynamic jets, exploiting the specific structure and pat-

terns within the jet constituents. In doing so, the mapping seeks to reveal and employ

the inherent features that distinguish these jet types, without explicit knowledge of the

signal dataset.

The structure of this thesis is as follows: The fundamentals of semivisible jet physics

are recapitulated in chapter 2, and a groundwork for machine learning methods is estab-

lished in chapter 3. The concept behind Dark Contrastive Learning of Representations

(DarkCLR) is then introduced in chapter 4, where the specific methodology used is de-

scribed. Subsequently, the results that have been achieved are presented and discussed

in chapters 6 and 7.
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2

Physics background

This chapter is a basic introduction to the scientific ideas and the variables we use in

this research. It starts with a short overview of the Standard Model (SM) of particle

physics, focusing on quantum chromodynamics (QCD) - the theory that explains the

strong force. This is succeeded by a brief introduction to the concept of semi-visible

jets. The chapter concludes with an examination of the kinematic variables utilized

throughout this thesis.1

2.1 Standard Model of particle physics

Within the paradigm of the SM of particle physics, all recognized elementary particles

and three of the fundamental forces are depicted within the context of quantum field the-

ory (QFT). These forces encompass electromagnetism, weak interaction, and the strong

force, with gravity being the notable exception.

Elementary particles are primarily classified into two groups. The first group consists of

fermions, spin-1
2
particles which comprise the observable matter in the universe. These

fermions can be further subdivided into quarks and leptons, as illustrated in Fig. 2.1 .The

second group embodies the bosons, which are the carriers of the fundamental forces. As

spin-1 particles, they mediate these forces, earning them the moniker of gauge bosons

within QFT. Each fundamental force is associated with a specific boson: the photon

mediates electromagnetism, the W± and Z bosons mediate the weak interaction, and

gluons mediate the strong interaction. To complete the SM the Higgs boson, an unique

spin-0 particle, is responsible for giving mass to the other elementary particles.

1In this thesis natural units will be used with c = ℏ = 1
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2 Physics background

Figure 2.1: The Standard Model of particle physics, which describes all known elemen-
tary particles and three of the four known fundamental forces. Taken from
[11].

2.2 QCD and jets

Quantum chromodynamics (QCD) is a key component of the SM which provides a the-

oretical framework to understand the behaviors and strong interactions of quarks and

gluons. At high energy scales, quarks exhibit weak interactions that can be effectively

analyzed using perturbative methods. However, as the energy decreases and approaches

a low energy scale, the interaction strength between quarks increases. Consequently,

the traditional perturbative approach breaks down and confinement emerges. The phe-

nomenon of color confinement, a distinctive property of QCD, mandates that quarks

and antiquarks coexist in color-neutral states, collectively known as hadrons.

Hadrons can be further classified based on their spin. Those with half-integer spin are

identified as baryons, consisting of three quarks each bearing an unique color charge. In

contrast, hadrons with integer spin, known as mesons, comprise a pair consisting of a

quark and an antiquark.

During high-energy particle collisions, generated quarks or gluons undergo a process

referred to as hadronization. Given that quarks and antiquarks can only maintain sta-

bility as hadrons, the potential energy between two quarks intensifies as their separation
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2 Physics background

increases. This results in the formation of hadrons along with quark-antiquark pairs

which materialize from the vacuum. The generation of these quark-antiquark pairs may

recur several times before the quarks eventually form a stable bound state.

For subsequent analysis, the resulting hadrons must be aggregated by jet clustering algo-

rithms such as anti-kT [12], producing so-called jets. Jets resulting from QCD processes

that do not yield particles categorized as ”signals” of interest are collectively referred to

as QCD background.

2.3 Semivisible jets

Dark showers, also referred to as semi-visible jets, are postulated by theories that propose

extensions to the SM via the addition of a new sector, termed the dark sector. An

example of such a theory is the Hidden Valley Model. Given the vast array of Hidden

Valley models, this chapter will primarily concentrate on the specific model that governs

the creation of the semi-visible jets used as signals within this thesis.

The model of interest here is characterized by a strongly coupled SU(3)d dark sector

comprised of fermions, linked to the SM via a portal. For the purposes of this thesis,

the conduit between the SM and the dark sector is assumed to be a Z ′ mediator. This

mediator has the capacity to couple to both, SM quarks (q, q̄) and dark sector quarks

(qd, q̄d) [13]. The concept is visualised in Fig. 2.2. This is facilitated by the introduc-

tion of a weakly interacting U(1)′ Gauge group. The weak nature of this interaction

is inferred from the absence of any detectable signatures attributable to the vanishing

quarks at the LHC.

Once a qd, q̄d pair is produced via a Z ′, the model permits the initiation of a shower

in the dark sector. At this juncture, a critical variable rinv is introduced. rinv quantifies

the fraction of particles within a dark shower that does not decay back into SM particles

relative to the total number of particles within the dark shower. The variable rinv cannot

be considered an independent variable due to its correlation to the physics within the

dark sector. It is influenced by various other variables such as the mass of dark mesons

or the coupling strength, which will be described in more detail in chapter 5. Neverthe-

less, the characteristic of rinv is crucial to determine the visibility or invisibility of the

dark shower constituents.

5



2 Physics background

Figure 2.2: Schematic illustration of a shower within the dark sector from a decay of Z ′

produced in association with a gluon. In this configuration a Z ′ − ρ0d mixing
exist that enables the ρ0d to decay into SM-quarks. Taken from [13]

2.4 Kinematic variables for jets

To fully understand the dataset described in the ensuing sections, it is important to

first understand some basic physics concepts and notations that we use to measure the

discussed phenomena.

We commence by defining the Lorentz factor γ = (1−β2)−0.5, where β signifies the par-

ticle’s velocity in units of the speed of light, c. Leveraging the Lorentz factor along with

the rest mass of a massive particle, the relativistic energy E = γm and three-momentum

p⃗ = γβm can be effectively described. The combination of these parameters gives us the

four-momentum (also known as energy-momentum four-vector) of the particle:

pµ := (E, p⃗) = (E, px, py, pz) with E =
√

|p⃗|2 +m2. (2.1)

By adopting spherical coordinates with the polar angle θ ∈ [0, π] and the azimuthal

angle ϕ ∈ (−π, π], the three-momentum p⃗ = (px, py, pz) can be parameterized as

p⃗ = |p⃗|



sin θ cosϕ

sin θ sinϕ

cos θ


 . (2.2)
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In this context, the z-axis corresponds to the direction of the beam, and the angle θ em-

bodies the deviation between the particle’s trajectory, delineated by its three-momentum

p⃗, and the beam direction. In high-energy collision experiments, the laboratory frame

and the center-of-mass system (CMS) are intertwined through a Lorentz boost along

the beam axis. In order to streamline the analysis, we introduce variables that exhibit

simple transformation properties under a Lorentz boost along the designated direction.

transverse momentum: pT =
√

p2x + p2y (2.3a)

transverse mass: mT =
√

p2T +m2 m → 0−−−−→ pT (2.3b)

rapidity: y =
1

2
ln

(
E + pz
E − pz

)
(2.3c)

pseudo-rapidity: η =
1

2
ln

( |p|+ pz
|p| − pz

)
= − ln

(
tan

θ

2

)
m → 0−−−−→ y (2.3d)

While the transverse momentum pT and the transverse mass mT retain their invariance

under Lorentz boosts along the beam axis, the rapidity y adds up under such a transfor-

mation. For ultra-relativistic particles, which travel at speeds approximating the speed

of light (i.e. |p| ≫ m and thus E ≈ |p|), the particle masses can be considered negligible.

Hence, the pseudo-rapidity η converges with the rapidity y. Under these conditions, the

transverse momentum pT, the pseudo-rapidity η, and the azimuthal angle ϕ constitute

effective measures for the four-momentum of a particle:

pµ =




mT cosh y

pT cosϕ

pT sinϕ

mT sinh y




m → 0−−−−−→ pT




cosh η

cosϕ

sinϕ

sinh η




(2.4)

In a symmetric high-energy collision involving two protons A and B (where the proton

masses can be overlooked due to the high energies), the four-momenta in the laboratory

system are given by:

pµA = (EB, 0, 0, EB) and pµB = (EB, 0, 0,−EB) , (2.5)

where EB represents the beam energy. The square root of the Mandelstam variable s

describes the center-of-mass energy ECM, which denotes the total energy available in the

CMS:
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ECM =
√
s =

√
(pµA + pµB)

2 = 2EB (2.6)
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Machine learning overview

In recent years, machine learning has emerged as a powerful tool in various fields, rev-

olutionizing the way we process and analyze data. Its ability to automatically learn

patterns and make predictions from vast amounts of information has led to remarkable

advancements in diverse domains, including image recognition, natural language pro-

cessing, and even anomaly detection. Through this chapter the basic tools, needed to

understand the idea behind Dark Contrastive Learning of Representations (DarkCLR),

are introduced.

3.1 Prelude

The general idea of machine learning is to create algorithms and models that enable

computers to learn from data and make predictions or decisions without being explicitly

programmed. The process of learning involves iteratively refining the model based on

feedback from the data, allowing the system to adapt and improve over time. For a

more comprehensive discussion of the described topics see [14].

3.1.1 Neural networks

There are many ways to introduce neural networks, the most common would be compar-

ing them to the human brain [15, 16]. This section follows a slightly more mathematical

approach, similar to [14]. Thus we start by considering the neural network as a numeri-

cally defined function :

fθ(x) ≈ f(x) (3.1)

Here, fθ(x) symbolizes the neural network (NN), a composite structure of smaller func-

tional units known as layers. Each layer, denoted by xn, to establish distinction, can

contain numerous nodes or neurons. Nodes, the most elemental components of a NN,

receive an input X and produces a scalar output z̃.
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3 Machine learning overview

x2 β2 Σ z̃

pre-
activation

output

x1 β1

...
...

xn βn

weights
β = (β1, β2, . . . , βn)⊤

bias b

= Xβ + b

feature inputs
X = (x1, x2, . . . , xn)

Figure 3.1: Schematic visualisation of a single node.

In a fully connected network, this value is computed by multiplying the node values

from the preceding layer, xn−1
i , with a vector, β, known as the weights, and adding a

bias, b, to the result, as illustrated in Figure 3.1. Mathematiclly this can be expressed

as 3.2. Staying consistent in the notation we realise that z̃ equals the input xn
i for the

next, n+1th layer. To better focus on the idea of calculating the output value of a node

we will refer to it as z̃.

z̃ = xβ + b =
n∑

i=1

xiβi + b (3.2)

In eq. (3.1), θ constitutes the sum of weights β and biases b from the nodes, defining the

parameters of the function.

To generalize this input-output relation across a layer, we introduce a weight matrix W

that encompasses the weight vectors β of all nodes within a layer:

W =




β1,1 β1,2 . . . β1,E

β2,1 β2,2 . . . β2,E

...
...

. . .
...

βD,1 βD,2 . . . βD,E




(3.3) B =




b1

b2
...

bE




(3.4)

The matrix W carries dimensions D × E, with D and E defining the input and output

dimensions of the layer respectively. Similarly, a vector B incorporates all the biases of

the layer. Consequently, the output of a whole layer can be formulated as

10



3 Machine learning overview

input x1

input x2

output y1

output y2

output y3

output y4

. . .

hidden layer
Z̃1

input layer
X ≡ Z̃0

hidden layer
Z̃N−1

output layer
Z̃N ≡ Y

Figure 3.2: Schematic visualisation of a fully connected neural network.

Z̃ = WX +B. (3.5)

The concept of nodes and layers merge to form a NN by linking successive layers, such

that the output of the (n− 1)-th layer serves as the input to the n-th layer:

x → x1 → x2 · · · → xN ≡ fθ(x). (3.6)

Within this layered architecture, the first and last layers are identified as the input

and output layers, respectively, while the intervening layers are designated as hidden

layers. Such a recursively defined network is referred to as feed-forward NN. The example

configuration of a fully connected network is visualized in Fig. 3.2. The term ”fully

connected” characterizes the complete interlinking between nodes of neighbouring layers.

3.1.2 Activation functions

To this point the node (and thus the whole network) describes a linear function. When

using the nodes in the described manner there is no point in adding more than one layer

due to the fact that it would only be able to describe a linear relation between the input

and the output. To make use of more than one layer one need to introduce non linearity

to the outputs of the nodes. This is performed by using activation functions ϕ to the

output of each node

z = ϕ(z̃). (3.7)

By introducing non linearity, the network is able to capture more complex relationships.

The most prominent example of an activation function is the ReLU (Rectified Linear

Unit) [17]. The ReLU function is defined as

11



3 Machine learning overview

ϕ(z̃) = max(0, z̃). (3.8)

Fig. 3.3 shows a graphical representation of the ReLU function.

−42 42

42

z̃

ϕ(z̃)

Figure 3.3: The ReLU Activation Function

While the ReLU is a popular choice, it is not the only activation function used in NNs.

Other common activation functions include the sigmoid function, hyperbolic tangent

(tanh), and the softmax function [17]. The choice of activation function can depend

on several factors, such as the specific application, the nature of the data, and the

architecture of the network.

3.1.3 Backpropagation and stochastic gradient descent

A NN can be seen as a complex function, which takes inputs, processes them through

layers of nodes, and generates outputs. To be useful, the network must be able to ad-

just its behavior to approximate a target function, typically by learning from data. This

learning process involves tuning the network’s parameters weights and biases, collectively

known as parameters θ, to minimize the difference between the network’s predictions

and the actual target values. The process used to perform this optimization is known

as backpropagation.

To understand backpropagation, we must first introduce a loss function L(θ). The

loss function quantifies how well the output of our NN, fθ(x), matches the actual target

output. In other words, it provides a measure of the prediction error of our model.

12
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When a network is being trained on multiple samples simultaneously, i.e. in batches,

the loss function is often defined as the mean loss over all samples in a batch:

L(θ) = 1

N

N∑

i=1

Li(fθ(x
(i)), y(i)). (3.9)

Here, Li(fθ(x
(i)), y(i)) represents the loss for a single example, with x(i) being the input

and y(i) being the target output. The goal of the learning process is to find the set of

parameters θ that minimize this loss function.

To achieve this, typically a method known as stochastic gradient descent is used. At

each step, the parameters are adjusted in the direction that most decreases the loss. The

gradient of the loss function with respect to the parameters, denoted ∇L, provides the
direction of steepest ascent.Thus the parameters are updated as

θnew = θold − α∇L(θold). (3.10)

Here, α is a hyperparameter known as the learning rate, which determines the step size

in the direction of the gradient. Selecting an appropriate value for α is crucial. If α is

set too low, the NN might become trapped in a local minimum while if it is too high,

the network may oscillate and never converge to the global minimum.

To calculate the gradients, the chain rule of calculus is used. However, due to the complex

and nested structure of a NN, naively applying the chain rule can be computationally

expensive. This is where backpropagation is used. Backpropagation is an efficient al-

gorithm for computing the gradients of all the parameters of the network with respect

to the loss function.The essence of backpropagation is to move backwards through the

network, from the output layer to the input layer, applying the chain rule to compute

the gradients.

After these gradients are computed, they are used to update the parameters in the direc-

tion that minimizes the loss. This process is repeated for several iterations (or epochs)

until the loss is minimized to a satisfactory level or no longer decreases significantly.

13



3 Machine learning overview

3.2 Contrastive learning

The intention of this section is to introduce the idea of contrastive learning primarily

focusing on SimCLR’s foundational concepts [18]. Following this introduction, attention

will be directed towards the application of contrastive learning for its use in collider

physics.

The fundamental concept of contrastive learning originates from image classification,

with the objective of devising an algorithm capable of self-supervised image clustering.

Central to this idea is the function f(·), which maps the data space D into a repre-

sentation space R. This function undergoes optimization through a loss function that

can be interpreted as an optimization task executed within the representation space R.

The first research introducing the contrastive learning concept [18] utilizes a data space

D constituted of various images I of different objects. The loss function was designed

based on the principle of positive and negative pairs.

Positive pairs: {(Ii, I ′i)}
Negative pairs: {(Ii, Ij)} ∪

{
(Ii, I

′
j)
}

for i ̸= j.
(3.11)

Positive pairs are composed of the original image Ii and a corresponding augmented

variant I ′i. Image augmentation encompasses transformations like rotation, color channel

omission, and pixel blurring. The negative pairs are formed by the original image Ii and

an arbitrary different image Ij or augmented image I ′j from the batch. In this unlabeled

data approach, a pseudo-class is constructed for each distinct, positive image pair. The

basic idea of contrastive learning is to bring the positive pairs as close as possible to

each other and to ensure the opposite for the negative pairs. This is achieved via the

loss function which is defined as:

L = − log

{
e[sim(zi,z

′
i)]/τ

∑
j ̸=i∈batch

[
esim(zi,zj))/τ + esim(zi,z′

j))/τ
]
}
, (3.12)

where z ∈ R are representation vectors with their indices aligned with the preceding

definition in eq. (3.11). τ > 0 is a scalar hyper-parameter, referred to as temperature.

In addition the cosine similarity sim measures the similarity between two vectors zi and

zj:

14



3 Machine learning overview

sim(zi, zj) :=
zi · zj

∥zi∥∥zj∥
= cos θij. (3.13)

As is evident, minimizing the contrastive loss requires maximizing the similarity between

similar samples (numerator) and concurrently minimizing the similarity of dissimilar

samples (denominator). These individual task are also referred to as uniformity and

alignment. For a deeper analysis of this classical approach of contrastive learning on

jets we refer to [19].

3.2.1 Contrastive learning for anomalous jets

When training a contrastive network for an anomaly detection of jets task the network

will only be trained on the background QCD data. In this case the original idea ex-

plained in the previous section breaks down as the network creates sub-classes within

the QCD data and optimises only regarding features of the background. By doing so it

is no longer ensured that a signal will be mapped to an out-of-distribution point within

the representation space.

To help the network with the creation of an out-of-distribution signal point [20] in-

troduces the idea of negative augmentations. As we are no longer referring to images

as input we change the notation, now including the data vector x ∈ J for the jet-data

space. In this case we can now define two kinds of augmentations:

1. Physical augmentations

For now, these augmentations can be understood as transformations that are de-

sired to be mapped to the same point within the latent space1.

2. Anomalous augmentations

These augmentations mimic potential anomalies. The objective here is to ensure

that the representation space is highly distinctive to these augmented instances.

With the help of this definition we are now able to construct a new pseudo label similar
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to the ones described in eq. (3.12).

Augmented pairs: {(xi,x
∗
i )}

Positive pairs: {(xi,x
′
i)}

Negative pairs: {(xi,xj)} ∪
{
(xi,x

′
j)
}

for i ̸= j.

(3.14)

The augmented pair is now consisting of an original jet and an anomaly-augmented ver-

sion of itself. Therefore the newly defined pairs enable us to incorporate a discriminative

element into the loss function,

LAnomCLR = − log

{
e[sim(zi,z

′
i)−sim(zi,z

∗
i )]/τ

∑
j ̸=i∈batch

[
esim(zi,zj)/τ + esim(zi,z′

j)/τ
]
}
. (3.15)

With the introduction of anomaly-pairs, we enhance the mapping f(·) := J → R onto

data features that lie beyond the background distribution. While the contrastive learn-

ing component of the loss function continues to optimize for alignment and uniformity,

the anomaly-pair term disrupts this uniformity. Consequently, the representation space

does not exhibit an uniform distribution for the background data, as certain regions will

encapsulate features from the anomaly-augmented data. This suggests that anomalous

data sharing similarities with features generated by anomaly-augmentations should be

considered out-of-distribution within this representation space.

As detailed in [20], it’s also feasible to remove the denominator of eq. (3.15), as the

discrimination within the background data is not critical for anomaly detection. This

makes the use of a less computationally demanding loss function possible:

L+
AnomCLR = − log e

[
sim(zi,z

′
i)−sim(zi,z

∗
i )
]
/τ =

sim(zi, z
∗
i )− sim(zi, z

′
i)

τ
. (3.16)

In this case the network is trained on mapping the physical augmented representation

vectors z′ to the same region as the original jet representation z while pushing away

the augmented versions z∗. As the trade off between nominator and denominator has

vanished in this version it is also possible to remove the τ dependency.
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3 Machine learning overview

3.3 Self attention

This section is meant to introduce the idea of self attention in general1. The main idea

of self-attention is to capture the relationships between different constituents within a

jet by computing attention scores. These attention scores are then used to create the

final output. For the usage of self-attention in our case the input for the self-attention

block is a batch of previously embedded jets2. That means that each jet at this stage

consists of nconstits constituents while each constituent corresponds to a d-dimensional

vector. As for the next steps the batchsize is redundant we will leave this dimension out

of the calculations for the further part of the chapter. Furthermore we will use index

notation similar to [21]. We define two kind of indices:

physical indices: i, j, k, . . . ∈ {1, 2, . . . , nconstit}
model indices: α, β, γ, . . . ∈ {1, 2, . . . , nmodel dimension}

(3.17)

Thus the input can be written as : xi,α where i goes from 1 to nconstit and α from 1 to

nmodel dimension. The single-head self attention [22] for an input can now be constructed

in three steps:

1. To begin with we want to measure the relation between xi and a given xj, embedded

in the d-dimensional latent space. Instead of the standard scalar product xiαxjα,

we introduce learnable latent-space transformations WQ,K to the elements

qiα = WQ
αβxiβ and kjα = WK

αβxjβ (3.18)

and use the directed scalar product.

Aij ∼ qiαkjα (3.19)

to encode the relation of xj with xi through kj and qi. At this moment the matrix

Aij encodes the dependencies of the constituents of one jet towards each other.

2. The next step is to think about normalisation as it is preferred to train with values

≈ O(1). Thus we want each row of our matrix to be normalised. This leads to the

1Further specification for our implementation is done in section 4.3
2The technicalities of the mapping processed used are specified in section 4.2
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following conditions:

Aij ∈ [0, 1] and
∑

j

Aij = 1. (3.20)

Additionally, we want to include that Aij will scale with the dimension of our

model d. We therefore divide it through its square root. Combining these steps

we can formulate the condition

Aij = Softmaxj
qiαkjα√

d
with Softmaxj (xj) =

exj

∑
k e

xk
. (3.21)

This leads to a spelled out definition as:

Ai,j = Softmaxj

(
WQ

δγxiγW
K
δσxjσ√

d

)
(3.22)

3. Now that the network has constructed a basis to evaluate the relation between two

input elements xi and xj, we use it to update the actual representation of the input

information. To do so the attention matrix Aij is combined with the input data.

The output is then again transformed in latent space through another learnable

matrix W V ,

x′
iα = AijW

V
αβxjβ. (3.23)

In this form we see that the self-attention vector x′ just follows from a general

basis transformation with the usual scalar product, but with an additional learned

transformation for every input vector.

To summarize our output of the self attention block it is helpful to have a look at the

indices. For the weight matrices W
(V,Q,K)
αβ both of the indices live in the model dimension

d. Therefore the learning happens within the non physical space. On the other hand

the attention matrix Ai,j has only indices for the physical constituents of the jet. This

makes sense as the idea of attention towards each other should be independent from the

choice of the model dimension.

The self-attention mechanism alone faces the issue where each element in a sequence

tends to predominantly attend to itself [22]. This problem can be addressed by incorpo-

rating multiple heads into the network. By performing several self-attention operations
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in parallel, each with distinct learned weight matrices , the outputs are concatenated and

passed through a final linear layer. In practice, the full calculation for all constituents, all

attention heads, and for an entire batch is carried out in parallel with tensor operations.

3.4 Transformer encoder

Building upon the explained concept of self-attention, we can delve into the architecture

of the transformer encoder, utilized for the mapping process. Our focus will be exclu-

sively on the encoder component from [22], specifically the setup detailed by [19]. The

setup essentially performs a sequence-to-sequence operation, comprising N structurally

identical, successive blocks. These consecutive blocks incorporate three primary stages.

The initial stage involves applying a multi-headed self-attention mechanism to the input

constituent, with the outcome being combined with the input in a residual manner. This

joint output then undergoes layer normalization, a well-established technique for stabi-

lizing the NN’s learning process[23]. Following this, the normalized output traverses

through a residual feed-forward network, where each constituent is processed indepen-

dently. This entire sequence within the transformer-encoder block undergoes repetition

for N iterations. Subsequent to these iterations, the output is subjected to another round

of layer normalization.

3.5 Autoencoder as anomaly score

encoder
e(·)

decoder
d(·)

x⃗ ∈ RD h(x⃗) ∈ RD

input output

︸︷︷︸
latentspace RB

Figure 3.4: Sketch of an autoencoder
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An Autoencoder(AE) is a type of NN widely used for unsupervised learning tasks, partic-

ularly in the field of dimensionality reduction and anomaly detection. The fundamental

concept behind an AE involves two crucial steps:

encoding and decoding.

In the encoding phase, a high-dimensional input data point is mapped to a compressed

latent space representation using a NN known as an encoder. Subsequently, in the decod-

ing phase, the compressed latent space representation is mapped back to a reconstructed

version of the original input data using a NN called a decoder.

Formally, let the input data dimension be denoted byD, and the desired dimension of the

compressed representation, or bottleneck, be denoted by B. The encoder network can

now be defined as: e : RD → RB. The decoder network performs the reverse operation

by mapping the compressed latent space representation back to a reconstructed version

of the input data thus being defined as d : RB → RD. Consequently, the AE itself can

be represented as the composition of the encoder and decoder functions, denoted as :

h = d ◦ e : RD → RD. (3.24)

When an input vector x ∈ RD is fed into the AE, it produces a reconstructed version

h(x) = x′. The training objective of the AE is to reconstruct the input as best as

possible. In our case we evaluate this by the mean squared error loss function between

the input and its corresponding reconstructed output:

LMSE(x, θ) = (x− x′)2, (3.25)

where θ represents the learnable parameters of the AE. In the ideal case where the AE

can perfectly reconstruct the inputs, which must be possible when B ≥ D, the func-

tion hθ(·) reduces to the identity function. However, when the bottleneck dimension B is

smaller than the input dimension D, the AE may not be capable of precisely reconstruct-

ing all the original features present in the data. Consequently, the AE is encouraged to

learn to reconstruct only the relevant features in the data.

To now use the AE for anomaly detection the training of the network is solely done

on background data. Therefore the AE will be able to reconstruct the most important
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features of this data to a good extend. If now, after the training, instances of different,

anomalous features are given to the AE, it is expected to exhibit a larger reconstruction

loss, i.e., L(xbackground, θ) ≤ L(xsignal, θ). This reconstruction loss can then serve as an

anomaly score, aiding in the identification of anomalous or unusual data points.

3.5.1 Normalising autoencoder

When an AE is used for an anomaly detection task, learning is performed using only the

background data. The problem is that a small reconstruction error from a simple AE

can, but certainly does not always, correlate with a large probability of the data space.

To visualise this problem Fig. 3.5 is helpful.

Data

R
ec
on

st
ru
ct
io
n
L
os
s

L(
x
,θ
)

Possibility 1

Possibility 2

Figure 3.5: Problem of standard Autoencoder. Tye blue points indicate an one dimen-
sional training data while the orange and red curves describe potential losses
for the whole data space.

The sketched two possibilities correspond to the following two cases:

Possibility 1 : The AE is able to reconstruct the training data but fails in doing so for

data points that lie outside of the trained distribution. In this case the

reconstruction error would correspond to a higher likelihood.

Possibility 2 : In this case the AE is able to reconstruct all of the dataspace to the same

reconstruction loss. The reconstruction error clearly does not correspond

to a higher likelihood.

As a solution [24] proposes a new approach where the loss of the AE is modified so that

it includes a normalisation, thus defining the model as a normalised autoencoder(NAE).
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For the implementation on physical behavior this abstract will closely follow [25]. To

introduce the normalisation we make use of energy-based models. We start by defining

a probalistic loss using a Gibbs distribution to mimic a probability density region over

phase space,

pθ(x) =
e−

Eθ(x)

T

Zθ

with Zθ =

∫

x

dxe−
Eθ(x)

T (3.26)

where Zθ can be seen as a partition function. We will set the temperature T to 1 as we will

be able to change the shape of the distribution with the help of other hyperparameters

later on (section 4.5.1). The energy function itself can be chosen as any non-linear

function mapping a point to a scalar value Eθ(x) : RD → R. To now connect the idea

of a probabilistic loss with an AE we set

Eθ(x) = LMSE(x, θ), (3.27)

as defined in eq. (3.25). Here x is a vector of the data space we want to evaluate.

As the NAE can be seen as a probabilistic model it is trained to maximize the likelihood

of the data. Therefore the loss function is the negative log-likelihood of the data. For

one sample x we can thus follow:

L(x) = − log pθ(x) = Eθ(x) + logZθ. (3.28)

As explained in section 3.1.3 we now need to compute the gradient of the loss in order

to be able to minimize it:

∇θL(x) = ∇θEθ(x) +∇θ logZθ

= ∇θEθ(x) +
1

Zθ

∇θ

∫

x

dxe−Eθ(x)

= ∇θEθ(x)−
∫

x

dx
e−Eθ(x)

Zθ

∇θEθ(x)

= ∇θEθ(x)− ⟨∇θEθ(x)⟩x∼pθ
.

(3.29)

The first term in this expression can be obtained using automatic differentiation from

the training sample, while the second term is intractable and must be approximated.

Additional details on how that approximation is performed within this research will be

provided in Section 4.5.1.
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The total loss can be defined as the expectations over the per-sample loss:

L = ⟨Eθ(x) + logZθ⟩x∼pdata
. (3.30)

Regarding the total gradient this allows us to rewrite the gradient of the loss as the

difference of two energy gradients

⟨∇θL(x)⟩x∼pdara
= ⟨−∇θ log pθ(x)⟩x∼pdara

= ⟨∇θEθ(x)⟩x∼pdara
− ⟨∇θEθ(x)⟩x∼pθ

. (3.31)

The initial component samples from the training data, while the second component

samples from the model. Depending on the energy’s sign in the loss function, the contri-

bution from the training dataset is termed as positive energy, whereas the contribution

from the model is termed as negative energy.
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Methodology

In this section, we will explain the methods and steps used to generate the results

discussed in chapter 6.

4.1 Pre processing

As our goal is to detect an unknown signal we want to alter the data as little as possible

to leave the signature of the signal the same. Therefore the used pre processing should

be minimal. Initially, we compute the transverse momentum (pT ), pseudorapidity (η),

and azimuthal angle (ϕ) for each constituent of a jet. Handling varying lengths of input

makes it necessary to zero pad the jets with fewer constituents than nconstit. We then

perform the only significant preprocessing action, which is to shift the jet toward the

pT -weighted centroid of the constituents:

(∑

i∈ jet

ηipT,i,
∑

i∈ jet

ϕipT,i

)
= (η0, ϕ0)

!
= (0, 0) . (4.1)

This measure is crucial as the augmentations employed for contrastive learning (see

section 4.3) are predicated on the jets being centered. To ensure that the zero-padding

introduced at the beginning does not influence the output of the mapping, we implement

a masking. The information flow from zero-valued constituents is halted by setting their

associated attention weights to zero. This is achieved technically by adding negative

infinity to the attention weight prior to softmax normalization (eq. (3.22)). In addition,

we exclude zero constituents from the sum over constituents to ascertain complete in-

variance of the transformer to zero-padding.

As a final step we divide all pT through pT,max to ensure that the pT ∈ [0, 1].
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Figure 4.1: Illustration of the mapping architecture as presented in [19]. MHSA stands
for multiheaded self-attention, and FF for a feed-forward block, as defined
in section 3.4.

4.2 Mapping towards representation space

As described within the introduction to contrastive learning section 3.2, the main goal

of the network’s training is to improve a certain mapping. The mapping used within

this thesis was introduced in [19] and is defined by:

f : J −→ R (4.2)

with R being the high-dimensional representation space of dimension d and J being

the jet data space. As illustrated in Fig. 4.1 the first step of the mapping is a learnable

embedding layer that maps a single constituent of a jet, consisting of [pT , η, ϕ] , to the

d dimensional vector space. As this is done for each constituent of a jet the output of

this step is the vector xj,β that will serve as input for the self attention block (similar

as in section 3.3) within the transformer encoder, which describes the next step of the

mapping process.

As described in sections 3.3 and 3.4 the output of this block looks like x′
iα, when the

batchsize is neglected. It is crucial to take a step back and think about eq. (3.23) in

more detail for a good understanding of the subsequent summing step, also visualized

in Fig. 4.1:

x′
iα = AijW

V
αβxjβ

= Aijνj,α.
(4.3)
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Assuming that νj,α represents a set of j vectors, we can deduce that a summation over

the index i of the output will still encapsulate nearly all of the information regarding

the dependencies within the constituents. Thus, the output of the transformer encoder

block is:

hα =
∑

i

x′
iα. (4.4)

Since the summants within the sum can be permuted, this introduces a permutation

invariance for the constituents of one jet [19]. Important to keep in mind here is the fact

that, as explained in section 4.1 the vectors originating from a zero-padded constituent

will be added as a zero to this sum.

As last step a head network is added to provide additional representational power [19].

The output of the head network, z ∈ R, will then be used as input for the contrastive

loss.

4.3 Contrastive learning of jets

To now shape this mapping f : J −→ R in a way useful for our evaluation we make use

of the idea of contrastive learning as described previously in section 3.2.1. To utilise this

method we need two kind of augmentations for the loss function L+
AnomCLR(eq. (3.16))

on which we improve our mapping: physical and anomalous augmentations.

4.3.1 Symmetry inspired physical augmentations

The symmetry inspired physical augmentations describe transformations that the data

should be invariant to. For the use within DarkCLR we stay close to [19] thus introducing

the following augmentations:

Rotations in the η-ϕ plane In order to attain rotational symmetry around the jet

axis, we generate augmented jets by randomly rotating each jet by an angle sampled

from the interval [0, 2π]. It is important to recognize that rotations in the η-ϕ plane

plane do not preserve the jet mass, as they are not Lorentz transformations. However,

for narrow jets where the jet radius (R) is relatively small (i.e., R ≲ 1), the corrections

to the jet mass due to these rotations are negligible and can be disregarded.
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Translation in the η-ϕ plane This augmentation shifts all of the constituents of a jet

by the same random distance. The shifts themselves are constrained in each direction

by the ± width of the distribution of either η or ϕ.

Permutation invariance As seen in section 4.2 our mapping to the representation

space f : J −→ R includes a self attention mechanism. Thus, as seen in eq. (4.4) the

mapping includes a summation over all the constituents within one jet. Because this

operation introduces an invariance to the swapping of summants, our network is also

invariant under the permutation of constituents within one jet.

4.3.2 Theory inspired physical augmentations

Adding to the physical augmentations inspired by the underlying symmetry of jets one

could also employ theory inspired augmentations as done in [19].

Collinear splitting This augmentation does not follow directly from symmetries but

can be inspired by theory. Collinear splittings lead to divergences in perturbative quan-

tum field theory. However, these divergences are typically removed because of the limited

angular resolution of a detector, which fails to distinguish between two constituents with

pT,a and pT,b when their separation ∆Rab is much less than 1. To embody this property,

we propose collinear augmentations by picking and splitting the components in such a

way that the total pT remains constant in a very small region of the detector, i.e

pT,a + pT,b = pT, ηa = ηb = η, and ϕa = ϕb = ϕ. (4.5)

Low-pT modifications We are aware that the low-pT parts of jets, even those made by

the same process and under the same conditions, can differ due to soft gluons. We use

this knowledge to introduce another theory inspired augmentation of the low-pT parts.

We create the modified low-pT jets by adding noise to the locations of these parts:

η′ ∼ N
(
η,

Λsoft

pT
R

)
and ϕ′ ∼ N

(
ϕ,

Λsoft

pT
R

)
. (4.6)

Here, N (µ, σ) is a gaussian distribution with a standard deviation that depends on pT.

This means the standard deviation of the smeared positions is inversely proportional to

the transverse momentum pT of the particle (a higher pT would mean less dispersion),

and directly proportional to the jet radius R. In our studies, we’ve picked Λsoft to be
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100MeV.

4.3.3 Anomalous augmentation

The anomalous augmentation are supposed to mimic the potential signal in order to

create a distinction for similar inputs within the representation space.

Dropping constituents As our signal consists of dark jets we can use the fact that dif-

ferent parts of the jet are not be detectable for the detector. Therefore, we introduced

an augmentation that mimics the behavior of vanishing jet constituents. In our imple-

mentation each constituent has probability pdropof being dropped to 0. For a dropping

probability of 30% the change of constituents with a pT > 0 for QCD Jets is shown in

Fig. 4.2.
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Figure 4.2: Histogram of constituents with pT > 0 for standard QCD jets and their
anomalous augmented versions for a pdropof 30%.

4.4 Understanding the representation space

As we implement our mapping in a physical inspired way we also want to evaluate the

created representation space under these assumptions. For this purpose we created two

main ways of visualising the representation space.
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4.4.1 Most important features

We define the most important feature to be on average (over the whole dataset) the fea-

ture with the highest reconstruction error, thus being the most relevant for the detection

of the signal. A feature is defined as a single dimension within the representation space

RD.

4.4.2 Similarity matrix

In our work, we evaluate contrastive learning using a metric called cosine similarity,

as detailed in equation (3.13). To help visualize this similarity, we use a matrix that

includes all the similarities of the semivisible signal jets and the QCD background jets.

To create this matrix, we first arrange the vector representations z based on the number

of pT values that were greater than zero in the original jet used for their creation. Once

the vectors are ordered, we build the similarity matrix, as shown in Figure (4.3).

sim(zsemi
1 , zqcd

1 ) sim(zsemi
2 , zqcd

1 ) · · · sim(zsemi
N , zqcd

1 )

sim(zsemi
1 , zqcd

2 ) sim(zsemi
2 , zqcd

2 ) · · · sim(zsemi
N , zqcd

2 )

...
...

. . .
...

sim(zsemi
1 , zqcd

M ) sim(zsemi
2 , zqcd

M ) · · · sim(zsemi
N , zqcd

M )







High

number of
non zero
QCD pTs

Low

High
number of non zero Semi pTs

Low

Figure 4.3: Sketch of similarity matrix. The subscript of the representation is not refer-
ring to a single entry but to a whole representation vector z.

For easier understanding and visualisation, we convert this matrix into a heat map

representation. Furthermore we set N = M to have a quadratic form within the plot.

4.5 Evaluation of the representation space

For the evaluation of the representation space we used different approaches. As our goal

is to do anomaly detection the most important one will be the normalised autoencoder.
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As we further investigated the representation space we also used various classifiers in-

cluding a linear classifier test, a standard classifier as well as a transformer classifier.

These methods are all supervised thus meant to give us an estimate on how much infor-

mation is introduced within the representation space.

Finally, the method used for perfomance measurement of the presented methods is ex-

plained.

4.5.1 Normalised autoencoder with on-manifold initialisation

To make use of the ideas presented in section 3.5.1 we need a method to sample from

the model distribution pθ to calculate the normalisation term

⟨∇θEθ(z)⟩z∼pθ
, (4.7)

where z ∈ Z ⊂ RD . As in our case D is 1000 dimensional it is very hard to find high

energy regions within this data space [24]. Thus we use the on-manifold initialisation

described in [24].

In this method the fact is utilized that we can find high energy regions of pθ by using

a sufficiently trained AE. This is because a point with small reconstruction (potentially

corresponding to a point with high pθ) will be likely to lay near the decoder manifold

defined as

M = {z|z = d(b), b ∈ B}, (4.8)

with d(·) being the decoder defined in section 3.5 and B being the bottleneck latent space

of the AE. As not all points within the manifold M will have a high energy, a Monte

Carlo Markov Chain(MCMC) is initialised within B. This way we first focus on taking

samples from a suitable defined distribution in the low-dimensional latent space. To do

so we need a probability density defined for this bottleneck latent space. In analogy to

eq. (3.26) this is defined as:

qθ(b) =
e−Hθ(b)

Ψθ

with Hθ(b) = Eθ(d(b)), (4.9)

where Hθ can be seen as the bottleneck latent space energy. The MCMC are Langevin

30



4 Methodology

Monte Carlo Chains defined as following:

representation chain: zt+1 = zt + λz∇z log pθ(z) +σzϵt

bottleneck latentspace chain: bt+1 = bt + λb∇b log qθ(b) +σbϵt
(4.10)

with ϵt ∼ N0,1, λ being the step size and σ the standard deviation of the noise. To

summarize, this means that we start by implementing the latent space chain within the

decoder manifold M. When reaching a sufficient density region within M we proceed

to set up the representation chain within this region. Then the final sample is obtained

by running a this representation chain.

As we have to sample from a high dimensional representation space it is difficult to

cover the whole space with a reasonable length. Thus we use chains of shorter length

and tweek the parameters of the chains to give more relevance to the gradients than to

the noise. If 2λ ̸= σ2 changing these parameters is equal to a change in the temperature

within the probability distribution

T =
σ2

2λ
. (4.11)

To ensure a converging learning we use the same measurements to deny instabilities as

in [25].

As a final step we define the model that will be considered within the evaluation. This

is done through the use of a dataset consisting of representations created from dropped

jets x∗
i . The model achieving the best AUC’s on this dataset will be defined as final

model.

Summary of the NAE Method By introducing a way of using the reconstruction

error of an AE as a probabilistic model a normalisation constraint was added towards

the standard reconstruction error section 3.5.1. To train this model the gradient of the

loss (eq. (3.31)) has to be evaluated. To calculate the positive energy ⟨∇θEθ(x)⟩x∼pdata

we use the autograd function of pytorch. For the negative energy ⟨∇θEθ(x)⟩x∼pθ
we use

the on-manifold initialisation described in this chapter to sample from the model pθ. By

examining the expected loss described in eq. (3.31), we can observe that the training

process can be characterized as a minimax problem. In this context, our objective is to

minimize the energy of the training samples while simultaneously maximizing the energy

of the MCMC samples. As a result we have ensured that our NAE will reconstruct signal
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representation vectors zsignal with a higher loss than the trained on QCD representations

zqcd.

4.5.2 Classifier

To perform evaluations in a supervised manner,we utilize classifiers. Typically, when

referring to a classifier, we refer to a basic architecture that reduces the dimension of

the previous output by a factor of ≈ 4, resulting in an integer output at the final stage.

In the context of a transformer classifier, we define a configuration where we replace the

head network of our standard architecture with a classifier. This modified architecture

produces an integer value as the output of the network.

4.5.3 Performance measurement

To measure the performance of our method and compare it towards the benchmark

we use Receiver Operating Characteristic (ROC) curves. A ROC curve serves as the

measure of the performance at varying thresholds. To sketch an ROC curve, two essential

parameters are required:

• True Positive Rate (TPR): this represents the ratio of signal events correctly iden-

tified as signals by the classifier, otherwise known as the signal efficiency (ϵs).

• False Positive Rate (FPR): this signifies the proportion of background events

wrongly classified as signals by the classifier, often referred to as the background

mistag rate (ϵb).

In our evaluation a inverse ROC curve (ϵ−1
b vs. ϵs) is used. It plots the reciprocal of the

background mistag rate against the signal efficiency. The Area Under the ROC Curve

(AUC) quantifies the area beneath the ROC curve and remains constant irrespective of

the classification threshold. An AUC value of 0.5 implies that the model assigns class

labels to the samples randomly. In general, a higher AUC denotes superior classification

performance of the model.
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Dataset and network settings

The dataset we are using as signal consist of semivisible jets. The specific hidden valley

model we use was introduced in section 2.3. To now be more concrete we define:

particle mass
Z ′ 2 TeV
qd 500 MeV
πd 4 GeV
ρd 5 GeV

Table 5.1: Defined masses within the model

In this configuration a Z ′−ρ0d mixing exist that enables the ρ0d to decay into SM-quarks.

As this is not possible for the other particles created within the dark shower they will

be stable. The detector will thus not be able to detect them. The fraction of these

escaping constituents is rinv = 0.75. The signal and background dataset is simulated

using Madgraph5 [26] for the hard process and the hidden valley model [27, 28] in

Pythia8.2 [29] for showering and hadronization. The jets are reconstructed using the

anti-kT algorithm [12] with R = 0.8 in FastJet [30] and fulfill

pT,j = 150 ... 300 GeV and |ηj| < 2. (5.1)

The used hyperparameters are summarized in table 5.2 for the transformer encoder and

table 5.3 for the normalized autoencoder. If other hyperparameters were used to produce

a result they will be specifically noticed.
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5 Dataset and network settings

Hyper-parameter Value

Model (embedding) dimension 1000
Feed-forward hidden dimension same
Output dimension same
# self-attention heads 4
# transformer layers (N) 4
# head architecture layers 2
Dropout rate 0.1
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate 5× 10−5

Batch size 128
# constituents 50
# jets 100.000
# epochs 300

Table 5.2: Default configuration of the transformer encoder and the training process.

LMC parameters latent input

λ 100 100
σ 10−2 10−4

# of steps 30 30
metropolis ✓ ✓
annealing − ✓

Training Parameters pre-AE NAE

Learning Rate 10−3 10−5

Iterations 15k 40k
Batch Size 2048 512
Layers structure [512:256:128:64:32:16:8] -

Table 5.3: LMC and training parameters. The temperature is implicitly fixed by the
noise and the step size as Tx = 10−7 and Tz ≈ 10−6.
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Results

This chapter is intended to present the results obtained through the DarkCLR method.

For this purpose, the chapter will be divided into two sections. The first part will

primarily focus on the visualisation of the representation space, which has been enhanced

through our mapping technique coupled with contrastive learning. The second part will

delve further into the evaluation of this representation space using an unsupervised

method, more precisely a normalised Autoencoders. The L+
AnomCLRloss function will be

employed as the default loss.

6.1 Visualising the representation spaces

As described in section 3.2, the formation of the representation space R is significantly

influenced by the applied augmentations. Since two different sets of augmentations were

used within the research for this thesis, it is useful to distinguish them in two subsections,

the multiplicity1 and the minimal setup.

6.1.1 The multiplicity setup

We started our research with using all of the augmentations described in section 4.3,

thus using all the positive augmentation from [19].

To begin with we visualize the L+
AnomCLRby plotting the similarities. The Fig. 6.1 shows

the similarities of the pairs where Anomaly Similarity is defined as {(xi,x
∗
i )} and Phys-

ical Similarity as {(xi,x
′
i)} in a same manner as in eq. (3.14).

The converging value of the L+
AnomCLR

2 is varying between the different dropping prob-

abilities pdrop. With pdropwe refer to the dropping probability introduced within the

anomalous augmentation defined in section 4.3.3. For higher values we can see a quick

1We refer to multiplicity as the number of non zero pT constituents within a jet.
2The value of the loss is directly proportional to the difference between the similarities as defined in
eq. (3.16).
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(a) Transformer Similarities for pdrop= 0.1
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(b) Transformer Similarities for pdrop= 0.3
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(c) Transformer Similarities for pdrop= 0.5
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(d) Transformer Similarities for pdrop= 0.7

Figure 6.1: Transformer Similarities Plots. The value of the loss is directly proportional
to the difference between the similarities. The orange curves describe the
cosine similarity between positive augmented pairs while the blue curves do
the same for anomalous pairs.

converging behavior. In contrary, for smaller values the learning becomes more unstable.

This behavior is expected due to the fact that the transformer encoder is able to directly

realise differences in the input shapes due to the masking we implemented, described in

section 4.1. Thus it is easier to realise differences within the negative augmented pairs.

Accordingly the learning will more quickly and consistently lead to a mapping that maps

x∗
i and xi to different points in space. This therefore explains the dependency of the

training to the dropping probability seen in Fig. 6.1.
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As a next step we want to validate that the trained mapping is discriminating not only

positive augmented samples but also semivisible jets. For this purpose the similarity

matrix, definde in section 4.4.2, is used.
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(a) Similarity Matrix for pdrop= 0.1
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(b) Similarity Matrix for pdrop= 0.3
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(c) Similarity Matrix for pdrop= 0.5
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(d) Similarity Matrix for pdrop= 0.7

Figure 6.2: Similarity Matrix Plots. For pdrop≥ 10% the color blue refers to a cosine
similarity of 1, meaning the vectors show in the same direction while. Red
corresponds to a -1, indicating the opposite.

Fig. 6.2 reveals two distinct observations. Firstly, it becomes evident that the concept

of dropping constituents as negative augmentation proves effective when an adequate

dropping probability is employed. Within the representation space, jets with a high

number of constituents are consistently mapped to the same point, located in the up-

per left corner, while jets with a small number of constituents are similarly mapped to

a distinct point in the lower right corner. This allows for a distinction of QCD and
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6 Results

Drop Chance Lowest Feature Highest Feature
Value Value

0.1 -121.78 120.68
0.2 -8.23 8.49
0.3 -0.31 0.31
0.4 -0.30 0.30
0.5 -0.31 0.31
0.6 -0.35 0.35
0.7 -0.63 0.62

Table 6.1: Drop chance and its corresponding feature value ranges. A clear increase of
the norm can be seen for pdrop≤ 20%, corresponding to a non converging
training.

semivisible jets as the they differ in their number of detected constituents. Secondly,

a notable phenomenon observed is the occurrence of mapping collapse to some extent.

This can be argued by the absence of a well-defined transition zone between the mapping

of jets onto the ”high” and ”low” constituent points. Consequently, a vast majority of

jets tend to be mapped onto these two points. In cases where the dropping probability

does not allow for sufficient separation within the training, no correlation in regard to

the position on the hypersphere can be observed, seen for pdrop= 10%.

To further visualise the representation space the most important features are plotted

as explained in section 4.4. They are shown in Fig. 6.3.

Focusing on a single plot of Fig. 6.3 it is apparent that the mapping creates an overlap-

ping but still significant difference within the representations of semivisible and QCD

jets. Additional, it is obvious that the distribution shape is similar in all cases. The

sole difference lies in the norm of the representation vectors, denoted as z. Remarkably,

this pattern is observed across all 1000 features for each of the displayed dropping prob-

abilities. The only discrepancy within one representation space seems to be a reflection

along the y-axis or variations in the norm.

As final step of the visualisation a comprehension of the norm values is given in ta-

ble 6.1 as the previos paragraph indicates an importance within the norm distribution.

Doing so a clear correlation between a non converging of the L+
AnomCLRLoss in Fig. 6.1

and an increasing norm of the representation vectors z is observed.

To ensure that the collapse onto the two points and the degenerated features are not a

problem we investigated the representation space R and the original datasets J with a

38



6 Results

0 20 40 60 80 100 120
Value of the 819th Feature

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

F
re

qu
en

cy
of

F
ea

tu
re

s
QCD

semivisible

(a) Most important feature for pdrop= 0.1

−0.3 −0.2 −0.1 0.0 0.1 0.2
Value of the 507th Feature

0

1

2

3

4

F
re

qu
en

cy
of

F
ea

tu
re

s

QCD

semivisible

(b) Most important feature for pdrop= 0.3

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
Value of the 937th Feature

0

1

2

3

4

5

6

F
re

qu
en

cy
of

F
ea

tu
re

s

QCD

semivisible

(c) Most important feature for pdrop= 0.5
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Figure 6.3: Most important feature plots for the multiplicity setup. The only discrepancy
within features seems to be a reflection along the y-axis or variations in the
norm.

supervised Classifier. This will be further discussed in the evaluation, section 6.2.1.

6.1.2 The minimal setup

As will be explained in section 6.2.2 there are good arguments to focus only on symme-

try inspired positive augmentations, leaving theory inspired augmentations asides. This

setup using less positive augmentations will be referred to as minimal setup.

Fig. 6.4 visualises the similarities of a training done with the minimal setup. A clear
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change in the loss of the network can be observed in comparison to Fig. 6.1. Explanations

for this difference can be the fact that the collinear splitting introduced a multiplicity

correlation within the positive augmentations as the augmented jets will have an in-

creased value for multiplicity. Therefore the network is pushed onto solely focusing

upon the multiplicity. Supplementary an explanation for this difference could be the

fact that the network is able to translate the missing noise from x
′
i (due to no Low-pT

modification) into a smoother learning.
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Figure 6.4: Transformer Similarities for pdrop= 0.5. The orange curve describe the cosine
similarity between positive augmented pairs while the blue curves do the
same for anomalous pairs.

In the given scenario for a dropping probability of 50%, the similarity matrix (Fig. 6.5)

provides valuable insights into why this specific representation space is more informative

compared to the multiplicity-focused counterpart. It is clear that the network is learning

new information, as the mapping is not constrained to only two points on the hypersphere

Sd−1 anymore.

To further analyse the representation space of the minimal setup we can also visualise

the individual features, as seen in Fig. 6.6. Here we observe a clear deviation from the

earlier examples (Fig. 6.3) as there is a difference within the shape of the histograms.

In addition it is also notable that the minimal setup leads to a bigger range of feature

values being in an interval of [−310, 300], therefore being significantly higher then the

norm values for the multiplicity setup.
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Figure 6.5: Similarity Matrix for pdrop= 0.5. It can be observed that the mapping is not
constrained to only two points on the hypersphere Sd−1 due to a broader
range of cosine similarities.
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Figure 6.6: Significant features for pdrop= 0.5. A difference within the features is observ-
able while showing that the importance of a feature correlates to its range
of values.
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6.2 Evaluation

To start this section we would like set a baseline to compare to. This can be gained by

the use of supervised learning. Therefore a transformer classifier is trained on the same,

slightly pre processed (according to section 4.1) jet data space J . This achieves an AUC

of 0.81 . Thus we can see this value as our upper limit from now on.

Similar to the previous section 6.1 this chapter is also splitted two part focusing on

the multiplicity and minimal setup independently.

6.2.1 The multiplicity setup

For the evaluation 3 runs of the NAE were done to evaluate the representation space for

dropping probabilities going from 10% up to 70% in steps of 10%. The results can be

seen in Figs. 6.7 and 6.8 .
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Figure 6.7: AUC of the multiplicity setup for different droppin probabilities . A plateau
can be noticed within the range of 30-60%.

Thereby shows Fig. 6.7 that the idea of contrastive learning is working. For a suffi-

ciently high dropping probability pdrop, in between 30% and 60%, we see a plateau in

terms of the AUC. Here we can deduce that the anomalous augmentations really intro-

duced information useful for the semivisible dataset. This resulted in a representation
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Figure 6.8: ROC Curves for the multiplicity setup for different droprates. The error of
0.1 is not plotted as it high and thus would distort the clarity and inter-
pretability of the plot.

space which produced better and more stable results, also supported by the similarity

matrices in Fig. 6.2. At the same time a decreasing performance is observed in the cases

of ≤ 20% and ≥ 70%. For the case of small pdropthis can be attributed to the fact that

the difference between the augmented jets x∗
i and the original version of it xi is not

sufficient. This is also supported by the non converging loss seen in Fig. 6.1. For the

case where pdrop≥ 70% we can assume that too much information within the augmented

jet is dropped.

Different methods were tried to improve the AUC of the multiplicity focused setup,

including changes to the preprocessing techniques, utilization of the LAnomCLRLoss, and

introduction of a new head network. However, these attempts were not successful. An

evaluation of the representation space R was carried out using a supervised classifier to

determine if similar results to the baseline could be achieved in general by using the rep-

resentation space. It was observed that some information was lost during the mapping

process, leading to an average AUC value of 0.71 for the supervised method. A value

close to the plateau observed in Fig. 6.7.
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The subsequent search for the reason of the information loss ended when the the mul-

tiplicity of the data space J was examined. We found that the same AUC value of

0.71 was consistently observed in this aspect as well. This observation led us to the

conclusion that the primary feature encoded within the representation space is indeed

the multiplicity. This aligns with the description of the representation space’s shape

presented in section 6.1.1. The collapse phenomenon observed in that section can be at-

tributed to the fact that the transformer enoder model somehow incorporates the shape

of the number of constituents within each feature.

After realising this we hypothesised that the reason can be the fact that the positive

augmentations used in JetCLR [19] are not positive in our case. That is, we do not want

our representations to be invariant to the same theory inspired as in the case of QCD

and top jets. Our current hypothesis is that by adding noise and splitting jets, we are

destroying information that is important for the recognition of the difference between

QCD and semivisible jets. Especially the observed stable loss of Fig. 6.4 supports that

we turned the mapping to solely focus on the multiplicity by introducing a multiplicity

correlation within the positive augmentations by splitting jets.

6.2.2 The minimal setup

To solve the problem of information loss apparent in the multiplicity set of augmenta-

tions we stopped using the theory inspired augmentation, defined in section 4.3.2. Thus

the minimal setup is only consisting of symmetry inspired augmentations (i.e. rotation,

translation and permutation) in addition to the essential anomalous one.

The ROC curves of five runs of the NAE trained on the same representation space

R, created with a dropping probability pdropof 50%, are plotted in Fig. 6.9.

Fig. 6.9 shows that the unsupervised evaluation of this representation space is improving

in comparison to the multiplicity setup( Fig. 6.8), reaching an AUC score of 0.767 ±
0.034 3. It is apparent that the first runs deviates significantly from the other, probably

due to some bad mode configurations. Therefore an evaluation of this representation

space seems to be harder for the normalised auto encoder compared to the simpler one

visualised in section 6.1.1. In addition, while a compatible result can be reproduced for

pdrop= 0.5, we have not yet been able to achieve the same for pdrop=0.3.

3For this evaluation a batchsize of 512 was also chosen for the pre-AE training.
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Figure 6.9: ROC Curves for the minimal setup with pdrop = 0.5. Run 1 deviates signifi-
cantly from the other runs, specially for ϵS > 0.3.

As the current stage of this project remains ongoing, our primary focus centers precisely

on the task of reducing the inconsistency in the evaluation of the more informative repre-

sentation space and creating a model agnostic model by not being fixed on one dropping

probability.It is also crucial to contextualize this value of 0.767 ± 0.034 by noting

that no substantial improvements have been made to the hyperparameters of the NAE.

Consequently, it is reasonable to expect even higher values can be achieved utilizing this

method, potentially consistently surpassing the benchmark value of 0.767±0.005 from

[25].
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7

Conclusion and outlook

Within this thesis a new self-supervised method for anomaly detection called DarkCLR

is presented. Using a contrastive loss function modified for anomaly detection (sec-

tion 3.2), it is possible to create representation spaces sensitive to signals outside the

training distribution. This is additional to the benefits of contrastive learning, namely

that the representations are still invariant under symmetry augmentations. Furthermore

we investigate possibilities of evaluating these representation spaces with unsupervised

methods. We especially focus on the use of a normalised autoencoder.

It was possible to achieve good results on a challenging semivisible jet data set (sec-

tion 2.3 and chapter 5). Working with a multiplicity focused representation space we

can show that the trained mapping of jets to a high dimensional representation space

is resulting in a simplified representation space, visualized in Fig. 6.7. When evaluating

this representation space, our unsupervised NAE was able to achieve similar AUC values

as a supervised classifier, without being constrained to a certain dropping probability

within the anomalous augmentation.

By actively shifting away the focus from the number of constituents per jet we were

able to create a more informative, therefore more complex representation space. The

unsupervised evaluation of this representation space achieves better AUC scores than

the multiplicity focused one, increasing from 0.70 to 0.767 for a specific dropping prob-

ability. Using this method we achieve similar values as the benchmark [25] while having

introduced no non-linear pre processing step.

The evaluation of the minimal representation space introduces some challenges, mainly

the dependency on the dropping probability and the inconsistent learning of the nor-

malized autoencoder seen in Fig. 6.9. If these problems can be eliminated it would be

very exciting to investigate the model agnostics of the method.

Possible solutions to these challenges are being investigated as we are still working on
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7 Conclusion and outlook

the project. Since we have not been able to study the hyperparameters of the normalized

autoencoder extensively, we hope to resolve some of the challenges. Moreover it would

also be interesting to investigate the influence of pre processing the representations. This

could potentially increase the consistency of the NAE by decreasing differences within

the input values.

There are also possible enhancements regarding the transformer encoder. One example

would be to introduce a logarithmic pre processing to ensure a higher focus upon the

smaller pT regions. Another idea is to implement a trade off between the positive and

negative augmentation in the L+
AnomCLR(eq. (3.16)) which would enable shifting around

with the attention given towards the multiplicity.

Finally other self supervised tools for the evaluation could be examined, for example

the maximum likelihood autoencoder introduced in [31].

To conclude, DarkCLR is a promising method for unsupervised, and possibly model

agnostic, anomaly detection. Nevertheless, it still has room for improvement, which

would be interesting to further research.
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