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Abstract
One of the main physics search goals at the LHC is to detect a viable dark matter

candidate. As dark matter is at most weakly interacting, missing energy is a striking
but not sufficient signature. To dig out the signature of a dark matter candidate we have
to distinguish it from other physics processes generating missing energy like weak boson
production. In LHC events we are also confronted with a large number of particles in
the final state which come along as a collimated spray, the so called jets. Standard
Model backgrounds as well as possible new physics signals are accompanied by those
jets at the LHC. Thus it is important to understand the structure and behavior of multi-
jet observables if we are to identify new physics signals. We study the characteristics of
the exclusive number of jets observable for various Standard Model backgrounds and
observe a unique scaling behavior the so called staircase scaling. We establish a link
to the inclusive definition and show that the theoretical uncertainties are well under
control. In the photon plus jets channel we then study the kinematic properties of
different scaling types. We use this knowledge to control the uncertainties of an other
multi-jet observable, the effective mass. With these two multi-jet observables we set up
an inclusive search strategy in the jets plus missing energy channel which enables us to
automatically focus on the phase space regions showing the largest deviation from the
Standard Model background only hypothesis.

Zusammenfassung
Eines der Hauptziele des LHC ist die Entdeckung eines geeigneten Dark Matter

Kandidaten. Da Dark Matter höchstens schwach interagiert, ist Missing Energy ein
wichtiges, aber nicht hinreichendes Signal zur Entdeckung. Um einen Dark Matter Kan-
didaten zu entdecken müssen wir sie von anderen Prozessen, die Missing Energy erzeu-
gen, wie Weak Boson Produktion unterscheiden. Des Weiteren sind wir am LHC mit
einer großen Zahl stabiler Teilchen, die als kollimierter Strahl, den so genannten Jets,
auftreten, im Entzustand konfrontiert. Sowohl Standard Model als auch neue Physik
Prozesse treten am LHC mit diesen Jets auf. Daher ist es wichtig die Struktur und das
Verhalten von Multijet Observablen zu verstehen, wenn wir Aussagen über neue Physik
am LHC treffen wollen. Wir studieren die exklusive Anzahl an Jets für verschiedene
Standard Model Untergründe und beobachten ein einzigartiges Skalierungsverhalten
das Staircase Scaling. Wir leiten eine Verbindung zur inklusiven Definition her und
zeigen, dass die theoretischen Unsicherheiten klein sind. Im Photonen plus Jets Kanal
untersuchen wir dann die kinematischen Eigenschaften verschiedener Skalierungstypen.
Wir benutzen dieses Wissen um die Unsicherheiten einer weiteren Multijet Observablen,
der effektiven Masse, zu bestimmen. Mit diesen beiden Observablen erstellen wir eine
inklusive Suchstrategie im Jets plus Missing Energy Kanal, die es uns ermöglicht au-
tomatisch auf die Phasenraumregionen zu fokusieren, die die größte Abweichung von
der Standard Model Nullhypothese zeigen.
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Chapter 1

Introduction

The Lhc is up running and the whole world is exited about its discoveries1. Many physicists expect
new phenomena to occur at the weak scale the Lhc is probing. And there are good reasons for
that. Although the Standard Model of particle physics is a well established framework describing
until now all observations in particle physics to a very high precision, it is also clear that it is
not the fundamental theory describing nature. This becomes evident when we take a step back
and focus not only on the picture describing small scale physics, but take a look at the framework
describing large scale physics, cosmology. On a large scale the only important interaction in space
is gravitation, an interaction not even implemented in the Standard Model. Through analyzing
the cosmic micro wave background radiation we are able to measure the energy content of the
universe [1]. Only 4.6% of our universe are made of matter described by the Standard Model.
Another 23% are made of cold dark matter and 72% are made of a kind of dark energy. But there
are also issues within the standard model. It is not able to explain the amount of CP-asymmetry
permitting in the first place our existence [2] and suffers an ultra violet sensitivity in the corrections
of the Higgs propagator known as fine-tuning problem [3]. Over the last decades many theories
and models like Susy, Extra Dimensions, Little Higgs or Technicolor have been developed
to solve one or several of those issues [3–6]. Many of these theories predict a viable dark matter
candidate in the reach of the Lhc. Thus one of the main goals of the Lhc searches is to find this
dark matter candidate and measure its properties [7].

Missing transverse energy is a general signature for dark matter related new physics at hadron
colliders [8]. It has a long history at the Tevatron and to date gives the strongest bounds on squark
and gluino masses in supersymmetric extensions of the Standard Model. At the Lhc the first new
exclusion limits for squarks and gluinos have recently appeared, in the Cmssm toy model as well
as in a more general setup [9–11]. All of these analysis are based on jets plus missing energy
including a lepton veto which constitutes the most generic search strategy for strongly interacting
new particles decaying into a weakly or super-weakly interacting dark matter candidate [8, 12].

While the first results are based on very inclusive cuts, following the Atlas [13] and Cms [14]
documentations we expect more specific analysis to appear soon. The reason is that in their
current form the analysis can and should be optimized for specific new physics mass spectra. More
specialized analysis for jets plus missing energy rely on a missing transverse momentum cut and
on a certain number of staggered jet transverse momentum cuts [13, 14]. Unfortunately, they are
therefore hard to adapt to modified mass spectra and by definition show a poor performance for
not optimized model parameters. In addition, they are counting experiments in certain phase-
space regions, which means that for any additional information on the physics behind an anomaly
we have to wait for a dedicated analysis. If we want to use more general strategies with less
constraining cuts we have to face enormous Qcd backgrounds at the Lhc . Understanding the
Qcd backgrounds puts us in a situation where we do not need to figure out the special phase space
region in which the signal contributes most and where we do not have to face the sculpting of our
signal due to specialized cut scenarios.

One possibility to understand Standard Model backgrounds at the Lhc is the so called staircase
scaling feature of Qcd [15] which is established in data for W±, Z+jets and Qcd jets. The
theoretical foundation of staircase scaling is not fully understood. Nonetheless, there is no doubt
that this feature exists in data [16], which is, on the other hand, well reproduced by state of the art
Monte Carlo codes, which include matching procedures based on the Ckkw [17, 18] or Mlm [19]
schemes. Staircase scaling heavily contrasts to a Poissonian distribution of the number of radiated
photons in QED, which is a well known result for the re summation of pT -ordered photon emission

1As this thesis is finished first hints for an excess which could be the Higgs are around!
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with a well defined probabilistic interpretation [20]. By construction, Poisson-like jet multiplicities
are present for Qcd in the abelian limit, where the gluon self interaction is turned off.

Although not obvious at first sight the photon plus jets channel is very promising to study
staircase as well as Poisson like scaling properties. It comes with a relatively large cross section
predestinated to be tested with early Lhc data.

Therefore this thesis is outlined as follows. First we recapitulate in chapter 2 our current
understanding of Qcd and what we know about how jets2 emerge in Qcd events. We then
give a short motivation and introduction into supersymmetry as one possible new physics model
delivering a viable dark matter candidate. In the following chapter 3 we explore in more detail
the staircase scaling feature of Qcd jet radiation in various Sm backgrounds as well as the from
Qed well known Poisson scaling in the photons plus jets laboratory. Comparing the different
kinematic configurations for the two cases enables us to understand better in which situations we
can expect staircase scaling. In chapter 4 we use this knowledge to set up an analysis strategy in
the missing energy plus jets channel. We use the staircase scaling properties of Qcd and apply
as inclusive cuts as possible thus enabling us to use a log-likelihood computation to scan a large
phase space region automatically providing us with possible information about the mass scale and
the color structure of the new physics.

The work [15, 21] presented in this thesis was done together with Christoph Englert, Tilman
Plehn and Steffen Schuman.

2Note that we use the term jet and final state parton synonymously as the jet algorithms described in 2.1 relates
those concepts closely.



Chapter 2

Basic Concepts

The Standard Model of particle physics (Sm) is a very successful framework describing many obser-
vations with a high precision, see for example the electroweak precision data [23]. All Sm particles
shown in figure 2.1 except for the Higgs boson have been observed1. Moreover no additional
elementary particles have been observed until now.

Figure 2.1: Particles and force carriers in the standard model in their mass eigen states, figure taken
from [22].

The particles in the Sm are characterized by there transformation properties under Lorentz
transformations. The Higgs is a scalar while all the other force carriers are vectors. Those particles
obey Bose-Einstein statistics and are thus called bosons. All other particles are described by
spinors. They obey Fermi-Dirac statistics and are called fermions. Lorentzsymmetry is not the
only symmetry respected by the particles of the Sm. The whole gauge symmetry group of the
Sm is SU(3)C × SU(2)L × U(1)Y . C denotes color. This part is described by Quantum Chromo
Dynamics (Qcd) which will be studied in more detail trough the next section. The field content
of the Sm is massless which causes it to be chiral. This means the spinors have an irreducible
representation denoted by so called Weyl spinors. Those spinors come along as left and right
handed. Only left handed spinors can take part in the weak interactions whose symmetry thus has
the subscript L. The hypercharge carried by the particles is described by the symmetry denoted
with Y and is closely linked to the electric charge of the particles via Qelectric = L + Y/2 where
L and Y are the quantum numbers2 shown in the rows of table 2.1. The latter two are closely
connected and referred to as electroweak symmetry. The Higgs mechanism incorporated in the
Sm breaks this symmetry and thus gives rise to the particle masses. Although we know that
neutrinos must have a mass from neutrino oscillation experiments [24]3 they are massless in the
Sm even after symmetry breaking thus only their left handed versions exist.

Here we cannot study all the features arising from those symmetry properties. We are mostly
interested in multi-jet observables and their structure as well as the behavior of colored particles.

1Although the first promising statistical deviations, indicating the existence of a Higgs, have been shown on
conferences while this thesis is written. The future will show if they are significant.

2The weak charge is mostly referred to as I3 denoting the weak isospin as the concept of weak symmetry was
first studied in the connection between protons and neutrons and is described by two spin like degrees of freedom.

3This is one hint to physics beyond the Sm but is not addressed in this thesis.
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SU(3)C SU(2)L U(1)Y

L 1 2 −1/2

eR 1 1 −1

Q 3 2 1/6

uR 3 1 2/3

dR 3 1 −1/3

Table 2.1: Quantum numbers for the fermions. Left handed leptons and quarks are combined to doublets
due to their symmetry properties with respect to the SU(2)L symmetry and denoted by L respectively by
Q which are not the same as the Q used for the electric charge or the L used for the weak charge. This
scheme also applies for the other generations shown in figure 2.1.

Note that though a jet is a collimated spray of color neutral hadrons we use this term also for
colored Sm particles. A connection between both is given by the jet algorithms in the next
section. In the first two parts of section 2.1 we recapitulate the basics of Qcd and how to compute
inclusive observables as a first step to connect theory predictions to observables at a hadron collider.
However, the structure of a single event can only be understood in exclusive observables. We also
use exclusive observables through out the following chapters in this thesis. Therefore we show
in section 2.1.3 how we can turn inclusive computations into exclusive ones and how to proper
simulate Qcd events and their structure. There are many good text books, e.g [20], [25] and [26],
which give a thorough and much deeper introduction into Qcd than can be done here. Also the
literature contains many works of how to simulate an exclusive final state correctly, like [17–19],
which give much more computational details than can be stated here. A complete overview of
jet algorithms is given in [27]. A brief introduction in all three topics can be found in [28]. In
the second section of the chapter we shortly introduce supersymmetry (Susy) as an additional
symmetry possibly realized in nature and what kind of signatures we can expect from this new
physics concept at the Lhc . A much deeper and more complete introduction can be found in [3].
We close this chapter with some remarks how to find evidence for a new physics idea like Susy at
the Lhc.

2.1 From QCD to event simulation

2.1.1 The QCD Lagrangian and Feynman rules

Quantum Chromo Dynamics is the gauge theory of colored quarks and gluons. Originally motivated
by a SU(3) flavor symmetry the need for an additional degree of freedom arouse to satisfy the
request of having anti-symmetrized wave functions for baryons and mesons [25]. Color turned out
to fill this need. The gauge group of color is SU(3)C . The quarks transform under the fundamental
of the group giving rise to three quark colors respectively anti-colors for the anti-quarks. The gluons
as gauge bosons of the theory transform under the adjoined representation giving rise to eight gluon
charges. Being charged enables the gluons to interact with each other. An effect directly emerging
from the fact that a SU(3) gauge theory is non-abelian. It is this non-abilianity which makes
Qcd so interesting and its phenomenology so rich. Here we like to exploit this symmetry to built
a SU(3) invariant Lagrangian from which we can deduce the structure of the Feynman rules of
Qcd [26] which are a tool to compute physical observables from theoretical models.

To built a proper quantum theory we need to write down a gauge invariant Lagrangian for our
fields. First we study the symmetry properties of SU(3)C to deduce the invariant terms4 going into
the Lagrangian. The group members of any SU(N) can be expressed with N2 − 1 real parameters

4We consider only terms with mass dimension four or less as we have to make sure our Lagrangian is re-
normalizable.
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θa

U(θ) = exp(iθaT a)

U†U = 1, (2.1)

where the T a are the generators for the fundamental representation of SU(N) obeying

[T a, T b] = ifabcTc (2.2)

and fabc are the so called structure constants. Group theory gives us several constraints [26] on
those quantities like the Jacobi identity

fabefecd + faedfcbe + facefdbe = 0. (2.3)

These, equations (2.1) to (2.3), are the properties we use to check for gauge invariance. We start
with the free case which is given by Dirac’s equation. The Lagrangian for a free quark reads

Lquark = q̄(i/∂ −m)q, (2.4)

where q and q̄ denote the spinors for the quarks respectively the anti-quarks and m is the mass.
This is clearly invariant under q′ = Uq. If we want to promote the symmetry to a local symmetry
U → U(x) to get a local gauge theory for quantization we need to replace ∂ by the covariant
derivative

Dµ = ∂µ + igsA
µ with Aµ= Aµ

aT a, (2.5)

where we introduce N2
c − 1 real valued gauge fields Aµ

a [26]. The Lorentz indices we contract with
the metric denoted by ηµν . This way we can ensure that

Dµ(A′)q′(x) = U(x)Dµ(A)q(x) (2.6)

if and only if the gauge fields Aµ transform as

A′µ = U(x)AµU(x)−1 +
i

gs
[∂µU(x)]U(x)−1. (2.7)

At this point we also have to think about gauge invariant terms involving the gauge fields. In
particular there is only one further gauge invariant term we can add to the Lagrangian5, the field
strength tensor

Fµν =
−i

gs
[Dµ, Dν ] Fµν→ U(x)FµνU(x)−1. (2.8)

From this we construct the gauge invariant term

Lgauge = −1
2
Tr {FµνFµν} . (2.9)

The classical locally gauge invariant Qcd Lagrangian with gluons, nf quarks and their interactions
then reads

LQCD =
∑
nf

q̄(i /D −m)q − 1
2
Tr {FµνFµν} . (2.10)

However this Lagrangian is not sufficient to formulate the full quantum theory. Indeed the
propagator for the gluon is not well defined [20]. To solve this problem we have to add gauge fixing
and ghost terms:

Lfix = − 1
2ξ

(∂µAaµ) (∂νAaν)

Lghost = ∂µηa† (∂µδab + gsfabcA
cµ
)
ηb. (2.11)

5There is also another invariant term built from the dual field strength tensor. It is proportional to a parameter
θ and leads to non perturbative effects violating parity (P) and charge conjugation (C) symmetry, which are known
to be respected by Qcd [26]. From experiments we know that this parameter θ has to be very small and through
out this thesis we consider it to be zero. This is also referred to as the strong CP problem.



14 CHAPTER 2. BASIC CONCEPTS

In particular the gauge fixing and ghost terms are needed to remove a divergence in the path integral
due to the infinite number of equal gauge field configurations. Here we show the Lagrangian in
covariant gauge ∂µAaµ = 0. Putting all the pieces together the full Qcd Lagrangian for nf flavors
reads

LQCD =
∑
nf

q̄(i /D −m)q

− 1
2

[(
∂µAa

ν − ∂νAa
µ

)
(∂µAaν − ∂νAaµ) +

1
ξ

(
∂µAa

µ

)
(∂νAa

ν)
]

+
(
∂µηa†) (∂µηa)− gsT

aq̄ /A
a
q + gsfabc

(
∂µηa†) ηbAcµ

+ gsfabc (∂µAa
ν) AbµAcν − g2

s

4
fabcfadeA

bµAcνAd
µAe

ν . (2.12)

From this form we can deduce the existing Feynman diagrams and their structure. The first three
terms give rise to quark, gluon and ghost propagators. Note the complicated form of the gluon
propagator due to gauge fixing. The next two terms describe the gluon quark and the gluon ghost
vertices while the last terms give rise to the gluon self couplings namely the triple and quartic
gluon vertices, see fig. 2.2 and fig. 2.3, coming from the commutator structure of SU(3).

Basis states Propagators

u(pi) ū(pf )
i j

i
(/p+m)

p2−m2+iεδij

v̄(pi) v(pf )
a b

i
−ηµν+(1−ξ) pµpν

p2

p2+iε δab

ε(pi)µ ε∗(pf )µ

a b

i 1
p2+iεδab

Figure 2.2: The Feynman rules of Qcd [26]. The basis states for fermions are represented by spinors
while for gluons they are described by their polarization vectors. As ghosts are scalars they have unit base
states. The complicated form of the gluon propagator results from the gauge fixing.

We have to mention some additional rules which are not obvious from the figures6:

� Closed loops of fermions or ghosts get an additional minus sign because they are anti com-
muting.

� Closed loops with bosons get an additional symmetry factor of 1/2 to take into account their
interchangeability.

The Feynman rules are the first step to link theoretical ideas as gauge symmetries to com-
putations. They use the idea of computing physical quantities to arbitrary precision through a
perturbative series in the coupling constant. With the Feynman rules we can compute amplitudes
for the processes of interest. Together with the phase space we can compute cross sections σ re-
spectively the rates of reactions through Ṅ = Lσ where the experimental properties are encrypted
in the luminosity L. In an experiment we are not able to directly prepare quarks or gluons as initial
states as we find in nature only bound, color neutral Qcd objects, the hadrons. But together with
the Feynman rules for Qed [20] we are able to compute elementary processes at colliders, e.g.
e+e− → qq̄, see figure 2.4 for a pictorial illustration. We are also not able to detect partons but
again only hadrons. However, the computed rate is still correct as long as we add up all detected
hadrons. If we want to compute observables at a hadron collider we need to find a description for
the proton as the initial state we actually can prepare and how to link it to the basic objects of our
theory the quarks and gluons or shortly partons for which we can compute scattering amplitudes.

6Although it seems that we insert these factors by hand they in fact drop out of a correct quantization via the
path integral formalism occurring there as power in the Jacobian determinant reflecting the bosonic (commutators)
respectively fermionic (anti-commutators) nature of the involved fields.



2.1. FROM QCD TO EVENT SIMULATION 15

Quark gluon vertex

µ, a

i

j

Ghost gluon vertex

µ, a

b

c

ց p

igsT
a
ijγ

µ −gsfabcpµ

Triple gluon vertex

g1, α, a

g2, β, b

g3, γ, c

Quartic gluon vertex

g2, β, b g4, γ, c

g3, δ, dg1, α, a

+gsfabc[ + ηαβ(g1 − g2)γ

+ ηβγ(g2 − g3)α

+ ηγα(g3 − g1)β ]

ig2
s [ + fabefcde(ηαγηβδ − ηαδηβγ)

+ facefdbe(ηαδηβγ − ηαβηγδ)
+ fadefbce(ηαβηγδ − ηαγηβδ)]

Figure 2.3: The Feynman rules of Qcd [26]. Note that for the vertices all momenta are outgoing and
thus sum to zero. The gluon self interaction is a direct result of the commutator structure of SU(3).

e
−

e
+

q

q̄

Figure 2.4: Feynman graph for electron positron scattering to quarks. With the spinor technique from [20]
we are able to compute the total cross section for this process and thus the expected rate at a e+e− collider.

2.1.2 Parton splitting and the DGLAP equation

We can also compute the amplitudes for parton parton scattering as is done in appendix A. But
we would get no complete description of the collider phenomenology because in nature we only can
observe color singlets like hadrons. While the potential energy between electrical charged objects
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heads for zero if they are apart, the potential energy between color charged objects grows linear.
This is another consequence of the gluon self interaction. For hadron collider phenomenology it
means we have to find a connection between partons which are the fundamental objects of our
theory and hadrons which are the objects we can collide and observe in detectors. For the final
state we do not have to worry to much. What ever happens to the final state partons does not
matter if we integrate over all final state hadron configurations. This is a fully inclusive result.
For the initial states the computation is not that easy. If we are to collide for example protons as
is done at the Lhc we need to know which partons we can expect to participate in the interaction
and how their weights are distributed among one another.

The proper quantity to describe partons in a proton are the parton density functions (pdf’s or
fi(x, µf )). They describe the probability to find a parton i carrying the momentum fraction x of
the proton. µF is an unphysical artifact of the derivation of the DGLAP equation we deal with
in this section which describes the evolution of the parton density functions if probed at different
scales and could be a typical scale of the process of interest, e.g. mZ for Z0 production. The
general formula for any process P accompanied by any number of final state partons X would be
the master equation

σ(h1h2 → P + X) =
∑
i,j

∫
dx1dx2fi(x1, µF )fj(x2, µF )σ(ij→P)(x1, x2, µF ), (2.13)

where i and j denote the partons in the hadrons h1 respectively h2 and x the energy fraction of
the proton the parton is carrying. It is energetically very easy for partons to radiate other partons
thus filling the proton with many interacting objects. The pdf’s describe how these objects are
distributed with respect to the momentum fraction of the proton they carry. The DGLAP equation
on the other hand guides their evolution to different scales by incorporating how partons split. To
understand how the DGLAP equation influences the parton densities we need to understand this
splitting property of the partons.

For that reason we study how a parton can split from a core process with given multiplicity n,
thus giving us a process with multiplicity n+1. Understanding this splitting leads to an evolution
equation for the pdf’s and thus a description of the proton as well as an algorithm to simulate
events with an unknown number of additional final state partons.

pa
pb

pc

θb

θc

Figure 2.5: Splitting of a parton a in partons b and c and kinematic configuration with the four vectors
p and the branching angles θ.

We start with the n+1 particle phase space as it is the same for all possible parton branching.
In this computation we use the energy fraction

z =
|Eb|
|Ea|

= 1− |Ec|
|Ea|

(2.14)

to describe kinematics, see [25]. z is also closely linked to the infrared divergence of Qcd as we
shall see in equation (2.31). We can transform the n + 1 particle phase space according to

dΦn+1 = dΦn
dpc,3dp2

T dφ

2(2π)3|Ec|
1
z
. (2.15)
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To simplify this expression we work in the so called Sudakov decomposition [28] where the energy
fraction enters as a variable again

−pa = pb + pc= (−zpa + βn + pT ) + (−(1− z)pa − βn− pT ) (2.16)

and we define a four vector n which describes the decay plane as well as a free parameter β. Forcing
the outgoing parton c to be on shell we can use this decomposition to write the phase space as

dΦn+1 = dΦn
dzdp2

adφ

4(2π)3
= dΦn

dzdp2
a

4(2π)2
(2.17)

where in the last step we assume spherical symmetry. For the cross section this means we can
write

dσn+1 =
2g2

s

p2
a

P̂ (z)|Mn|2dΦn
dp2

adz

4(2π)2
. (2.18)

Here we assume that we can factorize the matrix element with appropriate splitting kernels

|Mn+1|2 =
2g2

s

p2
a

P̂ (z)|Mn|2. (2.19)

This factorization holds exactly in the collinear or soft limit. In terms of cross sections we get the
common form

σn+1 =
∫

σn
dp2

a

p2
a

dz
αs

2π
P̂ (z). (2.20)

In this form we can see that we can built the n particle cross section through successive radiation
of partons starting at a hard core process, which will cross our path again once we study the parton
shower approach.

Let us now construct the appropriate splitting kernels for the factorization using the Feynman
rules from figure 2.3. As can be seen in figure 2.5 this involves a propagator for parton a which is
∝ 1/p2

a. If we express this in terms of the energy fraction and the Mandelstam variable t, we find

t = p2
a = 2EbEc(1− cosθ) ≈ z(1− z)E2

aθ2. (2.21)

From this we can deduce that the matrix element is enhanced in the collinear limit region. We
also observe that z is indeed linked to the divergence of Qcd. Thus we focus our examination on
the collinear region and neglect higher terms in θ. On the other hand we can express θ as

θ =
1

Ea

√
t

z(1− z)
=

θb

1− z
=

θc

z
. (2.22)

a

b

c

θ

Figure 2.6: Gluon splitting described by the triple gluon vertex. For small θ the splitting is enhanced
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We consider the pure gluon case which involves not only the above mentioned propagator but
also the triple gluon vertex, see fig. 2.3. Contracting it with the polarization vectors for the gluons
we get

Vggg = gsfabcε
α
a εβ

b εγ
c [ηαβ(pa − pb)γ + ηβγ(pb − pc)α + ηγα(pc − pa)]. (2.23)

Since the three gluons are nearly on their mass-shell we can assume that their polarization vectors
are transverse [25] εipi = 0, so we can write

Vggg = −2gsfabc[(εaεb)(εcpb)− (εbεc)(εapb)− (εcεa)(εbpc)] (2.24)

As basis we choose polarizations normal to the branching plane εout and parallel to the branching
plane εin, so that

εin
i εin

j = εout
i εout

j = −1

εin
i εout

j = εout
i pj = 0. (2.25)

As we are working in the collinear region we can expand in θ

εin
a pb ≈ −z(1− z)Eaθ= −

√
tz(1− z)

εin
b pc ≈ (1− z)Eaθ =

√
t(1− z)

z

εin
c pb ≈ −zEaθ = −

√
tz

(1− z)
(2.26)

using equation (2.22) for the last equality. Merging all the parts we get an expression for the
matrix element of the splitting

Msplit =
2igs

t
fabc[(εaεb)(εcpb)− (εbεc)(εapb)− (εcεa)(εbpc)]. (2.27)

Now we have to square this expression and incorporate the right averaging factors for the colors
and polarizations [28]

|Msplit|2 =
2g2

s

t2
1

N2
c − 1

1
Na

[ ∑
3 terms

±fabc(εiεj)(εkp(l 6=k))

]2

, (2.28)

where i, j, k, l denote the combinations from equation (2.27). Note that while fabc is totally anti-
symmetric the terms in the sum are symmetric with respect to two of the indices. This means that
all interference terms in the sum vanish and the squared sum becomes a sum of squares.

|Msplit|2 =
2g2

s

t

fabcfabc

N2
c − 1

1
Na

[∑ (εiεj)2(εkp(l 6=k))2

t

]
. (2.29)

For the sum we use equation (2.25) and (2.26) and get

|Msplit|2 =
4g2

s

t
CA

[
1− z

z
+

z

1− z
+ z(1− z)

]
=

4g2
s

t
CAP̂gg(z) (2.30)

where P̂gg(z) is the so called unregularized gluon splitting kernel.

The computation for the other splitting kernels is very similar, but includes the spinors for the
quarks. Working out all the combinations for the gluon polarizations and the quark helicities we
get for all the splitting kernels [28]:

P̂gg(z) = CA

[
1− z

z
+

z

1− z
+ z(1− z)

]
P̂qg(z) = TR

[
z2 + (1− z)2

]
P̂qq(z) = CF

1 + z2

1− z

P̂gq(z) = CF
1 + (1− z)2

z
. (2.31)
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These quantities are divergent for z → 0 and z → 1. This reflects the infrared divergence of
Qcd and shows us also that these splitting kernels are not yet the right quantities to describe the
proton. z denotes the energy fraction, so integrating over z would mean to ask how large is the
probability to find any splitting with any energy fraction. For the splitting kernels in this form the
answer would not be finite while we expect a finite result for a probabilistic picture.

Nevertheless we can use the parton splitting from equation (2.31) to describe incoming partons
in the proton. Note that while the factorization is a collinear approximation it is well suited to
describe the partons in an incoming proton. The proton is a bound object so its constituents have
all nearly the same direction of movement giving them parallel trajectories. If a collinear splitting
occurs the trajectories will still be parallel. If the splitting is not collinear it can not be hard enough
for the parton to leave the proton as protons are stable objects7 [30]. In that case the splitting is
soft and again well described by our approximation. Again we consider the pure gluon case. To
find an appropriate description of the proton we have to consider multiple branching as the proton
is a dynamical object. In figure 2.7 we look at a gluon line successively radiating gluons. In this

(t1, x1) (t2, x2) (tn, xn)

.........

Figure 2.7: Successive radiation of gluons changing carried energy fraction and virtuality.

process starting at some energy fraction x1 and some virtuality |t1| the energy fraction decreases
so that xj > xj+1 while the virtuality increases due to recoil |tj | < |tj+1|. The distribution of the
partons at some energy fraction x and virtuality t is encoded in the parton distribution function
f(x, t). Looking at the (x, t) plane in figure 2.8 and the flow of branching we can establish an
evolution equation for the parton densities. To achieve this we study a small square (δx, δt) of the

Figure 2.8: (x, t) plane and possible flow of the parton densities, taken from [28]

(x, t) plane and the flow of partons into the square and out of it, which is proportional to δt

δfin(−t) = δt

(
αsP̂

2πt
⊗ f

)
(x,−t)

δfout(−t) = δt

∫ 1

0

dy
αSP̂ (y)

2πt
f(x,−t). (2.32)

7Although there is some discussion about proton decay [31], they have been stable the last 13 billion years.
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For the incoming flow we use a convolution, defined as

(f ⊗ g) (x) =
∫ 1

0

dx1dx2f(x1)g(x2)δ(x− x1x2)=
∫ 1

0

dx1

x1
f(x1)g

(
x

x1

)
, (2.33)

because we do not know from which starting position the parton comes, while we use an integral
for the outgoing flow, because we have to integrate over the possible final states. Combining those
to a net flow we get

δf(x,−t) =
δt

t

[∫ 1

0

dz

z

αs

2π
P̂ (z)f

(x

z
,−t
)
−
∫ 1

0

dy
αs

2π
P̂ (y)f(x,−t)

]
=

δt

t

∫ 1

x

dz

z

αs

2π
P̂ (z)+f

(x

z
,−t
)

. (2.34)

Here we introduce the plus subtraction scheme

F (z)+ = F (z)− δ(1− z)
∫ 1

0

dyF (y), (2.35)

which renders the per se unregularized splitting kernels finite. Note that this comes along on its own
and is not introduced by hand as we treat the incoming and outgoing flux coherently. Furthermore
we switch the integration boundary from 0 to x, because x < z ≤ 1. To get an evolution equation
in the pure gluonic picture we have to compute the plus subscription for the gluon splitting kernel.
For a correct description of the proton we would have to include the splitting from and to quarks
as well, but instead we only compute the gluonic part, as we have done for the parton branching
before, and state the other contributions after wards. We start with the outgoing flux and try to
find the parts which are proportional to δ(1− z):

−
∫ 1

0

dy
αS

2π
P̂gg(y) = −αS

2π
CA

∫ 1

0

dy

[
2y

1− y
+ y(1− y)

]
=

αs

2π
CA

[
11
6
− δ(1− z)2

∫ 1

0

dy
z

1− y

]
. (2.36)

Putting this together with our gluon splitting kernel we find

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

11
6

CAδ(1− z). (2.37)

Note that this is indeed finite, because 0 ≤ x < z ≤ 1. Including nf quarks we get [25,28]

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

11
6

CA δ(1− z) +
3
2
nfTRδ(1− z)

Pqg(z) = TR

[
z2 + (1− z)2

]
Pgq(z) = CF

1 + (1− z)2

z

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3
2
δ(1− z)

]
. (2.38)

These are now the right objects to describe what happens in the proton. With these regularized
splitting kernels we can write down the DGLAP equation from its proto form of equation (2.34)
for the whole parton content of the proton as

dfi(x, µF )
d logµ2

F

=
αS

2π

∑
j

(Pij ⊗ fj)(x, µF ). (2.39)

Note the missing hat on the splitting kernels. This means we really have a finite description. To get
to this standard form we have to do some identification of scales. First we identify the virtuality
with the factorizations scale −t = µF . This scale is connected to our derivation of the splitting
kernels for describing the collinear divergences. But similar to Qed we also have to take care of
the renormalization scale µR connected to the ultraviolet divergences from loops. This scale enters
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our formula via αs, which is due to the running of the coupling a function of µR. We also identify
those two scales with each other, µR = µF .

The DGLAP equation gives us not an explicit solution for the parton densities, but is an
evolution equation. With the DGLAP equation we evolve the parton densities to the scale µF

and fold them into the cross section. Thus we get a fully inclusive result taking the structure of
the proton at the scale of the process of interest and the evolution of the partons into account.
A large set of pdf’s can be found at [29]. At this stage we are able to do phenomenology at
a hadron collider, predicting cross sections and their higher order corrections. We could study
particle production processes like Higgs production [32] or even do cross section predictions for
new physics models [33]. Stating this computation to be inclusive means that all possible additional
final state partons X from equation (2.13) are integrated over by means of the pdf’s. However,
this means not that we can only compute 2 → 2 processes. If we, for example, like to study a
2 → 4 process in perturbative Qcd, we had to take into account all the events with at least four
jets but ignoring anything else. We are also able to compute higher order corrections to processes
thus using the perturbative character of the Feynman rules to get more precise rate predictions.

2.1.3 Parton Shower and Matrix Element Merging

The prescription of Qcd we have recapitulated so far is a fully inclusive one described by the
master equation (2.13). It predicts the correct rates at hadron colliders, but is blind to the actual
structure of jets in a single event. To simulate proton collisions at the Lhc we need an exclusive
description of Qcd together with a probabilistic interpretation for the actual simulation. Note also
that the multi-jet observables we study in the next chapters are defined to be exclusive through
out this thesis. They are interesting as many new physic models also predict a rich jet structure.
Therefore we line out how to get exclusive predictions and how to implement them in an algorithm,
known as Ckkw algorithm [18], to get a literally pictorial simulation of Qcd events.

In a first step we study how we compute exclusive quantities from inclusive ones. The quantity
we need to study is the so called Sudakov form factor [18,28]

∆i(t, t0) = exp

−∑
j

∫ t

t0

dt′

t′

∫ 1

0

dy
αs

2π
P̂ij(y)

 . (2.40)

At this stage t and t0 as well as thard and tmatch, we will encounter later on, are just integration
boundaries. Their physical meaning gets clarified later. The Sudakov form factor is found in the
DGLAP equation if we re write it in terms of unregularized splitting kernels [28]. Note first that

1
∆i(t, t0)

d∆i(t, t0)
dt

= −
∑

j

∫ t

t0

dt′

t′

∫ 1

0

dy
αs

2π
P̂ij(y) (2.41)

for the derivative of the Sudakov form factor. This gives us the possibility to re write the derivative
of the parton density as

dfi(x, t)
dt

=
1
t

∑
j

∫ 1

0

dz

z

αs

2π
P̂ij(z)fj

(x

z
, t
)

+
fi(x, t)
∆i(t)

d∆i(t)
dt

, (2.42)

where ∆i(t) is just a short notion for ∆i(t, t0). If we now consider the quantity fi/∆i [18] we find
that it satisfies the DGLAP equation with unregularized splitting kernels

d

dt

fi(x, t)
∆i(t)

=
1

∆i(t)
dfi(x, t)

dt
− fi(x, t)

∆2
i (t)

d∆i(t)
dt

=
1

∆i(t)
1
t

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂ij(z)fj

(x

z
, t
)

, (2.43)

where we modified the upper integration bound to keep the integral finite following the argumen-
tation from [25]. To understand how this rewriting of the DGLAP equation helps us to generate
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exclusive quantities we integrate it over appropriate values of t and introduce ∆(t, t′) = ∆i(t)
∆i(t′)

[28]

fi(x, t)
∆i(t)

− fi(x, t0)
∆i(t0)

=
∫ t

t0

dt′

t′

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂ij(z)

fj

(
x
z , t′

)
∆i(t′)

fi(x, t) =
∆i(t)
∆i(t0)

fi(x, t0) +
∫ t

t0

dt′

t′
∆i(t)
∆i(t′)

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂ij(z)fj

(x

z
, t′
)

≡ ∆(t, t0)fi(x, t0) +
∫ t

t0

dt′

t′
∆(t, t′)

∑
j

∫ 1−ε

0

dz

z

αs

2π
P̂ij(z)fj

(x

z
, t′
)

. (2.44)

Rewriting the integrated DGLAP equation in this form has the following advantage: we are able
to assign a probabilistic interpretation to the Sudakov form factor. Note that the Sudakov is
multiplied to fi without any additional change. While the second term encodes the evolution of
partons through the splitting kernels. To fully use the Sudakov in a probabilistic way two further
steps are required. First the term in the exponent can be integrated out in the leading logarithm
approximation [18,28] to yield the integrated splitting functions

Γq(thard, t) =
CF

π

αs(t)
t

(
1
2
log

thard

t
− 3

4

)
Γg(thard, t) =

CA

π

αs(t)
t

(
1
2
log

thard

t
− 11

12

)
Γf (t) =

nf

6π

αs(t)
t

, (2.45)

where q denotes the emission of a gluon from a quark, g the splitting of one gluon into two and f
the splitting of a gluon into two quarks. In this formulation the Sudakov form factors now read

∆q(thard, tmatch) = exp

(
−
∫ tmatch

thard

dt Γq(thard, t)
)

∆g(thard, tmatch) = exp

(
−
∫ tmatch

thard

dt [Γg(thard, t) + Γf (t)]
)

. (2.46)

Second think of a Poisson distribution8 for the number of observations

P (n, λ) =
λn

n!
exp(−λ), (2.47)

then the probability to observe nothing is

P (0, λ) = exp(−λ). (2.48)

This together with the last line of equation (2.44) is the foundation of our interpretation of the
Sudakov form factor as non-splitting probability. The first part of the last line of (2.44) reads
nothing happened to the pdf while the second part, also involving a Sudakov, but only up to
the scale t′, reads at least one splitting has occurred. Consider now some simple 2 → 2 process
for example electron positron scattering to quarks. To get the exclusive two jet rate we just
multiply each quark line with a Sudakov factor [18]. In this case the only way to get a three jet
configuration is the emission of an additional gluon. Equation (2.45) gives us the correct factor to
insert: Γq∆g. As the emission can have any value of energy fraction we also have to include an

8A Poisson distribution is for example found for the re summation of infrared divergent soft and collinear photon
emission [20].
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additional integration. The exclusive njet fractions for electron positron scattering are then [18]

R2(Q1, Q) = [∆q(Q1, Q)]2

R3(Q1, Q) = 2[∆q(Q1, Q)]2
∫ Q

Q1

dq Γ(q, Q)∆g(Q1, q)

R4(Q1, Q) = 2[∆q(Q1, Q)]2(∫ Q

Q1

dq Γ(q, Q)∆g(Q1, q)
∫ Q

Q1
dq′Γq(q′, Q)∆(Q1, q

′)

+
∫ Q

Q1

dq Γ(q, Q)∆g(Q1, q)
∫ q

Q1

dq′Γg(q′, q)∆g(Q1, q
′)

+
∫ Q

Q1

dq Γ(q, Q)∆g(Q1, q)
∫ q

Q1

dq′Γf (q′)∆f (Q1, q
′)

)
(2.49)

and so on for higher multiplicities. There are few things to note about this formula. First we
changed the variables from virtuality t to the for this case more suitable c.o.m energy Q as we
choose electron positron scattering as an example for simplicity. q denotes the energy of the
emitted parton and is integrated over. Q1 corresponds to the integration boundary tmatch or t0
above. The physical meaning behind these integration boundaries are the different energy scales in
Qcd processes. The scattering takes place at a high scale, e.g. the c.o.m. energy Q corresponding
to the variable thard, and is described by perturbative Qcd while the hadrons we observe are low
energy objects which form around the scale Q1. To quantify Q1 we need a resolution measure
counting partons to separated jets. The appropriate measure is a so called kT -resolution [18]

yini =
Q2

1

Q2
. (2.50)

We will meet the kT measure and its relation to jets, see also [27], in the last part of this section
again. The probabilistic evolution of partons is called Parton Shower (PS). For a coherent PS
description of Qcd events at a hadron collider we need to address two further points: initial
partonic states and the probabilistic distributions which generate exclusive events in a Monte
Carlo code. This is done by assigning branching probabilities through Sudakov factors [17, 25]
and solving those with flat random numbers to generate exclusive final state partons [28]. The
no-branching probabilities P for forward (F) and backward9 (B) shower evolution read [25]

P
(F)
no,i(t1, t2) =

∆i(t1, t0)
∆i(t2, t0)

and

P
(B)
no,i(t1, t2, x) =

∆i(t1, t0)fi(x, t2)
∆i(t2, t0)fi(x, t1)

. (2.51)

The ratios of parton density functions makes sure the pdf’s are taken at the right scale. The
kinematics, e.g four vectors, are then computed as follows. Going from a given starting point
(x1, t1) to the next point (x2, t2) gives us two constraints, namely the virtuality which has to fulfill
|t2| > |t1| and the energy fraction with x2 < x1. Those we get through flat random numbers
(rt, rx) according to the equations [28]10

Pno,i(t1, t2) = rt

∫ x2/x1

0
dy αs

2π P̂ (y)∫ 1

0
dy αs

2π P̂ (y)
= rx with r ∈ [0, 1]. (2.52)

Having the outgoing parton on mass shell fixes the third condition. For the fourth we use the
fact that the splitting kernels are invariant under transformations in the azimuthal angle Φ, so we
generate it randomly in [0, 2π] [28]. At this point we have a coherent and probabilistic description
of the PS which is implemented in state of the art Monte Carlo codes [34]. However, due to

9This gives us the possibility to evolve initial state partons.
10Getting t2 < t0 corresponds then to no branching at all.
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the factorization in the derivation of the splitting kernels the PS does not take interferences into
account.

Alternatively we might use exact Matrix Elements (ME). We still need the Sudakov form factors
to render the results exclusive. However, in equation (2.49) the factors of Γ need to be interchanged
by the appropriate ME [18]. The advantage is that these take all interference effects into account.
The disadvantage is that their number and complexity increase fast with their perturbative order11

and the number of involved partons. For infrared parton configurations the ME are divergent
introducing a lower cut off similar to the resolution idea of equation (2.50). Furthermore the
passage to hadrons invokes free scale dependent parameters which would require re tuning of
parameters for every c.o.m [18]. The partons in the ME all carry color. For hadronization the need
to be grouped to color neutral objects. This clearly limits the applicability of ME. On the other
hand we know that the splitting kernels in the PS are only valid in the infrared regime and that
they do not take interference effects into account. To gain more insight we compare the emission
of an additional gluon in electron positron scattering in figure 2.9.iate ME [18]. The advantage
is that these take all interference effects into account. The disadvantage is that their number
and complexity increase fast with their perturbative order12 and the number of involved partons.
For infrared parton configurations the ME are divergent introducing a lower cut off similar to the
resolution idea of equation (2.50). Furthermore the passage to hadrons invokes free scale dependent
parameters which would require re tuning of parameters for every c.o.m [18]. The partons in the
ME all carry color. For hadronization the need to be grouped to color neutral objects. This clearly
limits the applicability of ME. On the other hand we know that the splitting kernels in the PS are
only valid in the infrared regime and that they do not take interference effects into account. To
gain more insight we compare the emission of an additional gluon in electron positron scattering
in figure 2.9. The plot on the right side tells us that the impact of the interference terms is large

Figure 2.9: Pictorial representation of contributions to single gluon emission in e + e− → qq̄g as given
by the ME and the PS. As indicated, the PS does not take into account the interference contributions
present in the ME. This leads to the ratio ME/PS as depicted in the contour plot. At the soft and collinear
boundaries of the phase space in the x1 − x2 plane (where xi corresponds to the energy fraction of the
quark and antiquark) the PS correctly reproduces the ME, whereas in the region of hard gluon emission
the PS omits the (destructive) interference contribution, taken from [18].

for hard emissions at large angles. While the edges of phase space are well described by the PS.
For an accurate description of Qcd events over the full phase space we need to merge ME with
PS to generate njet exclusive events. There are different schemes to merge ME with the PS. Here
we describe the Ckkw scheme [17, 18, 28] in the following, another possibility would be the Mlm
scheme [19].

We describe the Ckkw scheme [17, 18] as it is implemented in the Monte Carlo framework of
Sherpa [34] as this is the software we use for all Sm computations. First of all for the hadron
collider case the kT measure is slightly different from that for the e+e− collider used for the simple

11For the algorithms and techniques presented here we focus solely on LO ME.
12For the algorithms and techniques presented here we focus solely on LO ME.
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examples above [34]:

Q2
ij = 2 min

(
m2

T,i,m
2
T,j

) cosh(yi − yj)− cos(Φi − Φj)
D2

, (2.53)

where D is a parameter of the jet algorithm of order one [34, 35] and mT , y and Φ are transverse
mass, rapidity and azimuthal angle. The main idea of the Ckkw scheme is to separate the phase
space in one part filled by ME calculations while the rest is filled by the PS [18, 34]. The two
domains are divided by a cut value defined by the kT measure Qcut > Qij [17, 18, 34] also called
jet criterion. This differs from the usual kT measure from [27] in that the transverse mass instead
of the transverse momentum or energy is used13. The process then follows this sequence [34]:

1. The exact ME σk are calculated under the condition that the partons fulfill the jet criterion
Qcut < Qij . In addition the transverse momentum has to be larger than Qcut which also sets
the factorization (pdf’s) and renormalization (αS) scales in this first step. In the case where
virtuality is chosen as variable this sets the matching scale tmatch.

2. A process of fixed parton multiplicity is chosen with probability σk/
∑

l σl fixing also the
distribution of the particle momenta.

3. The parton configuration of the ME is clustered backwards with the jet criterion of equation
(2.53) to obtain a shower history of the ME [17]. This is needed to set a starting scale for
the PS. Also for each clustered parton Qij yields a value used for αs at this node to reweight
the ME. The clustering is stopped if a 2 → 2 or core process is reached. This process , also
called hard process, sets the upper integration limit thard. This shower history is a pseudo
shower configuration off which the event’s evolution is properly continued by the PS.

4. The reweighting proceeds with the correct Sudakov factors from equation (2.46) according
to the clustered shower history. Internal particle lines are reweighted with ratios of Sudakovs
according to equation (2.51). Ensuring no at Qcut resolvable branching occurred. Here Qcut

corresponds to tmatch respectively t0 or Q0 in the formulas above14.

5. The ME defines the hard parton emissions. In principle there could have been soft emissions
on the internal lines of the ME before the emission of the hard external parton. But these soft
emissions are coherent additional soft emissions of the cascade of partons yet to be produced
by the parton shower. This means they rely on the color information of the hard parton but
should not be generated before it and thus steal some of its energy fraction. Therefore a
truncated shower is employed generating coherent soft emission [17,36].

6. With the reweighted ME the PS is started at the scale determined by the shower history of
step three. For the PS implemented in Sherpa the invariant mass of the mother particle
gives the corresponding scale. If a splitting above the matching (tmatch) respectively the
cutting (Qcut) scale is generated the hole event is vetoed to avoid double counting as this is
already taken into account by the ME.

There are two further remarks necessary. To simulate a correct final state a hadronization model
has to be added. Therefore the correct color configuration needs to be known. This is achieved
by using color-flow decompositions of Qcd amplitudes [17, 37]. Second the computation of ME
is only practical up to a certain number of final state partons N . To fill the whole phase space
correctly there is no PS veto for the highest multiplicity ME. In figure 2.10 a pictorial output of a
Sherpa event is displayed. There one can observe how the PS evolves the partons from the core
process.

13In [18] the measure also differs between final state partons and initial state partons. However the implementation
in Sherpa [34] first uses only one kind of measure. Later in development a more abstract criterion is proposed [17].

14t0 is used to denote the general stop of the PS at which non perturbative effects start to play an important
role. As the merging uses the ME in one phase space domain we have to change t0 or Q0 to tmatch or Qcut in the
formulas denoting the a priori arbitrary matching scale.
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Figure 2.10: Pictorial display of a Sherpa event. The different colors denote different phases during
event generation. The algorithm described in the text is responsible for the generation of the blue and the
red parts. Other parts, for example the hadronization, are generated by non perturbative models. The
decay of hadrons is computed with their measured branching ratios, taken from [38].

2.1.4 Connecting perturbative predictions with detectable observables

In principle we have everything to simulate an event at the Lhc and compute the basic behavior
of physical observables. Through the Feynman rules we can compute the perturbative Sm or
new physics processes we are interested in. Then we can decide if we wish to compute inclusive
quantities including their higher order corrections or if we compute exclusive quantities staying
on tree level but therefore getting information about the event topology. But there are still some
issues we have to take care of. First we have to mention some further steps to a realistic simulation
of an actual event in the detector. Then we have to find a way back to connect the measurable
quantities in a detector to our theoretical concepts.

Hadronization and Detector simulation

Although we developed a picture how to describe perturbative Qcd accurately this is not the
most realistic picture. It enables us to compute observables and their distribution and is thus
useful in understanding the concepts of nature, but still lacks the ability to tell us the particles
and signatures we would observe in an actual experiment. Due to confinement we are not able to
detect partons, but only color neutral hadrons. This fact of nature forced us to introduce the pdf’s
to describe the incoming partons correctly inside the protons we collide. But of course the same
argument is true for the final state particles in the detector. After simulating an event on parton
level we have to add an additional step which describes the transition from partons to hadrons.
This can not be done by perturbative calculations and thus has to rely on so called hadronization
models. Subsequent to the hadronization we have to decay the now physical particles according
to their branching ratios as only few hadrons live long enough to be detected. A general overview
can be found in [39].

This last step brings us to detectable stable particles. A further step would be a detector
simulation, e.g. [42]. This is very important if we actually try to understand the signatures we
observe and how they are connected to the physical process we are interested in. In such a
simulation we would compute the respond and interaction of the different detector components to
the particles we produce in our Monte Carlo simulation. Thus tracking down how the geometry
and material of the detector influences the event signatures.
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Jet algorithms

On detector level we measure energy deposits in the calorimeter cells over the whole spatial detector
range. To assign them to well defined localized objects jet algorithms are applied. The idea of jet
algorithms is that partons cause a collinear spray of hadrons. Thus we have to assign criteria to
all the hadrons telling us if we should count them into a single jet. Doing so we also have to take
care of the infrared divergence of Qcd as we want the objects created by the jet algorithm to be
not sensitive to this divergence to enable us to compare different algorithms as well as different
experiments with different resolution and energy thresholds.

One approach to merge particles into jets are the so called cone algorithms. The basic idea is
to collect all particles in some range of a hard particle giving the preferred direction of the cone.
Thus those algorithms work with a seed given by the hardest particle. Unfortunately the do not
fulfill the requirement of being infrared safe [35]. This requirement is important as we want the
structure of the event to be independent of soft and collinear radiation we always expect at a hadron
collider on an unpredictable footing. By infrared safe we mean that the algorithm should not only
cancel infrared divergences but also be stable against addition of any soft or collinear particles. In
figure 2.11 we show how the infrared properties of Qcd can spoil the jet reconstruction.

jet 1 jet 1 jet 2

Figure 2.11: In perturbative calculations the loop divergence cancels with the infrared divergence yielding
finite cross section predictions. Using a cone algorithm with a seed spoils this cancellation as processes
which should be dealt with together get grouped into different jets.

There exists a cone approach for jet finding using no seeds which does not face the problem of
being infrared unsafe. The so called SISCone [27] algorithm which is a seedless cone algorithm.
It finds all stable cones without using a seed. If we now add a soft particle the number of hard
cones will not change. Thus the set of hard cones is infrared safe. However, this algorithm faces
computational problems like computing time and memory use [27].

Instead of using cones which are motivated by the idea that jets are a collimated spray of
particles originating from one mother particle, e.g. a parton, sequential recombination algorithms
use the branching picture we have developed to describe the parton shower. They recombine two
objects on base of a distance measure. There are different infrared save jet algorithms, mainly the
Cambridge Aachen(C/A), kT and Anti-kT algorithm, using this technique. They differ basically
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in the criterion applied as a distance measure between two reconstructed particles i and j:

kT yij =
∆Rij

D
min(pT,i, pT,j) yiB = pT,i

C/A yij =
∆Rij

D
yiB = 1

anti-kT yij =
∆Rij

D
min(p−1

T,i, p
−1
T,j) yiB = p−1

T,i

with ∆Rij =
√

∆η2
ij + ∆Φ2

ij , (2.54)

where η denotes the pseudo rapidity and Φ the azimuthal angle. These jet algorithms are indeed
infrared safe. If we add a collinear branching this just gets recombined to the original particle.

A very detailed description of the here mentioned and other algorithms is given in [27]. Here
we only show their general concept, following [28]. We assign all four vectors of our particles to so
called proto-jets.

� For all combinations of two proto-jets in the event find the minimum ymin = min(yij , yiB)

� if ymin = yij < ycut merge proto-jets i and j and add their momenta, go back to (1)

� if ymin = yiB < ycut remove proto-jet i, call it beam radiation, go back to (1)

� if ymin > ycut keep all proto-jets, done

There is one subtlety connected with the merging of the four momenta. Usually we would set the
invariant mass of our new proto-jet object to zero, inspired by the idea that we are looking for
mass-less partons. We can also choose to keep all masses thus getting a jet mass [28].

Those well defined objects are the key to relate our perturbative Qcd partons which are
not detectable to measurable physical quantities. Therefore we take the following point of view.
From section 2.1 we know that parton branching in the collinear regime is enhanced. Thus many
Qcd objects will propagate collimated around a vector approximately given by our perturbatively
simulated partons. These then hadronize to form color singlets. The hadrons inherit the direction
and collimation of the partons they combine to color singlets. In that way they deposit a large
and localized amount of energy in the calorimeter as well as they produce collimated tracks in the
detector. So in this sense we take the jets to be the objects carrying the information from our
perturbative Qcd partons.

2.1.5 Tools

As we are interested in the principal behavior of jets and the structure of multi-jet observables,
we limit ourselves to simulate the events only on parton level. A full detector simulation needs a
dedicated understanding of the detector itself and accurate data input to be reliably and is thus
beyond our reach. Here we like to summarize the tools we use with respect to the considerations
of the previous sections to achieve the results in the following chapters.

� To simulate all relevant standard model processes we use the Sherpa frame work [34]. It
implements an improved Ckkw approach [17] and efficiently computes high multiplicity
matrix elements, thus supporting our aim to understand jets and their structure over the
entire phase space region.

� As we use some Susy benchmark points [47] as an example to see how the jet structure of
new physics might differ from that of the standard model we need to reliably simulate their
decay toward standard model particles. Given the right branching ratios the Herwig++ [43]
code automatically decays heavy particles and showers them consistently due to their color
charge.

� Both simulation tools are able to generate the commonly used HepMC [44] event record.
The reconstruction of the jets is then done with the FastJet [45] package providing us with
several infrared save jet algorithms.
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2.2 SUSY and Dark Matter

Although the Sm describes many experiments very well, there are severe open issues not tackled
down by the Sm. From cosmological observations [1] we know that only 4.6% of the universe are
made up from matter described by the Sm. As is shown in figure 2.12 23% are made of Dark
Matter and 72% consist of Dark Energy. This is a clear sign that there must be physics beyond
the Sm.

Figure 2.12: Energy content of the universe today and close to the Big Bang. Most of the matter is
not described by the Sm , figure taken from [40].

Not only has the SM no dark matter candidate, there are also questions within the compu-
tational framework of the Sm. If we compute the loop corrections to the Higgs propagator, see
figure 2.13, we encounter quadratically divergent integrals dependent on the masses of the particles
running in the loop. As these loops compute the correction for the Higgs mass the values of the
masses must be fine tuned to achieve a reasonable mass correction.

As a solution to these severe problems supersymmetry (Susy) is proposed [3]. The key idea
of Susy is to relate fermions and bosons through introduction of a new symmetry15 assigning
each boson a new fermionic partner as well as each fermion a new bosonic partner with the same
quantum numbers16. Through the additional minus sign between fermion and boson loops the
divergences are canceled, see figure 2.13. The Sm itself can not be super symmetric, as for example
the super partner of the photon would be a massless fermion of the Sm. But even the lightest
fermions, the neutrinos, are known to have some mass. Thus we have to assign each Sm field

H H

t

t̄

H H

t̃

t̃

Figure 2.13: Quadratically divergent loop integral for the Higgs propagator due to a top loop and
cancellation due to its Susy partner t̃.

15Due to group theory reasons this symmetry needs fermionic operators. As algebras with fermionic operators
are called ”super” the symmetry described by those operators is called ”super” symmetry.

16The scalar partners of the fermions are denoted with an s in front, e.g stop for the top quark partner, while
the fermionic partners of the bosons get an into at their end denoting the partner of a gluon as gluino.
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a supersymmetric partner merging them into a supermultiplet, in this way at least doubling the
particle content as is shown in table 2.2 and 2.3 .

Names Spin 0 Spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) (3, 2, 1
6 )

(×3 families) ū ũ∗R u†R (3̄, 1, − 2
3 )

d̄ d̃∗R d†R (3̄, 1, 1
3 )

sleptons, leptons L (ν̃ ẽL) (ν eL) (1, 2, − 1
2 )

(×3 families) ē ẽ∗R e†R (1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, + 1
2 )

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) (1, 2, − 1
2 )

Table 2.2: Chiral supermultiplets and their charges under the Sm gauge groups. The spin 0 fields are
complex scalars and the spin 1/2 fields are left handed, two component Weyl fermions. The Susy partners
of the Sm fields have the same quantum numbers except for their spin. Note that for electroweak symmetry
breaking to work in the frame work of Susy additional Higgs bosons are needed, taken from [3].

Names Spin 1/2 Spin 1 SU(3)C , SU(2)L, U(1)Y )

gluino, gluon g̃ g (8, 1, 0)

winos, W bosons W̃± W̃ 0 W± W 0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 2.3: Gauge supermultiplets and their Sm charges. The spin 1/2 fields are left handed, two compo-
nent Weyl fermions and the spin 1 fields are real vector bosons, taken from [3].

We also can deduce that the particles emerging from Susy have to be heavy. Were they
light the particles and there interactions would have been observed by accelerator experiments for
example at the Tevatron. One key motivation for Susy is to cancel quadratic loop divergences
by introducing particles with the same quantum numbers to avoid fine tuning. Having different
masses spoils this cancellation. But we do not need this cancellation to be absolutely exact. The
corrections to the Higgs mass just do not have to become too large. So different masses are OK
as long as they are not too heavy compared to the masses in the Sm. This makes Susy a testable
theory at the Lhc. The heaviest Sm particle is the top quark with a mass of around 170 GeV ,
so Susy masses around the TeV scale are just the hierarchy we can allow for our particles nicely
testable at Lhc energies of 7 TeV respectively 14 TeV . The Susy particles having different masses
than the Sm particles means also that Susy can not be an exact symmetry at the weak scale. To
describe this property we need to introduce symmetry breaking terms in our Lagrangian. These
terms are explicitly not supersymmetric and introduce a high number of new free parameters. Thus
if we only impose a broken supersymmetry we could not do many phenomenological predictions
as we do not know the exact parameter point if Susy is really a description of nature.

There is one prediction we can make for such a general ansatz as we have outlined until now. If
we would just introduce super partners for the Sm particles we would encounter a severe problem:
proton decay. For example the diagram in figure 2.14 would decay the proton to a pion and a
positron instantaneously. If Susy is in any kind a description of nature we have to forbid such
interactions. So called R or matter parity does the job. All Sm particles are charged with +1
and all super partners with −1. At each vertex the R parity has to be conserved thus allowing
interactions with two super partners and one Sm particle, but never the other way around. In
addition R parity forces the lightest Susy particle to be stable (Lsp). From the fact that we
have not yet observed a charged stable Susy particle we can deduce that this particle has to be
neutral and can only interact weakly, therefore often called weakly interacting massive particle
(Wimp). Such a Wimp is a perfect dark matter candidate. As it is weakly interacting the cross
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s̃

u u

u e
+

d u

Figure 2.14: Interaction with a Susy particle leading to proton decay p→ π0 + e+.

section for the direct production is not very high at the Lhc. Here again R parity is of great
help. For all the other supersymmetric particles exists only the possibility to decay to an other
Susy particle and a Sm particle17 to conserve R parity in the decay process. The heavier a particle
is relative to the other Susy particles the more possibilities are open for its decay. But in the end
all the decay processes stop at the Lsp. In figure 2.15 we show a typical decay chain for squark
pair production. As squarks are colored particles they have a much larger production rate at the
Lhc than direct Lsp production. Thus we can get observable rates for the Wimp dark matter
candidate in Susy although it is weakly interacting.

Asking only for a minimal set of requirements, namely broken Susy with R parity, to have
concordance with very basic observations, namely no light Susy partners and stable protons, we
can deduce the most generic signature for a Susy event: missing energy from the Lsp escaping the
detector accompanied by decay jets plus the estimation that Susy as a solution to the mentioned
problems should be in the reach of the Lhc.

The MSSM

One particular interesting model which then fulfills the requirements to be an extension of the
Sm is the so called Minimal Supersymmetric Standard Model (Mssm). It is minimal in the sense
of the added extra particle content, but introduces many new parameters (124 in total) due to the
implementation of Susy breaking [3]. We impose the Susy condition for the field content of the
Lagrangian. But as we still have to full fill all the mechanisms imposed in the Sm we have to work
out the actual mass eigenstates of the theory. As is familiar from the weak gauge bosons these are
a mixture of the gauge eigen states and listed in table 2.4.

Figure 2.15: Decay chain for sparticles to neutralino with decay jets, generated with MadGraph [46].

17As the Susy particles have the same quantum numbers as the Sm particles they also share the same interactions
allowing them to decays.
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−

d h0 H0 A0 H±

squarks

ũL ũR d̃L d̃R (same)

0 −1 s̃L ũR d̃L d̃R (same)

t̃L ũR d̃L d̃R t̃1 t̃2 b̃1 b̃2

sleptons

ẽL ẽR ν̃e (same)

0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−

d C̃±
1 C̃±

2

gluino 1/2 −1 g̃ (same)

goldstino 1/2 −1 G̃ (same)

(gravitino) 3/2

Table 2.4: Sparticle content of the Mssm . The mass eigenstates arise due to a mixing of the gauge
eigenstates. Thus providing us through N1 with dark matter candidate, taken from [3].

Until now we have not addressed what we mean by Susy to be broken at the weak scale. We
just imposed it as a condition to meet the requirement of heavy Susy particles. To be more than
an effective Lagrangian with the right particle content Susy must be an exact symmetry at some
higher scale, usually referred to as Gut scale18, as the electroweak symmetry is before breaking
at the weak scale. The breaking mechanism for the Sm is the Higgs mechanism giving rise to the
different masses in the Sm. Indeed there are also dynamical breaking mechanisms for Susy. In
the mSugra (minimal super gravity) frame work Susy breaking is mediated by gravity [3]. That
reduces the number of parameters to five as shown in table 2.5. These five high scale parameters
are than evolved by a renormalization group equation (Rge), similar, but more complex, to the
equation for the running coupling in the Sm. In figure 2.16 we show the evolution of different
Susy parameters if we impose typical mSugra motivated boundary conditions.

m1/2 Gluino mass

m0 Scalar mass

A0 Soft breaking trilinear coupling constant

tanβ Ratio of the two Higgs VEV’s

sign(µ) Sign of the higgsino mass parameter

Table 2.5: mSugra parameters at the Gut scale. The notion gluino mass for m1/2 may be miss leading.
It is meant that this parameter drives mainly the evolution of the gluino mass. This table is not to be
taken as a one to one correspondence but rather to outline the influence of the parameter choice on the
spectrum.

The parameter space of mSugra is still five dimensional and thus very large. For better
comparison and easier handling so called snowmass benchmark points have been introduced [47]
to collect typical parts of the Susy parameter space and their spectra. In figure 2.17 we show
two possible choices known as SPS1a and SPS4 benchmark points. The specific parameter values
are shown in table 2.6. These choices show how rich and different the collider signatures for

18Gut is a short form of grand unified theory. Those theories aim at unifying all forces in nature, something
not achieved by the Sm. However, the Sm contains through its Rge for the running couplings a hint at which scale
this theory should life. It is clearly higher than the electroweak scale of the Sm O(TeV ), but should still be much
smaller than the Planck scale of O(1016TeV ).
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Figure 2.16: Rge flow to the weak scale. Each sparticle has its own running mass equation, thus giving
rise to a phenomenological rich sparticle spectrum starting from only five parameters. Here we see the
actual evolution of the masses due to mSugra inspired boundary conditions, taken from [3].

Parameter SPS1a SPS4

m1/2 250GeV 300GeV

m0 100GeV 400GeV

A0 −100GeV 0

tanβ 10 50

sign(µ) + +

Table 2.6: Specific parameter choice in the mSugra parameter space for the SPS1a and SPS4 benchmark
as introduced in [47].

Figure 2.17: Particle spectrum of the SPS1a and SPS4 benchmark points. Note the inversion in the
mass relations between gluinos and squarks as well as the shift for the sleptons, taken from [47]

Susy can still be although we narrowed the parameter space to five parameters by making explicit
assumption on the Susy breaking mechanism. For example by going from the SPS1a choice to
SPS4 we flip the mass hierarchy of the squarks with respect to the gluinos. Thus getting different
decay structures for those two choices. As the parameter space is very large there are many ways
how Susy could be realized19. This makes it difficult to use spectrum specific search strategies to
search for Susy signals. A point we address in the next section and in chapter 4 in more detail.

19Also mSugra is not the only way to impose dynamical symmetry breaking.
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2.3 Why to consider backgrounds

With the material of the previous sections we could develop a strategy to search for a Susy signal
at the Lhc. One search strategy which we like to refer to as spectrum specific strategy would take
a certain set of parameters of the new physics model one has in mind. This could be for example
the SPS1a benchmark point for the Mssm introduced in the previous section. We then take a set
of observables whose distributions are sensitive to the new physics we are searching for. On these
observables we define a set of cuts, for example on the pT of certain jets, and tune these cuts to
suppress the Sm backgrounds without killing our signal. The quantity of interest in such a strategy
is the ratio of expected signal over expected background S/B. If we can tune our cuts maximizing
this quantity we can claim discovery if our statistics are high enough to make sure that the excess
we observe is unlikely to come from a fluctuation of the background.

This point is also a problem of this ansatz. If we suppress the background very strong small
fluctuations can have a huge impact on S/B. Furthermore by choosing very restrictive cuts to
enhance S/B we also force the signal as well as the background events to lie in very specific phase
space regions. This may lead to sculpting of the signal and background distributions. But there
is also another point related to the idea of a new physics search. In principle we do know nothing
about the phenomena which might or might not occur at the Lhc. Thus we can by no means
rely on the parameter point we chose for the spectrum specific strategy. Even if we are using
the correct physics model in general we miss the correct parameter point. But this spoils our cut
optimization to enhance S/B. Thus a spectrum specific search only can be one step in the line of
analysis toward a more dedicated understanding of the new physics.

We propose an inclusive analysis as possible starting point of such a line. The set up of such
an strategy should have very generic cuts based only on the main features of the new physics we
have in mind. For Susy this would be the missing energy plus jets signature we motivated in
section 2.2. Such an analysis strategy should provide us also with some generic information about
the new physics thus preparing the ground for more dedicated analysis. Once we only impose
generic cuts we have to face huge backgrounds dominating our samples. If we want to make any
statement about new physics we have to reliably predict these backgrounds with simulation tools.
That we are able to do so we show in the following chapter 3 about staircase scaling a feature
observed in many Sm processes at the Lhc. Then we use this knowledge to set up the above
mentioned inclusive analysis strategy in chapter 4. This analysis enables us to get information on
some generic properties thus being qualified to produce the input for more dedicated analysis at
the Lhc.



Chapter 3

Deciphering Scaling Properties

3.1 Jet number scaling in SM backgrounds

As explained in section 2.2 jets are one of the very generic features of Susy models with a dark
matter candidate. Usually new physics searches use specific cuts tuned to one of these spectra to
reduce the background and enhance the signal as was outlined in section 2.3. The events surviving
these cuts mostly lie in very particular phase space regions. A consequence of this is that we are
faced with huge uncertainties of the backgrounds in these regions as well as a sculpting of the signal
itself. If we like to broaden our search strategies to larger regions in phase space we are faced with
overwhelmingly large backgrounds. To extrapolate any new physics signal we have to understand
the shape of the backgrounds we are faced with. On the other hand the parameter space and
the number of possible spectra is very large. Additional to this there are also other theoretical
ideas predicting new particles around the TeV scale together with a dark matter candidate [4].
Therefore we can not hope to pick as a first step just the right benchmark point and use it to
tune cuts to discover a new physics signal. We need to find evidence for the new physics through
deviations in the backgrounds predicted to be described by the Sm. Thus it is very important to
understand the jet structure of Sm backgrounds.

There are mainly two kinds of structure which we could exploit to understand the structure
of the number of jets for a given process. For Qed we know that for successive photon radiation
we observe Poisson scaling [20]. The Sudakov form factor from section 2.1 suggests the same for a
single quark line radiating gluons which do not split any further. Poisson scaling is well known and
understood in its probabilistic picture from the pT ordered re summation of radiated soft photons
from charged particles in Qed interactions. The probability to radiate n photons is given by [20]

P (n) =
λn

n!
exp(−λ)

thus 〈n〉 = λ, (3.1)

where λ is obtained from the re summation of virtual and unresolvable real photons below some
energy threshold and is the expected number of radiated particles. When we talk from scaling
properties we mean the behavior of ratios of cross sections, thus

Rn+1
n

=
σn+1

σn
=

P (n + 1)
P (n)

=
λ

n + 1
. (3.2)

Poisson scaling is present in Sm backgrounds for example in Higgs searches after cuts for two
tagging jets have been asked for [48]. However, the picture for events involving more Qcd jets
may be more complicated and cannot easily be described by a single line radiating gluons as those
gluons can split again to gluons or quarks spoiling the naive estimate of Poisson scaling. Indeed
we observe the so called staircase scaling in W,Z plus jets as well as in pure Qcd jet events [16,60],
defined as

R0 = Rn+1
n

=
σn+1

σn
∀ n. (3.3)

The theoretical foundation of staircase scaling is not fully understood. Nonetheless, there is no
doubt that this feature exists in data [16], which is, on the other hand, well-reproduced by state
of the art Monte Carlo codes, which include matching procedures based on the Ckkw [17, 18]
or Mlm [19] schemes. By construction, Poisson-like jet multiplicities are present for QCD in the
abelian limit CA → 0.
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As experiment [16] and Monte Carlo studies [15] tell us that staircase scaling is a matter of fact
we study its properties in W,Z plus jets as well as Qcd jets under the assumption of some very
generic cuts typical for inclusive searches for new physics as described in section 2.3

/ET > 100 GeV lepton veto: pT , lepton > 20 GeV. (3.4)

These cuts reduce the backgrounds to a manageable level without constraining the studied phase
space to specific regions as for example the spectrum optimized searches do.

To separate new physics events from a QCD sample after some very basic cuts we have to
understand the number of jets and their energy or pT spectra. Our maximally inclusive approach
means that aside from the fiducial volume of the detectors all we fix is the algorithmic jet definition
to count a jet toward each of the two measurements. Throughout the rest of this section we define
jets using the anti-kT algorithm [62] in FastJet [45] with a resolution Ranti−kT

= 0.4 and then
require

pT,j > pT,min = 50 GeV and |yj | < 4.5 . (3.5)

This defines which jets are counted toward njets as well as the meff distribution.

Before we can use the njets distribution to extract new physics in chapter 4 we need to show that
we understand this distribution in detail. Obviously, the overall normalization of this distribution
is not critical. For any kind of new physics not completely ruled out by the Tevatron experiments
the two jet and three jet bins are practically signal free. So the question becomes: what can we
say about the shape of dσ/d njets.

For W+jets events this kind of distribution has been studied, even at the LHC [60]. We observe
the staircase scaling [58, 63], an exponential drop in the inclusive njets rates with constant ratios
σ̂n+1/σ̂n. The numerical value of this ratio is obviously strongly dependent on pT,min. The original
staircase scaling describes inclusive jet rates, i.e. it uses σ̂n including all events with at least n jets
fulfilling Eq.(3.5). Here we use exclusive jet rates, i.e. counting only events with exactly n jets
fulfilling equation (3.5) toward σn. This preserves the normalization of the njets histogram as
σtot =

∑
n σn and makes it possible to add the bins in the computation of log-likelihood analysis.

It is interesting to note that staircase scaling defined either way implies staircase scaling using the
other definition, and that the jet-production ratios of the two approaches are identical. If we define
the universal exclusive staircase-scaling factor as

R ≡ R(n+1)/n =
σn+1

σn
, (3.6)

we find for the usual inclusive scaling denoted by a hat over all parameters

R̂ ≡ σ̂n+1

σ̂n
=

∑
j=n+1 σj

σn +
∑

j=n+1 σj
=

(σn+1 + σn+1
σn+2
σn+1

+ . . .)

σn + (σn+1 + σn+1
σn+2
σn+1

+ . . .)

=
σn+1

∑∞
j=0 Rj

σn + σn+1

∑∞
j=0 Rj

=

Rσn

1−R

σn +
Rσn

1−R

=
Rσn

(1−R)σn + Rσn
= R . (3.7)

The same relation we find when we include a finite upper limit to the number of jets in the sum
over j. Note, however, that this argument only holds for a strict staircase scaling where the ratio
R(n+1)/n does not depend on the number of jets n. But in that case it means that the merits of
perturbative QCD generalize to a fully jet-exclusive final state with a perturbatively well-defined
approach to higher order corrections while lower multiplicities can be utilized to constrain the
higher ones in a phenomenological approach once staircase scaling is in place.

In this section we will show that (1) such a scaling exists not only for W/Z+jets but also for
pure QCD events and (2) we can reliably estimate the scaling factor and possible deviations from
it from theory. A purely data-driven background analysis of this distribution might be possible
and should be combined with our results. For example, we can one by one remove the missing
energy cut and the lepton veto in Eq.(4.1) which gives us background dominated event samples
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Figure 3.1: Exclusive dσ/d njets distribution for W+jets (left) and QCD jets production at the LHC.
Only the jet cuts given in Eq.(3.5) are applied, neither a /ET cut nor a lepton veto is imposed. The
second panel shows the parametric uncertainty due to a consistent change of αs(mZ) between 0.114 and
0.122. The third panel shows the reach of a consistent scale factor treatment which can be experimentally
determined and should not be considered a theory uncertainty.

to a reasonably large number of hard jets. Adding the background rejection cuts will then have
an impact on the scaling, which we can estimate reliably. For the signal hypothesis we have to
entirely rely on QCD predictions.

As a starting point we discuss the established staircase scaling in W+jets production. The
behavior of Z+jets is exactly the same. For our analysis we produce Ckkw-matched [17] back-
ground samples for W+jets (to 5 ME jets), Z+jets (to 5 ME jets), tt̄+jets (to 2 ME jets), and
QCD jets (to 6 ME jets) with Sherpa-1.2.3 [34]1. Higher order corrections to the inclusive scaling
we expect to, if anything, improve the assumption of a constant jet ratio R̂ for example in W+jets
production [64]. To achieve numerical stable results for the pure Qcd case we simulate up to 80M
events.

In the left panel of Figure 3.1 we show the exclusive njets distribution for the LHC running at
7 TeV center of mass energy. To increase our statistics to large enough values of njets we do not
apply the selection cuts Eq.(4.1) in this first step. We already see that we can qualitatively fit a
line through the central points on a logarithmic axis for each set of input parameters.

Before we quantitatively evaluate this scaling we need to consider the uncertainties associated
with our simulation. This is crucial if we want to use the njets scaling as a background estimate
for new physics searches in QCD final states. There are two distinct sources of uncertainty in our
simulation. First, there exists a parametric uncertainty, namely the input value of αs(mZ) or some
other reference scale. To address this, we consistently evaluate the parton densities around the
central NLO value αs(mZ) = 0.118 inside a window 0.114 − 0.122 [65] and keep this value for all
other appearances of the strong coupling in our matrix-element plus parton-shower Monte-Carlo
simulations. In Figure 3.1 we see that the resulting error bar on the dσ/d njets increases with the
number of jets, but stays below 30% even for the radiation of six jets. For luminosities around
1 fb−1 the error on αs is roughly of the same order as the experimental statistical error. Systematic
errors we do not consider, even though they will at some point dominate over the statistical errors.
After any kind of realistic background rejection the combined experimental error will exceed the
parametric αs uncertainty.

The reason why we cannot use staircase scaling in W+jets to measure αs is a second source
of QCD uncertainty: aside from the parametric αs error band, an actually free parameter in

1The number of used matrix elements (ME) in the simulation corresponds to the highest multiplicity treatment
mentioned in section 2.1.3.
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channel (cuts) R2/1 R3/2 R4/3 R5/4 R6/5 R7/6 R0
dR

d njets
Sherpa simulation linear fit

W+jets (pT,j > 50 GeV) 0.1931(3) 0.1494(5) 0.157(1) 0.138(3) 0.115(8) 0.09(2) 0.150(1) −0.001(1)

W+jets (+ lepton veto) 0.2290(4) 0.1494(7) 0.164(2) 0.139(4) 0.12(1) 0.09(2) 0.149(1) −0.002(1)

W+jets (+ /ET > 100 GeV) 0.252(1) 0.224(2) 0.190(5) 0.16(1) 0.15(2) 0.09(4) 0.239(3) −0.032(3)

Z+jets (pT,j > 50 GeV) 0.1463(2) 0.1504(6) 0.147(1) 0.138(4) 0.123(9) 0.07(2) 0.154(1) −0.006(1)

Z+jets (+ /ET > 100 GeV) 0.2251(6) 0.185(1) 0.166(3) 0.154(6) 0.14(1) 0.08(3) 0.193(2) −0.018(2)

QCD jets (pT,j > 50 GeV) — 0.0552(1) 0.1074(5) 0.106(1) 0.125(5) 0.12(1) 0.105(2) 0.001(1)

(tt̄)hh+jets (pT,j > 50 GeV) 3.69(9) 1.26(2) 0.67(1) 0.366(9) 0.24(1) 0.15(5)

(tt̄)``/h+jets (pT,j > 50 GeV) 1.96(2) 0.851(7) 0.465(5) 0.260(5) 0.168(8) 0.12(2)

(tt̄)``/h+jets (+ lepton veto) 1.75(2) 0.765(10) 0.391(7) 0.228(8) 0.14(1) 0.12(3)

(tt̄)``/h+jets (+ /ET > 100 GeV) 1.60(5) 0.83(2) 0.49(2) 0.25(2) 0.15(2) 0.19(7)

Table 3.1: Jet ratios for all Standard Model channels, including (semi-)leptonic and hadronic top pairs for
the central scale choice µ = µ0. The quoted errors are statistical errors from the Monte Carlo simulation.
The numbers correspond to the curves shown in Figures 3.1 and 3.2.

our QCD simulation is a common scaling factor µ/µ0 in all appearances of the factorization and
renormalization scales, including the starting scale of the parton shower. Identifying all scales
follows the experimental extraction of the parton densities and αs in a simultaneous fit. The
interpretation of DGLAP splitting in terms of large logarithms tells us that the factorization and
renormalization scales have to be identified with the transverse momentum of the radiated jets.
By definition, such leading-logarithm considerations leave open the proportionality factor in the
relation µ ∝ |pT,j |. Any constant factor can be separated from the dangerous logarithm as a
non-leading constant value.

Because this constant cannot be derived from first principles we vary it in the range µ/µ0 =
1/4 − 4 and show the numerical result in Figure 3.1. As expected, the variation of the jet rates
with this scaling parameter is huge — much larger than the experimental uncertainties we expect
from the LHC and which we know from the Tevatron. In Figure 3.1 we can first of all check
that introducing such a scaling factor does not seriously impact the observed staircase scaling.
Counting such a constant toward the theory uncertainty is questionable if we can determine it
experimentally. For example for Sherpa we know from Tevatron that the scaling factor should
essentially be unity [66], which in the spirit of Monte-Carlo tuning means that for example in
Sherpa the naive default parameter choice comes out as correctly describing the data. Of course,
this does not have to be true for other simulation tools. An interesting question to ask once we
have access to it at the LHC would be if this per se free parameter really is the same for different
channels, like W/Z+jets and QCD jets.

In the right panel of Figure 3.1 we show the same distributions for pure QCD jet production.
Again, not applying the cuts in Eq.(4.1) we observe staircase scaling, however, with some caveats
for the two and three jet bins. This is related to the definition of the hard process. The two jet
processes is for kinematic reasons always back to back. Thus it passes always the jet criterion for
the ME in Sherpa . This might be not the case for a three jet ME. Thus giving the two jet bin a
higher rate.

As expected, the scale factor µ/µ0 has very large impact not on the existence of a staircase
scaling but on the jet ratio R. The parametric uncertainty due to the error bar on αs(mZ) is
again small once we vary the strong coupling consistently everywhere, staying below 30% for up
to six jets. The parametric uncertainty for the pure QCD case and the W+jets case is clearly very
similar. The scale factor variation µ/µ0 = 1/4 − 4 gives an even larger band of possible ratios
of cross sections, to be contrasted with a reduced statistical uncertainty compared to the W+jets
case. Our argument that this over-all scale factor should be determined experimentally is therefore
even more applicable for the QCD case. To date such an analysis does not exist, so while in the
following we will use unity as the appropriate scale factor for Sherpa this needs to be verified
experimentally. But concerning the comparison with Tevatron [66] we expect it too be a good
estimate.

Once we understand the size of theory uncertainties for the exclusive dσ/d njets distribution we
need to quantify the quality of the observed staircase scaling. Since the quantitative outcome will
depend on the background rejection cuts we apply, we study the scaling without the cuts shown
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in Eq.(4.1), after the lepton veto only, and including the lepton veto as well as the missing energy
cut. Starting from the individual R(n+1)/n values we fit a line through all relevant data points, as
a function of njets

R( njets) = R0 +
dR

d njets
njets , (3.8)

and determine the slope to compare it to our prediction dR/d njets = 0.

In Table 3.1 we list the exclusive jet ratios as shown in Figure 3.1. For the W/Z+jets case
we see that the radiation of one compared to a second jet off the Drell-Yan process R2/1 does not
show this scaling. The reason for this specific feature is the definition of the hard core process
alluded to before. To generate the relatively hard jets and the large missing energy mimicking the
signal events we need to at least consider W/Z+1 jet as the core process. In addition, we do not
take into account any separation criterion between the first jet and the gauge boson, which means
we treat σ1 different from all other σn. In Table 3.1 we see that we are lucky for the Z+jets case,
but we are not for the W+jets case. The tricky definition of the hard process σ1 as the base of
additional jet radiation suggests that we start our staircase scaling analysis with R3/2.

The statistical uncertainties which we show in Table 3.1 and which enter the fit of the slope as
defined in Eq.(3.8) always increase toward larger jet multiplicity. This is an effect of the way we
simulate these events which completely corresponds to an experimental analysis. If we generate (or
measure) all njets bins in parallel the first bin will always have by far the smallest error. Therefore,
it determines the constant scaling factor R0 in our fit as well as in a measurement. For larger values
of njets we become statistics dominated, which means that Monte Carlo simulations can extend
the reach of actual measurements at any given point in time toward larger jet multiplicities. This is
the phase space region in which we need to provide new physics searches at the LHC with accurate
background estimates.

Some of the rows listed in Table 3.1 we also depict in Figure 3.2. For electroweak gauge boson
production we see that without any cuts W and Z production show the same scaling parameter
R0 as well as a small negative slope. Within errors the staircase scaling holds to six and possibly
seven jets, even though we see a slight slope developing toward larger numbers of jets. This is a
phase space effect which is expected once we start probing gluon parton densities and their sharp
drop toward larger parton momentum fractions and which is well modeled by our computation.

Adding the lepton veto does not change the staircase scaling at all. This means that forcing
the W boson to decay into one fairly soft lepton and a harder neutrino does not affect the behavior
of the recoiling jets. Adding a significant /ET cut, on the other hand, has a measurable effect on
the jet ratios as well as on the slope. For experimental applications of this scaling, however, it is
important to note that the phase space effects for large njets as well as the effect of kinematic cuts
are completely described by our simulation.

For pure QCD events we find a remarkable agreement with the staircase scaling hypothesis,
which seems to be supported by recent LHC analysis [16]. The definition of the hard core process
is somewhat problematic since there exists no inherent hard scale in the 2 → 2 process and the
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Figure 3.2: Jet ratios for Z+jets production (without and with the /ET > 100 GeV cut) and QCD jets
production, corresponding to the numbers listed in Table 3.1. The error bars indicate the remaining Monte
Carlo uncertainty in our simulation.
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infrared behavior of s-channel and t-channel diagrams is very different. Therefore, we define σ3 as
the starting point of our analysis and R4/3 as the first relevant cross section ratio. Table 3.1 and
Figure 3.2 show that the ratios R(n+1)/n are essentially constant to eight jets. The slope within
statistical uncertainties is, in contrast to W/Z production, fully compatible with zero. The central
R0 values for W/Z+jets and QCD jets production are slightly different, which is expected by the
different core processes and by the different background rejection cuts.

3.2 Using photon plus jets as a testing lab

We like to study the staircase scaling in more detail. While we are not able to derive it from first
principals we can figure out for which particle configurations we expect staircase scaling and how
these differ from the Poisson case.

A prominent channel to test these expectations is photon plus jets production as we put forward
in this section. The total cross section which we compute to be σ = 10410.6± 329.152 pb at LO is
large enough to already by now have large enough data2 sets that do not only allow us to perform
MC validation, but also put us into a position to experimentally comment on potential staircase
scaling in photon plus jets production with a fairly small statistical uncertainty. This way, as we
show, we can use different kinematic regimes of the photon to test various theoretical hypotheses
of QCD radiation against actual data.

At first glimpse photon plus jets does not posses any particular scaling behavior which falls
into either the Poissonian or staircase like category. This is probably also the reason why, to our
knowledge, nobody has tried to study a potential staircase behavior in photon plus jets production
until now. In section 3.3 we show that staircase scaling is realized if non-photon plus jet like
events are singled out from the event sample. This amounts to a situation very similar to the one
encountered in case of the production of a massive electroweak gauge boson in association with
jets.

For the definition of jets in the following sections we use an anti-kT algorithm implemented for
example in FastJet [45] with a resolution of Rresolve = 0.4. When dealing with photons in a QCD
environment there arise some subtleties familiar from perturbative calculations [49]. A photon can
arise from a non-perturbative fragmentation process whose minimization requires isolation. Naive
isolation in terms of a hard cut on, e.g., the jet photon distance in the azimuthal angles pseudo
rapidity plane limits the phase space of soft gluon emission and is infrared unsafe. In our approach
we use the Frixione isolation criterion [49]. We define such a photon candidate to be identified as
a photon when the hadronic energy deposit in a cone of size Rseparation < 0.4 around the photon
is smaller than 10% of the photon candidate’s transverse momentum. The separation Rseparation

we compute with

R =
√

∆η2 + ∆Φ2 (3.9)

from pseudo rapidity η and polar angle Φ. If this criterion is not met the photon candidate is
pushed into the jet finding algorithm. We apply photon and jet cuts

pγ
T ≥ 50 GeV, |ηγ | ≤ 2.5 pj

T ≥ 50 GeV, |yj | ≤ 4.5 , (3.10)

where y denotes rapidity, respectively. For our computation we take only the hardest produced
photon into account. If further separated photons are produced they are ignored3. For the simula-
tion underlying this study we use Sherpa v1.3.0 [34] and perform Ckkw matching up to 5 matrix
element jets. To achieve accurate enough predictions we produce 130M events.

3.3 Photons and the staircase case

We propose two different cut scenarios to establish staircase scaling in γ+jets. Inspired by the
picture of the photon being a massless Z we study a mass criterion to mimic the recoil in weak

2By now the Lhc has collected more than 1 fb−1 [50]
3This process is suppressed by at least an factor of αem.
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Figure 3.3: Impact of the mass criterion on the scaling properties of γ+jets. Left: Invariant mass criterion
between photon and each jet for different masses in the range of mγj > 60, 80 and 110 GeV narrowing
down the phase space region where scaling occurs. Right: Changing the mass criterion enables us to tune
to different scaling parameters R0.

gauge boson production

mγ,jet > mcut ∀ jets, (3.11)

where mγ,jet is the invariant mass obtained from adding the four vectors of the photon and the jet.
In figure 3.3 we observe a phase space region between 60 and 110 GeV where the γ+jets sample
shows staircase behavior. It is interesting to note that this region falls together with the masses
of the weak gauge bosons4. We are also able to tune the actual scaling value R0 within this mass
window.

Although the motivation of the mass criterion is the connection of mass and scaling in the
weak boson case measuring the invariant masses of jet and γ combinations may be tainted with

2/1 3/2 4/3 5/4 6/5 7/6

n
n+

1
R

0

0.1

0.2

0.3

0.4

0.5

0.001±=0.158
0

>0.9, R,jγ
minR

0.001±=0.125
0

>1.3, R,jγ
minR

0.001±=0.1
0

>1.6, R,jγ
minR

2/1 3/2 4/3 5/4 6/5 7/6

n
n+

1
R

0

0.1

0.2

0.3

0.4

0.5

0.001±=0.134
0

>1.2, R,jγ
minR

0.001±=0.125
0

>1.3, R,jγ
minR

0.001±=0.117
0

>1.4, R,jγ
minR

Figure 3.4: Staircase scaling obtained with the minimal separation criterion. Left: Whole phase space
region showing staircase scaling. Right: Tuning the scaling parameter R0 seems to be more stable than
with the mass criterion.

4If this is by accident or not is to this point not clear as we still do not understand staircase scaling from first
principles.
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Figure 3.5: Consistent variation of αs does not spoil staircase scaling. The uncertainties to the central
R0 value are small compared to the range of Rmin’s where scaling is present.

nasty uncertainties at the Lhc due to the jet energy uncertainties. An more intrigue cut scenario
uses the minimal separation criterion. Asking the jet and the photon to have some invariant mass
forces them to separate, see also figure 3.9, as two massless parallel four vectors square to zero.
Therefore we study also

Rmin
γ, jet > Rcut ∀ jets, (3.12)

where R is computed with equation (3.9) Again we observe a rather large region of Rmin values
where staircase scaling is present. A closer look reveals that different Rmin values generate different
staircase scaling parameters R0, see figure 3.4.

Before we can make any quantitative remarks about the scaling properties and the fitted R0’s
we have to address the uncertainties in our Monte Carlo simulation. There is the uncertainty of
αs(MZ). We study this uncertainty by varying its NLO value of 0.118 consistently between 0.114
and 0.122 including the appropriate pdf sets. As we are interested in the staircase scaling properties
we study the impact of the uncertainties of αs on the resolution of our separation criterion and
the possible deviation from staircase scaling5.

2/1 3/2 4/3 5/4 6/5 7/6

n
n+

1
R

0

0.1

0.2

0.3

0.4

0.5  / ndf 2χ  2.601 / 3

    0R  0.0012± 0.1258 

 
jdn

dR
 0.0006819± 0.0005283 

>1.3,jγ
minCut: R

 +jetsγ

(n-1)
jdn

dR + 
0

fit: R

Figure 3.6: Staircase scaling in the phase space region constraint by the minimal separation criterion.

5As is also outlined in section 3.1 there is in principal an over all free parameter which can not be computed
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We observe as shown in figure 3.5 only slight variations in the scaling behavior due to a change
of αS

6. More important the changes to R0 due to uncertainties in αs are smaller than steps of size
0.1 in our Rmin criterion. This means we can scan the different Rmin’s producing staircase scaling
with a reasonable stepping size. Note however that the study presented here is done on parton
level. To make reasonable statements about the possible resolution of Rmin values in experiment a
dedicated detector simulation has to be performed. There is also another uncertainty in our Monte
Carlo study. In principle we had to check for the variation of the free parameter µ again, but in
the spirit of section 3.1 and reference [15] we handle it as a tuning parameter which we expect to
be unity for the Sherpa generator.

The by far best performance we observe for Rmin > 1.3. Clear staircase properties are present
even in the njets = 7 bin as is shown in figure 3.6.

Kinematics

Now that we have a region in phase space showing pronounced staircase scaling we study the
kinematic configuration of those events. If we understand the arrangement between the photon
and the jets we may draw conclusions on other cases where staircase scaling occurs. Without any
cuts the photon would be most often radiated together with the second hardest jet, as shown in
figure 3.7, in a back to back configuration with the hardest jet. We also observe an enhancement
of photons at small separations in R with respect to this second hardest jet. These photons come
from collinear radiation of quark lines. It is this collinear radiation which spoils our staircase
scaling.

The separation and the mass criterion perform both quite similar. We can understand the
appearance of staircase scaling in the light of the kinematics in Z+jets where staircase scaling is
observed. As the Z is heavy it can only be produced if its recoil is counter balanced which causes
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Figure 3.7: Separation between the photon and the two hardest jets in(η, Φ) plane. While all other jets
are distributed equally over the whole phase space (upper left) the hardest jet is most often back to back.
The second hardest jet however shows enhanced behavior to small R which are cut off by the Frixione
criteria for isolated

from first principals. However, in the spirit of ref. [15] we treat this free parameter as tuning factor determined by
experiment. For Sherpa we expect it to be close to the default value [66].

6The reason why this plot shows not as much multiplicity bins is due to limited simulation statistics for the αs

variations.
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Figure 3.8: Separation between the photon and the two hardest jets in(η, Φ) plane for staircase scaling.
All collinear enhanced photons have been removed.
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Figure 3.9: Left: Pictorial description of our two cut scenarios. Right: Forcing the photon to be separated
suppresses collinear Qed radiation. 1 is denoting that the photon pT is hardest in comparison to those of
the jets.

the Qcd jets to be mostly separated from the Z. With our cut scenarios we mimic this behavior
for the photon plus jets channel and find the same behavior. The reason why this happens not
automatically with the γ+jets is the masslessness of the photon. At any point we can radiate a
collinear photon which has by no means to be soft in our center of mass system. The photon its
self is an abelian particle thus setting an end to further branching which might appear had we
radiated an additional gluon and thus spoiling our Qcd staircase scaling. Forbidding these event
structure by forcing the photon to recoil against the Qcd , see figure 3.8 opens again the way for
the partons to shower only in a Qcd like manner, see also figure 3.9. This means that the origin
of the staircase scaling may be found in the ability of the gluon to split to two gluons.

3.4 Photons and the Poisson case

In the derivation of the Poisson scaling for gauge boson radiation of a fermion line leading to
equation (3.1) enter two assumptions. The first concerns the used splitting kernels namely that
there exists only one. This leads to angle ordered emission of the gauge bosons off the fermion line.
Thus avoiding combinatorial factors of n!. The other one is about the over counting of the bosonic
phase space which leads to the 1/n! factor. An example for such a statistical treatment are the
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Figure 3.10: Poisson scaling for γ+jets production at the Lhc. Left: Different transverse momentum
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Sudakov factors. To achieve 1
n+1 drop in the njet ratios we need to induce a large logarithm. This

can be done by asking for a large pT for the first jet. This way we introduce terms of the form

log

(
pT,leading jet

pT,average

)
. (3.13)

In this way we get a well defined hard subprocess. From figure 3.3 we could also conclude that a
cut of the form mγ,j1 induces a preferred direction which also leads to an enhanced logarithm, but
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Figure 3.11: Separation between the photon and the two hardest jets in(η, Φ) plane for Poisson scaling.
While all other jets are distributed equally over the whole phase space (upper left) the hardest jet is nearly
almost back to back. The second hardest jet however shows enhanced behavior to small R which are cut
off by the Frixione criteria for isolated photons. Thus collinear photon emission is enhanced in Poisson
scaling contrary to the staircase behavior.
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Figure 3.12: Kinematic structure for the Poisson scaling case. Photon radiation is enhanced in the
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it turns out that we find the cleanest Poisson scaling by requiring

pT,γ > 20GeV pT,j > 100, 20, 20, . . . GeV |ηγ | < 2.5, |yj | < 4.5, (3.14)

instead of equation (3.5). The lower value of 20 GeV for pT ensures a larger logarithm and higher
statistics. To test for Poisson scaling we fit the function

Rn+1
n

=
n̄

n + 1
+ R0. (3.15)

Here R0 checks for remnants of the staircase scaling. n̄ is the average number of emitted partons
and corresponds to the parameter λ in equation (3.1). From the values in figure 3.10 we see that
the larger we force the logarithm to be the higher becomes the expected number of jets. As for the
staircase scaling we do not include the one jet bin in our analysis due to the definition of the hard
process. Having two jets produces often a photon which is close to the second jet, see figure 3.11.
On the other hand forcing the first jet to be very hard enables it to radiate additional not so hard
partons, see figure 3.12. Thus a non vanishing value for the expected number of jets occurs.

The large logarithm is induced by forcing the first jet to be very heavy. The larger the jet
multiplicity the weaker is the expression of the Poisson scaling. In figure 3.10 we show different
cuts for the leading jet as well as the fit values. As we have done for the staircase case we omit
the two over one bin. If the fit in figure 3.10 would also include the highest multiplicity bins the
fitted value of R0 would rather be in the range of 0.3 as the effect of the induced log vanishes in
the highest multiplicity bins. This shows the impact of the decreased pT cut when compared to
figure 3.3 and 3.4. In addition we show the effect of a consistent change in αs.

Having only a constraint on the leading jet leads to no further separation criterion between the
photon and the other jets. Thus fragmented photon production is not suppressed as strong as for
the staircase case. Thus the kinematic configuration in the Poisson case is mostly that leading jet
and photon are back to back, while the second jet shows enhancement in the collinear region which
is is a remnant of the rather arbitrary selection of the R value for the Frixione photon criterion.



Chapter 4

Using Staircase Scaling for an Autofocus

4.1 Jets with missing energy

Missing transverse energy is a general signature for dark matter related new physics at hadron
colliders [8]. It has a long history at the Tevatron and to date gives the strongest bounds on
squark and gluino masses in supersymmetric extensions of the Standard Model. At the Lhc the
first new exclusion limits for squarks and gluinos have recently appeared, in the Cmssm toy model
as well as in a more general setup [9–11]. All of these analysis are based on jets plus missing energy
including a lepton veto which constitutes the most generic search strategy for strongly interacting
new particles decaying into a weakly or super-weakly interacting dark matter candidate [8, 12].

While the first results are based on very inclusive cuts, following the Atlas [13] and Cms [14]
documentations we expect more specific analysis to appear soon. The reason is that in their
current form the analysis can and should be optimized for specific new physics mass spectra. More
specialized analysis for jets plus missing energy rely on a missing transverse momentum cut and
on a certain number of staggered jet transverse momentum cuts [13, 14]. Unfortunately, they are
therefore hard to adapt to modified mass spectra and by definition show a poor performance for not
optimized model parameters. In addition, they are counting experiments in certain phase-space
regions, which means that for any additional information on the physics behind an anomaly we
have to wait for a dedicated analysis.

A major problem of searches for new physics in pure Qcd plus missing energy final states is the
prediction of background distributions. Aside from the improved signal-to-background ratio this is
one of the reasons why applying fairly restrictive cuts on the number of jets and on their transverse
momentum is a promising strategy. Such cuts relieve us from having to understand the complete pT

spectra [55] of general exclusive or inclusive njets-jet events at the Lhc . Experimentally, however,
we should by now be in a position to simulate these distributions using the Ckkw [17, 18] or
Mlm [19] matching methods implemented in Sherpa [34], Alpgen [56], or MadEvent [46]. The
different approaches have been compared in some detail, for example for W+jets production [39,
57]. What is still missing is a systematic study of theory uncertainties in multi-jet background
simulations for top quark analysis and new physics searches, i.e. including large jet multiplicities
down to intermediate jet transverse momenta, but reflecting a well defined hard scale given by
the signal process. In 4.5 we incorporate a log likelihood analysis to our backgrounds. The log
likelihood is an additive quantity for statistical independent bins. For that reason we define all
observables as exclusive, specifically in the number of jets.

In the following sections we establish a proper simulation of multi-jet processes and estimate
their theory uncertainties, with a focus on the question what actually constitutes the theory error.
This way Lhc data in control regions can be used to understand very generic scaling features
(staircase scaling1) which have already been observed in data [59, 60] and which we can extend
based on appropriate Monte Carlo studies. This staircase scaling we can reproduce and study
using Qcd Monte Carlo simulations, including different hard processes and the effects of cuts.
Combining these simulations with Lhc data should give us a quantitative handle on multi-jet
rates in many applications.

Moreover, we can use our knowledge about the exclusive njets distributions to predict other
notoriously difficult multi-jet observables. So once we understand the uncertainties on the multi-jet
spectra we turn to the effective mass. In its many incarnations it either includes the leading jet or
it does not and is either limited to four jets or any other number of jets [61]. Obviously, any specific
definition of this mass variable increases its sensitivity to theory uncertainties. We study the most

1Staircase scaling for jet rates is often referred to as Berends scaling. However, to our best knowledge it was
first introduced and discussed by the authors of Ref. [58].
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generic definition of the effective mass including all jets visible above a transverse momentum
threshold. As we add up jets the uncertainties of this observable are closely linked to those of the
jet-multiplicity distribution. Using the scaling properties of the exclusive jet multiplicities we can
strongly reduce the theory uncertainty in the effective-mass spectrum in a consistent manner. The
same should be true for other multi-jet observables which we can use to extract new physics from
jet dominated backgrounds.

Similar questions are currently being asked to control regions in a purely data-driven approach.
However, the conversion from background regions into the signal region either by shifting the
kinematic regime or by changing the hard core processes off which we radiate jets requires a
good understanding for example of the effects of background rejection cuts and of background
sculpting features in the definition of these observables. These effects we can reliably estimate in
an appropriate Monte Carlo study and then combine for example with an over-all normalization
from data.

Finally, we suggest an analysis strategy which on the one hand makes maximum use of the
jet patterns and on the other hand does not require any tuning of cuts. The only ingredient
of our analysis which does not involve jets is a missing transverse energy cut to reduce pure
Qcd backgrounds and an isolated lepton veto against W+jets and semi leptonic tops backgrounds.
To reduce them to a manageable level we require

/ET > 100 GeV and a lepton veto if pT,` > 20 GeV, |y`| < 2.5 (4.1)

as the basic and only electroweak cuts to reduce the Qcd background. The exact numbers are not
very dependent on the details of the model as long as the new physics sector provides a WIMP
dark matter candidate. To account for fake missing energy from Qcd jets we apply an additional
factor of 1/500 for pure Qcd and hadronic top-quark final states. This rough fake rate we estimate
from Ref. [9]. It provides us with a rather conservative estimate compared e.g. to Ref. [14].

After these very generic acceptance cuts a two-dimensional correlation of the effective mass vs
the exclusive jet multiplicity is the appropriate distribution to extract limits on strongly interacting
new physics or in the case of an excess study the mass scale as well as the color charge of the new
states. Because all our observables are defined jet-exclusively we can to a good approximation
study this two-dimensional distribution using a log-likelihood shape analysis. The contributions
of different regions in the njets- meff space to the binned log-likelihood automatically focus on the
correct phase-space region and are readily available for improved analysis as well as theoretical
interpretation.

4.2 Decay jets vs jet radiation

In contrast to the QCD and gauge-boson background njets distributions from heavy particles
decaying to jets include two sources of jets: first, there are decay jets, which dependent on the
spectrum might or might not be hard enough to stick out. Second, there is QCD jet radiation,
which for heavy states will generically be relatively hard and dominated by collinear splitting in
the initial state [67, 70], leading to a non-zero maximum value of the number of expected initial-
state radiation jets [8, 69]. Due to the hard scale of new-physics processes on the one hand and
because we need to simulate supersymmetric decays inclusively we best generate the new-physics
events with Herwig++-v2.4.2 [71] and normalize the cross sections with Prospino2.1 [33]. All
supersymmetric mass spectra we generate with SoftSusy [72] using the SLHA output format [73]
and use Sdecay [74] to calculate the leading-order branching ratios. We check the jet-radiation
results from the Herwig++ shower with Mlm merging up to two additional jets implemented in
MadEvent [70], using Pythia [75] for parton showering and hadronization as shown in fig. 4.1.

For the case of Susy we are actually able to stick out the expected number of decay jets from
the spectrum. In table 4.1 all the masses for the SPS1a spectrum generated with SoftSusy [72]
are listed. All these particles can decay to a Sm particle and a lighter Susy particle except for
the χ̃0

1 as it is protected by R-parity. Into which particular particles a heavy Susy state decays
is described by its branching ratios. From the color structure of the sparticels our naive estimate
would be mostly one decay jet for color triplets like squarks and one additional decay jet for color
octets like gluinos as they have to decay to a squark first to get rid of their color charge. In
table 4.2 we collect the largest branching ratios for the gluino generated with Sdecay [74] and
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Figure 4.1: Normalized exclusive dσ/d njets distributions for supersymmetric particle production. QCD
jet radiation only for the Madevent sample (left) as well as for the Herwig++ sample (right). Jets are
counted once they fulfill Eq.(3.5).

Particle Mass[GeV ]

g̃ 604

t̃2 586

s̃L 571

d̃L 571

c̃L 565

ũL 565

ũR 548

c̃R 548

d̃R 548

s̃R 548

Particle Mass[GeV ]

b̃2 548

b̃1 515

t̃1 401

χ̃+
2 382

χ̃0
4 381

χ̃0
3 364

τ̃−2 206

µ̃−L 202

ẽ−L 202

ν̃e,L 186

Particle Mass[GeV ]

ν̃µ,L 186

ν̃τ,L 185

χ̃0
2 181

χ̃+
1 180

ẽ−R 144

µ̃−R 144

τ̃−1 134

χ̃0
1 97

Table 4.1: Susy particles for the SPS1a benchmark point sorted by their mass. The χ̃0
1 is the only stable

particle. All others decay via decay chains into χ̃0
1.

possible decay chains for this heavy colored states in SPS1a. From those numbers we can compute
the expected number of decay jets for gluinos2

〈g̃decays〉 ≈ 2.5. (4.2)

The reason for the difference to our naive guess is that the gluino decays only in 40% of the cases
to a q̃R which gives us the expected two decay jets. All the other decay chains produce mostly
three or even more decay jets. We see this feature also in section 4.5 in fig. 4.6. The exact number
and the possible decay chains rely heavily on the selected spectrum. This is one of the reasons why
we propose a spectrum independent search strategy. As we will see in section 4.5 the proposed
search strategy allows to get information about this avarge number thus providing us with a hint
for what kind of spectrum we have to search.

g̃ decay possible decay chains # decay jets BR

g̃ −→
(40%)

(56GeV )

q̃R q̃R −→
(98%)

(452GeV )

χ̃0
1 2 0.390

2Due to simplicity we only show 82.5% of the gluino decays. The weighted sum from table 4.2 is actually
2.1 ≈ 82.5%× 2.5.
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g̃ −→
(22.5%)

(89GeV )

b̃1 b̃1 −→
(45%)

(335GeV )

χ̃−1 χ̃−1 −→
(95%)

(46GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 4 0.096

χ̃−1 −→
(4%)

(83GeV )

χ̃0
1 3 0.004

b̃1 −→
(35%)

(334GeV )

χ̃0
2 χ̃0

2 −→
(87%)

(47GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 4 0.069

χ̃0
2 −→

(6%)
(37GeV )

ẽR ẽR −→
(100%)

(47GeV )

χ̃0
1 4 0.005

χ̃0
2 −→

(6%)
(37GeV )

µ̃R µ̃R −→
(100%)

(47GeV )

χ̃0
1 4 0.005

b̃1 −→
(14%)

(114GeV )

t̃1 t̃1 −→
(67%)

(221GeV )

χ̃+
1 χ̃+

1 −→
(95%)

(46GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 5 0.016

χ̃+
1 −→

(4%)
(83GeV )

χ̃0
1 4 0.001

t̃1 −→
(19%)

(304GeV )

χ̃0
1 3 0.006

t̃1 −→
(12%)

(220GeV )

χ̃0
2 χ̃0

2 −→
(87%)

(47GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 5 0.003

χ̃0
2 −→

(6%)
(37GeV )

ẽR ẽR −→
(100%)

(47GeV )

χ̃0
1 5 0.001

χ̃0
2 −→

(6%)
(37GeV )

µ̃R µ̃R −→
(100%)

(47GeV )

χ̃0
1 5 0.001

g̃ −→
(10%)

(56GeV )

b̃2 b̃2 −→
(32%)

(452GeV )

χ̃0
1 2 0.032

b̃2 −→
(25%)

(147GeV )

t̃1 t̃1 −→
(67%)

(221GeV )

χ̃+
1 χ̃+

1 −→
(95%)

(46GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 5 0.016

χ̃+
1 −→

(4%)
(83GeV )

χ̃0
1 4 0.001

t̃1 −→
(19%)

(304GeV )

χ̃0
1 3 0.005

t̃1 −→
(12%)

(220GeV )

χ̃0
2 χ̃0

2 −→
(87%)

(47GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 5 0.003

χ̃0
2 −→

(6%)
(37GeV )

ẽR ẽR −→
(100%)

(47GeV )

χ̃0
1 5 0.001

χ̃0
2 −→

(6%)
(37GeV )

µ̃R µ̃R −→
(100%)

(47GeV )

χ̃0
1 5 0.001

b̃2 −→
(15%)

(368GeV )

χ̃+
1 χ̃+

1 −→
(95%)

(46GeV )

τ̃1 τ̃1 −→
(100%)
(GeV )

χ̃0
1 4 0.014

χ̃−1 −→
(4%)

(GeV )

χ̃0
1 3 0.001

b̃2 −→
(12%)

(367GeV )

χ̃0
2 χ̃0

2 −→
(87%)

(47GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 4 0.012

χ̃0
2 −→

(6%)
(37GeV )

ẽR ẽR −→
(6%)

(47GeV )

χ̃0
1 4 0.001

χ̃0
2 −→

(6%)
(37GeV )

µ̃R µ̃R −→
(100%)

(47GeV )

χ̃0
1 4 0.001

g̃ −→
(10%)

(56GeV )

t̃1 t̃1 −→
(67%)

(221GeV )

χ̃+
1 χ̃+

1 −→
(95%)

(46GeV )

τ̃1 τ̃1 −→
(100%)

(37GeV )

χ̃0
1 5 0.016
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χ̃+
1 −→

(4%)
(83GeV )

χ̃0
1 4 0.001

Table 4.2: g̃ decay chains for the SPS1a benchmark point and their probability to occur. The direct
decay to q̃R is the most probable causing two decay jets, but there exist also other decay chains producing
more decay jets.

The question for heavy-particle production is how universal its njets distributions are when we
consider Standard Model as well as new-physics particles with different masses and color charges,
like top quarks, squarks and gluinos. In Figure 4.2 we first show the njets distributions for
(semi-)leptonic and hadronic top-pair production. We see how all unsubtracted distributions show
maxima away from njets = 0, driven by the presence of decay jets plus relatively hard jet radiation.
In addition, they do not show a staircase scaling at large jet multiplicities. Because the particles
produced in the hard process have non-negligible masses even compared to the hadronic center-
of-mass energy the phase-space suppression for example due to rapidly dropping gluon densities
kicks in immediately and bends the otherwise exponential fall-off.

In the Standard Model we can fit the (semi-)leptonic and purely hadronic top-pair distributions
for all jets fulfilling Eq.(3.5) to the function

d log σ( njets)
d njets

= −b
n2

jets − a1 njets + a2
0

njets
. (4.3)

The two relevant fit parameters for the normalized distributions shown in Figure 4.2 correspond to
the maximum at njets = a0, and the (staircase) scaling parameter for QCD jet radiation at large
njets given by R = exp(−b). Because we do not include higher suppression terms toward large njets

we stop the fit at the endpoints of the curves shown in Figure 4.2. With this fit the mentioned
face space suppression becomes obvious as we can observe the deviation for high multiplicities.

In Table 4.3 we list the best fit values for these parameters for both top decays. We immediately
see more quantitatively than in Figure 4.2 that for example hadronically decaying top pairs on
average include not even one more jet than the (semi-)leptonic sample. Typically only one of two
jets from the W decay is accounted for because of the cutoff at pT,min = 50 GeV. Comparing
this value to the W mass it is likely that one of the two W decay jets gets boosted above pT,min,
but the other one stays below. In contrast, the Jacobian peak of the b-quark energy from the top
decay lies above pT,min. Going back to Table 4.3 this means that for top pairs the most likely
number of radiated jets is zero, closely followed by one jet emission [69].

For squarks and gluinos the features we see in top-pair production become more pronounced
and the average jet multiplicity reflects the color charge of the produced particles. As a reference
point in supersymmetric parameter space we consider reasonably low mass gluinos and squarks in
the SPS1a benchmark scenario [76], with mg̃ = 608 GeV and typical light-flavor squarks around
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Figure 4.2: Normalized exclusive dσ/d njets distributions for top pairs (left) and supersymmetric particle
production. For the latter we show all decay jets plus QCD jet radiation (center) as well as QCD jet
radiation only (right). Jets are counted once they fulfill Eq.(3.5).
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(tt̄)hh (tt̄)``/h q̃q̃ q̃g̃ g̃g̃ SUSY q̃q̃ q̃g̃ g̃g̃

full full jet radiation

a0 3.13 2.34 2.89 3.53 4.16 3.15 n.a. n.a. n.a

a1 5.41 3.73 5.28 6.16 7.15 5.48 0.45 0.36 0.21

b 1.25 1.07 1.71 1.25 1.09 1.27 1.14 1.07 0.98

Table 4.3: Parameters defined in Eq.(4.3) and extracted from the unsubtracted distributions shown in
Figure 4.2. The parameter a0 corresponds to the position of the maximum while b captures the approximate
scaling at larger njets. The combined supersymmetric result is based on the appropriately weighted event
samples for squarks and gluinos.

mq̃ ∼ 558 GeV. The new LHC exclusion limits are right at the edge of excluding this standard
parameter choice3. Because the gluino cannot decay to a gluon it requires two quarks to get rid of
its color charge. Squark pairs, including squark-antisquark production, predict two hard decay jets
plus some QCD radiation and sub-leading decay jets. In Table 4.3 we see that for this production
channel the maximum of a continuous njets distribution indeed resides almost at njets = 3. For
associated squark-gluino and gluino-pair production the number of jets increases by almost one,
corresponding to the second gluino-decay jet which not in all cases is hard enough to appear after
requiring pT,min = 50 GeV. The jet multiplicity of the entire supersymmetric sample is close to
the average for squark pair production and squark-gluino production which reflects the hierarchy
in cross sections of the three processes [33].

Breaking down the supersymmetric signal into individual production processes we can examine
the distinct radiation patterns. Gluino pairs radiate significantly more than associated production
or squark pairs, which is reflected in the right columns of Table 4.3: b(g̃g̃) < b(q̃g̃) < b(q̃q̃). The
scaling parameter R = exp(−b) is consistently larger than for the background samples in Table 3.1.
For example for the jet radiation off squark pair production we find R ≈ 0.32. Moreover, in
Figure 4.2 we see that the jet rates for QCD radiation drop off even faster for large multiplicities.
This means that there definitely does not exist any staircase scaling behavior for heavy particle
pair production above a threshold of 1 TeV at the LHC with a hadronic center-of-mass energy of
7 TeV. This phase space argument should not be mixed with the fact that the hard scale of such
processes and with it the logarithmic enhancement for collinear radiation is large, i.e. the validity
of the collinear approximation extends to larger values of pT,j .

4.3 The number of jets

Now we have everthing together to use the njets-observable as an appropriate discriminator. In
section 3.1 we compute the theoretical uncertainties for our simulation noting that the free factor
in our Monte Carlo is rather a tuning parameter which has to be examined by experiment and
that the uncertainties due to variation of αs and the pdf’s is well under controll. We are able
to reproduce the observed staircase scaling and extrapolate it into even higher jet multiplicities.
In section 4.2 we adress the characteristics of jets coming from decaying particles and how those
processes differ from the staircase scaling behavior of chapter 3.

Finally, in Figure 4.3 we show the njets distribution for the supersymmetric signal assuming the
SPS1a parameter point and the various Standard Model backgrounds. We apply the background
rejection cuts specified in Eqs.(4.1) and (3.5). The variation in shape when including the signal
events is statistically significant and appears as an excess of high jet-multiplicity events for njets >
5. While for lower multiplicities the cross section for our Susy signal is to low to make any
difference, we observe for high multiplicities how the deviation from staircase scaling becomes
more significant. The associated statistical significance we compute in Section 4.5.

3Due to the presentation of the LHC results in the m0 vs m1/2 plane it is also not possible to precisely read off
the actual limits in terms of physics mass parameters. Moreover, since squark and gluino masses are both mostly
driven by m1/2, there does not exist a mapping of the m0-m1/2 plane into the squark-gluino mass plane. Models
with significantly heavier gluinos than quarks are excluded in CMSSM searches.
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Figure 4.3: Exclusive njets distribution for all considered Standard-Model backgrounds and the SPS1a
signal for supersymmetry. We present the results for an LHC center-of-mass energy of 7 TeV with an
integrated luminosity of 1 fb−1 and after the cuts specified in Eqs. (4.1) and (3.5). The height of the
bands in the lower panel correspond to the predicted statistical error for 1 fb−1.

4.4 The effective mass

Before we turn to exploit the number of jets to extract a new physics signal at the LHC an
obvious question is if we can make use of our understanding of the njets distribution looking
at other observables in multi-jet final states. More specifically, we will use the measured scale
parameter µ/µ0 shown in Figure 3.1 to reliably predict observables, which, based on traditional
QCD simulations, show an overwhelming theory uncertainty. A classic observable in this respect
is the effective mass [61], which for exclusive jet multiplicities we define as

meff = /ET +
∑

all jets

pT,j , (4.4)

including all jets fulfilling Eq.(3.5). This definition is neither optimized to take into account
a correlation between hard jets and the missing-energy vector nor to remove hard initial-state
radiation. Instead, Eq.(4.4) makes a minimal set of assumptions to avoid sculpting the background
distribution.
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Figure 4.4: Effective mass distribution for W+jets and QCD jets production. Only the jet cuts given
in Eq.(3.5) are applied. The second panels show the parametric uncertainty due to a consistent change of
αs(mZ) between 0.114 and 0.122. The third panels show a consistent scale factor variation which can be
experimentally constrained and should not be considered a theory uncertainty.
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Figure 4.5: Effective mass distribution for exclusive 2-jet and 3-jet events for Standard-Model back-
grounds and the supersymmetric signal using the SPS1a parameter point. We assume a center-of-mass
energy of 7 TeV with an integrated luminosity of 1 fb−1 and apply all cuts in Eqs.(4.1) and (3.5).

Just like the njets distribution meff in the Standard Model cannot be reliably predicted by
parton-shower Monte Carlos. Jets entering the sum in Eq.(4.4) we have to understand over their
entire transverse-momentum spectrum. Ckkw [17,18] or Mlm [19] matching is therefore the most
adequate approach for simulating meff.

Exactly following the treatment of the njets distribution in Section ?? we estimate two sources of
theory uncertainties, the parametric error from varying the strong coupling and the scale-variation
systematics. To not be limited by statistics of our background samples we for now discard the
missing energy cut and the lepton veto and instead study the fully inclusive processes. In Figure 4.4
we present the meff distribution for W+jets and the QCD jets production with njets ≥ 2. The
same way as in Figure 3.1 we show the relative impact of the two sources of uncertainty in the
lower panels. The parametric error from αs(mZ) ranges well below 20% even towards large values
of meff. For the electroweak process this is of similar size to the expected statistical error for an
integrated luminosity of 1 fb−1. As expected, towards large meff the error band increases, but
not dramatically.

In contrast, the scale-factor variation µ/µ0 = 1/4− 4 has a huge effect on the meff simulation,
essentially rendering it unpredictive. For values above meff = 500 GeV the error bands become
large enough to make it impossible to extract new physics from this observable, were we to consider
the scale variation a proper theory error. However, measurements of multi-jet rates and other
jet observables at Tevatron and LHC indicate that for the case of Sherpa this scaling factor is
approximately one [66]. Measuring the staircase-scaling factors even more precisely with the 2011
LHC data will further constrain the scale ambiguities underlying our QCD simulations – allowing
us to make reliable predictions for e.g. the meff observable.

To see the impact of meff in searches for supersymmetry we show the meff distribution for
exclusive 2-jet and 3-jet events in Figure 4.5. It includes Standard-Model backgrounds as well as
the supersymmetric signal. All jet-selection and background-rejection cuts specified in Eqs.(4.1)
and (3.5) are applied. As mentioned before, QCD jets are the by far dominant channel. Only
for meff > 800 GeV the signal starts overcoming the backgrounds. The statistical uncertainty
for 1 fb−1 we indicate by the shaded regions in the lower panels. It is worth noticing that the
signal+background sample when compared to the pure background sample exhibits a maximum
at around meff ∼ 1.1 TeV. This scale corresponds to the squark and gluino masses which for
pair production add to 1100 to 1200 GeV. This means that the meff distribution for exclusive jet
multiplicities can serve as background rejection as well as a measure for the mass scale of the new
heavy colored states. It is also noteworthy to observe that we actually are able to do conclusions
about new physics particle properties in the low multiplicity region. This means that the njets

and meff observables are perpendicular in their discriminative power verifying our choice to use
them as discriminators for a loglikelihood analysis in section 4.5.
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4.5 Autofocusing

Following our results in the previous sections we should be able to use the shapes of the njets

and meff distributions to extract a supersymmetric signal from the now quantitatively understood
Standard Model backgrounds. Given that the two distributions are affected independently by the
color structure of the new physics sector and by its mass scale(s) we will assess the power of the
two-dimensional njets vs meff correlations in extracting a discovery or an exclusion. Such a two-
dimensional shape analysis is the natural second step after the first completely inclusive searches
based on counting events. According to Sections ??-4.4 systematic experimental uncertainties
will start dominating for luminosities around O(1 fb−1). Since those are subject to continuous
refinement during data taking and need to be addressed within a full detector simulation study
we limit ourselves to statistical uncertainties for a given luminosity. While this means that we will
not obtain reliable estimates for the discovery reach, we will see that it allows us to discuss the
main benefits and limits of the proposed analysis.

As supersymmetric reference models we choose the benchmark point SPS1a, two variations of
it, and SPS4. Again, we only apply the cuts given in Eqs.(4.1) and (3.5) and use the exclusive
definition of njets and meff. For the meff distribution we choose a binning of 100 GeV, which
approximately reflects the experimental resolution towards large meff.

For given background and signal+background hypotheses we use a binned log-likelihood ratio
to compute statistical significances assuming statistically uncorrelated bins

log Q =
∑
bins

[
ni log

(
1 +

si

bi

)
− si

]
. (4.5)

It includes the luminosity via the signal and background event numbers si and bi in each bin.
While it avoids the limitations of S/

√
B in regions requiring Poisson statistics it approaches a

Gaussian limit for each individual channel when the bin content becomes large. Some features of
this well established approach we summarize in Appendix B. Applying a “simple hypothesis test”
tells us how likely it is that the background-only hypothesis fakes the predicted signal+background
distributions as a statistical fluctuation, i.e. we define the p-value as the SPS1a likelihood ratio’s
median. The likelihood ratio given in Eq.(4.5) we compute for the exclusive njets, meff, and
two-dimensional ( njets, meff) distributions. In this two-dimensional plane the definition of meff,
following Eq.(4.4), only includes exactly njets jets. With this completely exclusive definition of
njets and meff we ensure that the sum over all bins in the ( njets, meff) reproduces the total cross
section.

Considering this correlation is similar in spirit to the ( /ET ,HT ) analysis proposed in Ref. [51].
However, first we focus on the njets and meff distributions because in Sections ??-4.4 we have
shown that we can quantitatively understand the staircase scaling behavior of the Standard Model
backgrounds and translate its precision into other variables. In addition, as we will see in this
section these two variables play a special role, as they not only distinguish signals from back-
grounds, but also contain information on the structure of the underlying new-physics model. As
mentioned above, for the sake of a proof of concept we ignore all uncertainties except for statistical
experimental errors, to avoid correlations in the definition of the log-likelihood.

We can expect from Figures 4.3 and 4.5 that the rate in each individual njets bin is dominated
by Standard-Model processes at low meff. Most likely, this region will be the control region to
normalize the QCD and W/Z+jets backgrounds. With the exception of hadronically decaying top
pairs all Standard-Model channels will then show a simple decrease in both directions of the two-
dimensional ( njets, meff) plane which we can predict following the arguments in Sections ??-4.4.
The signal contribution will become visible only once meff reaches the mass range of the particles
produced.

In Table 4.4 we compare the statistical significances for the supersymmetric SPS1a parameter
point at 7 TeV center-of-mass energy for the various analysis strategies: first, we show the results
based on the total production rates after the inclusive cuts of Eqs.(4.1) and (3.5). As expected,
including the signal events leaves us completely consistent with the background-only hypothesis.
Next, the likelihood ratio computed from the njets distribution gives rise to sizable deviations
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signal significance

for 35 pb−1

inclusive 0.2 σ

njets (1D) 1.6 σ

meff (1D) 3.3 σ

(njets,meff) (2D) 4.6 σ

Table 4.4: Confidence levels for the signal plus background sample ruling out the background-only
hypothesis based on one and two dimensional log-likelihood distributions. The supersymmetric mass
spectrum is given by SPS1a.

from the background for integrated luminosities as small as 35 pb−1. The one-dimensional meff

distribution turns out to be an even better discriminator. It gives us more than twice the njets

significance, namely 3.3 σ for L = 35 pb−1. The highest significant discriminative power we
obtain for the two-dimensional binned ( njets, meff) case. This is a direct consequence of the
additive binned log-likelihood given in Eq.(4.5).

Beyond the relevance of the ( njets, meff) distributions to extract new particles from back-
grounds, we can utilize it to study signal properties. Above, we argue that new physics contribu-
tions to njets will only appear once meff reaches the mass scale of the sum of both heavy particles
produced. However, this only happens if the exclusive njets value allows us to include the decay
jets contributing to meff. Hence, the new physics contributions to the two observables will show
a correlation based on the mass and decay channels of the new particles produced. The decay
channels can typically be linked to the color charge of the new particles if we assume that the
missing energy particle cannot carry color charge. Color triplets will tend to decay to one hard
quark jet while color octets with their diagonal coupling to gluons will radiate two quark jets. This
means breaking down the binned log-likelihood ratio over the fully exclusive ( njets, meff) plane
and keeping track of the individual contribution of each bin will automatically focus our search on
the appropriate properties of the particles we are looking for.

This statement is not limited to supersymmetry, the SPS1a parameter point or any other
assumption about the signal. It can be applied to general physics beyond the Standard Model
with strongly interacting new particles and a stable dark matter candidate. In Figure 4.6 we show
the contributions of the individual bins to the summed log-likelihood ratio for all signal events
combined and split into three production processes. The maximum significance automatically
reflects SPS1a’s decay paradigm q̃q̃(∗) → 2 jets and q̃(∗)g̃ → 3 jets, and g̃g̃ → 4 jets, know
already from Figure 4.2. The first two channels we can study using an integrated luminosity of
1 fb−1. Squark pair production is dominant because at the LHC it includes a quark-quark initial
state. Associated production, which often is the dominant channel at the LHC, has a comparable
statistical yield and features a slightly higher meff range. Both channels combined define the
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Figure 4.6: Log-likelihood contributions over the ( njets, meff) plane for the supersymmetric signal using
the SPS1a spectrum. The color code is normalized to different maximum significances. In the right image
we recognice the two possible decay mechanisms of the gluino due to its color charge. The two maxima
nicely reproduce or computation of equation 4.2 with an average of 2.5.
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Figure 4.7: Log-likelihood distributions over the ( njets, meff) plane for the different supersymmetric
spectra. Due to the smaller signal rates we present results for an integrated luminosity of 5 fb−1.

diagonal correlation we see for the combined signal events.

Gluino pair production has the smallest production rate and therefore becomes subleading in
the combined supersymmetry sample. However, for this channel we can best follow the imprint of
higher jet multiplicities. Due to its large mass and its color charge gluino pairs produce significantly
more jet radiation which we can resolve for a sufficiently low pT,min threshold. For pT,min = 50 GeV
we might just capture the first decay jet from the gluino cascade, reflecting the mass hierarchy
mg̃ − mq̃ ∼ 60 GeV. The peak in the log-likelihood plane around njets = 4 results from the
maximum in the g̃g̃ production cross section. For njets = 5 the background is still large compared
to the signal, but dropping at an exponential rate it gets surpassed for njets = 6, explaining the
structure we observe in Figure 4.6.

Finally, we can study how changes to the new physics spectrum are reflected in the significances
computed from the binned log-likelihood Q( njets, meff). We investigate three different supersym-
metric mass spectra : first, we increase only the gluino mass by 150 GeV with respect to SPS1a
(σNLO

SUSY = 2.69 pb according to Prospino2.1 [33]); second, we increase all colored-sparticle masses
by 100 GeV with respect to SPS1a (σNLO

SUSY = 1.63 pb); third, we consider the SPS4 benchmark [76]
with an inverted mass hierarchy mq̃ ∼ 750 GeV > mg̃ ∼ 730 GeV (σNLO

SUSY = 0.83 pb). All of
these cross sections are significantly smaller than for SPS1a with its σNLO

SUSY = 4.68 pb, which
means we increase our nominal luminosity to L = 5 fb−1.

In Figure 4.7 we clearly see the effect of the increased gluino mass. The meff peak for associated
squark-gluino production moves to larger values, as does the njets maximum. However, because
the balance between squark pair production and associated squark-gluino production shifts into
the direction of the squark pairs, this effect is not quite as pronounced. The second scenario with
increased squark and gluino masses leads to a pronounced maximum at larger meff. Due to the
smaller signal cross section the sensitivity in particular in the njets = 2 bins gets considerably
diminished, appearing as a shift towards higher njets values. For the all-hadronic search in the
SPS4 parameter point longer decay chains for gluinos through bottom squarks appear in the high
njets bins only.

The SPS4 case illustrates that njets = 6 does not have to be the maximum jet multiplicity we
need to consider. Once we rely on a combination of data and Monte Carlo methods to describe
the njets staircase scaling for background processes we can extend our analyses to very large jet
multiplicities. On the other hand, Figure 4.6 also clearly indicates that for example in the SPS1a
parameter point the optimal signal extraction strategy by no means requires us to go to very large
jet multiplicities. For the SPS1a parameter point the two-jet bins are leading contributions to the
total significance.





Chapter 5

Outlook

We have studied the properties of staircase scaling for various Sm backgrounds as well as the
emergence of staircase and Poisson scaling in photon plus jets. While at first sight there is no
reason to observe one of both cases we are able to identify two phase space regions where staircase
scaling respectively Poisson scaling is present. We found:

1. While we cannot derive the staircase scaling of the njets distribution from first principles we
can reproduce it using the appropriate Monte Carlo tools. This includes the scaling feature
itself, a careful error analysis, and the scaling violation effects towards large values of njets

due to phase space restrictions.

2. The theory uncertainty on the staircase scaling consists of tunable parameters like over all
free factors in the factorization and renormalization scales and on parametric errors like the
dependence on αs. The latter are small. The scale factor hugely overestimates the error and
should be thought of as a tuning parameter for the different jet merging implementations.
For Sherpa it comes out close to unity.

3. The scaling parameter R0 = σn+1/σn depends on the hard process and on kinematic cuts.
Both effects we can reliably predict using Monte Carlos, as we have shown for the W/Z+jets
and pure jets cases as well as in the photon plus jets channel.

4. These simulations of the staircase scaling in multi-jet processes can be easily combined with
data driven techniques, giving us the over-all normalization and a cross check for the first
njets bins. Statistically limited regions of phase space will become accessible via simulations,
including a reliable error estimate.

5. Studying the kinematics of the both cases enables us to understand the different particle
configurations leading to staircase and Poisson scaling. For staircase scaling soft radiation of
the photon must be suppressed while Poisson scaling is more pronounced the more we can
increase the collinear radiation.

6. Staircase scaling is a unique Qcd feature thus only visible if we separate the photon from
the Qcd part.

7. To observe Poisson scaling we have to induce a large logarithm thus enhancing the two jet
bin the most. Also collinear photon radition is present in these kind of scaling.

The difference between Qcd and Qed is the self interaction of the gluon. Collinear splitting of
partons is ok while colinear splitting of photons spoils the staircase scaling feature. This is a hint
that we might find a solution by understanding the same arguments which lead to Poisson scaling
in the Qed case for pure Yang-Mills theory.

In the second part we applied the properties of staircase scaling to a new physics search. Using
the staircase scaling we are able to constrain the uncertainties on otherwise hard to predict multi-
jet observables as the njets distribution, its link to other multi-jet observables, and the application
of jet-exclusive observables to new physics searches and found:

1. While we cannot derive the staircase scaling of the njets distribution from first principles we
can reproduce it using the appropriate Monte Carlo tools. This includes the scaling feature
itself, a careful error analysis, and the scaling violation effects towards large values of njets

due to phase space restrictions.
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2. The theory uncertainty on the staircase scaling consists of tunable parameters like over all
free factors in the factorization and renormalization scales and on parametric errors like the
dependence on αs. The latter are small. The scale factor hugely overestimates the error and
should be thought of as a tuning parameter for the different jet merging implementations.
For Sherpa it comes out close to unity.

3. The scaling parameter R0 = σn+1/σn depends on the hard process and on kinematic cuts.
Both effects we can reliably predict using Monte Carlos, as we have shown for the W/Z+jets
and pure jets cases as well as in the photon plus jets channel.

4. These simulations of the staircase scaling in multi-jet processes can be easily combined with
data driven techniques, giving us the over-all normalization and a cross check for the first
njets bins. Statistically limited regions of phase space will become accessible via simulations,
including a reliable error estimate.

5. Understanding staircase scaling of multi-jet processes allows us to predict other multi-jet
variables, like the effective mass meff. Again, this includes a proper treatment of theory
uncertainties. In addition, the completely inclusive definition of meff removes dangerous
artifacts due to the usual truncations.

6. Based on for example the njets vs meff correlation for a fixed pT,min we can define a
likelihood-based analysis avoiding model or spectrum specific background rejection cuts. Such
shape analysis in multi-jet search channels are the natural extension of the early inclusive
ATLAS and CMS searches.

Of course this simple first approximation to the exclusive zero-lepton search for jets plus missing
energy is not the only application of such methods. Searches including leptons, b tags, or hard
photons will benefit from the same treatment, as long as they include non-negligible numbers of
jets. The same is true for hadronically decaying top quarks in the Standard Model.
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Appendix A

External gluons and ghosts

In section 2.1 we mentioned the complicated form of the gluon propagator due to the gauge fixing.
This leads to the introduction of ghost terms [20, 26]. To explore their meaning it is instructive
to remember the photon from Qed . To make the photon a physical quantity we have to impose
polarization vectors allowing the photon only transverse polarizations. In the computation of
squared matrix elements this leads to the so called polarization sum∑

polarizations

ε(k)µε(k)∗ν = −ηµν . (A.1)

As gluons are mass less gauge bosons as are photons the same argument applies about their
polarization being physical. Again we have to introduce polarization vectors to make the gluons
physical. As it turns out the polarization sum from Eq. A.1 is not the correct way for gluons [26].
The reason for that is the gluon self interaction. The triple gluon vertex is in its structure mimicked
by the gluon ghost vertex. This is the meaning behind the ghosts. They cancel the unphysical
degrees of freedom if gluons are involved. If we use also ghosts in our Feynman diagrams the
unphysical degrees of freedom are removed correctly and we can safely use Eq. A.1 again1. As
ghosts are scalars the question arises how to incorporate them correctly in the computation of an
spin/polarization and color averaged squared matrix element. In many text books this question is
only touched vaguely [26, 77] and to our knowledge sometimes outlined miss guiding. As ghosts
are meant to cancel the unphysical degrees of freedom they can not be applied after averaging over
polarizations, but only before.

To achieve a systematic understanding of how to use unphysical ghosts as external entities
in our computation, we start with the cases involving no external gluons, namely scattering of
quarks2. As no external gluons are present we have no trouble with any polarization sums and
can use the Feynman rules from fig. 2.2 and 2.3. Due to symmetry reasons the squared matrix
elements of the processes qq′ → qq′, qq̄′ → qq̄′ and qq̄ → q′q̄′ are equal under appropriate exchange

p2 k4

p1 k3

Figure A.1: Labeling of the momentum of the incoming (p) and outgoing (k) partons. The counting
index runs from 1 to 4.

1There is also the possibility to work in a so called physical gauge where no ghosts appear in the Feynman
rules [26]. However, this not only complicates the gluon propagator even more, but also complicates the polarization
sum introducing a new four vector n into the computation. This vector is again unphysical and has to drop out of
the computation.

2To keep the computations simple we only consider 2→ 2 processes in this chapter
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of the three Mandelstam variables given by

s = (p1 + p2)2 ≈ 2p1p2

t = (p1 − k3)2 ≈ −2p1k3

u = (p1 − k4)2 ≈ −2p1k4

with s + t + u = 0, (A.2)

where the momentum labels are given by the configuration in fig. A.1. The ≈ in Eq. A.2 gets
an equal for massless particles as in our case. We only have to consider one Feynman diagram
depicted in fig. A.2.

=
ig2

s

t
u(k3)T aγµu(p1)u(k4)T aγµu(p2) (A.3)

Figure A.2: Feynman graph and matrix element for qq′ scattering.

Squaring Eq. A.3 and computing all the Dirac traces we get

|M2| = 16
s2 + u2

t2
. (A.4)

From this we can get for example to the qq process by interchanging s and t. Now we have to
average over the initial state spins and colors. For the three mentioned processes we get

qq′ → qq′ g4
s

4
9

s2 + u2

t2

qq′ → qq′ g4
s

4
9

s2 + u2

t2

qq → q′q′ g4
s

4
9

t2 + u2

s2
. (A.5)

For the other two remaining processes with no external gluons we can do the same computation
involving one additional diagram to get

qq → qq g4
s

4
9

(
s2 + u2

t2
+

s2 + t2

u2

)
− 8

27
s2

ut

qq → qq g4
s

4
9

(
s2 + u2

t2
+

t2 + u2

s2

)
− 8

27
u2

st
. (A.6)

There are three Qcd processes involving two external gluons qq̄ → gg, gg → qq̄ and gq → gq.
Due to symmetry we have to compute only one of those. We chose to compute qq̄ → gg. Two of
the diagrams we have to consider are similar to those of e+e− → γγ, see fig. A.3, but there is one
additional diagram involving the gluon triple vertex. To correct for the extra degrees of freedom
in that diagram we have to take into account a diagram describing a qq̄ → ghost ghost process,
see fig. A.4. But how do we figure out the correct assignment of signs and relative weights? We
could guess that the ghosts have to come along with a minus sign, however we have not to rely
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= −ig2
sv(p2)

[
T aT bγµ /p1

− /k3

t
γν + T bT aγν /p1

− /k4

u
γµ

]
u(p1) (A.8)

Figure A.3: Feynman graph and matrix element for qq̄ to gg process similar to the Qed case.

M3gluon =
−g2

s

s
fabeT

ev(p2)γσu(p1) (ησµ(−2k4 − k3)ν + ηµν(k4 − k3)σ + ηνσ(2k3 + k4)µ)

Mghost =
g2

s

s
fabeT

ev(p2)γσu(p1)k4,σ (A.9)

Figure A.4: Feynman graph and matrix element for qq̄ to gg process due to the gluon triple vertex and
corresponding ghost diagram to counter balance the too many degrees of freedom.

on guessing. The optical theorem [20] is the answer to that question. In fig. A.5 we can see how
diagrams with loops are connected to absolute squared matrix elements. We find that we have
to include a factor of 1/2 for the gluon loop and a factor −1 for the ghost loop. But this gives
us together with the factor of 2 from the optical theorem an overall relation between the squared
gluon matrix element and the squared ghost matrix element of the form

|Mtotal|2 = |Mgluon|2 − 2 ∗ |Mghost|2. (A.7)

With that information we can now compute the squared matrix elements. For the gluon and
ghost parts we get

|Mgluon|2 = −416
3
− 240

u2

s2
− 240

u

s
+

128
3

u

t
− 128

3
s

u

|Mghost|2 = −24
u2

s2
− 24

u

s
.

⇒ |Mtotal|2 = −416
3
− 192

u2

s2
− 192

u

s
+

128
3

u

t
− 128

3
s

u
. (A.10)

Including the right averaging factors and interchanging the Mandelstam variables appropriately
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2Im

( )
=
∫

dΠ

∣∣∣∣∣
∣∣∣∣∣
2

2Im

( )
=
∫

dΠ

∣∣∣∣∣
∣∣∣∣∣
2

Figure A.5: The optical theorem in the language of Feynman graphs involving the gluon triple vertex
(top) and the ghosts (bottom). The cutting causes the loop to collapse to a phase-space integral denoted
by

∫
dΠ. The gluon loop comes with an additional factor of 1/2 while the ghost loop gets a factor of −1.

we get for all three possible processes

qq → gg g4
s

(
32
27

t2 + u2

tu
− 8

3
t2 + u2

s2

)
gg → qq g4

s

(
1
6

t2 + u2

tu
− 3

8
t2 + u2

s2

)
gq → gq g4

s

(
−4

9
s2 + u2

su
+

s2 + u2

t2

)
. (A.11)

Figure A.6: Diagrams for pure gluon scattering without ghosts.

If we use equation. A.7 in a more complicated environment namely pure gluon scattering the
number of terms we have to include gets large. In this case we have four diagrams involving
only gluons depicted in figure A.6. The number of ghost diagrams gets huge displaying that this
technique might be very interesting from a Qft point of view but is very unpractical. Nevertheless

Figure A.7: All external states are ghosts.
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we state the ghost diagrams which should be included in the figures A.8 to A.7. The squared matrix
element for this process is

gg → gg g4
s

9
2

(
3− tu

s2
− su

t2
− st

u2

)
. (A.12)

Figure A.8: First set of ghost diagrams with one ghost in the incoming state and one in the outgoing.

Figure A.9: Second set of ghost diagrams with one ghost in the incoming state and one in the outgoing.



68 APPENDIX A. EXTERNAL GLUONS AND GHOSTS

Figure A.10: Left: Two ghosts in the incoming and gluons in the outgoing state. Right: Gluons in the
incoming and two ghosts in the outgoing state.



Appendix B

Hypothesis Test

In this section we briefly review the binned log-likelihood ratio hypothesis tests which we apply in
Section 4.5. It discriminates between two specific hypotheses and has been used for the combined
LEP-Higgs limits [52], Tevatron analyses [53], and in various contexts of LHC Higgs phenomenol-
ogy [54]. According to the Neyman–Pearson lemma [78] the likelihood ratio is the most powerful
test statistic (e.g. signal+background vs background-only). We compute the (binned) log-likelihood
ratio

Q = −2 log Q = −2 log
L(data | S + B)

L(data | B)

= 2
[
s− n log

(
1 +

s

b

)]
binned= 2

∑
i∈bins

[
si − ni log

(
1 +

si

bi

)]
, (B.1)

where s and b denote the signal S and background B event numbers for a given luminosity, split
into the bins i. The probabilities to observe n events given the expected numbers s and b in
Eq.(B.1) are determined by Poisson distributions

L(data | S + B) =
(b + s)ne−(s+b)

n!
L(data | B) =

bne−b

n!
. (B.2)

The sum in Eq.(B.1) extends over all contributing channels. The likelihood distributions we gen-
erate as pseudo-data around each hypothesis’ central value, which means that in principle we can
include any kind of correlation. In this work we limit ourselves to statistically independent bins i
of the njets and meff distributions. The set of entries in each bin {ni} we simulate numerically
and histogram them as a function of Q, following the Neyman-Pearson lemma. To simulate the
log-likelihood distributions we need to specify which hypothesis the bin entries {ni} should follow,
i.e. we can compute QS+B or QB. In Figure B.1 we show both Q distributions for the binned
one-dimensional njets distribution studied in our paper.

In our analysis we are interested in the probability that the background alone fakes the expected
signal+background distributions. This confidence level is given by the integral of the background
distribution QBover the signal+background range, indicated by the red-shaded region in Figure

-2 log Q
-10 -5 0 5 10
-410

-310

-210

-110

σ, 1.6-1, L=35 pbjetsn

background only

signal+background

Figure B.1: Log-likelihood ratio distributions based on the njets discriminator for a luminosity of
35 pb−1. The confidence level is computed by evaluating the overlap of the background-only distribution
with the signal+background maximum.
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B.1. This signal+background range is defined as all likelihood values above the median of the
likelihood distribution assuming the signal+background hypothesis

CLB =
∫ 〈QS+B〉

−∞
dQQB = erfc

(
Z√
2

)
, (B.3)

where for illustration purposes we convert the confidence levels into the Gaussian number of stan-
dard deviations Z via the inverse error function.
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[33] W. Beenakker, R. Höpker, M. Spira and P. M. Zerwas,
Squark and gluino production at hadron colliders;
Nucl. Phys. B 492 (1997) 51.
T. Plehn,
Production of supersymmetric particles at high-energy colliders;
arXiv:hep-ph/9809319
www.thphys.uni-heidelberg.de/~tplehn/prospino.
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[66] F. Krauss, A. Schälicke, S. Schumann et al.,
Simulating W / Z + jets production at the Tevatron;
Phys. Rev. D70 (2004) 114009.
V. M. Abazov et al. [ DØ Collaboration ],
Measurement of the normalized Z/γ∗− > µ+µ− transverse momentum distribution in pp̄

collisions at
√

s = 1.96 TeV;
Phys. Lett. B693 (2010) 522-530.
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