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Abstract - Exploring various approaches of using likelihoods for global
SMEFT analyses in the Top sector:

While the Standard Model is able to describe numerous different measurements to an
impressive extent, there are many observations that it still can not explain. In this
thesis, global SMEFT analyses are performed to put constraints on new physics. The
role of the likelihood, in particular, is studied in great detail.
For the first time, likelihoods published by ATLAS are used to implement new mea-
surements into SFitter. Using these, one is able to validate approximations made in
previous global analyses, showing that they already lead to very good results. Fur-
thermore, the effect of profiling and marginalization of the likelihood in the global
Top fit was studied, where the importance of theory uncertainties in the Top sector
was shown. The additional implementation of a new tt̄ differential cross section sig-
nificantly improved the constraints on many SMEFT operators.
Finally, a combined fit using data from the Top, Higgs and Di-Boson datasets was
performed using SFitter for the first time. It was shown that one finds stronger con-
straints for operators directly contributing to both Higgs and Top measurements.

Zusammenfassung - Untersuchung verschiedener Ansätze Likelihoods für
globale SMEFT Analysen im Top Sektor zu verwenden:

Während das Standard Model eine Vielzahl verschiedener Experimente ausgezeichnet
gut beschreiben kann, gibt es immer noch viele physikalische Beobachtungen, die es
nicht erklären kann. In dieser Arbeit werden globale SMEFT Analysen durchgeführt,
um Anzeichen neuer Physik einzuschränken. Vor allem die Rolle der Likelihood wird
in diesem Kontext genauer analysiert.
Zum ersten Mal werden Likelihoods, die von ATLAS veröffentlicht wurden, verwendet,
um neue Messung in SFitter zu implementieren. Mit diesen kann bestätigt werden,
dass Näherungen, die in vorherigen globalen SMEFT analysen verwendet wurden,
zu sehr guten Ergebnissen führen. Außerdem wurde der Effekt der Verwendung von
profiling und marginalisierung der Likelihood analysiert. Es wurde gezeigt, dass vor
allem die Theorieunsicherheiten im Top Sektor sehr wichtig sind. Daraufhin wurde ein
neuer differentieler tt̄ Wirkungsquerschnitt in SFitter implementiert, wodurch mehrere
SMEFT Operatoren um einiges stärker eingeschränkt wurden.
Zum Schluss wurde zum ersten Mal ein kombinierter SMEFT fit mit Top, Higgs und
Di-Boson Daten in SFitter durchgeführt. Man findet, dass die Operatoren, die gle-
ichzeitig zu Top und Higgs Messungen beitragen, stärker eingeschränkt werden.
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1
Introduction

It has been more than a decade since the discovery of the Higgs Boson at the Large
Hadron Collider (LHC), the final experimental piece of evidence needed to complete the
Standard Model (SM) [1,2,3]. It took almost 5 decades for this to be achieved after the
proposal of the Higgs mechanism back in 1964 [4,5]. To this day, this marks one of the
greatest discoveries in the field of particle physics. Ever since, more and more data has
been taken at the LHC and the SM has proven to describe observations with impressive
accuracy for a vast amount of different measurements. There are, however, some notable
observations which the SM alone cannot explain.

The experimental discovery of neutrino oscillations [6,7,8], for example, proved that neu-
trinos actually do have a mass, a property which the framework of the SM cannot ac-
commodate. Furthermore, there is the hierarchy problem [9] and the non-vanishing CP
violating phase of QCD [10]. Going to larger, cosmological, scales, one finds oneself
unable to explain Dark Matter [11,12] and the matter anti-matter asymmetry of the uni-
verse [13,14]. Consequently, the SM is far from being able to give a complete picture of
all physics phenomena currently observed.

Although, various theoretical models have been studied to find explanations for all of
these phenomena, conclusive results have yet to be found. In this thesis, a model agnos-
tic Effective Field Theory (EFT) approach is used to determine constraints on physics
beyond the Standard Model. For this purpose, the EFT extension of the SM, the Stan-
dard Model Effective Field Theory (SMEFT), is used. The SMEFT extends the SM via
the addition of higher dimensional operators allowing for the study of new physics, under
the assumption that the scale of these new physics is at energies much higher than those
probed by current experiments. The data from measurements at the LHC is then used to
determine constraints on the so-called Wilson coefficients (WC) which parametrize the
effect of these operators.

Due to the large amount of data produced nowadays, an essential component of any such
analysis is the statistical framework used to perform these fits. The tool of choice for the
following analyses is SFitter, a tool which has been used for a variety of global SMEFT
fits [15,16], with a strong focus on a comprehensive treatment of uncertainties and their
correlations. The central object of any SFitter analysis is the likelihood, which gives a
measure of the agreement between data and theory, incorporating the effect of uncertain-
ties by introducing nuisance parameters (NP). Recently, the SFitter framework has been
updated and different ways of handling these NPs have been implemented, allowing for
statistical analyses using either profiling or Bayesian marginalization methods [16].
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1 Introduction

This thesis will be split into three distinct parts. The first part is concerned with the anal-
ysis of likelihoods published by the ATLAS Top working group [17,18]. Their properties,
the information gained from them and how they can be used to implement new measure-
ments into the SFitter dataset, are studied. Finally, the effect of these new measurements
on the constraints of WCs from a global SMEFT fit in the Top sector, is analyzed.

The second part of the thesis is centered on the new Bayesian marginalization methods
implemented into SFitter in Ref. [16]. An update to a previous global analysis in the
Top sector [15] is provided, using the newly implemented marginalization techniques,
checking whether there are any differences to be found in the constraints coming from
the profiled or marginalized likelihoods. Afterward, the Top dataset from Ref. [15] will
be updated by adding a new high energy distribution of the tt̄ differential cross section
in the leptons+jets channel, by the CMS collaboration [19]. The implementation of this
distribution for two different observables, mtt̄ and pT (th), is studied to assess the influ-
ence that the choice of observable has on the implementation of the measurement and its
constraints on the WCs.

Finally, the thesis will conclude with a combination of datasets from two previous global
analyses using SFitter. The first is the global SMEFT analysis in the Top sector from
Ref. [20] and the second is a global SMEFT analysis using Higgs, Di-Boson and Elec-
troweak precision data from Ref. [16]. It will be the first fit using SFitter combining all
Top, Higgs and Di-boson sectors and allows one to explore the interplay between these.
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2
Standard Model Effective Field

Theory (SMEFT)

This chapter will serve as a quick introduction to Effective Field Theories (EFTs), the
assumptions they are based on, as well as the motivation behind their application to
searches for physics beyond the Standard Model (SM). The majority of the theory is
based on Ref. [21,22] and I refer to these for a more detailed introduction. We begin with
a historical look at EFTs in particle physics and then extend the discussion to applications
of the EFT formalism to searches for physics beyond the SM.

2.1 Effective Field Theories (EFTs)
As already mentioned in the Introduction, there is a multitude of different experimental
observations which our current theoretical framework, the SM, cannot explain. On top
of this, we have now entered an era of particle physics in which one has to look for the
faintest signals for physics beyond the SM in the huge amount of data generated at the
Large Hadron Collider (LHC). To deal with both of these problems, it is necessary to
have a robust and well understood framework which is able to capture these faint signals.

Naturally, this is not the first time that physicists were not able to explain certain physical
phenomena using the established theoretical frameworks of their time. Looking back to
the 20th century, the physics community was puzzled by the beta decay

n→ p+ e− + ν̄e . (2.1)

The observed energy spectra were much wider than those one would expect from a 3-
body decay. This led to the proposition that an additional particle had to be emitted in a
beta decay carrying some energy with it and with that leading to a wider energy spectrum.

Following this, Enrico Fermi formulated a theory to describe this process, proposing a
point-like 4 fermion interaction, which was already able to describe the weak interaction
to an impressive extent for the time. From a modern point of view, however, it is very
well known that the weak interaction is actually mediated by a very heavy W -Boson,
although it would take another 50 years for this particle to actually be directly observed
in experiment at the Super Proton Synchrotron.

To better understand how this approach can be extended to current problems, one can
first take a closer look at the beta decay to find out why exactly Fermis 4-point interaction
led to such good results at the time.

3



2 Standard Model Effective Field Theory (SMEFT)
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Figure 2.1: Left: Feynman diagram for leading order beta decay of a neutron into a
proton. Right: Feynman diagram for µ−-decay via a 4 fermion interaction.

On the left side of Figure 2.1 the Feynman diagram for the beta decay is shown. Applying
the usual Feynman rules, one can easily calculate the matrix element of this process

MSM =
[
ψ̄pγ

µ (1− γ5)ψn

] (gµν − pµpν)

p2 −m2
W

[
ψ̄eγ

ν (1− γ5)ψν̄

]
, (2.2)

where one now makes the key assumption that m2
W � p2 which gives

MSM =
g2

8m2
W

[
ψ̄pγ

µ (1− γ5)ψn

] [
ψeγµ (1− γ5) ψ̄ν̄

]
. (2.3)

Doing this one essentially removes the degree of freedom introduced by the W -Boson
effectively leading to a 4-point vertex as one can see on the right-hand side of Figure 2.1
just like the one proposed by Fermi.

Naturally one can also start with the 4-point interaction which gives

MFermi =
GF√
2

[
ψ̄pγ

µ (1− γ5)ψn

] [
ψeγµ (1− γ5) ψ̄ν̄

]
(2.4)

with Fermi constant GF as it was introduced in the initial theory proposed by Fermi.
Comparing the two expression one finds immediately that

GF√
2
=

g2

8m2
W

(2.5)

a procedure known as matching which already shows nicely why Fermis theory was able
to explain the weak interaction so well.

However, if one were to now simply perform some dimensional analysis using this result,
one finds that

σ(p→ n+ e− + ν̄e) ∝ G2
FE

2
CMS (2.6)

naturally leading to unitarity issues at very large energies. This is a consequence of the
initial assumptions that m2

W � p2 which naturally holds for lower energies, especially
since it is now known that mW = 80.377 GeV [23], but breaks down once one reaches
energy scales close to mW .

This leads to one of the most essential concepts within any EFT framework, the so-called
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2 Standard Model Effective Field Theory (SMEFT)

separation of scales, where one assumes that any kind of new physics takes place at
some energy scale Λ assumed to be much larger than the energies probed in experiments
Λ � E. This allows one to integrate out the heavier degrees of freedom of a theory as
long as this is still valid. In the case of the weak interaction, this scale simply corre-
sponds to mW allowing the W -Boson to be integrated out as shown before. This is why
Fermis description of the weak interaction held up so well at the time, since none of the
experiments reached energies high enough to violate the assumption of a separation of
scales.

2.2 EFT extension of the Standard Model
Before applying EFT concepts to the SM a basic understanding of its most important
properties is necessary and as such a quick summary of them is provided here.
Its most defining properties include its symmetries

SU(3)C × SU(2)L × U(1)Y (2.7)

and its field content, given in the following table.

Field SU(3)C SU(2)L U(1)Y Mass Dimension
QL = UL, DL 3 2 1/6 3/2

UR 3 1 2/3 3/2
DR 3 1 -1/3 3/2

LL = lL, νL 1 2 -1/2 3/2
LR = lR 1 1 -1 3/2
Bµν 1 1 0 2
W I

µν 1 3 0 2
GA

µν 8 1 0 2
φ 1 2 1/2 1

Table 2.1: List of the Standard Model field content and their respective charges.

Here {Ui, Di} are the up- and down-type quarks respectively and the Li the different
leptons with the index denoting their right- or left-handedness. On top of that one has
the gauge fields B,W,G describing the force mediating particles and finally the Higgs
field denoted as φ to give a consistent generation of the particle masses within the model.
The SM Lagrangian is constructed using these fields, the gamma matrices {γµ, γ5} and
the covariant derivative, here defined as

Dµ = ∂µ +
ig′

2
Bµ +

ig

2
σaW

a
µ +

igS
2
λαG

α
µ . (2.8)

One can, however, not simply combine any of these without restrictions. To make sure
that the theory is renormalizable, i.e. only a finite number of counter-terms is required
to absorb any divergences from the theory, only operators up to mass dimension 4 can
be included in the final Lagrangian.
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2 Standard Model Effective Field Theory (SMEFT)

Conceptionally it is now easy to extend the SM via an EFT approach. To do this, one
simply defines the new physics scale Λ and adds higher-dimensional operators to the SM
Lagrangian suppressed by corresponding factors of Λ.

LSMEFT = LSM +
n∑

d=5

C
(d)
i

Λd−4
O

(d)
i . (2.9)

Here the different C(d)
i are the Wilson coefficients (WCs) and the O(d)

i are all operators
of dimension d one can construct from the field content of the theory while still respect-
ing its fundamental symmetries. Naturally, this tower of operators gives rise to a huge
amount of different possible contributions [24] which can’t all be reasonably implemented
within an analysis. Because of this, one needs to restrict the operators considered to those
actually of interest to their specific analysis. Furthermore, the introduction of additional
flavor symmetries helps to reduce their number even further. Finally, one restrict the
analysis to only include operators u to a certain dimension, often chosen to only include
contributions up to dimension six.

While this work is mostly interested in the SMEFT, which reproduces the complete SM
at energies far below Λ, different EFTs can be defined depending on the scales one is
interested in. Working below the weak scale, for example, reduces the symmetry of the
model to a SU(3) × U(1) containing all SM fermions, apart from the top quark, from
which one can define the so-called low-energy effective field theory (LEFT) [25]

LLEFT = LQCD+QED + L(3)

�L
+
∑
d≥5

L
(d)
i O(d)

i (2.10)

with majorana neutrino mass terms L(3)

�L
and higher order LEFT operators O(d)

i . Other
examples of EFTs are chiral perturbation theory [26] used to describe low-energy QCD
mechanics, where the usual perturbative methods break down, based on its observed
chiral symmetry for massless fermions, or Higgs Effective Field Theories [27] which allow
for the study of a more general Higgs sector by dropping the assumption of a SU(2) Higgs
doublet.

Dimension 5 operators

At dimension 5 there is only a single SMEFT operator which can be constructed using
these fields [28]. It is sometimes called the Weinberg operator [29] and defined as

OW = cW
(l̄plp)(φ

†φ)

Λ
. (2.11)

This operator is not only interesting from a physics perspective, since after electroweak
symmetry breaking it leads to a fermionic mass term for neutrinos, but also at a concep-
tual level for EFTs. Looking closer at this operator, one sees that it violates the lepton
flavor symmetry of the SM, although it was previously established that an EFT should
respect the symmetries of its underlying theory. This is where one needs to distinguish
between the fundamental symmetries of a theory and accidental ones.
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2 Standard Model Effective Field Theory (SMEFT)

The fundamental symmetries of the SM are the previously mentioned SU(3)C ×SU(2)L×
U(1)Y , while both lepton and baryon number conservation are only accidental symmetries
and do not necessarily need to hold in an EFT in general. One can still decide to impose
additional restriction via symmetries of this kind, and will do exactly this, neglecting any
dimension 5 contributions in the following.

Dimension 6 operators and beyond

Going from dimension 5 to 6 already increases the amount of possible operators sig-
nificantly to a total of 2499 different possible operators [24]. To make sure that the
total number of operators stays at a reasonable number to perform precise analyses in
a sufficiently fast manner, it is necessary to reduce the allowed operators via additional
constraints. The simplest way of doing so is the introduction of additional symmetry
assumptions or simply the omission of any operator which does not affect the physical
observables one is interested in. The choice of these is highly dependent on the analysis
considered, which is why they will be discussed more in the following section when the
different datasets considered are introduced.

Going even further in the expansion to dimension 7, these operators can once again be
neglected under the constraint that the lepton and baryon symmetry should hold even in
the SMEFT. The inclusion of dimension 8 operators is where more detailed considerations
are required. Due to the very fast-growing number of possible operators, one runs into
the same problems one encountered at dimension 6 already. In this analysis, and many
others, the SMEFT expansion is therefore truncated at dimension 6. This is motivated
by the fact that all higher order contributions are also supressed by higher orders of Λ
from which one naively expects only small contributions compared to those coming from
dimension 6 operators. This does not necessarily have to actually be the case, however,
and there have been several dedicated studies on this [30]. From these studies it was
shown that there are some processes where one expects stronger contributions to come
from dimension 8 operators as well as certain UV scenarious which lead to large dimen-
sion eight terms. None of the measurements included in the datasets used here include
such processes.

Although the SMEFT expansion has now been truncated at dimension 6, more consider-
ation needs to be put into at what level this is performed: at the level of the amplitude
or the observable. Since one needs to compute squared matrix elements to compute the
results at the level of the observable, one receives contributions linear and quadratic in
these operators suppressed by, in the case of dimension six, Λ2 and Λ4 respectively. This
does, however, also lead to additional interference terms between the dimension eight
operators and the SM, giving an expression for the cross section of the form

σ = σSM +
c6
Λ2
σ6 +

c26
Λ4
σ6×6 +

c8
Λ4
σ8 +O(Λ5) . (2.12)

Here the cd are the Wilson coefficients of an operator with dimension d, while σd and
σd×d describe the corresponding linear and quadratic contributions to the cross section,
respectively.
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2 Standard Model Effective Field Theory (SMEFT)

As one can see the linear dimension 8 terms also scale as Λ−4, so one could now ask
whether one should truncate this expansion at the level of the Lagrangian and not at
the level of the observable to allow for contributions from these dimensions 8 operators
interfering with the SM. For SFitter analyses, the SMEFT expansion is truncated at
the level of the Lagrangian, removing any contributions from dimension 8 operators and
above from the observables.

2.2.1 The Top sector
The data used for the following analysis comes from different kinds of measurements of
processes involving the top quark at the LHC. Due to this, it is necessary to understand
how such processes come to be. To illustrate this further one can first consider the main
production channels of a tt̄ pair at the LHC shown in Figure 2.2. On the very left, one
has the production of a tt̄-pair from the annihilation of two quarks, while the other two
show examples for gluon gluon fusion (ggF). Since the LHC operates at very high ener-
gies when colliding protons, top-pair production at the LHC is dominated by gluon-gluon
fusion, making up approximately 90% of the total production rate [23].

As has already been mentioned, it is necessary to introduce additional restrictions on
the SMEFT operators considered, to limit the analysis to a reasonable number of them.
The easiest way to do this is via the introduction of additional symmetries. Following
Ref. [15], an additional U(2)q ×U(2)u×U(2)d flavor symmetry among quarks of the first
and second generation is imposed. To separate the different generations the following
notation is used

qi =
(
uiL, d

i
L

)
ui = uiR, di = diR i = 1, 2 ;

Q = (tL, bL) t = tR, b = bR .
(2.13)

While this additional symmetry is not strictly necessary, it is well motivated by the fact
that the different top quark observables considered cannot distinguish between the dif-
ferent light quarks of the same generation.

With this, the total number of operators one can construct already decreases by a large
amount. The final set of operators included in the global fit is given in Table 2.2 sepa-
rated into three different categories which will be discussed in more detail later.

g

q

q t

t

g

g

g t

t

g t

g t

Figure 2.2: Dominant production channels for tt̄ at the LHC. Left: quark antiquark an-
nihilation, Middle and Right: gluon gluon fusion (ggF).
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2 Standard Model Effective Field Theory (SMEFT)

Operator Definition Operator Definition

O3,8
Qq (Q̄γµT

Aτ IQ)(q̄iγ
µTAτ Iqi) O3,1

Qq (Q̄γµτ
IQ)(q̄iγ

µτ Iqi)

O1,8
Qq (Q̄γµT

AQ)(q̄iγ
µTAqi) O1,1

Qq (Q̄γµQ)(q̄iγ
µqi)

O8
tu (t̄γµT

At)(ūiγ
µTAui) O1

tu (t̄γµt)(ūiγ
µui)

O8
tu (t̄γµT

At)(d̄iγ
µTAdi) O1

tu (t̄γµt)(d̄iγ
µdi)

O8
Qu (Q̄γµTAQ)(ūiγµT

Aui) O1
Qu (Q̄γµQ)(ūiγµui)

O8
Qd (Q̄γµTAQ)(d̄iγµT

Adi) O1
Qd (Q̄γµQ)(d̄iγµdi)

O8
tq (q̄iγ

µTAqi)(t̄γµT
At) O1

tq (q̄iγ
µqi)(t̄γµt)

O3
φQ (φ†i

↔
DI

µφ)(Q̄γ
µτ IQ) O1

φQ (φ†i
↔
Dµφ)(Q̄γ

µQ)

Oφtb (φ̃†iDµφ)(t̄γ
µb) Oφt (φ†i

↔
Dµφ)(t̄γµt)

ObW (Q̄σµνb)τ IφW I
µν OtW (Q̄σµνt)τ I φ̃W I

µν

OtB (Q̄σµνt)φ̃Bµν OtG (Q̄σµνTAt)φ̃GA
µν

Table 2.2: List of dimension 6 operators included in the global Top fit, following [15].
Operators contributing to tt̄ production are shaded in gray.

To fully define the set of operators included in the fit additional relations between top
couplings to gauge bosons were used

C−
φQ = C1

φQ − C3
φQ CtZ = −swCtB + cwCtW

C+
φQ = C1

φQ + C3
φQ CtA = cwCtB + swCtW ,

(2.14)

allowing the degrees of freedom (dof) to be chosen freely, which in this case are chosen to
be C3

φQ, C
−
φQ, CtW and CtZ . This gives the additional benefit that one can choose those

dof that enter into the physical processes. In this case these would be tt̄Z production for
C−

φQ and CtZ , the tbW vertex for CtW and both of these for C3
φQ.

To fully understand the different operators considered in the final global analysis it is
necessary to look at the dataset included in the fit since it only make sense to include
operators which can actually be constrained using the considered data. All the operators
from Table 2.2 contribute to different processes involving the top quark. They are split
into three different categories within the table. The first group can be found in the top
row, listing all four fermion operators with a LL or RR chiral structure, while those in
the second row are the four fermion operators with either LR or RL chiral structure.
The row at the very bottom shows the remaining operators, all of which describe the
interactions of Bosons with heavy quarks. In addition to this, the operators contributing
to tt̄ pair production are shaded in gray since they will be the ones discussed in most de-
tail in the following and will be the most important to understand for the rest of this work.

The effect of the four fermion operators on the production of a tt̄ pair can be easily
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2 Standard Model Effective Field Theory (SMEFT)

understood when one considers the Feynman diagram on the left side of Figure 2.2 for
quark antiquark production. In analogy to the weak beta decay where one replaced the
W -boson as the mediator via an effective four fermion vertex, one can use the exact same
logic to remove the gluon from this diagram and replace it with a four fermion interac-
tion. Clearly any of the four fermion operators now affect this vertex and as such can
lead to visible effects in tt̄ observables. The final operator with significant contributions
to top pair production is OtG. The effect of this operator can be easily seen when con-
sidering any of the Feynman diagrams in Figure 2.2. It induces corrections any vertex
which involves a tt̄g coupling, of which one can find multiple already within the Feynman
diagrams shown here.

From these considerations, anyone familiar with SMEFT operators might be asking why
no corrections to the triple-gluon vertex are considered. It is possible to construct an
additional dimension 6 operator via

OG = fabcG
aν
µ G

bρ
ν G

cµ
ρ (2.15)

which would affect the triple gluon vertex in the Feynman diagram shown in the middle
of Figure 2.2. Since top production at the LHC is dominated by ggF one can expect sig-
nificant contributions to come from any operator affecting the gluon. Previous work on
the constraints of this operator in the context of multi-jet production [31,32] has shown
that the constraints coming from these are much stronger than those one would get from
tt̄ production. Following these results and the recommendation from Ref. [15] any con-
tributions from this coefficient to tt̄ are set to zero.

While this covers all operators contributing to tt̄ production, all other operators need
to be constrained by other measurements. For this purpose the dataset considered does
not only include tt̄ but additional measurements for the production of a tt̄ pair in asso-
ciation with a W - or Z-Boson, both s- and t-channel production of a single top as well
as additional top decay observables and charge asymmetries. Processes describing the
associated production of a W -Boson such as tW are included, but they are not expected
to give better constraints than any of the other measurements in the dataset. On the
other hand, the associated production of a Z via tZ production is expected to have a
sizable sensitivity to O−

φQ and OtZ .

The tt̄W measurements are added to distinguish between different four fermion opera-
tors since just tt̄ production alone cannot tell the different contributions apart and the
additional W -Boson in the initial state only allows for left-handed operators in the ini-
tial state to contribute, giving a probe to differentiate between different four fermion
operators. For similar reasons, the tt̄Z measurements also allow for stronger discrimi-
nation between the four fermion operators while also constraining additional operators
such as O−

φQ,Oφt and OtZ . Continuing with the single top measurements, they are mostly
affected by O3,1

Qq ,O3
φQ,OtW already at leading order and O3,8

Qq ,Oφtb and ObW when addi-
tional quadratic terms are included.

The top decay observables considered in this dataset are the helicity fractions FL, F0 which
describe the decay of the Top via t→ bW . The two observables distinguish between the
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decay into a W -boson with negative (L) or zero (0) helicity, respectively. This gives
additional constraining power to O3,1

Qq ,O3
φQ and especially OtW . They are very sensitive

to OtW and are the reason why the tW measurements are not expected to provide any
better constraints. The final measurements of charge asymmetries within top rapidities
helps to further distinguish the four fermion operators from one another. The exact list
of measurements included in the fit and a more detailed explanation of their impact on
the different WCs can once again be found in Ref. [15].

Kinematically enhanced operators

While the previous section showed how one can find which operators contribute to which
process, their contributions relative to one another have not been discussed. Taking, once
again, top pair production as an example, the different operators considered are the four
fermion operators and OtG. Since the three-point vertices affected by OtG are very dif-
ferent from the four-point vertices of the four fermion operators, they clearly contribute
differently to the cross section. The different contributions from these operators and their
interferences, as well as their kinematic behavior, has been discussed in much detail in
Ref. [15], on which the following brief summary will be based.

The most important properties needed to understand the results of the following analysis
is that OtG mainly contributes to ggF processes, while the sensitivity to four fermion
operators comes from quark antiquark annihilation. As has already been mentioned,
about 90% of top pair production at the LHC is due to ggF making tt̄ much more
sensitive to OtG than the four fermion operators. On the other hand, the contributions
from four-fermion operators is kinematically enhanced, i.e. their contribution grows at
larger energies making the tails of tt̄ sensitive probes of these. In the dataset considered
here, both total and differential cross section measurements for top pair production are
included. From this one can now see that the total cross sections mainly constrain OtG

while the distributions help constrain the four fermion operators. This is especially true
for normalized distributions since in those the contributions from OtG cancel mostly, while
those from the four fermion operators do not due to their kinematic enhancement.

Going global

The previous sections gave a brief summary of the different processes in the Top dataset
considered, as well as their expected effect on the different WCs. Something that has
not been addressed yet, however, is the reason for performing a global fit to all of these
measurements simultaneously. Technically, it is possible to perform fits to only a single
WC, for example. Most new physics model lead to more than just a single new operator,
however, which is why fits such as those are rarely of practical use. Furthermore, fits
to just a single coefficient spoil the basis independence of the fit, since a single opera-
tor in one basis can be expressed by a linear combination of multiple operators in another.

One can also use subsets of the full dataset. For example, one can fit only tt̄ measure-
ments to constrain CtG and the four fermion operators. These operators are, however, not
only constrained by tt̄ measurements alone. Both tt̄Z and tt̄W clearly also constrain all
the same operators that tt̄ does. On top of those, one finds that tt̄W also constrains OtW ,
but it is known that this one is more constrained by the top decay. One can immediately
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see that most of the WCs are constrained not by just a single process.

To get a complete picture of all physics in the Top sector and allow for the interplay of
these processes when constraining all the different WCs a proper global fit is required.
One of the biggest strengths of global fits is that even the measurements that do not
directly affect certain WCs are able to constrain these indirectly through correlations.
Furthermore, it can help improve constraints, since certain processes can constrain WCs
in different ways than other processes. In Ref. [15] it was shown, for example, that the
simultaneous fit of charge-symmetric and charge-assymmetric observables allows one to
study constraints on both vector-like and axial-vector-like top couplings, which is able to
remove flat directions from constraints on certain four fermion operators with different
chiral structures.

The global SMEFT analysis does not need to stop at the level of the Top sector, however.
In Ref. [16] the datasets from Higgs, Di-Boson and electroweak measurements have been
combined to form a larger global SMEFT fit, for example. One of the measurements
included in that Higgs dataset is tt̄H production. Just like for tt̄Z and tt̄Z this process
is also able to constrain the same WCs tt̄ does. Clearly one expects to find correlations
between these measurements, which is why a combination of all of these datasets could
prove interesting.

2.2.2 The Higgs, Di-Boson and electroweak sector
For this reason, the final part of this thesis will be concerned with the analysis of a com-
bined global fit of both the Top dataset from Ref. [15] and the dataset from Ref. [16],
which consists of Higgs and Di-Boson measurements as well as electroweak precision
observables (EWPOs) from the Large Electron-Positron Collider (LEP). With this, the
number of different operators considered increases significantly to account for the large
number of different observables, with a full list of the additional dimension 6 operators
given in Table 2.3. The final additional free parameter that was included in the fits was
the branching ratio (BRin) of the Higgs into invisible final states BRinv. This was done
to allow for the possible Higgs decay into a dark matter agent.

As one can see this nearly doubles the number of operators considered since only a single
operator, OtG, has been considered in the analysis of both of these sectors. Unlike the
operators for the Top sector, these are not given in the Warsaw basis, but are based on
the HISZ basis [33] with slight modifications. This is most easy to see by comparing the
different definitions of OtG which, while similar, differ slightly. This will be important
later, since the proper combination of the two sectors will require both of the sets of
operators to be given in the same basis.

In Figure 2.3 the processes for which one would expect SMEFT contributions from both of
the different sectors are shown. On the left side of this figure, one can see the Feynman
diagram for the production of a Higgs boson, where one clearly see the tt̄g vertices
which can be affected by OtG just like before. Similarly, the production of a tt̄ pair
in association with a Higgs also includes additional gluon-fermion vertices, providing
additional constraints to OtG.
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Operator Definition Operator Definition
OGG φ†φGA

µνG
A,µν OWW φ†ŴµνŴ

µνφ

OBB φ†B̂µνB̂
µνφ OBW φ†B̂µνŴ

µνφ

OB (Dµφ)
†B̂µν(Dνφ) OW (Dµφ)

†Ŵ µν(Dνφ)

O3W Tr(ŴµνŴ
νρŴ µ

ρ )

Oφ1 (Dµφ)
†φφ†(Dνφ) Oφ2

1
2
∂µ(φ†φ)∂µ(φ

†φ)

Oeφ,22 (φ†φ)l̄2φe2 Oeφ,33 (φ†φ)l̄3φe3

Odφ,33 (φ†φ)q̄3φd3 Ouφ,33 (φ†φ)q̄3φ̃u3

O4L (l̄1γµl2)(l̄2γ
µl1) O

(1)
φe (φ†i

↔
Dµφ)(ēiγ

µej)δ
ij

O
(1)
φd (φ†i

↔
Dµφ)(d̄iγ

µdj)δ
ij O

(1)
φu (φ†i

↔
Dµφ)(ūiγ

µuj)δ
ij

O
(1)
φQ (φ†i

↔
Dµφ)(q̄iγ

µqj)δ
ij O

(3)
φQ (φ†i

↔
DI

µφ)(q̄iγ
µτ Iqj)δ

ij

OtG igs(Q̄3σ
µνTAuR,3)φ̃G

A
µν

Table 2.3: List of dimension 6 operators included in the global Higgs, Di-Boson and
EWPO fit, following Ref. [16].

Since OtG is already very strongly constrained by the Top fit, its effect was implemented
into the global fit in Ref. [16] by implementing a prior for OtG which follows the profile
likelihood of OtG from the full global Top fit from Ref. [15]. Since both datasets will be
combined later, this prior can be removed and the cross-talk of OtG within the Higgs and
Top sectors can be examined. How this combination was carried out and what additional
assumptions had to be made will be discussed fully in Chapter 5.

H
H

t

t̄

Figure 2.3: Feynman diagrams for processes which can affect both operators in the Top
sector and those from the Higgs. Left: Higgs production via gluon-gluon
fusion (ggF) Right: tt̄H production.
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3
Likelihoods and SFitter

SFitter is a tool developed for statistical analyses, constructing likelihoods with a subse-
quent comprehensive treatment of its uncertainties using both profiling and marginaliza-
tion methods. It has been used for a variety of different analyses, such as SMEFT analyses
of Higgs and electroweak diboson measurements [34,35] and SMEFT analyses in the top
sector [15]. This chapter begins with a quick introduction to the most essential statistical
concepts needed to understand the following analyses. After that, the construction of
the likelihood within SFitter, its main assumptions and the different frameworks used for
either profiling or marginalization, are discussed. The final section of this chapter deals
with likelihoods separate from those used in SFitter, shifting the focus to likelihoods
published by the ATLAS group at CERN.

3.1 Statistics and Likelihoods
Prior to any discussion of SFitter and its inner workings, one first needs an understanding
of the basics of a statistical analysis, especially in the context of high energy physics at
the LHC. The following discussion will be mostly based on Ref. [36,37,38] and provide
definitions for the concepts and terminology required to fully understand the following
interpretation and implementation of experimental data.

The Likelihood
Consider an experiment which provides us with a result x. Repeating this experiment
multiple times will give more and more different results, from which one can then con-
struct a function f(x) which assigns a probability to each of the results x one has obtained.
Naturally, this needs to fulfill

1 =

∫
dx f(x) (3.1)

and be positive for all allowed values of x. This object is what will be referred to as the
probability density function (PDF) from now on. Furthermore, one finds that usually
this function is dependent on some parameters α describing the theory considered, i.e.
f(x|α) read as ’f of x given α’.

In the context of the following analysis, these PDFs can be e.g. the result of an ex-
periment at the LHC which counts signals meeting a certain selection criterion. Each
criterion defines what is called a channel at the LHC where one measures an observable
xC . For now only a single channel will be considered and the additional index suppressed.
It will be reintroduced later when the generalization to multiple channels is performed.
In such an experiment there is naturally not just a single event but a large amount of
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different events xi which one can combine into a large dataset D = {x1, ..., xN}. Just like
for the case of a single event, one can then assign a probability to this dataset P (D|α),
ignoring for now the exact form this expression takes. With this, an object expressing the
probability to obtain a certain dataset D for a given theory described by the previously
mentioned model parameters α, has been constructed.

The final goal of this thesis is to look for physics not described by the current theory. Due
to this one is interested not in the probability that the dataset agrees with the current
theory, but the probability that the theory agrees with experiment for a fixed dataset D.
To do so one defines the likelihood, the central object of this analysis

L(α) = L(α|D) = P (D|α) . (3.2)

It gives a measure for the agreement of the model parameters α for a fixed dataset D.
Here it is important to realize that the likelihood is, in fact, not a probability density.
As such it is not normalized to unity, i.e.∫

dα L(α) 6= 1 . (3.3)

Since the likelihood is the foundation of this entire analysis, its proper construction is
essential. This is one of the main jobs of SFitter, discussed in detail in Section 3.2, where
one finds that there are two well established methods to work with these likelihoods.

At the start of this chapter, PDFs were defined as the result of a large number of experi-
ments. This is considered to be a frequentist way of interpreting PDFs, since these assign
probabilities according to the relative frequency of their occurence. Another way to look
at these probabilities is the Bayesian approach, derived from Bayes theorem

P (α|D) =
L(α)π(α)
P (D)

(3.4)

which relates the probability density P (α|D), called the posterior, to the likelihood L(α).
In this case, however, there is an additional probability π(α), known as the prior, incor-
porating our knowledge of the model parameters α prior to the experiment. The term
P (D) is usually called the evidence and ensures that the posterior is normalized. For
the purposes of this work it can be neglected, since the normalization does not affect the
maxima of a function.

From a Bayesian perspective, these probabilities describe a degree of belief in a certain
event, which allows one to assign probabilities to even those events with no consistent
frequentist interpretation. Based on these two perspectives on statistics there are different
ways of obtaining constraints from the likelihood. Neither of the two is conceptionally
wrong, one just needs to make sure to properly interpret the results depending on the
framework one chooses. What exactly is meant by these constraints and how SFitter is
used to obtain them from the likelihood will be discussed in the following.
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3.2 Likelihood construction and Nuisance Parameters
All measurements at the LHC essentially count the number of events in a certain channel.
Due to this, each measurement can be interpreted as an individual counting experiment
modeled by a Poisson distribution

Pois(d|p) = Pois(d|p(αn, θi, b)) , (3.5)

with measured and expected number of events d and p, respectively. Here p is a function
of the different model parameters αn, the background b and the nuisance parameters
(NP) θi.

Independent of the different statistical approaches following later, the exclusive likelihoods
can be constructed via

Lexcl = Pois(d|p(αn, θi, b))Pois(bCR|b k)
∏
i

C(θi, σi) . (3.6)

It is made up of the product of the Poisson contributions coming from the measurements
of both data d and background b. The first Poisson contribution gives the likelihood for
the measured data d as a function of its expected value p(αn, θi, b). The second Poisson
contributions constrains the background b, taking into account the process of determining
the background in a control region bCR via dedicated measurements and its subsequent
interpolation into the signal region using an interpolation factor k.

On top of this one needs to add additional constraints on the NPs via C(θi, σi). One
can easily recognize that from a Bayesian perspective, these are simply the priors for the
different NPs in our likelihood. In the frequentist sense, they would represent additional
constraints coming from some kind of auxiliary measurement. These constraints C(θ, σ)
are different depending on the type of uncertainty considered. The three different kinds
of uncertainties implemented in SFitter are:

1) Systematic uncertainties
The systematic uncertainties considered in SFitter usually consist of uncertainties on val-
ues such as e.g. the luminosity or jet related uncertainties coming from the jet energy
resolution and scale. These are usually determined via dedicated measurements consisting
of a large number of events to allow for an accurate determination of these uncertainties.

As a consequence of this large number of events, one expects these parameters to follow
a Gaussian distribution due to the central limit theorem. This is exactly why they are
modeled as such using

L(µ, σ|x) = N (x|µ, σ) = 1√
2πσ

exp
(
−(x− µ)2

2σ2

)
. (3.7)

In the end this is still an assumption, however, and they could technically follow a differ-
ent distribution. The validity of this approximation will be studied in more detail later
when discussing likelihoods published by ATLAS in Section 3.3.
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2) Statistical uncertainties
These describe the intrinsic statistical uncertainty of a measurement which is naturally
described by a simple Poisson distribution,

L(ν|n) = Pois(n|ν) = νne−ν

n!
, ν > 0 . (3.8)

although for a very large number of events they can also be described by a Gaussian as
a consequence of the central limit theorem.

3) Theory uncertainties
And finally for theory uncertainties one has flat constraints,

L(µ, σ|x) = F(x|µ, σ) = 1

2σ
Θ [x− (µ− σ)] Θ [(µ+ σ)− x] . (3.9)

The reasoning behind this can be easily understood by taking the scale uncertainty as
an example. These uncertainties are usually determined by calculating the number of
expected events at varied scales µ. Using these, one can define an interval of width 2σth
in which one expects the true value to lie, although there is no reason for any of the
different values to be more likely than any other. On top of this, it is also known that
the true value is somewhere close to the central value, and it would be unreasonable for
theory errors to allow for any value too far from this central value. Due to this, there
needs to be some value at which the PDF for the theory uncertainty drops to 0.

Using the same logic for other theory uncertainties, one finds that a uniform distribution
following Equation 3.9 allows exactly for such a behavior. Whether this is a reasonable
assumption or not will also be discussed later when studying the differences between
marginalization and profiling methods.

Profiling the likelihood
With this, it was shown how the exclusive likelihood is constructed on a surface level.
The next thing to do now is to remove the different NPs θi since they are not physically
interesting and this is where the two approaches start to differ. The traditional way
SFitter dealt with these was via profiling methods which simply set the NPs to their
best-fit values, i.e. those which maximize the likelihood

Lprof(α) = max
θ

Lexcl(α, θ) . (3.10)

Although conceptionally easy to write down, the actual application to the exclusive like-
lihood defined in Equation 3.6 requires much more involved calculations. The following
is a brief summary of the most essential components of the profiled likelihood in SFitter,
mostly based on Ref. [39,40] where a more detailed look at the likelihood profiling and
its application can be found.

If the exclusive likelihood had been made up of just a single type of distribution the pro-
filing would, while not necessarily trivial, be rather straightforward. Taking for example
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the product of two gaussians with respective variances σ1 and σ2 one has

Lprof ∝ max
θ
e−θ2/(2σ2

1)e−(d−θ)2/(2σ2
2) (3.11)

= e−d2/(2σ2) (3.12)

where σ2 = σ2
1 + σ2

2. One can see that the result is once again a Gaussian, with the
variance as the quadratic sum of the individual ones.
For theory uncertainties one gets

Lprof = max
θ

Θ[θ − (p− σ1)]Θ[(p+ σ1)− θ]Θ[d− (θ − σ2)]Θ[(θ + σ2)− d] (3.13)

= max
θ∈[p−σ1,p+σ1]

Θ[d− (θ − σ2)]Θ[(θ + σ2)− d] (3.14)

= Θ[d− p+ σ1 + σ2]Θ[−d+ p+ σ1 + σ2] . (3.15)

Once again the final result has the same form as the input, although this time one can see
that the uncertainties are actually added linearly as opposed to the quadratic Gaussian
errors.

In the previous section it was shown that the exclusive likelihood is a product of a certain
number of Poisson, Gaussian and flat distributions. Naturally one can also combine both
a flat and Gaussian distribution with the same width σ

Lprof = max
θ

Θ(p+ σtheo − θ)Θ(θ − p− σtheo)e
−(d−θ)2/(2σ2) (3.16)

which, after taking the logarithm, gives

√
−2Lprof =


(p+ σtheo − d)/(

√
2σsyst) d < p− σtheo

1 d ∈ [p− σtheo, p+ σtheo]

(p− σtheo − d)/(
√
2σsyst) d > p+ σtheo .

(3.17)

Unfortunately the combination of a Poisson distribution with a Gaussian one is not trivial
and one needs to either compute it numerically or approximate it via

1

logL =
1

logLPoiss
+

1

logLGauss
(3.18)

≈ 1

logLPoiss,d
+

1

logLPoiss,b
+

1

logLGauss
(3.19)

which once again is a heuristic formula motivated by the Gaussian case where this ap-
proximation becomes exact. The Poisson likelihood is given by

logLPoiss = max
b̃

[
(d− s̃− b̃)log(s̃+ b̃) + (b− b̃)log(b̃) + log

(
(s̃+ b̃)!

d!

b̃!

b!

)]
(3.20)

where d = s+b and s, b describe the number of events measured for signal and background
respectively and those variables with a tilde describe the number of the corresponding
expected number of events. In the second line the Poisson likelihood is split into sep-
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arate contributions from background and data, since computing this expression for the
likelihood would be numerically inefficient

logLPoiss,d =

[
(d− (s̃+ b))log(s̃+ b) + log

(
(s̃+ b)!

d!

)]
, (3.21)

logLPoiss,b =

[
(b− (d− s̃))log(d− s̃) + log

(
(d− s̃)!

b!

)]
. (3.22)

For large amounts of data the Poisson distributions can be approximated as a Gaussian
and one finds that Equation 3.18 becomes exact.

One final concept needed to understand the frequentist framework is the concept of a test
statistic, which on its most general level is defined as any function t : T (D) → R that
maps the data to a single real number. One very common choice for the test statistic is
based on the profile likelihood, following Ref. [41], the most important being the likelihood
ratio,

t =
L(H1|D)

L(H0|D)
=

L(µ, ˆ̂θ)
L(µ̂, θ̂)

(3.23)

where the numerator describes the likelihood with maximized parameters ˆ̂θ for the spe-
cific given value of µ, while the denominator gives the global maximum likelihood with
the most likely parameters θ̂ for the most likely value µ̂.

The choice of this test statistic is motivated by the Neyman-Pearson lemma [42] which
states that, in the absence of nuisance parameters, the likelihood ratio is the most powerful
test statistic i.e. it has the lowest probability to accept the null hypothesis when the
alternate is true. One usually considers the so call negative log likelihood (NLL) defined
as

tNLL = −2 logL(µ,
ˆ̂θ)

L(µ̂, θ̂)
≡ χ2 . (3.24)

There is a couple of reasons for this. First of all, it helps with the numerical analysis
since the products in the likelihood turn into simple sums after taking the logarithm,
furthermore it is easier to find the minima of the NLL rather than maximize the likelihood.
Finally, according to Wilks theorem [41,43] this distribution follows a χ2 distribution for
large enough statistics, which will make it easier to define a confidence interval later in
Section 3.2. For this reason, the NLL will be defined to be a generalized χ2 from here
on, which will be made use of later.

Marginalizing the likelihood
Although the majority of studies using SFitter have been performed via profiling meth-
ods, its first analysis using marginalization techniques has been published in Ref. [16].
The following will be a brief introduction to the computation of the marginalized likeli-
hood within SFitter, mostly based on said paper.

Beginning, once again, from the exact same exclusive likelihood one can now eliminate the
NPs by marginalizing over them i.e. they are integrated out instead of simply being set
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to one specific best-fit value. As a result of this, one now needs to compute convolutions
of different products of distributions. In the case of two Gaussian one finds that, just like
in the profiling case, their convolution once again results in another Gaussian with its
variance as the quadratic sum of the individual variances. In this case the profiling and
marginalization agree, but this will change significantly when non-Gaussian distributions
are considered.

To allow for a direct comparison, one can look at the exact same combinations as in the
profiling case. Considering the product of two uniform distributions, one finds

Lmarg =

∫
dθ 1

4σ1σ2
Θ [θ − (p− σ1)] Θ [(p+ σ1)− θ] Θ [d− (θ − σ2)] Θ [(θ + σ2)− d]

=

∫ p+σ1

p−σ1

dθ 1

2σ2
Θ [(d− θ) + σ2] Θ [σ2 − (d− θ)]

=
1

4σ1σ2


d− p+ σ1 + σ2 for p− σ1 − σ2 < d < p− σ1 + σ2

2σ2 for p− σ1 + σ2 < d < p+ σ1 − σ2

−d+ p+ σ1 + σ2 for p+ σ1 − σ2 < d < p+ σ1 + σ2

0 otherwise

in case that σ1 > σ2, although the expression for the opposite can be derived by just ex-
changing σ1 with σ2. Once again one finds that the uncertainties add linearly for theory
uncertainties just like in the profiled case.

Continuing with the combination of multiple distributions, one finds for the convolution
of a uniform and Gaussian

Lmarg =
1

2σtheo

∫
dθ exp

[
−(d− θ)2

2σ2
syst

]
Θ[θ − (p− σtheo)]Θ[(p+ σtheo)− θ] (3.25)

=
1

4σtheo

[
erf
(
p+ σtheo − d√

2σsyst

)
− erf

(
p− σtheo − d√

2σsyst

)]
(3.26)

where one simply adjusts the borders of the integral according to the uniform distribution
and makes use of the following expression for the error function

erf(x) = 2√
π

∫ x

0

dt e−t2 . (3.27)

Comparing this to Equation 3.16 one can see that the expression look very different,
making a direct comparison difficult. Because of this, the results for both the profiling
and marginalization treatment are shown in Figure 3.1, taken directly from Ref. [16].

Looking at the left plot of Figure 3.1 one can see the behavior of the likelihood after
either marginalization (blue) or profiling (green). Since the profiled results follow the
so-called RFit prescription [44] they are labeled as such here. One finds that they are
both maximal and flat in the ranges of the flat uncertainties and drop at larger values
for the data. The main difference between the two methods is how rapidly this happens.
In the profiling case, this is simply described by a Gaussian for values larger than the
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Figure 3.1: Profiled and marginalized likelihoods from the convolution of a Gaussian with
either one (left) or three (right) theory uncertainties, taken from Ref. [16].

theory uncertainties, while the marginalized results drop to 0 much more rapidly due to
the behavior of the error function. This result can be generalized to more than a single
flat uncertainty, with the corresponding expression given in the Appendix. The behavior
of this more general expression has already been studied in Ref. [16] with the most im-
portant results shown in Figure 3.1.

The right plot now shows the effect that a larger number of theory uncertainties has on
the final distribution after performing the convolution. For the easy visualization of the
differences the Gaussian one would obtain from adding the half-widths in quadrature,
has also been plotted. In the left plot, one can still clearly see differences between the
Gaussian and the final marginalized result, while the plot on the right shows that both
the Gaussian and marginalized distribution agree very well. This can be understood as a
consequence of the central limit theorem, which ensures that the distribution converges
to a Gaussian with each further convolution. From this, one can already see clearly that
a small number of theory uncertainties already suffices to get very Gaussian results.

The most general form of the likelihood after integrating out the background can be
written as

Lmarg =

∫
dθtot P(d|s, θtot, b, k)

×
∫ ∏

j

dθtheo,j F0,σj
(θtheo,j)

∫ ∏
idθsyst,i

N (θsyst,i|0, σi) ,
(3.28)

where the function P(d|s+θtot, bSR, k) in the first line is described by the Poisson-Gamma
model, which results from the convolution of the two Poisson contributions from Equa-
tion 3.6. The analytic expression for this function can be found in the Appendix. To
perform the marginalization on the second line of Equation 3.28 one makes use of the
results for the convolutions of Gaussian and flat distributions from the previous section.
The differences between marginalization and profiling will be studied further in Chapter 5,
when the results from the global fit are discussed.
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Generalization to multiple measurements
Ultimately one wants the likelihood to be generalized to multiple channels which can be
easily achieved by multiplying the corresponding likelihood for each channel

Lexcl,full =
∏
c

Pois(dc|pc)Pois(bCRc |bc kc)
∏
i

C(θi,c, σi,c) . (3.29)

This does require the channels to be statistically independent which is usually the case
and as such one does not need to worry too much about this, although one should still
always keep that in mind. Another point one now needs to take into account is that since
more than just a single channel is considered, it is also necessary to decide on the treat-
ment of correlations between systematic and theory uncertainties of these measurements.

As has already been discussed thoroughly, there are systematic, statistical and theory
uncertainties in SFitter which do not only differ in their respective choice of distribu-
tion, but also in the way they are correlated. In the case of systematic uncertainties,
it is easy to see that one should expect the same type of uncertainty to be correlated
between measurements, since constraints of the NPs used to describe them are usually
based on the same secondary measurements. Since there are no values for these kinds
of correlations provided by the experiments though, an assumption has to be made by
picking a certain value for these. Within SFitter this leads to fully correlated systematic
uncertainties between measurements of the same experiment, encoded in the covariance
matrices. Here, it is important to note that the luminosity is correlated not just between
measurements but also experiments, since it is the same for all experiments at the LHC.

Because of these correlations between the different systematics, the Gaussian constraints
are replaced with the product of one Gaussian for each channel with the correspond-
ing covariance matrix encoding the correlations between these uncertainties. Due to the
marginalization, the expression for the systematics simplifies to a single N-dimensional
Gaussian with the total covariance matrix as the sum of the individual covariance matri-
ces, i.e.

N (θsyst,i|0, σi) −→ N (~θsyst,i|~0,Σi) .

Due to the statistical independence of the different measurements the statistical uncer-
tainties are assumed to be uncorrelated while the same usually applies to theory uncer-
tainties as well. The constraints on theory and statistical uncertainties can easily be
generalized by taking the product over each of the different channels by using

Pois(d|p)Pois(bCR|b k) −→
∏
c

Pois(dc|pc)Pois(bCRc |bc kc) ,

F(θtheo,j|0, σj) −→
∏
c

F(θtheo,cj|~0, σcj) .

In the case of theory uncertainties, some consideration on implementing correlations have
been made, which will be discussed further in Section 4.1.
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Concerning correlations
The next step is to incorporate these correlations into the previously constructed likeli-
hood. In the following, two different methods to do this will be discussed. The first one
is applicable to both the profiled and marginalized likelihood, while the second one can
only be applied to the latter.

For the more general treatment, SFitter makes use of the fact that any such correlation
can be written in terms of the correlation matrix with 1 in its diagonal entries and

Cij =

∑
syst σi,systσj,syst · ρi,j,syst

σi,expσj,exp
with σ2

i,exp =
∑
syst

σ2
i,syst +

∑
pois

σ2
i,pois . (3.30)

in the off-diagonals for channels i, j. This correlation matrix encodes the correlations of
different uncertainties within SFitter. This way all systematic uncertainties in the same
groups given in Table 8.2 can be correlated by picking an arbitrary value for ρi,j. In
SFitter the assumption is made that all these systematics are fully correlated between
measurements in the same experiment, to be more specific ρi,j = 0.99 is chosen, to ensure
the invertibility of the final correlation matrix.

To construct the final likelihood from this, including both uncertainties and correlations,
one uses the definition of the generalized likelihood from Equation 3.24 from which one
can compute the χ2 including all correlations via

χ2 = ~χTC−1~χ . (3.31)

Laplace method
While the previous treatment of correlations can be applied in the exact same manner
for the profiled and marginalized likelihoods, the following describes a different treatment
making use of the marginalization. Denoting any one of the analytic expressions derived
in the previous section as B, the result after integrating out all NPs but those describing
the systematic uncertainties is

Lmarg =

∫ ∏
i

dNθsyst,i
∏
c

B(dc|bCR,c, sc +
∑
i

θsyst,ci)
∏
i

N (~θsyst,i|~0,Σ~θsyst,i
) (3.32)

=

∫
dNθsyst,tot

∏
c

B(dc|bCR,c, sc + θsyst,tot,c)N (~θsyst,tot|~0,Σ~θsyst,tot
) (3.33)

where in the second line one makes use of the fact that the convolution of a multivariate
Gaussian is once again another multivariate with θsyst,tot =

∑
i θsyst,i and Σtot =

∑
iΣi.

The multivariate Gaussian is parameterized by the covariance matrix Σi with off-diagonal
entries describing the correlations between the different uncertainties.

Since Equation 3.32 describes very high dimensional integrals, it requires specialized
techniques to efficiently compute these numerically. In the following, one makes use of
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the Laplace method. To do this consider the following integral∫
dnxelogf(x) ≈

∫
dnxexp

(
logf(x0) +B(x− x0)−

1

2
Fij(x0)(x− x0)i(x− x0)j

)
(3.34)

where
B =

∂

∂x
logf(x0) and Fij(x0) = − ∂2

∂xi∂xj
log(x0) . (3.35)

Here the linear term is kept for now, although one would expect it to disappear at the
maximum x0, for reasons discussed later.

This is a Gaussian integral and one can simply write the solution as∫
dnx f(x) ≈ f(x0)exp

(
1

2
BT (x0)F

−1(x0)B(x0)

)√
(2π)n

det F (x0)
. (3.36)

Applying this to Equation 3.32 one gets

Lmarg =
∏
c

B(dc|BCR,c, sc + θmax,c)N (~θmax|~0,Σsyst,tot)exp
(
1

2
BTF−1B

)√
(2π)n

det F (~θmax)
.

It now remains to compute

~θmax = max
θ

∏
c

B(dc|BCR,c, sc + θc)N (~θ|~0,Σmax)

≈
(
1+ Σ−1

syst,totΣexp
)−1
(
~d−~bSR − ~s

)
.

(3.37)

where Σexp = diag(σexp) with σexp from Equation 3.30. Here, only an approximate result
is given, although it becomes exact in the Gaussian case.

This is the reason why it was not possible to neglect the linear contribution in Equa-
tion 3.34 since this would require the position of the maximum to be known exactly.
Using Equation 3.37 one can compute B(~θmax) and F (~θmax) using Equation 3.35. With
this, the full correlations can be included in the likelihood using the Laplace method.

Determining the limits
One can now consider the case in which, after taking care of the NPs and performing a fit,
one has a higher-dimensional likelihood which now only depends on the WCs C1, ..., Cx.
To determine the frequentist confidence intervals or bayesian credible intervals, it is now
first necessary to reduce this likelihood to be just a function of the single WC one is
currently interested in.

This is where once again the different approaches used previously lead to different ways
to determine the constraints from the likelihood. Beginning, once again, with the method
used in most of the previous SFitter analysis using profiling methods one simply sets the
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values of the WC one is currently not interested in to those which maximize the likelihood

L(C) = max
Cx

Lexcl(C,Cx) . (3.38)

Since the proper construction of confidence intervals from these is far from trivial, dif-
ferent methods to do so exist, such as the one proposed by Feldman and Cousins [45].
This is, however, very complicated and inefficient, which is why one usually makes use
of the previously mentioned property that for a large enough set of data the NLL from
Equation 3.24 follows a χ2 distribution.

Now the confidence intervals can easily be determined since the method to extract differ-
ent confidence intervals from such a distribution is very well known and one simply needs
to find its intersections with specific values of χ2 depending on the number of degrees
of freedom. For a single dof one finds that the 95% confidence interval can be found at
χ2 = 3.841. This means that for this value of χ2, the p-value, i.e. the probability for the
value of the parameter to lie outside this range, reaches p = 0.05. Similarly, one finds the
corresponding 68% intervals for χ2 = 0.989.

A different approach can be used when the marginalization treatment is applied. Just
like for the nuisance parameters one can now integrate all remaining WCs out, i.e.

L(C) =
∫

dCx Lexcl(C,Cx) . (3.39)

From the marginalized likelihood the posterior can easily be computed using Bayes theo-
rem. The definition of the different credible intervals is then rather straightforward. One
simply needs to find the point of maximum posterior and integrates around it until the
value of the integral corresponds to 68% or 95% of the total integral to get the σ and 2σ
intervals, respectively.

Markov Chain Monte Carlo
From the previous section, one has now defined a procedure to extract constraints from
either the profiled or marginalized likelihoods. As such, it is easy to see that for the
determination of precise constraints on the values of the WCs, a precise description of
the likelihood is required. In Section 2.2.1 the number of different operators one tries to
constrain with a single fit was listed. From this one can see that the likelihoods consid-
ered usually have around 20 dimensions and one needs to find a sufficiently efficient and
accurate method to map these.

The high dimensionality of the likelihood makes regular Monte Carlo methods not suited
to our needs. Due to this, we make use of Markov Chain Monte Carlo methods which
are based on the concept of a Markov process. The essential property defining such a
process is that for all events Xt,

f(Xt = i|X1 = x1, X2 = x2, ..., Xt−1 = xt−1) = f(Xt = i|Xt−1 = xt−1) , (3.40)

i.e. every subsequent event is only dependent on the previous one. To make the connection
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to this analysis, one can consider L(d|αi), which describes an initial point of the likelihood.
One now proposes a new point αi+1 at which one can then once again compute the
likelihood L(d|αi+1). This point is chosen via a proposal function g(αi+1|αi), which
naturally needs to satisfy the Markov property from Equation 3.40. The Metropolis
algorithm states that for a symmetric proposal g the new point αi+1 is accepted with
probability [46]

p = min

{
1,

L(d|αi+1)

L(d|αi)

}
. (3.41)

If the point is accepted, one repeats this process using a new proposal now centered
around the newly accepted point αi+1 replacing every instance of αi with it. Otherwise,
the point is rejected and one repeats the process with a new proposed point around αi.

One can see that the Metropolis algorithm is highly dependent on the choice of the pro-
posal distribution and one can show that so is the speed of convergence. It can, however,
be shown that independent of the choice of proposal, this procedure converges to the
same target distribution. Due to this, a suitable choice of the proposal function, while
not necessarily required for proper convergence, is the deciding factor when it comes to
speed and efficiency of the algorithm.

One can usually see whether the chosen proposal is a good one by checking the final
acceptance rate for different proposals. If one finds that the acceptance rate is very high,
i.e. almost all points are accepted, this simply means that almost every newly proposed
point has a similar likelihood value to the previous. Considering the nature of the algo-
rithm, this suggests that every newly proposed point is too close to the initial one. On
the other hand, very low acceptance rates also do not lead to great results. This is easy to
see since once the majority of new points are rejected one hardly moves from the current
point or, in the worst case, gets stuck completely. Both of these issues can usually be
fixed by varying the variance of the given proposal distribution. In the following analyses
a Gaussian is used as the proposal function, although a choice of a Breit-Wigner is also
possible, where the variance is adjusted such that the final acceptance rate in the fits is
around 30% to 50%.

A different issue arises from the fact that the point at which one of these Markov chains
is initialized can technically be arbitrarily far from the actual likelihood region one is
interested in and it can take many steps for the chain to reach the region one actually
wants to map. Since these points are very likely to describe the likelihood badly, the
usual approach is to start a Markov chain, give it a certain number of steps to initialize
and discards these points before continuing on with the rest of the chain. Naturally, one
does not want this to be too long since it would lead to an unnecessarily longer fit. In
SFitter this ’burn-in’ phase makes up 10% of the total length of the final Markov chain
after the points are discarded.

3.3 Published likelihoods
After the previous section provided a thorough explanation of likelihoods within the con-
text of SFitter, the following will deal with likelihoods from a different perspective. For
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years, the publication of full likelihoods as the main object for a proper interpretation of
experimental results has been requested [47,48], since they provide the full mathematical
description of the analysis. This led to further efforts in this regard, with the ATLAS
collaboration providing the likelihoods for a non-insignificant number of their analyses.

The following section will be dedicated entirely to the analysis of two of these likelihoods,
published by the ATLAS Top working group [17,18]. First, the HistFactory format they
are published in will be discussed, following Ref. [49,50], after which the general tools to
extract the most vital information from them are introduced. The final implementation
of the corresponding measurements into the SFitter framework will be discussed further
in Chapter 5.

The HistFactory format
To allow for a unified approach to the analysis of these likelihoods, it is necessary to have
all of them be constructed based on the same basic template. The HistFactory format
is exactly one such template which constructs, in its most general form, PDFs of the
following form

L(ncb, aχ|η, χ) =
∏

c∈channels

∏
b∈bins

Pois(ncb|νcb(η, χ))
∏
χ∈~χ

Cχ(aχ|χ) . (3.42)

Once again, similar to the likelihood within SFitter, one finds that the likelihood is simply
the product of Poisson distributions where ncb and νcb are the measured and expected
number of events in bin b of channel c, respectively. Then there are the unconstrained
parameters of interest (POI) which are denoted as η and additional parameters χ con-
strained by the terms Cχ(aχ|χ) where aχ describes the auxiliary data constraining these.

Initially these likelihoods have only been implemented into the ROOT framework us-
ing input files in the XML format to construct them. The following, however, will be
based on a purely python based implementation of these likelihoods via a module called
pyhf [51,52]. It allows for easy construction of the likelihood based on a simple input
file in the ubiquitous JSON format, giving easily readable models for both human and
machine while also easily parsable using any programming language of choice due to its
use in a large range of different fields.

To construct the likelihood from the input given in the JSON file one needs to calculate
the event rates via

νcb =
∑

s∈samples

(∏
κ∈~κ

κscb

)ν0scb + ∑
∆∈~∆

∆scb

 (3.43)

where one has the nominal event rate νcb and the different multiplicative ~κ and additive
modifiers ~∆ considered in the likelihood. These modifiers correspond to the previously
introduced parameters χ and are used to describe the effect of uncertainties affecting the
measured event rate νcb. The type of modifier and the constraints on its corresponding
NP depends on the type of uncertainty considered, with the most common ones given
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Description Modification Constraint Term c
Luminosity (’lumi’) κscb = λ N (l = λ0|λ, σλ)

Normalization unc. (’normsys’) κscb = gp(α|κscb,α=±1) N (a = 0|α, σ = 1)
Correlated Shape (’histosys’) ∆scb = fp(α|∆scb,α=±1) N (a = 0|α, σ = 1)

MC Stat. (’staterror’) κscb = γb
∏

bN (aγb = 1|γb, δb)
Uncorrelated Shape (’shapesys’) κscb = γb

∏
b Pois(σ−2

b |σ−2
b γb)

Normalization (’normfactor’) κscb = µb

Table 3.1: List of different modifiers considered in the construction of the HistFactory
likelihoods, adapted with slight modifications from Ref. [50]

in Table 3.1. Here the index c denotes the different channels, describing disjoint binned
distributions, s the samples, describing the physics process, and b the different bins.

The most common such NP is the uncertainty on the luminosity, since it affects any mea-
surement taken at the LHC and leads to a simple rescaling of the number of events, as can
be seen in the table. Much more interesting are the NPs describing normalization uncer-
tainties and correlated shape uncertainties, since they are the most common types found
in the likelihoods and the implementation of their contributions is not nearly as trivial.
Both of them are constrained by a Gaussian which can, once again, be understood as the
results of a secondary measurement, which, with high enough statistics, approach a Gaus-
sian. The actual modification of these modifiers is denoted here as κscb = gp(α|κscb,α=±1)
and ∆scb = fp(α|∆scb,α=±1) for normalization uncertainties and correlated shape uncer-
tainties, respectively. Taking the normalization uncertainties as an example, for now, it
is necessary to know that the only values given in the JSON file to fully describe the
likelihood are κscb,α=±1. This means that the effect of these NPs is only given for two
specific values α = ±1, providing gp(α|κscb,α=±1) in the JSON file and gp(α = 0) = 1 i.e.
one recovers the nominal prediction at α = 0.

The function gp(α) describes the different interpolation strategies which allow one to
calculate the values of κscb for any value of α. There are multiple choices for this interpo-
lation, discussed in much detail in Ref. [49], using a piecewise exponential interpolation
for normalization uncertainties or piecewise linear interpolation in the case of correlated
shape uncertainties i.e. fp. All the other modifiers are simple multiplicative corrections
for each bin, where, once again for a more detailed discussion we refer to Ref. [49].

Using the values for these modifiers and the nominal rates νcb provided in the published
likelihoods, one can then perform fits to experimental data. For this, a fit, using the
profiling methods introduced in the previous section, can be performed to obtain the
best fit value and uncertainties of the POI. In the case of these published likelihoods
these correspond to the signal strength of the considered process which can be used to
compute the cross section of this process.

Analyzing published likelihoods
Now that the general structure of these likelihoods has been established, the next step
is to perform the actual analysis. As previously mentioned, this analysis is mostly con-
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Figure 3.2: Comparison of pulls and impact of individual NPs on the tt̄ signal strength.

cerned with two different likelihoods. The first one describes the measurements of the
total cross section for tt̄ production at 13 TeV in the leptons + jets channel [17], while
the second one describes the measurement of the cross section of tt̄ production with an
associated Z-Boson [18].

The first thing one can now do is check the validity of the provided likelihoods by repro-
ducing some of the final results given directly in the papers. The most common results
shown which one can reproduce are the so-called pull plots which show the best-fit points
of each NP, i.e. the value at which they maximize the likelihood, and their pulls, which
are defined as

pull = θ̂ − θ0
∆θ

. (3.44)

Here, the hatted variables describe the previously mentioned best-fit values and θ0 the
respective values before the fit. Finally, they are normalized to their respective pre-fit
uncertainties ∆θ. Figure 3.2 shows the results for the tt̄ likelihood while those for tt̄Z
are given in the Appendix, since both practically work the exact same way. In addition
to the pulls, it also displays the impact of different NPs on the POI, which in this case
is the tt̄ cross section. It can be determined by fixing the considered NP to its best-
fit value θ̂, shifted by its prefit (postfit) uncertainties ±θ(±θ̂). They are ordered with
decreasing post-fit impact and only the 10 most significant NPs are shown here, since
both likelihoods have NPs numbering around 100 to 200.

As one can see, both results agree very well for both the pulls and their impact on the
total cross section with only some barely visible insignificant differences. The plots were
created by performing a profile likelihood fit via pyhf using the minuit optimization al-
gorithm [53].

The visualization was done using code based on another python package called cabi-
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Figure 3.3: Profiled likelihoods for different individual NPs. Shown are examples for of a
NP well described by a Gaussian (left) and a NP behaving unlike a Gaussian
(right).

netry [54], another python package making use of the HistFactory likelihoods by inter-
facing with pyhf. Beside the visualization of these pull plots, cabinetry also allows for
the easy analysis of the likelihood when varying a NP, allowing for an easy check of the
shape of the likelihood for only considering this one NP. Once again, there are more than
a hundred different NPs one could consider, which is why the NPs in Figure 3.3 only
show the two most extreme cases for illustrative purposes.

On the left of Figure 3.3 one can see the behavior of the likelihood when varying one
of the NPs used to determine the uncertainties from parton density functions1 while the
plot on the right shows the behavior for one of the NPs describing the W -jet normal-
ization. One can see the very Gaussian behavior in the plot on the left, while the right
plot clearly shows deviations from the Gaussian approximation, especially for negative
values of the NP. To see why any of this is of interest to us, one needs to go back to one
of the basic assumptions SFitter makes when constructing a likelihood. In Equation 3.7
the prior assumption was made that all systematic uncertainties in the likelihood can
be described using Gaussian constraints2. Important to note now is that almost all the
different NPs included in the likelihood exhibit a Gaussian behavior similar to the NP
on the left side of Figure 3.3 while only a handful are actually non-Gaussian at all, and
even if they are, the differences are very minor. These very small non-gaussianities of
the individual NPs already shows that the Gaussian approximation used for systematic
uncertainties in SFitter is well justified.

The final aspect of the likelihood discussed here is correlations. As has already been
made clear in the previous sections, the comprehensive analysis using correlations is one
of the key aspects of the SFitter likelihood. One of the advantages of using minuit for
the optimization is that it does not only provide the bestfit values and uncertainties but
also correlations between the different NPs. Since there are too many different NPs to
display the entire correlation matrix reasonably, Figure 3.4 shows only those NPs where

1Often also abbreviated as ’PDF’, this will not be done in this text, however, to prevent confusion with
probability densities.

2Or priors in the Bayesian case, if you will.
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at least one correlation is greater than 0.4. One finds that out of the total 178 nuisance
parameters, only 12 show correlations stronger than 0.4, most of which are either uncer-
tainties coming from the different modeling choices or are related to jets. If one were to
decrease the minimal correlation in Figure 3.4 from 0.4 to 0.3 one finds that the number
of NPs with correlations at least as strong as those more than double from 12 to 28.
Interesting is that even now, the majority of highly correlated NPs are still almost only
model and jet related. The only other strong correlations one finds apart from these is an
anti-correlation between the measured tt̄ cross-section and the luminosity of about −0.35.

There is, however, the caveat that minuit uses the inverse of the Hessian matrix to deter-
mine the uncertainties of the different NPs and can only return symmetric uncertainties.
If one wants more precise and possibly asymmetric uncertainties one needs to use the
MINOS algorithm since it also takes non linearities into account. How exactly these like-
lihoods are used in the final fit and how the uncertainties are extracted from them will
be discussed in much greater detail in Chapter 5, when both measurements are added to
the dataset and their effect on the constraints of different WCs are studied.
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Figure 3.4: Correlations of different NPs with at least one correlation greater than 0.4
reproduced using pyhf using the likelihood of the tt̄ production measurement
published by ATLAS in Ref. [17].
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4
Updating the dataset

With the methods to construct the likelihood covered in theory, the next step now is the
actual implementation of a new measurement into SFitter. The following chapter will be
split into two parts. First, the implementation of the experimental data and the corre-
sponding uncertainties will be explained and the methods to compute the corresponding
theoretical prediction are shown. The measurement considered here is the tt̄ differential
cross section measurement at 13 TeV in the leptons + jets channel with an integrated
luminosity of 137 fb−1 by the CMS collaboration at the LHC [19].
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Figure 4.1: Left: Previously implemented measurement of the differential tt̄ cross section
taken directly from Ref. [55]. Right: Newly implemented measurement which
replaces the one shown on the left, taken directly from Ref. [19].

Looking at all the data provided in Ref. [19] one finds that there are many different
observables from which one can choose. For the purpose of this analysis, two different
differential cross sections were chosen to be implemented, analyzed and compared to see
which one will eventually be added into the final dataset.
The first is the differential cross section measurement as a function of the invariant mass
mtt̄ of the tt̄-pair, shown on the right of Figure 4.1. There are two main reasons for this
choice. Firstly, this measurement is an update to a previously implemented measurement
in the dataset, shown on the left of Figure 4.1, of a tt̄ cross section measurement in the
lepton+jets channel with an integrated luminosity of 2.3 fb−1 [55]. Choosing the exact
same observable as before makes a direct comparison of the two much easier. Another
reason is that one usually finds the predictions for the invariant mass to be easier to
calculate, as one will see later in Chapter 5 when the implementation of the second ob-
servable, pT , is discussed.
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To be more specific, the second observable of choice is the transverse momentum pT (th)
of the hadronically decaying top quark. This is, just like it was for mtt̄, motivated by a
previous measurement implemented into SFitter. Similar to before, this was a measure-
ment of the tt̄ cross section in the lepton+jets channel but this time with an integrated
luminosity of 35.8 fb−1 [56]. Because of this, it is essential to take the independence
of these measurements into consideration. Clearly, one only wants to implement inde-
pendent measurements into the dataset, since this is necessary for the proper likelihood
construction. In the case of these two old measurements from Ref. [55] and Ref. [56]
both were taken in two different data taking periods, making the two independent of one
another. However, this is not the case anymore once the most recent measurements from
Ref. [19] are included, as these measurements come from data taken over the entire Run
II of the LHC. Regardless of which observable is chosen to be implemented into SFitter
in the end, both of these two measurements will have to be removed from the dataset to
ensure a fully independent dataset.

To understand what kind of improvement one expects from updating the dataset, one
can take the mtt̄ distribution as an example. There are two main differences that one can
already easily see when comparing the two plots shown here. First, the increase from an
integrated luminosity of 2.3 fb−1 to one of 137 fb−1 gives much better statistics, reducing
the statistical uncertainties by a significant amount. Similarly, the systematic uncertain-
ties of the experiment have also improved significantly, most easily seen in the ratios of
data and prediction. Here, the old measurement clearly shows that systematic uncertain-
ties contribute significantly for almost all bins while the updated one is clearly statistics
dominated, except for the very first low energy bins. Another key difference is the binning
and kinematic ranges covered by these measurements. The previous measurement only
included a total of eight different bins going up to energies of mtt̄ = 2000GeV while the
updated measurement almost doubles the number of bins with a total of 15 while also
increasing the covered energy range up to mtt̄ = 3500GeV. This higher reach in energies
is one of the main reasons for updating these measurements since, as was discussed back
in Section 2, the four fermion operators are enhanced at higher energies. For this reason,
higher energy bins are much more sensitive to these contributions and are crucial when
it comes to constraining these four fermion operators.

Also important to note is that the new measurements and the previous ones are both
implemented using their normalized distributions. Figure 4.1 shows the actual newly
implemented data on the right side, although the data on the left only shows the not yet
normalized data points, since no additional figures were provided for these in Ref. [55].
There are a few reasons to use these normalized distributions, with the simplest one being
the reduction of systematic uncertainties. The best example to understand this is the
uncertainty on the luminosity, since it always affects all measurements at the LHC in
the same way. Because of this the effect of the luminosity on both the measured value
in each bin and the total cross section they are normalized with cancel after taking the
ratio. In a very similar way, this can also lead to the cancellation of higher order SMEFT
contributions if they do not exhibit any kinematic behavior.

This is, for example, the case for CtG in tt̄ measurements, like the ones considered here,
which is why the constraints on CtG are not expected to improve significantly when only

33
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normalized distributions are considered. Especially since the Top dataset also includes
measurements of the total tt̄ cross section, which will constrain CtG separately.

The following will give a detailed step-by-step guide on how to implement a new mea-
surement into SFitter, taking the invariant mass distribution as an example. Starting
with the implementation of the measured data and then moving on to the simulation of
theory predictions.

4.1 Experimental data
The extraction of the experimental data is made easy since the data of all the different
measurements is available on the corresponding HEPData entry, making this step trivial.
The total systematic and statistical uncertainties for each bin one can easily find in the
HEPdata tables for each of the different observables provided. For SFitter the total sys-
tematics are not enough, however, since the correlation of different systematics is one of
the core characteristics of its likelihood construction. Because of this, it is now necessary
to take a more detailed look at the systematics. Typically, these are provided in the form
of tables for each analysis, with the table for the analysis currently being implemented
shown in Table 4.2.

Source Uncertainty
[pb] [%]

Jet energy 11 1.38
Branching fraction 8.8 1.11
Lepton 7.8 0.98
NNLO 7.6 0.96
b tagging 7.0 0.88
Sim. event count 6.5 0.82
Background 6.1 0.77
CR model 5.5 0.69
Jet energy resolution 3.4 0.43
Scales µR, µF 3.2 0.41
Initial-state PS scale 3.2 0.40
Final-state PS scale 2.7 0.34
Subjet energy 2.4 0.31
b mistagging 2.2 0.28
UE tune 2.2 0.27
mt 2.1 0.26
PDF 1.9 0.25
hdamp 1.5 0.19
L1 trigger 0.5 0.07
Pileup 0.4 0.05
Total syst. 21 2.66
Total stat. 0.6 0.07
Int. luminosity 14 1.75

Uncertainty group Impact [%]

Theory uncertaintes
TopMass 0.26

UnderlyingEvent 0.27
PDF 0.25
Scales 0.41

Statistical uncertainties
MC 0.82
stat 0.07

Systematic uncertainties
Jets 1.48

bTagging 0.92
PSscale 0.53

Background 0.77
Leptons 0.98

Figure 4.2: Left: List of systematic uncertainties for the CMS tt̄ measurement, taken
directly from Table 1 in Ref. [19]. Right: Groups of uncertainties, for this
measurement, implemented into SFitter.
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The provided systematic uncertainties on the left side of the table already give a compre-
hensive breakdown of the different uncertainties into a number of smaller categories. The
actual number of systematics implemented in the final fit is reduced even further, since
only the normalized measurement is implemented. The actual list of systematics imple-
mented is shown in the second table in Figure 4.2 where the different uncertainties in
a group, such as Jets, combines all jet related uncertainties by adding them in quadrature.

With this the systematic uncertainties on the total cross section have been found and in
the case of a rate measurement one would now be able to implement this into SFitter. For
distributions, such as this one, one final extra step is required. To properly account for
the uncertainties, one needs to assign each of these to every bin separately. To do this,
the same procedure used for the other previously implemented measurements is used.
For this one simply takes the total systematic uncertainty for each bin, provided in the
HEPdata tables, and distributes these according to the relative contributions

ωb =
∆tot,b√∑

j ∆j∆j

(4.1)

where ∆tot,b is the total systematic uncertainty in the respective bin and ∆j the individual
systematics from the previous table.

DataPrep
The final step necessary before the implementation of the experimental data is complete
is to ensure that the correct systematic uncertainties are correlated with one another.
Important to note is that SFitter is set up in such a way that any measurement is written
in the following way

Measurement_namei = σmeas,i ±∆syst,i ±∆stat,i ±∆hat,i ,

listing the different uncertainties of the measurement after the measured value. Essential
to this is now that the order of the different uncertainties is very important, since only
those uncertainties in the exact same position in the data card are correlated in the final
likelihood.

To allow for an easy creation of inputs such as these, a specialized tool called DataPrep,
was developed for Ref. [15] which ensures the proper ordering of any such uncertainties
independent of the initial inputs. This allows for a more flexible and easily generalizable
input of the different uncertainties. In addition to this, it also provides a way to corre-
late the theoretical uncertainties of measurements describing the exact same process, i.e.
those which measure the same observable of the same process and at the same energy.
For the dataset from Ref. [15] the measurements averaged were, for example, the tt̄ total
cross section measurements from both ATLAS and CMS measured in multiple different
channels such as lepton+jets or e+ µ.

It averages measurements of processes in such a way that the more constraining mea-
surements are weighted more strongly. After averaging multiple measurements, one is
left with only a single datapoint one implements into SFitter. This only requires a single
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theory prediction and due to this all theory uncertainties are correlated for these mea-
surements. Since none of the newly implemented measurements are weighted in such a
way, this will not be explained in great detail here.

In the case of the implementation of a top measurement similar to those already included
in the dataset, this did not require any changes to the code and it could be used as is.
There have, however, been some slight modifications made to allow it to handle inputs
of Higgs measurements on their own, or even both Higgs and Top data at the same time.
This will be more important later for the combined fit of multiple different datasets in
Section 5.3.

4.2 Predictions from Theory
To compute the likelihood using newly implemented data, it is now necessary to gener-
ate the theoretical predictions for this process. If one were to implement the data as it
has been measured by the detector, this would require one to simulate the physics pro-
cess using an event generator such as MadGraph5_aMC@NLO [57,58] and perform
the showering of the resulting particles using additional software such as Pythia [59]
or Herwig [60]. Finally, these generated showers would be measured using a detector
which, as one would expect, is not a perfect tool and as such can only resolve events up
to a certain resolution. This introduces a smearing into the final measured data, which
one would simulate using dedicated frameworks such as Delphes [61].

Going through this whole chain does not only require the use of multiple different pieces
of software, which does not only increase the amount of time required to generate pre-
dictions significantly but can also introduce additional uncertainties since e.g. the choice
of showering algorithm can lead to different results. The good news is that all the data
from Ref. [19] has been unfolded and given on the parton level. This means that all
detector and showering effects have been removed from the measured data to give only
information on the hard scattering process at parton level. Due to this, only the very first
step of this chain is actually required when implementing these measurements, making
this process notably more straightforward. In the following there will first be a basic
overview of MadGraphs most important features, mostly following Ref. [62], to gain an
understanding of how the cross section of different SM processes are computed.

Event simulation
As has already been mentioned, MadGraph relies on the generation of matrix elements
to compute cross sections, decay widths or generate events. These can either be directly
used for an analysis, or showering algorithms such as Pythia or Herwig can be applied
to continue the detector simulation chain. This process of matrix element generation can
be summed up in a few steps. After defining a process, such as, for example, in this
case the production of a tt̄-pair from a proton-proton collision, MadGraph generates
all possible allowed Feynman diagram for this process. After all allowed diagrams are
generated, it uses the ALOHA [63] library to compute the corresponding helicity wave
functions for the different parts of the diagrams, in the end returning the full amplitude
for each diagram. Taking the sum over all the different amplitudes and squaring the
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result finally gives the matrix element for the entire process.

The formula to go from these matrix elements to the cross sections is conceptionally
simple,

σ ∝
∫

dΦ(n) |M|2 (4.2)

where one can immediately see that it is necessary to integrate the matrix elements over
the entire phase space Φ. This is far from trivial, and large amounts of work and care
has been put into the development of efficient and accurate algorithms to perform this
task. The general idea is to employ Monte Carlo techniques to numerically compute these
integrals.

For this thesis, the most important step of the computation of any process using Mad-
Graph, is the generation of all allowed Feynman diagrams for the given process. All
the information necessary for MadGraph to decide which Feynman diagrams are valid
are encoded within the model used. These models are given in the Universal FeynRules
Output (UFO) format [64,65]. Any model can be defined by their particle content, a few
parameters such as their masses and coupling and finally the interactions between these
particles. FeynRules uses these inputs to construct the corresponding Lagrangian, from
which the different vertices and propagators are determined.

One such UFO model is SMEFTatNLO [66], implementing a long list of different dimen-
sion six SMEFT operators into MadGraph by extending the SM and makes it possible
to compute SMEFT prediction up to NLO. The model mostly focuses on interactions
involving a top quark and imposes a U(2)q×U(2)u×U(3)d flavor symmetry, very similar
to the one imposed on the Top dataset in Section 2. More details on this model and its
uses can be found in Ref. [66]. For the purpose of this study, it is only important to know
that all the operators given in Table 2.2 are implemented in this model, which means
that the contributions of all SMEFT operators affecting the tt̄ production cross section
can be determined using just this model.

Standard Model predictions
Before one can concern themselves with any higher order corrections to the SM prediction,
it is first necessary to ensure that the SM itself can already be determined to sufficiently
high accuracy. This can be easily validated using the data provided in Ref. [19] since these
also give the ratio of data and prediction for different event generators for all different
observables.

The predictions were computed using MadGraph5_aMC@NLO (v.3.5.0), simulating
the process up to next-to-leading order (NLO) accuracy. Unlike the predictions given in
the paper, however, no additional showering algorithms such as Pythia were used. The
choice of renormalization µR and factorization scale µF follows Ref. [19] and is chosen to
be half of the sum of the transverse masses of the top and anti-top

µR = µF =
1

2
(mT (t) +mT (t̄)) . (4.3)
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Figure 4.3: Comparison of the measured data from Ref. [19] (orange) and the values
reproduced using the MadGraph event generator (blue). The corresponding
ratio of prediction and data is shown in the lower plot, with the orange band
describing the total uncertainty for the data.

To stay consistent with the parton density functions used in the previously implemented
measurements the NNPDF3.1 NLO set was used at first [67]. This lead to inconsistent
contributions from SMEFT operators in the tails of the distributions, where NNPDF3.1
has been shown to have issues with positivity. Because of this, the final predictions used
the more recent NNPDF4.0 NNLO set of parton distribution functions, where these
problems have been fixed [68].

Figure 4.3 shows both the data extracted directly from the paper and the corresponding
SM prediction from MadGraph, with the ratio of these given directly below. The error
bands in the lower plot depict the sum of statistical and systematic uncertainties provided
by the experiment, while those for the predicitons come solely from MadGraph. Clearly
they show very good agreement for bins 2 through 13 showing mostly minor deviations
very similar to the deviations between data and theory in the paper [19]. On the other
hand, the prediction in the first bin slightly underestimates the cross section compared to
the data. Taking the uncertainties into account these differences are not too significant
and one can see that compared to the comparison of data and theory in the paper, the
deviations show a very similar pattern. Similarly, one finds that the last two bins seem to
overestimate the cross section compared to the measured data, especially for the second
to last bin. This does, however, once again agree with the results from Ref. [19].

Going to next-to-next-to-leading order (NNLO)
All previous calculations were performed using MadGraph_aMC@NLO which, as the
name suggests, allows for the computation of predictions up to NLO accuracy. To account
for the most precise measurements at the LHC, however, higher accuracy results of at least
NNLO are necessary to gain predictions of sufficient accuracy. Previously implemented
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measurements in Ref. [15] made use of fastNLO tables [69] to compute these so-called
k-factors used to go from NLO to NNLO predictions and are simply defined as the ratio

k =
σNNLO

σNLO

. (4.4)

For this analysis a recently published API called HighTea [70] is used to compute the
NNLO level predictions for tt̄ production for both mtt̄ and pT (th). HighTea provides a
way to compute NNLO level predictions by making use of precomputed events stored
in an online database, allowing for an easy and fast computation of these predictions
without the needs of time intensive event generation.

After computing these NNLO prediction they are normalized to the total cross section
of σtt̄ = 832 pb, following again Ref. [19]. The results from this are used to calculate
the k-factors for each bin which are subsequently implemented into SFitter to give the
NNLO level predictions. These k-factors apply to the NLO SM predictions previously
computed, meaning that the NNLO accuracy only holds for the SM prediction while the
SMEFT contributions are calculated to NLO in QCD.

Additional theory uncertainties
While most of the uncertainties implemented into SFitter come directly from the exper-
imental papers, there are a few uncertainties from the predictions computed here that
need to be taken into account. All of these come from certain choices which have to
be made before computing the predictions. They include the choice of renormalization
and factorization scale, the parton density functions used, as well as the choice of event
generator in general.

The way the scale uncertainties are currently determined is by varying the scales µR, µF

by a factor of 2 in both directions which gives a maximal and minimal value for the
cross section from which the uncertainty can easily be extracted as the width between
these two values. In SFitter the scale uncertainty on the SM prediction is included as an
overall theory uncertainty on the observable, which means that the scale uncertainty can
easily be determined by computing the SM predictions in Figure 4.3 at different scales.
MadGraph makes this easy since this computation at different scales has already been
implemented and automated, which allows the easy determination of these uncertainties
by simply telling it the different scales one wants to consider.

In a very similar way, the choice of the parton distribution functions used has an effect
on the predictions. For the prediction calculated here, the NNPDF40_nnlo_as_0118 PDF
set with αS = 0.118 is used. The uncertainties coming from these can, very similar to the
scale uncertainty, be easily obtained using the functions built into MadGraph which
computes the predictions for the 100 different members of the pdf set.

Finally, there are the uncertainties coming from the choice of the event generators used.
For all predictions used in SFitter only MadGraph is used, while one can see from Fig-
ure 4.1 that the theory predictions provided by the different events generators Powheg,
MadGraph and Matrix all give results that differ slightly. One could now determine
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these uncertainties by reproducing the exact same predictions using the other event gen-
erators. To save the time of doing this, the information provided by CMS in Figure 4.1
will be used to estimate the effect of the different generators on the predictions. To get
a conservative uncertainty estimate from these, the envelope of the uncertainties is used
as a final theory uncertainty in SFitter. All of these uncertainties are added as theory
uncertainties on top of those already implemented in Section 4.1.

SMEFT operator contributions
The process to determine the contributions of different operators to the cross section is
technically quite similar to the SM, where the main difference comes from the underly-
ing model used. Using the SMEFTatNLO UFO model, one can tell MadGraph which
operators should be considered while generating a process. This replaces the rules for
the construction of legal Feynman diagrams in the first step, such that all legal Feynman
diagrams involving the considered operators are also generated. To determine the exact
contributions from the WCs one sets the one currently considered to a specific value and
performs the exact same computation as in the SM case. Similarly, this gives a result for
the cross section which one can compare to those from the SM to determine the contribu-
tion of this WC at its current value. Repeating this process multiple times for different
values of the WC, one can plot the contributions to the cross sections as a function of
the value of that WC.

In Chapter 2 it was decided that only SMEFT contributions up to dimension six at the
level of the Lagrangian will be included in the predictions. This means the SMEFT
predictions using multiple different WCs Ci can be written as

σSMEFT = σSM +
Ci

Λ2
σlin,i +

C2
i

Λ4
σquad,i +

CiCj

Λ4
σInterf,ij . (4.5)

Neglecting the interference terms σInterf,ij for now, the following section will be dedicated
completely to the linear and quadratic contributions.
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Figure 4.5: Quadratic (left) and linear (right) SMEFT contributions of C11
Qq to the first

bin of the mtt̄ distribution, shown in Figure 4.4 as a function of C11
Qq.

To implement these into SFitter, the MadGraph analysis was set up in such a way such
that the SM, linear SMEFT and quadratic SMEFT contributions are separated and put
into different histograms. As an example, the plots for the contributions from C11

Qq to tt̄
production is shown in Figure 4.4 for several values of C11

Qq. The plot on the left shows
the quadratic contributions from the operator, while the one on the right shows the linear
ones. To validate the linear and quadratic behavior of these contributions the plots in
Figure 4.4 show the contributions from the C11

Qq operator to the tt̄ cross section, this time
showing the behavior of its contributions in a single bin for different values of C11

Qq. Both
plots very clearly confirm the quadratic and linear behavior of the contributions.

The predictions for the cross section including both linear and quadratic SMEFT contri-
butions are implemented in SFitter in such a way that the cross section in each bin can
be easily computed using the following expression

σSMEFT =
[
1 + κ1,dC + κ2,dC

2
]
σSM (4.6)

where the coefficients κ1,d and κ2,d are simply the σlin and σquad from Equation 4.5, re-
spectively, divided by their SM prediction σSM. These coefficients are extracted via fits
of the corresponding polynomial to the SMEFT contributions shown in Figure 4.5 after
normalizing them to their SM predictions.

With this, the SMEFT contributions to have been determined, the final step now is
to properly take the normalization into account. From Equation 4.6 the contributions
to each bin are known and the subsequent normalization is easily performed by simply
dividing each bin by the total cross section. The total cross section is calculated by
taking the sum over the contributions of each bin, meaning that the total cross section
also depends on the higher order SMEFT contributions. Because of this, the extraction of
linear and quadratic terms from these is not trivial and requires a simple approximation.
Assume for now that, for ease of notation, there is only a single WC contributing which
will be denoted as C. From Equation 4.6 the normalized cross section for a bin can be
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written as

σnorm,SMEFT =
σ

σtot
=

[1 + κ1,dC + κ2,dC
2]

[1 + κ1,tC + κ2,tC2]
σnorm,SM (4.7)

≈
[
1 + κ1,dC + κ2,dC

2
] [

1− κ1,tC + (κ21,t − κ2,t)C
2
]
σnorm,SM (4.8)

where in the second line a Taylor expansion of the denominator was used since the
contributions coming from the SMEFT operators are expected to be small. By ordering
this in powers of C one finds

σnorm

σnorm,SM
≈ 1 + (κ1,d − κ1,t)C +

[
κ21,t − κ2,t + κ2,d − κ1,dκ1,t

]
C2 +O(C3) (4.9)

≡ 1 + anorm,bC + cnorm,bC
2 +O(C3) . (4.10)

This defines the linear anorm and quadratic cnorm contributions to the normalized cross
section as functions of the coefficients κ1,d and κ2,d which were already extracted from
the polynomial fits shown in Figure 4.5. The only additional information required are
the linear and quadratic contributions to the total cross section κ1,t, κ2,t which can be
determined just as easily as the contributions to the individuals bins by performing a fit
using the total cross section and not for individual bins.

SMEFT interference
Equation 4.6 already showed that there are additional interference terms between the
differnt dimension six SMEFT operators that contribute to our observables. This means
that besides the linear and quadratic contributions from the previous section, there are
a lot of additional interference terms which would need to be determined to completely
determine the predictions. To do this one used, once again, the SMEFTatNLO UFO
model, but this time, instead of only setting a single operator to be different from zero,
the two operators one wants to interfere are activated simultaneously. One of the two
WCs is set to a fixed value different from zero and, after doing so, one follows the exact
same steps as described in the previous section to determine the SMEFT contributions.

Previously, it was explained that MadGraph separates the linear SMEFT contribution
from the quadratic ones. To be more specific, it separates contributions which scale differ-
ently with Λ. Because of this, the linear contributions which scale with Λ−2 are separated
from the quadratic ones which scale with Λ−4. Now that interference terms are included
in MadGraph the same will happen for the interference terms. From Equation 4.6 we
know, however, that these interference terms also scale with Λ−4 which is why Mad-
Graph cannot separate the quadratic SMEFT contributions from those coming from
the interference terms. This means that to properly extract the contributions coming
from the interference terms, it is necessary to remove the quadratic contributions coming
from the individual operators first. Fortunately, these have been computed already in
the previous section, which means that one can simply remove their effect by subtracting
them. After doing this, one is left with only contributions from the interference, with
two examples of this shown in Figure 4.6.

In the left plot of Figure 4.6 the contributions from the interference between C11
Qq and C31

Qq
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Qd

(right) for tt̄ production. For both, the WC not being varied is fixed to 1.

is shown as an example. One can see very clearly the linear behavior of the contributions
from interference, which is what one expects since one of the two WCs contributing to
this interference is fixed and only the other one varies. The interference between C11

Qq

and C31
Qq was chosen as an example here since these contributions are very clear and be-

cause of this the following steps of extracting them via a linear fit is straightforward. A
problem arises when considering some of the other interference terms, however. To get
a better understanding of this, the exact same procedure is repeated, for instance, for
C1

td and C1
Qd. Comparing the results for this, shown on the right of Figure 4.6, one of

the major issues with intereference terms becomes apparent. Although the contributions
coming from interference are large enough compared to their uncertainties in the first
bins, contributions to the tails are so small that a proper extraction of them is almost
impossible.

Numerous attempts were made to reduce the noise in these interference terms. The first
one was to request a higher accuracy from MadGraph of up to 0.01%, unfortunately
this lead to computation times of approximately three days. On top of that, this also did
not improve results significantly either, with the plot on the right side of Figure 4.6 al-
ready showing the results from such a high accuracy computation. The problem we found
here is that as mentioned previously, the interference terms are computed simultaneously
with the quadratic contributions from the individual operators. Since these quadratic
contributions are clearly dominant compared to the interferences, MadGraph will focus
on minimizing the uncertainty of these first. Due to this it takes a very long time to
increase the accuracy of these interference terms and even then there was no guarantee
that it would ever improve enough to properly extract the interferences.

After this, the value of the fixed WC coefficient was optimized in such a way that the
contributions from interference is maximized compared to the quadratric ones. This was
done by analyzing the relative contributions of the individual WC using the data of just
the linear and quadratic contributions alone. Still, the interferences were too noisy to
extract proper contribution from these. For this reason, it was decided that in the interest
of time all following analyses involving the newly implemented measurement, will neglect
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Figure 4.7: Left: Differential cross section as a function of the transverse momentum
of the hadronically decaying top, as given in Ref. [19]. Right: Reproduced
predictions using MadGraph compared to the data given on the left.

contributions from interference terms.

Implementing the pT (th) distribution
The procedure to implement the pT (th) distribution, which for convenience will also be
referred to as the pT distribution, is completely analogous to that of the mtt̄ distribution,
meaning that all the previous discussions also apply to it. Starting again with the SM
predictions, they are first compared to data in Figure 4.7.

Looking at the data provided in Ref. [19], one can already see that the predictions ob-
tained from the different monte carlo generators already show much larger differences
compared to mtt in Figure 4.3. The 11th bin in particular shows a significant deviation
from data for the MadGraph predictions, which are naturally the values of interest
here, since the same generator is used for the SFitter predictions. There is, however,
also an increased statistical uncertainty in this range as well, as such the generators are
still consistent with one another and with the data within uncertainties. Comparing this
with the reproduced results on the right of Figure 4.3 one finds that they show deviations
similar to those in Ref. [19]. For both one finds that there is an underfluctuation in the
first bin and the 11th bin shows again stronger deviations compared to the others. Taking
the uncertainty on the data, shown as an orange band here again, into account they do
still agree with the measurement very well.

Just like in the previous implementation of mtt̄ these predictions are only computed up
to NLO accuracy since this is the limit of MadGraph . Once again, the k-factors used
to go from NLO to NNLO are computed using the HighTea library. The determination
of SMEFT contribution is also completely analogous to mtt̄ which is why this will not be
repeated here. The interferences were just as noisy for this distribution still, which again
means that they will be neglected for all fits involving this measurement as well.
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Results

Now that the theoretical and technical foundation of this work are set, we can begin
looking at the applications of these concepts, as well as analyze and discuss the results.
This chapter is split into 3 different parts. First, the implementation of 2 different
published likelihoods by ATLAS are discussed, including how they were implemented and
how it changes our fit. After this, the differences between marginalization and profiling
methods are analyzed using only data in the Top sector. Finally, a combined fit using
the dataset from both the previous Top fit and the Higgs, Di-Boson and EWPO dataset
is performed.

5.1 Implementation of published likelihoods
In Section 3.3 the general properties and information one can gain from the likelihoods
published by ATLAS [17,18] has been studied. In the following, the use of these likeli-
hoods in the context of a SFitter analysis will be examined. To this end, a comparison
between the traditional implementation methods of SFitter with the new one using these
likelihoods is made. Since these are updated measurements of the total cross sections
for both tt̄ and tt̄Z, no additional theory predictions have to be computed, since those
previously implemented into SFitter can be used again. The same applies to theory un-
certainties coming from these simulations, simply using the same uncertainties coming
from the choice of scale, parton densities and MC statistics from before.

Profiling published likelihoods
The traditional way of implementing the data from a new measurement into SFitter
has already been discussed in detail in Section 4.1. Because of this, the main focus of
this section will be on the values and results extracted from the published likelihoods.
Extracting the measured cross sections follows essentially the same procedure for both
implementation methods since regardless of whether one considers the full likelihood or
just the measured data with systematics and statistical uncertainties, both are given in
the form of a simple JSON file. Similar to 4.1 the main difference comes from the extrac-
tion of the different uncertainties.

From the discussion in Section 3.3 it was shown that the python package pyhf can be used
to determine the effect of individual NPs on POI. Taking now the likelihood published
for the measurement of the total cross section of tt̄Z as an example, the corresponding
POI is the signal strength for this process from which the total cross section can be de-
termined. Since there are, however, a total of 229 NPs in the full likelihood provided,
it would be numerically inefficient, and at some point for a global analysis unfeasible,
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Uncertainty Reproduced ∆σtt̄Z

σtt̄Z
[%] Paper ∆σtt̄Z

σtt̄Z
[%]

ttZ parton shower 3.1 3.1
tWZ modeling 2.9 2.9

b-tagging 2.9 2.9
WZ/ZZ + jets modeling 2.7 2.8

tZq modeling 2.6 2.6
Lepton 2.3 2.3

Luminosity 2.2 2.2
Jets + Emiss

T 2.1 2.1
Fake leptons 2.1 2.1
tt̄Z ISR 1.7 1.6

tt̄ZµF and µr scales 0.9 0.9
Other backgrounds 0.8 0.7

Pile-up 0.7 0.7
tt̄Z PDF 0.2 0.2

Stat 5.2 5.2

Table 5.1: Comparison of different systematic uncertainties taken directly from Table 7
in Ref. [18] and those from the corresponding published likelihood using pyhf.

to include all of these individually. Considering, furthermore, that eventually SFitter
correlates only those systematics within the same category, gives even more reason to
reduce their number by grouping them corresponding to the usual SFitter uncertainty
types listed in Table 8.1 in the Appendix.

To be able to do this, it is first necessary to know which of the NPs correspond to what
kind of uncertainty. Fortunately, pyhf also gives labels for each and every one of the
different nuisance parameters. In the case of the tt̄Z likelihood for example one has
NPs such as ‘BTag_B’,‘BTag_C’,‘BTag_light’ where one can easily tell that these belong
into the bTagging category. Similarly, most of the other NPs are labeled in such a way
that all of those corresponding to jet uncertainties have ‘JET’ in their name or ‘Fake’
for anything related to fake leptons. Not all of them make it quite that easy though,
since there is, for example, one nuisance parameter labeled ‘xsec_other’ and another one
‘xsec_Other’. This makes it difficult to simply put them into the correct category, since
just the explanations of the uncertainties given in the paper are not sufficient to clear this
up. Because of this, some of the NPs have to be assigned either by choosing a category
which looks like it would fit best, or by assigning it to one of the categories which show
discrepancies between the reproduced results and those given in the paper.

Since going through every single NP can become very tedious for likelihoods with hun-
dreds of NPs one would naturally want to automate this process. Unfortunately, the
unclear labeling of some NPs within the same likelihood already makes this difficult.
Another problem arises when trying to generalize this to different published likelihoods.
This discussion only considered the likelihood published for the tt̄Z measurement up un-
til now. Moving on to the tt̄ likelihood now, one also needs to assign all of its NPs to
the same groups of uncertainties from Table 8.1. Doing this, one finds that the naming
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convention for the NPs do not appear to be consistent between different measurements.
For example, the tt̄Z measurement labels bTagging related NPs with the key word ‘BTag’
while the tt̄ measurement uses ‘bTagSF’. Additional data from the experiment on exactly
which NP describes what uncertainty and a more consistent naming scheme for all pub-
lished likelihoods would be required to automate this process and allow for much a larger
number of different published likelihoods to be worked with at once. For all the reasons
listed above, every single NP was assigned to its group by hand here.

In Table 5.1 the systematics for the tt̄Z measurements, taken directly from Ref. [18], are
compared to those one gets using pyhf and the corresponding published likelihood. To
compute these values, one first performs a profiled likelihood fit to determine the best-fit
values of each NP, which gives results such as those given in Figure 3.2. To compute the
values given in the table, one performs another fit, where the NPs of the group considered
are fixed to the best-fit values from this first fit. The uncertainty can be computed as
the quadratic difference between the uncertainty on the POI from the full fit and the
one from this fixed fit. As one can see, almost all the different uncertainties agree per-
fectly, with only a few of them being off by 0.1%. These differences can now be either
attributed to numerical precision or possibly some incorrectly grouped NPs, since with
just the given information, there is no way to be certain. Regardless, these values already
agree well enough that any of the differences will not have a great effect on the results
after implementing them into SFitter.

After this the uncertainties required to implement a measurement into SFitter are known,
so the next step is to move on to correlations. In Section 3.3 it has already been shown
that similar to the uncertainties, one also knows the correlations between the different
nuisance parameters within a measurement, now that the full likelihood is provided. Usu-
ally there is no information on these correlations within a measurement, which is why
SFitter assumes the uncertainties within a single measurement to be uncorrelated. This
is why the next step in this study is to see whether one can implement these correlations
into SFitter and to see what difference this would make.

In the previous part of the study, it has already been shown that the number of NPs
implemented can be decreased by assigning them to different, more general, groups. Due
to this, the correlation matrix in Figure 3.4 naturally also decreases in size to the correla-
tions between just those categories. Figure 5.1 shows exactly those correlations, using the
likelihood of the tt̄ measurement to allow for a direct comparison with the results from
Figure 3.4. One can easily see that basically all correlations are negligibly small, most
values being in the range of ±0.01. This is expected, since, as was seen in Section 3.3,
the strongest correlations were found for NPs describing different modeling choices and
jet related uncertainties. Within SFitter most of the NPs for the model choices now go
into ‘BkgTTBAR’ while the jet related ones are absorbed into a larger ‘Jets’ uncertainty.

Clearly, most of the correlations are now absorbed into the larger groups, since almost
all correlated NPs are now in the same uncertainty group. At the same time one can still
see the effect of the stronger correlations between the different jet related NPs and the
modeling NPs in the correlation between ’BkgTTBAR’ and ’Jets’ which, while at a value
of −0.07 is still not very significant, is much larger than any of the others.
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Figure 5.1: Correlations of final uncertainty categories considered in SFitter for the pub-
lished likelihood of the tt̄ measurement in Ref. [17].

This shows very clearly that all correlations between the uncertainties implemented into
SFitter are negligibly small. Because of this, implementing any of these correlations into
the fit would not lead to differences in the final results. This validates the assumption
currently used in SFitter where all correlations between uncertainties within a measure-
ment are neglected. This also means that, since the groups of uncertainties are the exact
same for all other measurements previously used in the fit in Ref. [16], this holds for all
of those as well. Furthermore, it also allows for a more flexible treatment of the NPs,
which can be useful for future analyses where there is still more freedom in the modeling
since one would not need to adapt new measurements to be compatible with older ones.
For now, there is only a small number of likelihoods available publicly which is why a
complete global fit only based on these is not feasible, it will be important to keep this
flexibility in mind for future projects.

Constraints from new measurements
While the majority of the study of published likelihoods was dedicated to the likelihoods
themselves, the main purpose of this analysis is to check the effect these measurements
have on the constraints of different WCs. For this purpose, it is first necessary to ensure
that the measurements implemented using the likelihoods lead to reasonable results in
such a SMEFT fit. Choosing the tt̄ total cross section measurement again, only CtG will
be included in the following fit, since this is the only operator contributing to gg → tt̄ at
leading order and as such it is the most sensitive one to total cross section measurements
and would show differences best.

Because of this, the dataset is restricted to only measurements of total tt̄ cross sections
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Experiment @ Energy (channel) stat syst theo total New?
ATLAS @ 8 TeV (lj) [71] 0.3% 3.5% 25% 25.25%

CMS @ 8TeV (eµ) [72] 0.6% 3.8% 20% 20.37%
CMS @ 13TeV (lj) [73] 0.5% 3.8% 16.7% 17.13%
CMS @ 13TeV (ll) [74] 1.3% 3.7% 18.1% 18.5%

ATLAS @ 13TeV (eµ) [75] 1.2% 4.2% 16.6% 17.17%
ATLAS @ 13TeV (lj) [17] 0.05% 4.6% 19.62% 20.15% Added

Table 5.2: List of total uncertainties for the different tt̄ total rate measurements of the
Top dataset in SFitter.

already implemented in SFitter. Table 5.2 shows all the different tt̄ rate measurements
considered in the following fit and the corresponding total statistical, systematic and
theory uncertainties. From this, one can already see that the theory uncertainties are
clearly dominating, making up more than 95% of the total uncertainty for most. Because
of this, all fits and the following comparisons will be performed while neglecting theory
uncertainties, since otherwise all differences are completely washed out. Disregarding the
theory uncertainties from now, one can immediately see the effect of the higher luminosity
in the total statistical uncertainties of the different measurements while the systematics
are very similar for all of them, with the new ATLAS measurement having slightly larger
systematic uncertainties than any of the previous measurements.

Both curves in Figure 5.2 show the results of a profiled fit to CtG after the new tt̄ mea-
surement was included, the difference between the two is that the blue curve shows the
results from the implementation using the likelihood while the orange one is from the
traditional approach using the data directly from the paper.
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Figure 5.2: Results of a fit to only CtG, comparing the implementation using the published
likelihood (blue) with the implementation directly from the paper(orange).
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Figure 5.3: Left: Profiled fit to only CtG using the measurement from Table 5.2 with
(blue) and without (orange) the new tt̄ measurement. Right: Same as left,
but including the tt̄Z measurement from Table 5.3. Only including the old
measurements (orange) or both new tt̄ and tt̄Z measurements (blue).

As one can see, both methods lead to the exact same result, verifying the validity of the
implementation using the published likelihood. The same kind of fit was also performed
for the tt̄Z measurements, this time using the measurements listed in Table 5.3. For tt̄Z
the exact same agreement is found, which can be easily explained when one considers
the uncertainties from Table 5.1. Both implementations are based on the same measured
data and theory predictions, which means that the only differences in constraining power
come from these uncertainties which, as one could already see, are practically the same.

With this, it was shown that implementing the measurement using the likelihood leads to
the same constraints in the very end. The next topic of interest is the effect of the new tt̄
and tt̄Z measurements on the constraints of WCs. For this reason, the results shown in
Figure 5.2 are compared to the results from a fit to the exact same dataset from Table 5.2
without the new tt̄ measurement implemented using the likelihood. The results from this
fit can be seen on the left side of Figure 5.3. One can very clearly see that the constraints
do not change after the new tt̄ measurement is included. To understand this, one only
needs to consider the uncertainties of the measurements listed in Table 5.2. Although
the statistics have improved significantly for the new tt̄ measurement one can also see
that the systematic uncertainties are larger for this measurement, which means that its
constraining power is not expected to be stronger than any of the others in Table 5.2.

Now that the tt̄measurement has been shown not to have an effect on the final constraints,
the tt̄Z measurements will now be included in the fit. Naturally, the tt̄Z measurements
already included in the previous global fit from Ref. [15] should be included in the fit
too. All tt̄Z measurements considered and their corresponding uncertainties are listed in
Table 5.3. Important to note is that the new tt̄Z measurement from ATLAS is an update
to an older one shown in the table, which means that instead of just adding it to the
dataset, it replaces the previous one.

The results for this fit are shown on the right side of Figure 5.3 and one can see that
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Experiment @ Energy (channel) stat syst theo total New?
CMS @ 13TeV (multi lept.) [76] 5.1% 6.2% 13.4% 15.6%

ATLAS @ 13TeV (multi lept.) [77] 10.6% 9.1% 13.4% 19.4% Removed
ATLAS @ 13TeV (multi lept.) [18] 5% 7.6% 13.4% 15.2% Added

Table 5.3: List of total uncertainties for the different tt̄Z total rate measurements of the
Top dataset in SFitter.

there is a visible shift in the constraints of CtG. This one can understand by checking
once again the different uncertainties on the measurements, this time for the tt̄Z mea-
surements. Comparing the different uncertainties in Table 5.3, it is easy to see that the
new ATLAS measurement has uncertainties which are quite a bit smaller than those of
the previous one, although if one compares them to the values of the CMS measurement
one finds that their total uncertainties are very similar in size. From this one can see
that previously the greater constraints came from the CMS measurements, while the new
ATLAS is only similarly constraining. This explains why one can see slight shifts in the
likelihoods in the final fit result in Figure 5.2.

The actual constraints are not changed too much, since for the 68% CL regions one has

CtG/Λ
2 ∈ [−0.08, 0.07]/TeV2 −→ CtG/Λ

2 ∈ [−0.07, 0.08]/TeV2 , (5.1)

and for the 95% CLs one has

CtG/Λ
2 ∈ [−0.15, 0.14]/TeV2 −→ CtG/Λ

2 ∈ [−0.13, 0.14]/TeV2 . (5.2)

To briefly summarize the most important results of this section, one found that the pub-
lished likelihoods allow for a more flexible treatment of different nuisance parameters,
which are in the end adapted to the general SFitter format, giving very similar results
for both methods. After this, the effect of the new measurements on the constraints of
the most relevant WC CtG was studied. It was shown that there was only a very small
effect on the constraints, indicating that the total rate measurements used in Ref. [15]
already display a very high constraining power.

This concludes the studies on published likelihoods done for this thesis, there is, however,
still some more work that can be done concerning these likelihoods. The measurements
implemented here were both total rate measurements, for the future the implementation
of a differential cross section using these likelihoods can be of interest. In Section 4.1
the systematic uncertainties were determined by weighting them according to the total
systematic uncertainties. Using the full likelihood it should now be possible to compute
the systematics for each bin, leading to better determination of these uncertainties. Fur-
thermore, as will be shown in the following section, differential measurements will also
help constrain a larger number of WCs.
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5.2 Marginalization in the Top sector
In previous analyses, the SFitter framework has been used to study the effect of different
statistical treatments on the constraints on WCs using the Higgs, EWPO and Di-Boson
dataset [16]. This part of the thesis wants to expand on this, updating the previous study
in the Top sector where profiling methods were used [15].

5.2.1 Analyzing the old Dataset
Before studying the dataset with the newly implemented measurement, the previous
dataset used in the global Top fit of Ref. [15], introduced in Section 2, will be analyzed
without any changes to allow for a direct comparison between these results and those
from the previous paper. This allows for a study of the differences arising from the sta-
tistical treatment alone, while also allowing for an easier analysis of the effects of the new
measurement on the constraints later.

Before a proper comparison between the marginalization and profiling methods could be
performed, it was first necessary to ensure that the profiled results from the previous
global Top fit in Ref. [15] were properly reproduced using the dataset within SFitter. To
do so, a benchmarking fit was performed first, using the profiled likelihood, where it was
found that the results agree completely with those given in Ref. [15]. The correspond-
ing constraints are shown Figure 5.4 in blue, with the results from the exact same fit
using marginalization shown in orange. The differences between the two methods were
explained in much detail in Section 3, where, to list the most important differences, the
treatment of NPs, their correlations and the determination of constraints differ.
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Figure 5.4: 68% and 95% CLs of all Wilson coefficients from the global Top fit for both
profiling and marginalization.

One can clearly see that the marginalized results, shown here in blue, are much more con-
strained for almost all WCs. To properly understand this and for the differences between
the two methods to become even clearer, it is useful to look at the distributions of the one
dimensional profiled likelihoods and posterior probabilities for the individual WCs. To go
from the marginalized likelihood to the posterior, the priors for each WC are assumed to
be wide and flat for all constraints shown in the following. This minimizes the effect of the
prior on the final results and also allows one to check for differences in the two methods
by comparing the profiled and marginalized likelihoods, like the ones plotted in Figure 5.5.
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Figure 5.5: Comparison of marginalized and profiled results of the individual likelihoods
for a few Wilson coefficients.

Looking at these plots, one finds that most of the profiled results show very flat like-
lihoods for a large range of values of the WCs, while the results after marginalization
appear much more Gaussian with a distinctive peak. As a result, the marginalized pos-
teriors are not as wide and the constraints on the coefficients become much tighter than
they were before. This is the case for all the different WCs whose constraints are im-
proved, not just for those shown here. To understand this, one needs to once again go
back to the discussion of the two different treatments in SFitter from Section 3. It was
already shown in that section that the convolution of a single Gaussian uncertainty with
multiple flat uncertainties leads to very Gaussian results after marginalization, while the
profiled results stay flat and follow, what is sometimes called the RFit prescription [44].
This clearly shows that the theory uncertainties have a much larger impact on the results
in the profiled case, while for the marginalized results they do not.

The plots in Figure 5.5 show very clearly that the greatest effect these uncertainties have
on the results are the flat regions in the profiled results, which disappear after marginal-
ization. This does raise the question, whether a uniform distribution for the theory
uncertainties is a reasonable assumption, since, if one were to perform the exact same fit
with Gaussian theory uncertainties, one would expect these flat regions to disappear. To
confirm this and show that this is not just an assumption, the previous fit was repeated,
this time modeling all theory uncertainties as Gaussian and, which is the crucial differ-
ence here, profiling the NPs. Figure 5.6 shows the results from this fit and it becomes
immediately apparent that there are no visible differences between the results obtained
from either profiling or marginalization methods.

Consider that, after seeing the results in Figure 5.6, one would rather model the theory
uncertainties as Gaussian since this gives results much more similar for the two statis-
tical treatments. Since the distributions used to describe these uncertainties is only an
assumption, one is technically free to do just that. Conversely, in the case of systematic
uncertainties, where the constraint terms on the NPs can be understood as the results
of some kind of auxiliary measurement, there is a statistical interpretation for these con-
straints. Finding an intuitive way to interpret and motivate the constraints on theory
uncertainties is much more difficult, however. For this reason, one cannot claim any
choice to be more reasonable than another.
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Figure 5.6: Profiled (blue) and marginalized (orange) likelihoods for Gaussian theory un-
certainties.

In the end, this is a choice that has to be made at some point, and the reasoning for choos-
ing them to be flat within SFitter has already been sufficiently explained in Section 3.2.
Naturally, this does not mean that absolutely any kind of prior/constraint should be used,
since the final results still needs to lead to realistic physics. The rest of this work will
continue modeling the theory uncertainties as flat, although, unless otherwise specified,
all results following this will come from marginalized fits.

With this, it was shown that profiling and marginalization agree with one another in the
Gaussian case. What does not immediately become clear from this, is the effect that
the modeling of theory uncertainties has when applying the marginalization to both of
these. For this, the exact same fit was repeated, setting this time all theory uncertainties
to be uncorrelated Gaussians. A few of the WCs affected the most by this are shown in
Figure 5.7 and one finds that the greatest differences are found for CtG, CtW , CbW and
C3

φQ. All the other WCs not listed here do not exhibit any sizable differences between
the two fits. This shows that the choice of flat uncertainties does still have an effect on
the results. Looking at them more closely, one finds that the constraints themselves do
not get any stronger, mostly resulting in slight shifts of the peak closer to the SM.

To further emphasize the importance of theory uncertainties in the Top sector, another
fit is performed, this time completely removing any of the theory uncertainties from the
fit. Figure 5.8 shows the constraints on all WCs where one can immediately see a few
strong differences between the two.
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Figure 5.7: Results from marginalized fits for either Gaussian or Flat theory uncertainties.

54



5 Results

C
tG

C 18Q
q

C 38Q
q

C 8
tq

C 8
Q
u

C 8
Q
d

C 8
tu

C 8
td

C 11Q
q

C 31Q
q

C 1
tq

C 1
Q
u

C 1
Q
d

C 1
tu

C 1
td

C
tW
C
bW /10

C
tZ /10

C
φt /10

C
φtb /10

C 3
φQ /10

C −
φQ /10

−2

0

C
/Λ

2
[T

eV
−2

]

With Theory

Without Theory

Figure 5.8: 68% and 95% constraints on the WCs in the Top sector for a marginalized
global fit with full or no theory uncertainties.

Almost all WCs show significantly improved constraints, which is a result of the smaller
uncertainties on the measurements, which gives them stronger constraining power. For
the four-fermion octets, for example, one can see that the removal of theory uncertainties
leads to constraints that exclude the SM much more strongly. Especially in the case of
C8

td one finds that there is a strong pull away from the SM which can usually be accom-
modated by large enough theory uncertainties.

The important role of theory uncertainties in the global Top fit has already been hinted
at in Section 5.1 during the implementation of the total rate measurements using likeli-
hoods. There they had to be neglected completely to even allow a proper comparison for
some of the measurements. The usual total systematic uncertainty of a measurement was
shown to be around the order of 5% while the theory uncertainties go up to 20 − 25%,
clearly much more significant than the systematic, not to mention the statistical ones.
These large theory uncertainties on the tt̄ total rate measurements also explain why the
constraints of CtG improve so much after they are removed.

This is in stark contrast to the previous study using the Higgs, Di-Boson and EWPO
dataset in Ref. [16], where it was shown that removing theory uncertainties from the fit
did not have a significant impact on the results. It can, however, be easily explained
due to the difference in size of the theory uncertainties of the two different datasets. For
Higgs measurements they varied in the range of about 5 − 10%, already much smaller
and more comparable to the size of its systematic uncertainties. In the case of the
Higgs, higher accuracy predictions are much easier to compute since it does not interact
strongly and as such one does not run into the problem of computing complicated QCD
corrections, whereas any prediction involving the top quark requires the simulation of
QCD processes for which the determination of higher order effects can lead to highly
uncertain predictions.

5.2.2 Analyzing the new Dataset
The goal of this section is the implementation of the new differential cross section mea-
surements from CMS, as explained in Section 4, into the dataset used for the final global
fit. It will be structured in such a way that, first, the mtt̄ distribution will be analyzed.
After that, the exact same studies will be repeated for the pT (th) distribution to allow
for an easy comparison of the two, in the final part of this section.
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The mtt̄ distribution

Before beginning with the global fit, a study of each distribution on its own can be of
interest. Naturally, this means that not all of the operators listed in Table 2.2 can be
constrained from just this tt̄ measurement alone, since it is only affected by OtG and the
different four fermion operators. Out of the total 15 different operators contributing to
tt̄ pair production, only a subset of these operators will be considered for now. Since tt̄
measurements on their own can not distinguish between any of the different four fermion
operators, a total of three different WCs will be considered in the following fits. These
are CtG and one of the color octet four fermion operators C8

tq and the corresponding color
singlet C1

tq. After confirming that these individual distributions give reasonable results
on their own, one can move on and implement them into the global fit.

Beginning with the mtt distribution, it was discusssed in Chapter 4 that it is an update
to a previously implemented measurement published in Ref. [55]. Because of this, the mtt̄

distribution implemented in Chapter 4 will be referred to as the ‘new’ measurement, while
the one from Ref. [55] used in the previous global Top fit, will be referred to as the ‘old’
one from now. Since this means that these measurements are not independent, the new
one will replace the old one in the future. Due to this, the constraints one gets from the
old measurement will serve as a good benchmark to validate the implementation of the
new measurement. For this purpose, one fit to the three WCs listed above is performed
for only the old and new measurements each. For both fits the NPs are marginalized and
the resulting two-dimensional posteriors are shown in Figure 5.9.

−5 0 5
CtG/Λ2 [TeV−2]

−4

−2

0

2

4

C
8 tq

/Λ
2

[T
eV
−2

]

New mtt̄ distribution

Old mtt̄ distribution

Old mtt̄ (Extra bin)

0

1

0 1 0 5
C8
tq/Λ2 [TeV−2]

−2

−1

0

1

C
1 tq

/Λ
2

[T
eV
−2

]

0

1

0 1

Figure 5.9: Two-dimensional marginalized constraints from a three-dimensional fit to the
mtt̄ distribution from either Ref. [19] (black) or Ref. [55] (blue). Constraints
after reimplementing the first bin from Ref. [55] are shown in orange.

The much stronger constraints, shown here in black, come from the fit to the newly im-
plemented mtt̄ distributions, while the contour in blue shows the results from the fit to
the old mtt̄ distribution. In both plots one can see very clearly that the constraints on
all three coefficients C1

tq, C
8
tq and CtG, improve significantly. While stronger constraints
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for these are expected due to the higher precision and wider energy range of the new
measurement, the improvement for CtG is very large, considering that normalized distri-
butions are not expected to have too much of an effect on these. To explain this, one
needs to understand the orange contour shown in the plot, for which it is necessary to
explain the normalization of data in SFitter.

For every single distribution in the dataset the normalized data, as it is provided by the
experimental papers, is implemented directly into SFitter. The key to understanding the
differences in the strength of the constraints from the previous plot lies in how SFitter
deals with this normalized data. It takes every single bin of these measurements and
normalizes them again, by taking the sum over all the bins of the distribution included in
the fit, and divides each of them by this total value. This means, that if the full normal-
ized distribution is considered, this adds up to exactly 1 and the data does not change
at all. This is the case for almost all the different distributions used in the previous fit,
except for the old measurement being replaced here. In the case of this measurement
only 7 out of the 8 total bins were implemented, which means that when normalizing the
data the total adds up to less than 1, leading to larger values in each bin after once again
normalizing the data. These larger values of the cross section require larger values of CtG

for the predictions to match the data, consequently leading to weaker constraints of CtG

as seen in Figure 5.9.

The bin that was removed from the old mtt̄ distribution was the very first one, which is
one of the bins that contributes the most to the total cross section and as such also to
the normalization. Because of this, it should lead to stronger constraints on CtG when
included in the fit. To check the effect that removing this bin has on the constraints, the
first bin of the old measurement is reimplemented into SFitter using the data provided in
Ref. [55]. The results from the fit to this distribution including all eight bins are shown
in Figure 5.9 in orange. The effect of reimplementing the first bin can easily be seen by
comparing the blue constraints with those in orange. Immediately, one finds that the
constraints on CtG change drastically, lowering the range of its allowed values. On the
other hand, the constraints on C1

tq and C8
tq only show very slight improvements of their

constraints, since their constraints are mostly driven by the high energy bins.

Moving on to the comparison with the constraints from the new measurement in black,
one can see that the constraints agree much better once every bin is included in the fit.
The improvements are much closer to what one expects from a normalized distribution.
The constraints on CtG now show almost no change, although there is still a slight pull
away from the SM for the new measurement. Furthermore, one can also see that the
constraints on the four fermion operators still show very significant improvements. This
also follows our expectations since, as has been mentioned several times now, most of the
constraining power for these comes from the tails of the distributions.

Whether one includes the additional bin to the old mtt̄ distribution does not matter for
any of the future fits, however. In all following fits including the old mtt̄ distribution
there is a large number of additional tt̄ distributions. It was found that once all other tt̄
measurements are included in the fit, the old mtt̄ distribution does not have any effect on
the constraints at all. This means that regardless of whether the extra bin is included,
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Figure 5.10: Two-dimensional marginalized constraints from a three-dimensional fit to
only the newly implemented differential tt̄ measurement. Different colored
contours shows constraints after removing the bins given in the legend.

there is no difference in the final results. For this reason, all fits which include the old
mtt̄ from now will not include the additional bin for simplicity sake.

With the benchmarking fit done, it was shown that the new mtt̄ distribution gives reason-
able constraints for a normalized tt̄ distribution. It only slightly affects the constraints of
CtG while giving much stronger constraints for the four fermion operators. Considering
the strength of these constraints in this fit suggests that one can expect significant dif-
ferences in the global fit as well. Before looking at this, however, a more detailed look at
where these constraints come from is done by performing the exact same fits again, only
this time removing certain bins from the new mtt̄ distribution beforehand. The results of
a few such fits can be found in Figure 5.10.

Here, the black outlines show the constraints from the full fit, while the different colored
contours show the constraints after removing different bins from the fit. Starting first
with the contours shown in orange, which show the constraints after removing the very
first bin from the distribution. Comparing this to the full distribution in black, one can
see that there is a slight pull of CtG closer to the SM, while also allowing for much smaller
values of CtG. This comes from the fact that there is an underfluctuation in the first bin
of the distribution, as one can see in Figure 4.3. To accommodate this, larger values of
CtG are required, which, in turn, means that after removing this bin smaller values of CtG

are allowed. On the other hand, the removal of the final bin, shown here in blue, only
leads to very small changes in the constraints of CtG. Compared to this, the four fermion
operators show the exact opposite behavior. The removal of the first bin does not change
the constraints whatsoever, while removing the final bin leads to weaker constraints for
both of them, once again confirming their kinematically enhanced nature.

Although Figure 5.10 only shows the effect of removing the first and last bins, respec-
tively, the same analysis was also performed for all other bins. The results from these
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Figure 5.11: Comparison of the one dimensional profiled (blue) and marginalized likeli-
hoods using either the correlation matrix (orange) or Laplace method (green)
to include correlations.

fit are not shown here, however, since they show no significant deviations from the full
distribution. This shows that the constraints on the four fermion operators is driven
completely by the final bin of the distribution, while the first bin constrains CtG the
most. All of this confirms that the newly implemented measurement is well behaved and
the final step is to include the new distribution into the complete dataset and perform a
global fit of the entire space of operators.

The global fit is performed using the entire dataset from Ref. [15] after removing both
the old mtt̄ and pT (th) distributions and adding this new mtt̄ distribution. This dataset
will be referred to as the ‘new’ dataset in the following, similarly the dataset from the
global Top fit in Ref. [15] will be referred to as the ‘old’ dataset. Before taking a look
at the updated constraints of all WCs, it is necessary to look at the results of a profiled
and marginalized likelihood fit to the new dataset of a few of the most interesting WCs
in Figure 5.11. Unlike any previous study, these plots also show the results when using
the different methods of introducing correlations between the measurements. In green
are correlations included using the Laplace method from Section 3.2 and in orange those
using the correlation matrix method, labeled as ’Corr’. No specific comparisons between
these two methods were shown before, since their results always agreed for all fits dis-
cussed up to this point.

Only the two most extreme cases for the two different methods are shown here. Com-
paring the two correlation methods, one finds that in the right plot the constraints agree
completely for both, while the plot on the left the constraints using the Laplace method
show very large differences with a strong pull away from the SM. Clearly the new measure-
ments has some sort of effect on these correlations, since none of this has been observed
for any other fit before this. Taking this into account, the new measurement was studied
in more detail to find the possible cause for these differences. Unfortunately, it was not
yet possible to draw any definitive conclusions. This could either be an interesting prop-
erty of the newly implemented measurement or a simple numerical problem whose cause
has yet to be found. Either way, this will need to be studied further in the near future.
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Figure 5.12: 68% and 95% CLs from a marginalized global SMEFT fit in the Top sector for
the dataset in Ref. [15] (blue) and the new one including the mtt̄ distribution
(orange).

For now, all future fits will use the correlation matrix method, unless specified otherwise,
since the results obtained from these are much more conservative. At the same time,
the improvement of the constraints between the profiled and the marginalized fit using
the correlation matrix in Figure 5.11 look much more like those seen in Figure 5.4 and
Figure 5.5.

Using the results from the global fit with the correlation matrix method, corresponding to
the orange curves shown in Figure 5.11, their constraints are compared to those from the
fit to the old dataset in Figure 5.12. Again, both fits make use of the marginalization of
NPs. After the analysis of the new mtt̄ distributions on its own, the greatest differences
one expects to see are in the four fermion operators. Looking at the results confirms
exactly those expectations. All of these operators show much stronger constraints com-
pared to before for both the singlets and octets.

Naturally, just like in the old dataset, the constraints on the color singlets are still stronger
than those of the octets since the constraints from tt̄ measurement scale with different
color factors. Since the tt̄ measurements alone does not distinguish between the different
four fermions operators, they also show very similar improvements for all four fermion
operators. The constraints for CtG only display a very small shift, easily within the one
sigma range and as such not significant. This is exactly what one expects, since CtG is
mostly constrained by the total rate measurements already in the dataset.

All other operators in the fit do not have any direct contributions to the tt̄ measurement,
meaning that one would not expect these to be constrained at all from these, if only tt̄
measurements were included in the fit. Due to the global nature of this fit, however,
an interplay between the WCs affecting different processes in the dataset can lead to
correlations between WCs, which help further constrain these. One such coefficient not
directly affected by the tt̄ measurement but still showing improvements is C3

φQ. This is a
nice example of the strength of a global fit which allows these WCs to be affected due to
correlations. Naturally, the correlations for both the old and new dataset were studied as
well to see what kind of differences one can find with some handpicked examples shown
in Figure 5.13.
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Figure 5.13: Comparison of the correlations of a few WCs from the marginalized global
Top fit using the old dataset (blue) and the new one including the mtt̄ dis-
tribution (black).

The three different plots were chosen to show the differences for WCs with anti-correlations,
correlations and no correlation at all. Once again, the black outlines show the results
from the new dataset, while those from the old one are given in blue. Just like be-
fore, these plots make the stronger constraining power of the new dataset apparent. At
the same time, one can also see that the correlations between the different WCs do not
change significantly. This is not the case just for the coefficients shown here, all other
two-dimensional contours show very similar results, not deviating a lot from any of the
results from the fit to the old dataset.

The pT (th) distribution

To allow for a direct comparison of the different observables implemented, the same stud-
ies as those for mtt̄ will now be performed again for the pT (th) distribution, starting with
the fit to determine the most constraining bins of the distribution. In Figure 5.14 the
constraints from a fit to the full pT distribution are shown compared to constraints after
removing either the 6th or 16th bin from the measurement. Only the constraints from
removing these bins are shown, since all other bins do not affect the constraints in any
significant way. Both lead to very strong pulls, either away from the SM in the case of the
16th, shown here in blue, or pulls much closer towards the SM, shown in orange, when
removing the sixth bin.

To understand where these strong pulls come from, one simply needs to take a look at the
χ2 values for these bins after setting all WCs to be exactly 0, i.e. the SM predictions. In
Table 5.4 one can clearly see that there is already a very strong tension between the SM
predictions at NNLO and the measured data from the Ref. [19], especially for the third,
sixth and 16th bins. This tension between prediction and data can easily explain why
removing the sixth bin from the distribution leads to constraints much more consistent
with the SM. All other bins not listed in the table show very good agreement with the
SM, with χ2 values much smaller than 1.

Clearly the systematic uncertainties are too small to explain the discrepancies one can
see in Table 5.4 and the theory uncertainties, although larger by about one order of mag-
nitude, are still too small compared to the differences between data and prediction, to
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Figure 5.14: Marginalized constraints from a 3 operator fit to only the new pT (th) distri-
bution after removing the bins specified in the legend.

do so either. The tension between the SM predictions and the data was not present in
Section 4.2 when the prediction calculated using MadGraph were compared to those
from Ref. [19]. This means that the source of this discrepancy is the calculation of the
k factors for the NNLO predictions. Any discrepancies coming from this calculation are
usually covered by the uncertainty from the choice of event generator, where the enve-
lope of the MC generator uncertainties was used to get a conservative estimate of these.
Regardless, the χ2 values suggest that these first bins are not very well described and as
such can not be included in the fit like this.

There are two different ways of fixing this issue. One can either include an additional
theory uncertainty coming from the NNLO predictions, or simply remove the badly mod-
eled bins from the fit. For the purpose of this analysis, it was decided to remove these
bins from the fit completely. This was done for multiple different reasons. First, an
additional theory uncertainty introduced to account for the tension between the NNLO
SM predictions would have to be quite sizable. This would, in turn, already lower the
constraining power coming from these bins dramatically, which is why one would not
expect the constraints to be affected much by these bins anymore.

Bin# [Range] Data Prediction σsyst σtheo χ2

3 [80-120 GeV] 5.937e-03 5.357e-03 3.924e-05 2.253e-04 135.21
4 [120-160 GeV] 4.291e-03 4.580e-03 3.631e-05 1.896e-04 14.908
5 [160-200 GeV] 2.639e-03 2.837e-03 2.529e-05 1.312e-04 13.626
6 [200-250 GeV] 1.376e-03 1.118e-03 1.648e-05 1.189-04 168.46
16 [950-1100 GeV] 2.745e-07 5.318e-07 6.768e-08 9.933e-08 5.6418
17 [1100-1600 GeV] 3.422e-08 2.235e-08 1.083e-08 1.477e-08 0

Table 5.4: χ2 values for SM predictions at NNLO and data taken from Ref. [19]. Corre-
sponding theory and systematic uncertainties are also listed.
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Figure 5.15: Marginalized constraints from a 3 operators fit to only the new pT (th) mea-
surement after removing all the first six bins and the additional bins given
in the legend.

The second reason is that kinematic distributions like this mostly constrain the kinemat-
ically enhanced operators, which means that the constraints one is interested in should
only come from the last few bins for the most part. For all the reasons stated above, the
first six bins of the pT distribution will be removed from all following fits.

Having decided to remove the first six bins, one can repeat the fit of only CtG, C
8
tq and C1

tq

to check which bin drives the constraints now that the number of bins has been reduced
this much. Figure 5.15 shows the results from this fit as well as those from fits after re-
moving the last and second to last bin, respectively. Starting with the constraints from a
fit after the final bin was removed, shown in orange, one finds that those constraints agree
perfectly with those from the full pT distributions shown in black. Moving on to the re-
sults from the fit without the 16th bin, shown in blue, they once again show a very strong
effect on the constraints. Just like for the mtt̄ distribution before, one finds that there is
a slight improvement in the constraints of CtG with a much more significant improvement
for both four fermion operators. This clearly shows that it is the 16th bin that is driving
the fit. To understand why it is the second to last bin driving the constraints this time,
a quick look at Table 5.4 can help. Comparing the relative size of the uncertainties in
the final bin with those in the 16th, one finds that the uncertainties in the final bin are
much larger. Due to this, the constraining power of the final bin is reduced and the fit is
mostly driven by the 16th bin. All other bins were also checked and have shown not to af-
fect these constraints, consistent with their χ2 values which are all much smaller than one.

With this, one can now move on to the implementation of the new pT distribution into
the full dataset from Ref. [15]. Once again, the dataset is updated by removing both the
old mtt̄ and pT (th) distributions and replacing it with this new one. The complete global
SMEFT fit can be repeated using this new dataset. Just like for the fit of the mt̄t distri-
bution the fit is performed, using the marginalization methods implementing correlations
between the systematics using the correlations matrix method. The resulting constraints
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Figure 5.16: 68% and 95% CLs from a marginalized global fit to the old dataset from
Ref. [15] and the updated dataset including the pT distribution.

on the different WCs can be seen in Figure 5.16.

Starting, once more, with the constraints on the four fermion operators, they show, just as
one would expect, much stronger constraints compared to before. All of their constraints
are also still consistent with the SM. For now, the strength of the constraints relative to
those from the previous mtt̄ distribution will not be discussed further, leaving this for the
following section. In the case of CtG one finds for the 95% CLs that

CtG/Λ
2 ∈ [0.20, 0.76]/TeV2 −→ CtG/Λ

2 ∈ [−0.05, 0.50]/TeV2 , (5.3)

In other words the constraints do not get stronger, but they are pulled much closer to
the SM. This can be seen as a consequence of the removal of the first 6 bins of the dis-
tribution, considering the pull away from the SM one saw in Figure 5.14. For all other
coefficients there are mostly small differences and one finds that there are actually weaker
constraints for Cφt and C−

φQ in particular. Since these are not affected by the new pT
distribution directly, studying the correlations between WCs can help understand this.

The final results discussed here show the correlations between the different WCs and can
be found in Figure 5.17. For the first time, one can immediately see differences between
the correlations of the WCs shown. In the left plot one can very clearly see the pulls of
CtG closer towards the SM, at the same time the correlations between CtG and C8

tq are
reduced. One can see that they do still show an anti-correlation, which looks especially
small since constraints from the new dataset shown in black are not to scale with those
blue contours from the old dataset. The plot in the middle shows the exact same behavior
for C3

φQ and C31
Qq, showing weaker correlations between them after the pT distribution is

included in the dataset. The final plot shows, as an example, the effect for two WCs
where the correlations do not change. In general one finds that for a large number of
different WCs their correlations decrease. These smaller correlations consequently imply
less interplay between the different WCs reducing the constraining power in the fit. This
explains why the constraints on both Cφt and C−

φQ become weaker after the new pT
distribution is included in the fit.
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Figure 5.17: Correlations between a few of the WCs from the marginalized global SMEFT
fit using the new dataset inlcuding the pT distribution.

Comparing mtt̄ and pT (th)

Now that the two different observables have been studied in great detail separately, the
following section will provide the most important results by comparing them. Before
doing so, it is necessary to make sure that both distributions are compared on the same
footing, however. In the previous section the full mtt̄ distribution, i.e. all available bins,
were implemented into the dataset, while for the pT distribution the first six bins had to
be removed. Throughout this thesis, it has already been shown multiple times that the
energy range covered by these distributions very significantly impacts the results one ob-
tains. Because of this, the following will give a comparison of full global fits using either
the mtt̄ or pT distributions after removing the first 6 bins for both of these distributions.

Figure 5.18 shows the final results from both different datasets. In blue the results from
the global fit including the mtt̄ distribution is shown, while those from pT (th) are given in
orange. Starting with CtG this time, one finds that there is a slighlty stronger bound on
the positive values of CtG coming from the pT distribution. For mtt̄ one finds that after
removing the first 6 bins from the fit, its constraints also move closer to the SM, just
like the values from pT did. This can be explained by the underfluctuation in the first
bin, one can see in Figure 4.1, just like it did for pT . Continuing with the four fermion
operators, the constraints coming from the pT distribution are much stronger than those
from mtt̄. As before, one can see that to compensate for the larger values of CtG for mtt̄

there is a shift of all four fermion operators towards smaller values. The remaining WCs
do not show any differences, which is to be expected since they did not show significant
changes from the fit to the old dataset.

Looking at these results, one finds that using pT as the observable leads to constraints
quite a bit stronger than mtt̄. When it comes to trustworthyness of the final results,
however, those from mtt̄ come out on top. Comparing the amount of issues one ran into
when implementing either pT or mtt̄ the latter proved to be much easier to implement.
The main issues arising for pT came from the determination of the NNLO k-factors which
introduced very strong discrepancies between the SM predictions and the measured data.
Compared to this, the k-factors for mtt̄ were much easier to compute and did not intro-
duce any additional problems.
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Figure 5.18: 68% and 95% CLs from a marginalized global fit to the new dataset, in-
cluding the mtt̄ (blue) or pT distributions (orange). The first six bins were
removed for both of the distributions to cover similar kinematics ranges.

The conclusions to draw from this, is that while choosing pT as the observable can lead to
stronger constraints, it is much harder to get a handle on the corresponding predictions
which, in turn, leads to more issues when implementing the distribution. Because of this,
more work would need to be done to validate the implementation of the pT distribution.
On the other hand, the results from the mtt̄ distribution, while not quite as constraining,
come from a much cleaner implementation where no troublesome bins had to be removed.
For this reason, the mtt̄ distribution can be added to the dataset in its current state, while
pT distribution still requires a bit more care first.

5.3 Combined global fit
After the previous two parts of this thesis have been dedicated to studies of only the Top
dataset, the final part of this thesis will be concerned with the combination of this Top
dataset with data from the Higgs, Di-Boson and EWPO dataset. For the Top sector, the
same dataset given in Ref. [15] is once again used, excluding the newly implemented tt̄
measurement, while for the latter the complete dataset of Ref. [16] is used. Naively, one
might expect the combination of these datasets to be trivial. Why not simply copy the
data input from the one dataset into the other and just tell SFitter to fit all operators
from both Table 2.2 and Table 2.3? The following will explain exactly why this is not
possible, what issues one runs into and how these are dealt with for this analysis.

Reconciling Higgs and Top
To combine the two different datasets there are three distinct parts within SFitter that
need to be adjusted. Firstly, there is the data from the experimental measurements that
need to be correlated properly. Then there is the model considered, i.e. the list of oper-
ators constrained in the fit. Finally, there are the predictions one needs to look at, for
reasons explained later.

We begin by properly including the correlations between the measurements of the dif-
ferent datasets within SFitter. In Section 4.1, DataPrep was introduced, a tool which
automatically created inputs in the SFitter format while also making sure that the cor-
rect systematics are correlated. It was used to create the data input for the Top dataset
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from Ref. [15] but has never been used for the fits using the Higgs, Di-Boson and EWPO
dataset before. This meant that a few adjustments had to be made to DataPrep to make
sure that the correct systematics are still correlated. To this end, it was necessary to
consider the, up until now, separate tables of systematics used for the two different fits,
given in the Appendix in Table 8.1 and Table 8.2.

Since none of the SFitter inputs used for the global Higgs, Di-Boson and EWPO data
were created using DataPrep before, none of the inputs required to create them using
it existed yet. This would mean that if one wanted to reproduce the same data used
for those via DataPrep, new input files in the DataPrep format would be required for
each and every single measurement. Because this would be more work than necessary,
DataPrep was adjusted in such a way that it can create input files for SFitter compatible
with the ones previously used for the Higgs, Di-Boson and EWPO fit. Doing this ensured
that the systematics both datasets have in common are properly correlated, while all
others stay independent of one another.

With this, the issue of the measurements and their correlations has already been taken
care of. Continuing, the next step will be concerned with the combination of the two
different sets of operators constrained in the fits. In Table 2.3 all the different operators
considered in the previous Higgs, Di-Boson and EWPO analyses have already been listed.
Naively, one might want to simply add these operators to those from the Top fit given in
Table 2.2. This is where one small detail, which was already hinted at in Section 2.2.2,
comes into play. The operators considered in the global Top fit are given in the Warsaw
basis, while those for the Higgs, Di-Boson and EWPO dataset are given in the so-called
HISZ basis. Naturally, one should not use two separate bases in the same fit, which is
why it is necessary to express one of these bases in terms of the other. Since the Warsaw
basis is the most commonly used SMEFT basis used nowadays, the rotation from the
HISZ basis to the Warsaw basis was implemented into SFitter. This was done using
expressions already derived in Ref. [15] which can also be found in the Appendix.

With this, the issue of the different bases has already been taken care of. There is, how-
ever, one final problem that had to be dealt with, before a first fit could finally be per-
formed. As has already been mentioned, when the operators for the two different sectors
were introduced, the number of different operators considered was reduced via additional
flavor symmetry assumptions. In the case of the Top fit, this was a U(2)q×U(2)u×U(2)d
flavor symmetry, while in the Higgs case a universal flavor symmetry was assumed.
Clearly a direct combination of the two sectors without any additional considerations
does not make any sense like this since some of the predictions previously calculated
depend on these assumptions.

Within the dataset considered, the only measurements actually affected by these assump-
tions are those for the EWPOs. One is now left with a choice. One can either recompute
the predictions for these, using the same flavor assumptions as in the Top fit, which would
be far from trivial, or one can remove these measurements from the dataset. Since the
largest correlations are expected between the Top and Higgs sectors, it was decided to
remove all EWPO measurements from the dataset in the following analysis. This way, it
is possible to first focus on the combination of Higgs and Top. Removing these leads to
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some of the operators not being nearly as constrained anymore, especially those which
had almost exclusively been constrained by EWPO data. The WCs affected by this are
CφD, Cll and Cφe, and have been removed from the fit completely for this reason.
The recalculation of the EWPO predictions using the flavor symmetry assumptions from
the Top sector and their reimplementation into the dataset are left to a future work.

The combined fit
After all of these initial problems were solved, a first profiled fit of the combined dataset
could now finally be performed. Since there is a total of 38 different WCs included in
the fit, the resulting constraints will be split into two separate parts. In Figure 5.19 the
constraints on the WCs which previously only entered the Top fit are shown. The blue
constraints correspond to a global fit to only the Top dataset, while the orange ones give
the constraints for the full combined fit of Higgs, Di-Boson and Top.

Comparing the constraints from the combined fit with those from just the Top dataset,
it is quite clear to see that almost all the different WCs show at most very small, and
definitely not significant, differences. The only coefficients which show visible changes are
CtG, where a very slight shift to higher values can be observed, and the four-fermion octets
with a slight shift towards more negative values. The differences for the four-fermion op-
erators can be understood as a result of the change in CtG. Since all of these operators
contribute to tt̄ production, they are correlated and any changes in one can affect the
other. Since CtG is pulled to larger values, this needs to somehow be accommodated by
the other coefficients, which leads to smaller or even negative values for the four-fermion
operators. The only other strong difference can be found in C−

φQ which shows a slight shift
towards more positive values, very similar to CtG. Since C−

φQ is mostly constrained by
tt̄Z which also constrains all the same coefficients as tt̄, this is the result of the interplay
of the tt̄ and tt̄Z measurements where C−

φQ adjusts according to the changes of CtG and
the other four fermion operators.

The constraints for all remaining WCs for the Higgs, and Di-Boson fit are shown in
Figure 5.20. Again the orange constraints correspond to the results from a fit to the
combined dataset while the blue ones are those from the fit to the Higgs and Di-Boson
data.
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This is the first time that a fit to the Higgs and Di-Boson data in SFitter was performed
using the Warsaw basis. All constraints are given for the WCs in the Warsaw basis,
except for fGG. This is done to make it easier to visualize the constraints on the WCs
side-by-side, since the numerical values of fGG are much closer to those of the other WCs
in the Warsaw basis, compared to its corresponding operator CφG. This can be done
since these operators only differ by a rescaling factor

CφG = −αs

8π
fGG . (5.4)

Because of this the shape of the constraints is not affected and the comparison between
the two datasets still holds.

The only parameter not specifically shown in this plot is the branching ratio of the Higgs
to some invisible final states BRinv, which is why its constraints will be listed separately:

68% CL : BRinv ∈ [0, 4.64]% → BRinv ∈ [0, 5.3]%

95% CL : BRinv ∈ [0, 9.44]% → BRinv ∈ [0, 9.5]% .
(5.5)

Beginning with comparison of the WCs shown in Figure 5.20 one can see that the ma-
jority of the WCs show no changes in their constraints. The only two WCs affected by
the combination are fGG and Cuφ,33 which both show stronger constraints. The differ-
ences in Cuφ,33 can be easily understood, considering its contributions to tt̄H production.
Clearly Cuφ,33 is one of the few operators contributing to processes affected by operators
from both the Top and Higgs sector. The improvement in the constraints of Cuφ,33 shows
exactly why a global analysis leads to the best constraints for SMEFT fits.

Furthermore, both CtG and fGG are constrained by tt̄, tt̄H production and also contribute
to higgs productions via gluon fusion. Because of this, a strong correlation between the
two is expected and this can also be seen in the left plot of Figure 5.21. This clearly
shows the very strong correlations between these two operators, which explains why a
combination of the datasets leads to such an improvement in the constraints of fGG. As a
comparison, the right side of Figure 5.21 shows the correlations from the Higgs, Di-Boson
and EWPO fit from Ref. [16]. Clearly, the correlations between the two were already
very large for this fit. To explain why the correlations were already this strong in this fit,
it is necessary to once again talk about how the effect of CtG was implemented into that fit.
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Figure 5.21: Two-dimensional marginalized results comparing the correlations between
CtG and fGG from the combined fit (left) and the fit only using Higgs, Di-
Boson and EWPO data (right), taken from Ref. [16].

In Section 2.2.2 it was already discussed that since the dataset of the previous Higgs,
Di-Boson and EWPO fit included both tt̄H production processes and the production of
the Higgs via gluon fusion, CtG can not be neglected. To take this into account, a prior for
CtG is introduced as an additional constraint. This way CtG was not a free parameter in
the fit but constrained to values approximately following the constraints from the global
Top fit in Ref. [15]. The right plot in Figure 5.21 shows that in this fit, the correlations
between fGG and CtG have been shown to be significant already. These correlations are a
result of the prior which approximated the constraints on CtG from the global Top fit of
Ref. [15]. In the combined fit this prior is removed which means that the approximation
is dropped and the correlations can be reassessed. The results from Figure 5.21 validates
the approximation from Ref. [16].

Concluding, it was shown that the combined fit of using the data from the Top, Higgs and
Di-boson dataset leads to the same constraints for most of the WCs in the fit. One finds
that there are improvements for WCs such as Cuφ,33, CtG and fGG which all contribute to
processes involving both the top quark and the Higgs. Furthermore, it was shown that
correlations between fGG and CtG were already approximated really well in the previous
Higgs, Di-Boson and EWPO fit by implementing the prior for CtG.
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Summary and Conclusions

The main goal of this thesis was the study of physics beyond the Standard Model by
constraining WCs via global SMEFT analyses. To fully understand this, an introduction
to the SMEFT and the higher dimension operators considered in the following fits was
given. After this, SFitter was introduced, giving a summary of its most important prop-
erties and how it is used to determine the constraints on these WCs using either profiling
or marginalization methods.

Before beginning with the global analyses, however, new measurements were studied and
implemented into the Top dataset from Ref. [15]. We began with the implementation of
total rate measurements for tt̄ and tt̄Z, for which likelihoods in the HistFactory format
were published. It was shown that they allow key plots from experimental papers to
be easily reproduced, using a python library called pyhf. Following that, the likelihoods
were used to validate the assumption of Gaussian systematic uncertainties by studying
its NPs, while also confirming that one can neglect the correlations between uncertainties
within a single measurement.

After this, these published likelihoods were used to implement measurements into SFitter
for the first time. Here, the total cross section for both tt̄ and tt̄Z were added to the
dataset from the previous global Top fit [15] and it was shown that the constraints on
WCs do not get any stronger. This is due to the size of the systematic uncertainties
of the new measurements, which are of similar size to those from the measurements al-
ready in the fit and as such do not lead to stronger constraints. This shows that the
constraining power of the total rate measurements from Ref. [15] is already strong. This
suggests that smaller systematic uncertainties are necessary to improve the constraining
power coming from these total rate measurements. It is first necessary to improve the
accuracy of the theory predictions, however, since it was seen that theory uncertainties
are clearly dominant for total rate measurements, which means that more accurate ex-
periments do not directly lead to better constraints unless the predictions improve as well.

Both measurements from published likelihoods studied in this thesis were total rate mea-
surements. For a future work, it will be interesting to study the implementation of a
differential cross section using these likelihoods. Using these, it should be possible to
better determine the effect of the systematic uncertainties on each individual bin, since
they were approximated for all measurements in Ref. [15]. Also, now that the ATLAS
groups are starting to provide likelihoods for more of their measurements, giving access
to more information from the experiment than before, it is the perfect opportunity for
theorists and experimentalists to cooperate and continue this process towards extending
the scope of information provided by experiments beyond these likelihoods published by
ATLAS.
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The next part of the thesis was dedicated to the study of constraints from a global SMEFT
fit in the Top sector using profiled and marginalized likelihoods. It was shown that for
flat theory uncertainties the profiled results give much wider flat likelihoods while the
marginalization gave Gaussian likelihoods. This translates into stronger constraints for
the marginalized likelihoods, once again displaying the importance of theory uncertainties
in the Top sector.

Following this, a new differential tt̄ measurements by CMS [19] was implemented to im-
prove the constraints on CtG and the four fermion operators. It was implemented choosing
either mtt̄ or pT (th) as the observable. Starting with mtt̄ there were no issues when im-
plementing this distribution and one found that the measurement lead to significantly
stronger constraints for all four fermion operators while only very slightly affecting CtG.
Compared to this, the implementation of pT (th) distribution was more difficult, since the
calculation of NNLO predictions lead to strong discrepancies between the measured data
and SM predictions for some bins. This necessitated the removal of these troublesome
bins, after which the same global fit as for mtt̄ was performed. For the fit using the pT (th)
one observes an improvement for all four fermion operators, even more significant than
for mtt̄ and a pull of CtG closer to the SM.

Both distributions show strong constraining power for the four fermion operators coming
from the tails of the distributions, while only pT has a strong effect on CtG due to the
removal of a large number of its low energy bins. Taking these results into account, one
finds that implementing some observables may be more constraining than others. One
does, however, also need to consider that these can also prove much more difficult to in-
clude, requiring much more care before giving reasonable results. Regardless of whether
one chooses mtt̄ or pT (th) as the observable, the SMEFT contributions from interference
terms had to be neglected, since their contributions in high energy bins were too noisy to
properly extract their effects. On top of that, we saw that using the Laplace method to
introduce the correlations lead to significantly stronger constraints than expected. Both
of these issues deserve more attention and will be of interest for future studies.

In the final part of this thesis, the measurements from the Top, Higgs and Di-Boson
datasets were combined to perform a first combined fit using SFitter. It was shown that
the combined fit lead to the same constraints for the majority of WCs considered in the
fit. One does find improved constraints for the WCs directly affected by operators from
both the Top and Higgs sector. Finally, it was shown that the implementation of a prior
for CtG to approximate its contributions in Ref. [16] already lead to very good results.
With this, the first step towards a complete combined fit of the different datasets is done.
The next step, left for future work, is to compute the predictions for the EWPOs using
the flavor symmetry assumptions of the Top sector. After doing this the full combined
fit of Top, Higgs, Di-Boson and EWPO can be performed.
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Appendix

Published likelihood results for tt̄Z
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Figure 8.1: Comparison of pulls and individual impact on the tt̄Z cross section.
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8 Appendix

Groups of uncertainties in the Top fit

Theory uncertainties Statistical uncertainties Systematic uncertainties
Color Reconnection stat Beam

Extrapolation KinRec Background (Separate for each channel)
Matching MC ETmis

NLOMatching Modeling Jets
PDF bFragmentation Leptons

PDFSim Others LightTagging
ScaleSim Luminosity

Scales Pileup
ScalesT Trigger
Scheme Tune

TopMass bTagging
UnderlyingEvent partonShower

hatPDFNLO tTagging
tauTagging

Table 8.1: List of different uncertainty groups considered within the Top sector in SFitter.
Systematics in the same groups are assumed to be fully correlated between
measurements.

Systematic uncertainties in SFitter

Order Uncertainty Order Uncertainty
1/16 Luminosity (CMS/ATLAS) 9/24 BkgZZ4l (CMS/ATLAS)
2/17 Detector (CMS/ATLAS) 10/25 BkgHtGG (CMS/ATLAS)
3/18 LeptonReconstruction (CMS/ATLAS) 11/26 BkgHtTT (CMS/ATLAS)
4/19 PhotonReconstruction (CMS/ATLAS) 11/26 BkgHtTT (CMS/ATLAS)
5/20 bTagging (CMS/ATLAS) 12/27 BkgHtWW (CMS/ATLAS)
6/21 tauTagging (CMS/ATLAS) 13/28 BkgHtbb (CMS/ATLAS)
7/22 VBF (CMS/ATLAS) 14/29 WWprod 8 TeV (CMS/ATLAS)
8/23 LeptonIsolation (CMS/ATLAS) 15/30 WZprod 8 TeV (CMS/ATLAS)
31 WZprod 7 TeV (ATLAS)

Table 8.2: List of different systematic uncertainties included in the Higgs,Di-Boson and
EWPO fit and their ordering within SFitter.
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8 Appendix

Analytic expressions used in marginalization
This is a list of different analytic expression used in the marginalization of the likelihood.

Poisson-Gamma Model

P(d|s, bSR, k) =
∫
d(bk)Pois(d|s+ b)Pois(bSRk|bk)

=

∫
db

1

Γ(d+ 1)Γ(bSRk + 1)
e−s+b(s+ b)de−kb(bk)bSRk

=
d∑

i=0

Γ(i+ kbSR + 1)

Γ(i+ 1)Γ(bSRk + 1)

(
k

1 + k

)kbSR
(

1

1 + k

)i+1

Pois(d− i|s)k

Flat-Flat-Gauss convolution

GFF(d|p, σth,1, σth,2, σsyst) =

∫
dp̃N (d|p̃, σsyst)p2(p̃|p, σth,1, σth,2) .

where p2 is the results of a convolution of two flat distributions.
Computing the integral gives

GFF(d|p, σth,1, σth,2, σsyst) =
1

4σth,1σth,2
[F1(b1, b2)− b1F1(b1, b2)

+ 2σth,2F1(b2, b3) + b4F1(b3, b4)− F2(b3, b4)]

where

b1 = p− σth,1 − σth,2

b2 = p− σth,1 + σth,2

b3 = p+ σth,1 − σth,2

b4 = p+ σth,1 + σth,2 ,

(8.1)

assuming that σth,1 > σth,2.

Finally F1 and F2 are defined as

F1(a, b;µ, σ) =
1

2

[
erf
(
b− µ

2σ

)
erf
(
a− µ

2σ

)]
(8.2)

and
F2(a, b;µ, σ) = σ2 [N (a|µ, σ)−N (b|µ, σ)] + µF1(a, b;µσ) . (8.3)

The generalization to more than two theory uncertainties is then done by only taking
the two largest theory uncertainties and adding the remaining ones in quadrature to
the total Gaussian uncertainty. This approximation has been checked and has shown
excellent agreement with numerical results.
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8 Appendix

Rotation from Warsaw to HISZ basis
The following is a list of the expressions needed to rotate from the Warsaw basis to the
HISZ basis, as they are used in the combined fit in Chapter 5 and are taken from Ref. [38].

−αs

8π
fGG = CφG f4L = C̄ ′

ll

f3W =
4

g3
CW ftG = − i

gs
CuG,33

fB =
8

g′2
C̄

(1)
φl fW = − 8

g2
C̄

(3)
φl

fφ1 = CφD + 4C̄
(1)
φl

fφ2 = −2Cφ� − 2C̄
(1)
φl + 6C̄

(3)
φl

fφ = Cφ − 4λC̄
(3)
φl

mτ

ν
fτ = Ceφ,33 − 2(Ye)33C̄

(3)
φl f

(1)
φe = C̄φe − 2C̄

(1)
φl

mt

ν
ft = Cuφ,33 − 2(Yu)33C̄

(3)
φl f

(1)
φu = C̄φu +

4

3
C̄

(1)
φl

mb

ν
fb = Cdφ,33 − 2(Yd)33C̄

(3)
φl f

(1)
φd = C̄φd −

2

3
C̄

(1)
φl

mµ

ν
fµ = Ceφ,22 − 2(Ye)22C̄

(3)
φl f

(1)
φQ = C̄

(1)
φq +

1

3
C̄

(1)
φl

f
(3)
φQ = 4

[
C̄

(3)
φq − C̄

(3)
φl

]
fBB = − 4

g′2

[
CφB − C̄

(1)
φl

]
fWW =

4

g2

[
CφW + C̄

(1)
φl

]
fBW = 4

[
−CφWB

gg′
−
C̄

(3)
φl

g2
+
C̄

(1)
φl

g′2

]

Finally the quartic Higgs coupling gets redefined as

λHISZ = λWarsaw +
4m2

h

Λ2
C̄

(3)
φl
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