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21cm-Parameterinferenz – Einschränkung der erweiterten
Starobinsky-Inflation und mehr mit zukünftigen kosmologischen
Experimenten:

Starobinski-Inflation ist ein grundlegendes Modell, das auf einer Modifikation
der allgemeinen Relativitätstheorie beruht und konsistent mit den Messungen
des kosmischen Mikrowellenhintergrunds (CMB) der Planck-Mission ist. Eine
zusätzliche Erweiterung auf Krümmungsterme höherer Ordnung ermöglicht die
Untersuchung von Quantengravitationseffekten. Die Auswirkungen der Infla-
tion lassen sich in den Temperaturanisotropien des CMB und der großräumigen
Struktur beobachten. Das zukünftige Square Kilometer Array (SKA) wird die
Verteilung von neutralem Wasserstoff im Universum über einen großen Bereich
von Rotverschiebungen kartieren. Diese Karten können verwendet werden, um
astrophysikalische Parameter mit Hilfe von Deep-Learning-Techniken für Like-
lihood freie Schlussfolgerungen zu bestimmen. Darüber hinaus zeigt diese Ar-
beit, dass SKA in Kombination mit zukünftigen CMB-Daten die derzeitigen
Beschränkungen der Parameter des erweiterten Starobinski-Modells erheblich
verbessern kann.

21cm Parameter Inference – Constraining extended Starobinsky In-
flation and more with future cosmological Experiments:

Starobinsky inflation is a fundamental model, based on a modification of general
relativity, consistent with the measurement of the Cosmic Microwave Background
(CMB) by Planck. A further extension to higher order curvature terms allows
to probe quantum gravity effects. The effects of inflation can be observed in
the temperature anisotropies of the CMB and large scale structure. The future
Square Kilometer Array (SKA) will map out the distribution of neutral hydrogen
in the universe over a large range of redshifts. These maps can be used to deter-
mine astrophysical parameters using deep learning techniques for likelihood-free
inference. In addition, this thesis shows that SKA, in combination with future
CMB data, can significantly improve the current constraints on the parameters
of the extended Starobinsky model.
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CHAPTER 1

Introduction

Inflation was first proposed to give an elegant solution to some of the problems,
e.g. the horizon problem, in the standard model of cosmology [1, 2, 3]. It is a very
short period of accelerated expansion after the beginning of the Universe. This rapid
expansion can explain the isotropy in the Cosmic Microwave Background (CMB),
even in regions which would have never been in causal contact, in the standard Big
Bang scenario [4]. Additionally, naturally occurring quantum fluctuations during
inflation are the seeds for the structure observed in the Universe today. They are
visible in the CMB [5] as well as in large-scale structures like galaxy clustering or
the distribution of dark matter. Since inflation happened almost immediately after
the Big Bang its condition can hardly be reproduced in experiments. Hence, the
effects can only be tested by looking at its influence on structure formation in the
sky and comparing it to theoretical predictions.

This thesis is focused on one particularly successful model, the Starobinsky or R2-
inflationary model [3, 6, 7, 8]. According to the analysis by the Planck collaboration,
it is one of the best-fit model to the data coming from the early Universe [5], the
CMB. This model extends General Relativity (GR) by not only having the Ricci-
scalar R but additionally a term proportional to R2 in the action. It has one free
parameterM , which manifests itself in the amplitude of the primordial scalar power
spectrum and can be adjusted to fit the reported value. Naturally, this model
predicts the measured scalar index ns. From a phenomenological point of view it is
highly motivated to also start including higher order terms. R2 is merely a correction
to GR, hence there is no ad hoc reason why a suppressed R3 term should not be
included. Now, the theory has a second parameter c parametrising the strength of
the R3 correction term and the goal of this thesis is to forecast constraints on these
two Starobinsky parameters.

In this work future CMB experiments are used to test this extended Starobinky
model. On the one hand is the LiteBIRD satellite [9, 10, 11], which will detect
B-mode polarisation with moderate resolution, but excellent sensitivity. Inflation
predicts non vanishing tensor modes, leading to B-modes in the CMB. On the other
hand, CMB-S4 [12, 13, 14, 15], a ground-based detector with excellent resolution
and sensitivity, is considered. Both of these experiments will start operating at the
end of this decade. In addition to the data from the early Universe, there is a lot of
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CHAPTER 1. INTRODUCTION

information about the inflationary period in the in the distribution of dark matter
and hydrogen following it. Therefore, the future 21cm experiment Square Kilometer
Array (SKA), which will map out the hydrogen in the Universe, can tighten the
constraints significantly [16, 17, 18]. It is going to measure the 21cm-hyperfine
transition line, giving insight into the epoch of reionization and the dark ages.

In Ch. 2 the basics of cosmology are explained before giving an introduction to
general single-field inflation and its motivation in Ch. 3. Ch. 4 deals with the
theory of cosmological perturbations and especially, how to obtain the primordial
power spectra, a very central object in the analysis. Then, the inflationary model
of interest, R2-inflation is discussed in Ch. 5 and certain predictions are shown in
a qualitative way to gain intuition before the extensive results. Ch. 6 shows how
the inflatinary mechanism can be probed with observations today. In Ch. 7 the
main tools of the analysis are introduced and the specifications of the considered
experiments presented. Finally, Ch. 8 gives the constraints of extended Starobinsky
inflation and general cosmological parameters. Ultimately, the content of the thesis
takes a turn and explores in the last chapter (9) a deep learning bayesian inference
set-up using 21cm tomography. However, not for the previously used inflationary
parameters, but dark matter and epoch of reionization parameters.

2



CHAPTER 2

FLRW Universe

Before diving into the theory of and the motivation for inflation in the next chapter,
it is necessary to discuss the fundamental objects used in the description of the
Universe. Its evolution is determined by the laws of gravity: General Relativity
(GR). This chapter is based on the Baumann TASI Lecture Notes on Inflation [19].

2.1 Geometry

The Universe is on large scales homogeneous and isotropic. This kind of geometry is
described by the Friedmann- Lemâıtre-Robertson-Walker (FLRW) metric gµν , which
is defined by the following line element

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.1)

where a(t) is the scale factor and k ∈ {−1, 0, 1} is the curvature. This particular
line element has a rescaling symmetry

a→ λa, r → r/λ, k → λ2 . (2.2)

It is therefore possible to set a0 ≡ a(t0) ≡ 1, where t0 equals the time today, by
using the rescaling symmetry in a suitable way.
It can be convenient to make the variable transformation dχ = dr/

√
1− kr2 to

rewrite the line element to

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]
, (2.3)

with

Sk(χ) =


sinhχ,k = −1

χ,k = 0

sinχ,k = +1

. (2.4)

Since the propagation of light depends on the causal structure of the universe, it is
sensible to introduce conformal time

dτ =
dt

a(t)
, (2.5)

3



CHAPTER 2. FLRW UNIVERSE

so that Eq. (2.3) becomes

ds2 = a2(τ)
[
−dτ 2 + (dχ2 + S2

k(χ)dΩ
2
)
] . (2.6)

The metric has factorised into a Minkowskian one and the scale factor. Since light
travels on null geodesics ds2 = 0, the propagation of light in FLRW is the same as
in Minkowksi space if one transforms to conformal time, which is called conformal
flatness.

2.2 Kinematics

A particle of mass m follows the trajectory, which extremises proper time δs/c. The
curve is called a geodesic and the extremal path satisfies the geodesic equation

dUµ

ds
+ ΓµαβU

αUβ = 0 , (2.7)

where Uµ is the four-velocity and Γµαβ are the Christoffel symbols defined by

Γµαβ ≡ 1

2
gµλ(∂αgβλ + ∂βgαλ − ∂λgαβ) . (2.8)

Given the definition of the four-momentum P µ = mUµ and the FLRW metric, one
gets

P 0dP
µ

dt
= −ΓµαβP

αP β

= −(2Γµ0jP
0 + Γµij)P

j ,
(2.9)

since every other index combination of the Christoffel symbols vanishes.

There are a few things to notice in this equation. If the particle is at rest in the
comoving frame, it will stay at rest. Furthermore, the physical three-momentum
p2 = gijP

iP j = a2(t)γijP
iP j of every particle decays with the expansion of the

universe, since
ṗ

p
= − ȧ

a
⇒ p ∝ 1

a
. (2.10)

2.3 Redshift

In the quantum mechanical description of the photon its wavelength is given by
λ = h/p. Because of Eq.(2.10) the momentum of the photon evolves as a−1(t).
Hence, a photon emitted at time t1 with wavelength λ1 is observed at t0 with the
wavelength

λ0 =
a(t0)

a(t1)
λ0 . (2.11)

Since a(t0) > a(t1) the wavelength of the photon increases, it is redshifted. The
amount of redshift is parametrised by the redshift parameter

z ≡ λ0 − λ1
λ1

. (2.12)

4



CHAPTER 2. FLRW UNIVERSE

2.4 Dynamics

To understand the dynamics of the universe it is necessary to consider the Einstein
equation

Gµν = 8πGTµν − Λgµν , (2.13)

where Gµν denotes the Einstein tensor characterising the spacetime curvature, Tµν
is the stress-energy tensor and Λ describes the cosmological constant.

The homogeneity and isotropy requirements force the stress-energy tensor to be the
one of a perfect fluid,

Tµν = (ρ+ P )UµUν − Pgµν , (2.14)

where ρ is the energy density and P is the pressure of the fluid. The structure of
the Einstein tensor forces the covariant conservation equation

∇µT
µ
ν = 0 (2.15)

and the continuity equation follows

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (2.16)

This equation determines the evolution of the density of the contents of the universe
as it expands. Given a constant equation of state w = P/ρ the solutions to Eq.(2.16)
scale as

ρ ∝ a−3(1+w) , (2.17)

and therefore

ρ ∝


a−3, w = 0, matter

a−4, w = 1/3, radiation

a0, w = −1, vacuum

. (2.18)

In order to relate the matter sources to the evolution of the universe it is necessary
to compute the Einstein tensor. It is defined as

Gµν = Rµν −
1

2
Rgµν , (2.19)

where the Ricci tensor is

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ (2.20)

and the Ricci scalar is
R = gµνRµν . (2.21)

Given the metric of the FLRW universe these are all computable objects and read
as follows

R = −6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(2.22)

G0
0 = 3

[(
ȧ

a

)2

+
k

a2

]
(2.23)
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CHAPTER 2. FLRW UNIVERSE

Gi
j =

[
2
ä

a
+

(
ȧ

a

)2

+
k

a2

]
δij . (2.24)

All other components of the Einstein tensor are equal to zero. Combining the stress-
energy tensor with the Einstein tensor yields the two Friedmann equations:

H2 =
8πG

3
ρ− k

a2
(2.25)

ä

a
= −4πG

3
(ρ+ 3P ) , (2.26)

where H is the Hubble parameter, H ≡ ȧ/a. Note, that the continuity equa-
tion (2.16) can be derived from the two Friedmann equations and those are not
independent. The first Friedmann equation Eq.(2.25) is often written in terms of
dimensionless density parameters

Ωi ≡
ρi
ρcrit

(2.27)

where i ∈ {r,m, k,Λ}, denoting radiation, matter, curvature and dark energy, re-
spectively. ρcrit denotes the critical density today, hence

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ . (2.28)

Due to the different scaling of the various components of the universe, it is most
of the time dominated by one single component. At first it was radiation, then
matter and dark energy at last. For a universe filled with one single component i
the Friedman equation Eq.(2.28) reduces to

ȧ

a
= H0

√
Ωia

−3(1+wi)/2 . (2.29)

The evolution of the scale factor depends on the dominating component of the
universe, as can be seen by the solution to the Friedmann equation:

a(t) ∝


t1/2, radiation dominated

t2/2, matter dominated

eHt, dark energy dominated

. (2.30)
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CHAPTER 3

Inflation

The standard Big Bang scenario resulting from FLRW cosmology has some major
problems. For example, it cannot explain why the Universe is so homogeneous and
isotropic on large scales today. Inflation, an early period of exponential expansion,
solves this problem. This chapter introduces this problem and its solution in more
detail and discusses the necessities to successfully set up an inflationary theory. Like
the previous chapter it follows the Baumann TASI lecture notes on inflation [19].
Here, the reduced Planck mass, instead of Newton’s gravitational constant, is used:

MP =

√
ℏc
8πG

= 2.4 · 1018GeV (3.1)

3.1 Horizon Problem

The size of a patch in the sky, which is causally connected, is determined by how
far light can travel in a certain amount of time. Using the definition of conformal
time in Eq.(2.5) and ds2 = 0 the path of photon in the FLRW universe is

∆χ(τ) = ±∆τ , (3.2)

where the + and − correspond to outgoing and incoming photons, respectively.
There are two horizons in cosmology, illustrated in Fig. 3.1:

• Particle horizon: The greatest comoving distance from which an observer can
receive a signal is given by

χph(τ) = τ − τi =

∫ t

ti

dt

a(t)
. (3.3)

χph is called the particle horizon. Every causal influence on the observer has
to come from within this region.

• Event horizon: The greatest distance from which an observer at time tf can
receive a signal emitted later than t is called the event horizon and is given by

χeh(τ) = τf − τ =

∫ tf

t

dt

a(t)
. (3.4)

7



CHAPTER 3. INFLATION

Figure 3.1: Spacetime diagram illustrating the concept of the two horizons, adapted
from Ref.[19].

For the horizon problem, the relevant one is the particle horizon and it can be better
understood by considering the Hubble sphere. Eq. (3.3) can be rewritten as

χph(a) =

∫ t

ti

dt

a
=

∫ ln a

ln ai

(aH)−1d ln a . (3.5)

With a stress-energy tensor describing a perfect fluid with a constant equation of
state the particle horizon follows as

χph =
2H−1

0

1 + 3w

[
a

1
2
(1+3w) − a

1
2
(1+3w)

i

]
, (3.6)

where the comoving Hubble radius

(aH)−1 = H−1
0 a

1
2
(1+3w) (3.7)

is used. It can be clearly seen, that the particle horizon gets its largest contribution
from late times, if w > −1/3, i.e. if the comoving Hubble radius increases as the
universe expands.

The problem arises when one considers the cosmic microwave background (CMB).
It was formed just after the formation of the first atoms, called recombination. The
photons fell out of equilibrium with electrons as there were a lot less electrons around
to scatter off. The CMB is discussed in more detail in Sec. 6.1. Now, the problem
is that the every point of CMB has the same temperature up to one part in ten
thousand. However, if one considers two points in the sky, it is possible to calculate
their particle horizons and notices, that if they are separated by more than one
degree, there are no points inside both of their horizons. Which poses the question:
How can photons have the same properties if they have never been in contact before?

3.2 Solution to the Horizon Problem

The particle horizon is only dominated by late times if the Hubble radius is con-
stantly increasing. Considering a phase of a shrinking Hubble radius in the early

8



CHAPTER 3. INFLATION

Figure 3.2: Spacetime diagram illustrating the concept of the shrinking Hubble
sphere and the causal contact between two points of the CMB, adapted from Ref.[19].

universe,
d

dt
(aH)−1 < 0 . (3.8)

This pushes the Big Bang singularity to negative conformal time

τi =
2H−1

0

1 + 3w
a

1
2
(1+3w)

i

ai→0, w<−1/3−−−−−−−−→ −∞ (3.9)

A shrinking Hubble sphere requires the equation of state w < −1/3 (3.7). For a
sufficiently long phase of decreasing Hubble radius all points in the observed CMB
are in causal contact and had enough time to thermalise. This solution is illustrated
in Fig. 3.2, where the causal contact for different regions of the CMB is made possible
by the shrinking Hubble-sphere.

To solve the horizon problem, it is necessary that the observable Universe today fits
inside the comoving Hubble sphere at the beginning of inflation,

(a0H0)
−1 < (aIHI)

−1 . (3.10)

To estimate the duration of the inflationary period, one can ignore the recent matter-
and dark energy-dominated epochs and concentrate on the radiation domination
(H ∝ a−2) and obtain

a0H0

aEHE

∼ aE
a0

∼ T0
TE

∼ 10−28 . (3.11)

For the rough estimation of the growth of the universe during inflation the temper-
ature at the end of inflation is TE = 1015 GeV and T0 = 103 eV today. Assuming a
constant Hubble parameter during inflation gives

aE
aI

> 1028 or ln
aE
aI

> 64 . (3.12)

Hence, the horizon problem requires around 64 e-folds of inflation.

9



CHAPTER 3. INFLATION

3.3 Equivalent Ways of Characterising Inflation

Inflation can be defined by the period in which the Hubble sphere is shrinking.
However, there are different ways of describing inflation which can be derived from
the shrinking Hubble sphere.

• Accelerated expansion:

d

dt
(aH)−1 =

d

dt
(ȧ)−1 = − ä

(ȧ)2
(3.13)

Therefore, a shrinking Hubble radius implies an accelerated expansion ä > 0.

• Slowly-varying Hubble parameter :

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ϵ) , (3.14)

where ϵ ≡ −Ḣ/H2 < 1 for an inflationary period.

• Negative pressure:
Inserting the continuity equation (2.16) into the ϵ-parameter gives

ϵH = − Ḣ

H2
=

3

2

(
1 +

P

ρ

)
< 1 ⇒ P

ρ
= w < −1

3
. (3.15)

Since the density is always greater than zero inflation occurs if the pressure is
negative.

The slowly varying Hubble-parameter motivates a look at the Hubble-function in
more detail. During inflation it is slowly varying and can therefore be described
sufficiently enough with its Taylor expansion

H(φ) =
N∑
n=0

1

n!

dnH

dφn

∣∣∣∣
φ⋆

(φ− φ⋆)
n , (3.16)

where φ⋆ is a fixed field value, which will get a physical interpretation later on. As
it turns out, a convenient way to describe the expansion is with the logarithmic
changes [20]

λ
(n)
H =

(
M2

P

4π

)n
(H ′)n−1

Hn

dn+1H

dφn+1
n ≥ 1 , (3.17)

where it is common to give the first 4 parameters each its own name:

λ(1) = ϵH , λ(2) = ηH , λ(3) = ξ2H , λ(4) = ω3
H . (3.18)

3.4 The Physics of Inflation

Having established the need for inflation it is worthwhile to investigate under which
conditions it can occur and also stop. A simple model is the scalar inflaton field
φ(x), with the action

Sφ =

∫
d4x

√
−g
[
1

2
gµν∇µφ∇νφ− V (φ)

]
, (3.19)

10



CHAPTER 3. INFLATION

where g denotes the determinant of the metric. In this model the inflaton is min-
imally coupled to gravity and has some self-interaction described by V (φ). The
stress-energy tensor can be found by varying the action with respect to δgµν ,

Tµν = ∇µφ∇νφ− gµν

(
1

2
gαβ∇αφ∇βφ− V (φ)

)
. (3.20)

When the stress-energy of this field dominates the universe it controls the evolution.
Due to the symmetries of a FLRW universe the field cannot depend on spatial coor-
dinates, hence, it can only depend on t. The energy density and the pressure follow
from time-time and space-space components of the stress-energy tensor, respectively:

T 0
0 = ρφ =

1

2
φ̇2 + V (φ) (3.21)

T ij = −Pφδij ⇒ Pφ =
1

2
φ̇2 − V (φ) (3.22)

The equation of state is then given by

wφ =
Pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (3.23)

To fulfil the condition w < −1/3 the potential energy of the inflaton has to dominate
over the kinetic energy.

Using both Friedman equations (2.25) the time evolution equation of the inflaton
field is described by a Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (3.24)

As seen in the previous section 3.3, inflation only occurs if the Hubble parameter is
slowly varying. To describe the situation the first slow-roll parameter is introduced

ϵ = − Ḣ

H2
=

1
2
φ̇2

M2
PH

, (3.25)

where the inflation condition (ϵ < 1) is only fulfilled if the kinetic energy is small.
Since inflation has to be sustained long enough to causally connect all the observables
in the CMB the acceleration of the field has to be small as well. This is described
by the dimensionless acceleration per Hubble time

δ ≡ − φ̈

Hφ̇
. (3.26)

Introducing the second slow-roll parameter

η ≡ ϵ̇

Hϵ
= 2(ϵ− δ) , (3.27)

the conditions for an adequately long sustained period of inflation read ϵ, |η| ≪ 1.
Since the slow-roll parameters are small it is possible to simplify the Friedmann
equation (2.28) to

H2 ≈ V

3M2
P

. (3.28)

11



CHAPTER 3. INFLATION

Hence, the Hubble-parameter is completely determined by the inflaton potential and
the equation of motion becomes

3Hφ̇ ≈ −dV

dφ
= −V ′ . (3.29)

From these equations it becomes clear that a characterization of slow-roll inflation in
terms of the potential is also possible. These are the potential slow-roll parameters

ϵV ≡ M2
P

2

(
V ′

V

)2

, |ηV | ≡M2
P

|V ′′|
V

. (3.30)

There is the same condition for successful slow-roll inflation as before, namely
ϵV , |ηV | ≪ 1.
The amount of inflation is characterised by the total number of e-folds of accelerated
expansion

Ntot =

∫ aend

aini

d ln a =

∫ tend

tini

H(t)dt , (3.31)

where tini and tend are defined by the boundaries where ϵ(t) < 1. Using Eq. (3.29)
and Eq. (3.30) one can write

Ntot =

∫ φend

φini

1√
2ϵV

|dφ|
MP

. (3.32)

3.5 Reheating

In order to end inflation the potential has to steepen as then the equation of state
becomes larger then −1/3 and accelerated expansion stops. The inflaton picks up
a lot of kinetic energy, since most of the energy density in the universe is in the
form of the inflaton potential. Then, it starts to oscillate very rapidly around the
minimum of the potential, which is assumed to be approximated by V (φ) = 1

2
m2φ2.

The equation of motion becomes

φ̈+ 3Hφ̇ = −m2φ . (3.33)

Since the expansion time scale H−1 is much larger than the oscillation period m−1,
the friction term 3Hφ̇ can be ignored and the inflaton field oscillates with frequency
m [19]. The energy continuity equation reads as

ρ̇φ + 3Hρφ = −3HPφ = −3

2
H(m2φ2 − φ̇2) . (3.34)

Since the average over one oscillation of the r.h.s vanishes the pressure of the field
is equal to zero and it behaves like pressureless matter.
The inflaton has to couple to Standard Model (SM) particles, otherwise the universe
would be empty. This adds a term to the energy continuity equation,

ρ̇φ + 3Hρφ = −Γφρφ , (3.35)

where Γφ parametrises the decay rate of the inflaton. After the inflaton has de-
cayed into the usual SM degrees of freedom the standard Hot Big Bang scenario
commences.
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CHAPTER 4

Cosmological Perturbation Theory

Inflation does not only explain the observed flatness and solves the horizon problem,
it also seeds the structures of the Universe through primordial quantum fluctuations,
which evolve into macroscopic fluctuations through exponential expansion. In this
chapter the formalism of cosmological perturbation theory is discussed and linked
to inflation, following the Baumann TASI lecture notes on inflation [19].

4.1 Generalities

To understand how large-scale structures in the universe have formed, it is necessary
to consider small perturbations in the early universe. Since the inhomogeneities of
the CMB are of order 10−5, it is sufficient to expand all objects of interest as an
isotropic average plus some space-dependent perturbation,

X(x, t) = X̄(t) + δX(x, t) . (4.1)

Perturbations in the FLRW metric and the matter distribution will be coupled to
each other through the Einstein equation.

4.1.1 Perturbed Spacetime

To avoid any unnecessary difficulties, it is sensible assume a flat FLRW spacetime,
where the metric is defined by

ds2 = a2(τ)[−dτ 2 + δijdx
idxj] . (4.2)

The perturbation is performed according to Eq. (4.1)

gµν = ḡµν + δgµν , (4.3)

which leads to

ds2 = a2(τ)[−(1 + 2A)dτ 2 − 2Bidx
idτ + (δij + hij)dx

idxj] , (4.4)

where A, Bi and hij are functions of space and time.

13



CHAPTER 4. COSMOLOGICAL PERTURBATION THEORY

The Einstein equations for scalars, vectors and tensors do not mix. Hence, it is
useful to separate the perturbations according to this classification. This procedure
is naturally called SVT-decomposition. Any vector can be split into the gradient of
a scalar and a divergence-free vector, as can be done for a tensor:

Bi = ∂iB + B̂i , (4.5)

hij = 2Cδij + 2∂⟨i∂j⟩E + 2∂(iÊj) + 2Êij , (4.6)

where

∂⟨i∂j⟩E ≡ (∂i∂j −
1

3
δij∇2)E , (4.7)

∂(iÊj) ≡
1

2
(∂iÊj + ∂jÊi) . (4.8)

The 10 degrees of freedom of the metric thus have been decomposed into 4 + 4 + 2
SVT d.o.f.:

• scalars : A, B, C, E

• vectors : B̂i, Êi

• tensors : Êij

The Gauge Problem
These perturbations are not uniquely defined as one can always perform a gauge
transformation, e.g. xi 7→ xi + ξi(τ,x). Starting from the unperturbed metric a
gauge transformation has the same effect as perturbing the metric itself. Which
means in return that perturbations can be gauged away. This clearly imposes a
problem, since it is necessary to introduce real, physical perturbations. One way to
do so is to look at gauge invariant perturbations, which can be constructed in the
following way

Ψ ≡ A+H(B − E ′) + (B − E ′)′

ϕ̂ ≡ Ê ′
i − B̂i

Êij

ϕ ≡ −CH(B − E ′) +
1

3
∇2E ,

(4.9)

where the X ′ = dX
dτ

and H = a′/a is the Hubble parameter in conformal time.
These gauge invariant perturbations are called the Bardeen variables. Another way
to solve the problem is to simply fix the gauge. A popular gauge is the Newtonian
gauge, where B = E = 0 implies the metric

ds2 = a2(τ)[−(1 + 2Ψ) + (1− 2ϕ)δijdx
idxj] . (4.10)

Here, the perturbations have been renamed in such a way, that one can see the
resemblance to the Bardeen variables.

4.1.2 Perturbed Matter

Similar to the metric, one can also impose small perturbations in the energy-
momentum tensor

T µν = T̄ µν + δT µν , (4.11)
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CHAPTER 4. COSMOLOGICAL PERTURBATION THEORY

where

δT µν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν − Πµ
ν . (4.12)

Redefining the isotropic pressure P allows to find a traceless anisotropic stress tensor
Πµ

ν . In the frame orthogonal to the anisotropic stress tensor (UµΠµν = 0), with four-
velocity Uµ, one can assume without loss of generality Π0

0 = 0 = Π0
j. Since the

perturbed four-velocity has to satisfy gµνU
µUν = −1, there are only three degrees

of freedom, i.e.
Uµ = a

(
1 + A,−(vi +Bi)

)
, (4.13)

with the variables from Eq.(4.9). Using this, the perturbations in the stress-energy
tensor are as follows

δT 0
0 = δρ

δT i0 = (ρ̄+ P̄ )vi

δT 0
j = −(ρ̄+ P̄ )(vj +Bj)

δT ij = −δPδij − Πi
j .

(4.14)

From now on, qi will be used as the momentum density (ρ̄ + P̄ )vi, which can be
decomposed in a scalar and vector part. The density and matter perturbation have
scalar parts only, and the anisotropic stress has scalar, vector an tensor parts. The
nomenclature is the same as in the previous SVT-decomposition.

Similar to the space-time perturbations, gauge transformations can absorb the affect
of matter perturbations. The result of a coordinate transformation on the stress-
energy tensor looks the same as a perturbation. There are various gauge-invariant
quantities, for example

ρ̄∆ = δρ+ ρ̄′(v +B) . (4.15)

∆ is called the comoving-gauge density perturbation. Alternatively, one can fix the
gauge by either setting the scalar momentum density to zero (q = 0), which is called
comoving gauge, or by setting the total density perturbation to zero (δρ=0), which
is called uniform density gauge.

4.1.3 Perturbed Equations

Using the defined metric and matter perturbations, it is possible to work out the
effects of the perturbations. It is necessary to choose a gauge, which will be the
Newtonian gauge here, where the metric takes the following form

gµν = a2
(
−(1 + 2Ψ) 0

0 (1− 2ϕ)δij

)
, (4.16)

and the anisotropic stress is set to zero.

From the perturbed metric one can calculate the perturbed connection. By consid-
ering the individual components of the stress-energy conservation equation

∇µT
µ
ν = 0 , (4.17)

one gets the following perturbed equations:

15



CHAPTER 4. COSMOLOGICAL PERTURBATION THEORY

Continuity Equation

The ν = 0 component of Eq. (4.17) gives the perturbed continuity equation with
the zeroth-order and first-order term

ρ̄′ = −3H(ρ̄+ P̄ ) , (4.18)

δρ′ = −3H(δρ+ δP ) + 3ϕ′(ρ̄+ P̄ )−∇q , (4.19)

respectively. The zeroth-order equation is just the unperturbed continuity equation
as one would expect. On the right-hand side of the first-order equation are three
terms. The first one corresponds to the dilution of the perturbations due to the
background expansion. The second one is a relativistic effect caused by the local
expansion rate and the last term accounts for the local fluid flow.

Euler Equation

The ν = i components of the stress-energy conservation equation (4.17) give the
relativistic version of the Euler equation

v′ +Hv − 3H P̄ ′

ρ̄′
v = − ∇δP

ρ̄+ P̄
−∇Ψ . (4.20)

Einstein Equations

From the perturbed connection one can calculate the Einstein tensor and relate
it to the perturbed stress-energy tensor using the Einstein equation. The absence
of anisotropic stress implies ϕ = Ψ, which allows to write all equations in terms of
ϕ. Here, only the resulting first order equations will be stated.
From the 00-equation follows

∇2ϕ = 4πGa2ρ̄δ + 3H(ϕ′ +Hϕ) , (4.21)

where δ ≡ δρ/ρ̄. The 0i-equation gives

ϕ′ +Hϕ = −4πGa2(ρ̄+ P̄ )v . (4.22)

This results with the 00-equation and the comoving density perturbation in a Poisson
equation

∇2ϕ = 4πGa2ρ̄∆, (4.23)

where ∆ can be understood as fractional overdensities in the comoving gauge which
source the gravitational potential ϕ. Finally, the ii-equation yields at first order

ϕ′′ + 3Hϕ′ + (2H′ +H2)ϕ = 4πGa2δP . (4.24)

4.1.4 Conserved Curvature Perturbation

An important gauge invariant quantity is the comoving curvature perturbation R.
In Newtonian gauge it is given as

R = −ϕ+Hv , (4.25)
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or in terms of the gravitational potential and its time derivative

R = −ϕ− H(ϕ′ +Hϕ)
4πGa2(ρ̄+ P̄ )

. (4.26)

The importance of the comoving curvature perturbations becomes clear by noticing,
that they are conserved on super-Hubble scales for adiabatic fluctuations [21].

4.2 Initial Conditions from Inflation

A very important aspect of inflation is that it provides the seed for structure forma-
tion in the universe and we do not end up in a completely homogeneous universe.
Due to quantum fluctuations of the inflaton field δφ(t,x) = φ(t,x) − φ̄(t), which
can vary spatially, inflation ends at different times at different places in the universe.
This can be understood by realising that inflation ends when the field acquires a
certain value. This leads to a difference in the amount of expansion that occurs and
finally in differences in the local density δρ(t,x).

It is necessary to briefly discuss the definition of a power spectrum and the notation.
Starting from some arbitrary perturbations δ(x) the Fourier transformation is given
by

δ(x) =

∫
d3k

(2π)3
δ(k)eikx (4.27)

and its variance

⟨δ(x)⟩2 =
∫

d3k

(2π)3
eikx

∫
d3k′

(2π)3
eik

′x ⟨δ(k)δ∗(k′)⟩ , (4.28)

where the correlation is given by

⟨δ(k)δ∗(k′)⟩ = (2π)3δD(k − k′)Pδ(k
′) , (4.29)

with the delta distribution δD(k−k′) and the dimensionfull power spectrum Pδ(k
′).

The delta distribution cancels one integral and one is left with∫
d3k

(2π)3
Pδ(k) =

∫
d ln

k3

(2π)3
Pδ(k) . (4.30)

Now, one can introduce the dimensionless power spectrum Pδ(k) as

Pδ(k) =
k3

(2π)3
Pδ(k) . (4.31)

Note the unfortunately common notation with the marginal difference in P and P .

4.2.1 From Quantum to Classical

The fluctuation of the inflaton field can be described by quantum harmonic oscilla-
tors on small scales, which induce a non-zero variance in the amplitudes〈

|δφk|2
〉
≡ ⟨0||δφk|2|0⟩ ≠ 0 . (4.32)
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Figure 4.1: Curvature perturbation during and after inflation, adapted from Ref.[19].
ϕ is equivalent to φ in the text.

The wavelength of these fluctuations stays constant in the comoving frame dur-
ing inflation, but the Hubble radius shrinks. Therefore, these fluctuations become
larger than the Hubble radius, called superhorizon, at some point during inflation.
At the horizon crossing k = aH it is sensible to describe the fluctuations by the
conserved curvature perturbation R, as they do not evolve outside the horizon. On
the superhorizon scale, the nature of the fluctuations is no longer quantum and the
expectation value can be understood as the ensemble average of a classical stochastic
field. The evolution of perturbations is illustrated in Fig. 4.1. In spatially flat gauge
R is given by

R = −H
φ̄′ δφ , (4.33)

and its variance 〈
|Rk|2

〉
=

(
H
φ̄′

)2 〈
|δφk|2

〉
. (4.34)

Most of the fluctuations exit the horizon well before the end of inflation. There are
fluctuations on all scales, hence some exit the horizon only right before reheating.
However, they are very small scale and not experimentally testable. The fluctuations
remain constant during the phase of unknown physics, like reheating. One would
not be able to compute the evolution of perturbations in this regime, so it is rather
fortunate that the perturbations exit the horizon before this phase and re-enter
it afterwards, when it is possible to calculate the evolution equations. It is only
therefore, that inflationary theories are testable.

4.2.2 Mukhanov-Sasaki Equation

The action of the inflaton is

S = −
∫

dτd3x
√
−g
[
1

2
gµν∂µφ∂νφ− V (φ)

]
. (4.35)
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Splitting the field in a background part and its space-time dependent fluctuations
φ = φ̄(t) + δφ(xµ), where its convenient for a moment to change back to normal
time, and expanding the action up to second order yields the equation [22]

Q̈+ 3HQ̇+

[
k2

a2
+ V,φφ −

1

a3
d

dt

(
a3

H
φ2

)]
Q = 0 , (4.36)

where Q =
˙̄φ
H
R and V,X denotes dV

dX
. From now on, the bar for the background field

will be omitted. This equation is useful to perform numerical calculations later on as
it does not discard any terms, except the higher-order ones and is therefore quoted
here. However, to perform the quantisation and understand the individual terms it
is best to transform back to conformal time and make the following simplifications:
The perturbations in the metric are suppressed by the slow-roll parameter ϵ and can
be neglected for this discussion. The second-order action reads

S(2) =
1

2

∫
dτd3x

[
(f ′)2 − (∇f)2 +

(
a′′

a
− a2V,φφ

)
f 2

]
, (4.37)

where f = aδφ. The potential term can be neglected as a′′/a ≫ a2V,φφ, giving the
equation of motion for the rescaled perturbation of the inflaton field:

f ′′ −∇2f − a′′

a
f = 0 (4.38)

Fourier transforming this expression yields

f ′′
k +

(
k2 − a′′

a

)
fk = 0 . (4.39)

On subhorizon scales a′′/a ≪ k2 and can be neglected. The resulting equation for
each Fourier mode is just the equation of motion of a simple harmonic oscillator

f ′′
k + k2fk = 0 . (4.40)

4.2.3 Quantum Fluctuations in de Sitter Space

To obtain a realistic model of quantum fluctuation it is necessary to quantise the
fields. Therefore, the field f(τ,x) = aδφ and its conjugate momentum π ≡ ∂L

∂f ′
= f ′

have to be promoted to quantum operators with the canonical commutation relation

[f̂(τ,x), π̂(τ,x′)] = iδ(x− x′) . (4.41)

The mode expansion is
f̂k(τ) = fk(τ)âk + f ∗

k (τ)â
†
k , (4.42)

where fk and its complex conjugate are solutions to the Mukhanov-Sasaki equa-
tion (4.36). âk and â

†
k are annihilation and creation operators, respectively, with the

usual commutation relation.

In a de Sitter universe with a′′/a ≈ 2/τ 2 the Mukhanov-Sasaki equation has the
solution

fk(τ) = α
e−ikτ√
2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
, (4.43)
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with constants α, β, which have to be fixed by initial conditions. At very early times
(very large negative τ) all modes of interest were inside the Hubble radius |kτ | ≫ 1.
Therefore, all observable modes had time-independent frequencies

k2 − 2

τ 2
τ→−∞−−−−→ k2 . (4.44)

Hence, the Mukhanov-Sasaki equation reduces to the equation for a free field in
Minkowski space. This defines the inflationary vacuum, by only considering the
minimal excitation state, which corresponds to the positive frequency mode fk ∝
e−ikτ , i.e.

lim
τ→−∞

fk(τ) =
e−ikτ√
2k

, (4.45)

which defines the constants of the general solution. The mode function is now given
by

fk(τ) =
e−ikτ√
2k

(
1− i

kτ

)
. (4.46)

The evolution of each mode is completely determined and can be calculated. The
field operator is given by

f̂(τ,x) =

∫
d3k

(2π)3/2

[
fk(τ)âk + f ∗

ka
†
k

]
eik·x (4.47)

and its expectation value vanishes but the variance does not〈
|f̂ |2
〉
=

∫
d ln k

k3

2π2
|fk(τ)|2 . (4.48)

This leads to the definition of the power spectrum

Pf (k, τ) ≡
k3

2π2
|fk(τ)|2 . (4.49)

Finally, the power spectrum for the inflaton perturbations reads as

Pδφ(k, τ) =
Pf (k, τ)
a2

=

(
H

2π

)2
(
1 +

(
k

aH

)2
)

superhorizon−−−−−−−→
(
H

2π

)2

. (4.50)

This shows that the power spectrum is constant on superhorizon scales.

4.2.4 Primordial Perturbations from Inflation

As discussed before, it is sensible to switch from the inflaton perturbations to the
conserved curvature perturbations at the horizon crossing. These two are related
via Eq. (4.33), which implies for the power spectra

PR =
1

2ϵ

Pδφ
M2

P

(4.51)

with the slow-roll parameter ϵ. Substituting the δφ power spectrum

PR =
1

8π2ϵ

H2

M2
P

∣∣∣
k=aH

(4.52)
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evaluated at horizon crossing, where it stays unchanged until horizon re-entry (4.50).
If the power spectrum is k-independent, it is called scale-invariant. However, since
H and ϵ are slowly-varying with time it is expected that PR is not perfectly scale-
invariant. The deviation can be parametrised by the scalar spectral index

ns − 1 ≡ d lnPR

d ln k

∣∣∣
k=k∗

, (4.53)

where k∗ is some reference scale, where the spectrum takes a power-law form

PR = As

(
k

k∗

)ns−1

, (4.54)

with the amplitude As. To first order in the slow-roll parameters the spectral index
can be expressed as

ns − 1 = −2ϵ− η . (4.55)

4.2.5 Gravitational Waves

Tensor perturbations in the spatial metric lead to a spectrum of primordial gravita-
tional waves. The perturbation is given by

ds2 = a2(τ)[−dτ 2 + (δij + 2Êij)dx
idxj] . (4.56)

Substituting the perturbations into the Einstein-Hilbert action and expanding to
second order gives

S(2) =
M2

P

8

∫
dτd3xa2[(Ê ′

ij)
2 − (∇Êij)2] . (4.57)

It is possible to define

MP

2
aÊij =

f+ f× 0
f× −f+ 0
0 0 0

 , (4.58)

such that the action becomes

S(2) =
1

2

∑
I=+,×

∫
dτd3x

[
(f ′
I)

2 − (∇fI)2 +
a′′

a
f 2
I

]
, (4.59)

which is just two copies of the action for scalar perturbations (4.37). Therefore, the
power spectrum Pt can be directly inferred from the previous result for Pf ,

Pt = 2PÊ = 2

(
2

aMP

)2

Pf (4.60)

⇒ Pt(k) =
2

π2

H2

M2
P

∣∣∣
k=aH

. (4.61)

The tensor amplitude only depends on H. It is therefore a direct measure of the
Hubble-parameter during inflation. The scale dependence is defined in analogy to
the previous case,

Pt = At

(
k

k∗

)nt

. (4.62)
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Note, that historically there is no additional 1 in the exponent. Scale-invariance
implies now nt = 0. One observable experiments typically look at is the scalar-to-
tensor ratio

r ≡ At
As

. (4.63)
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CHAPTER 5

Starobinsky Model of Inflation and its
Extension

There exists a huge amount of models describing inflation, yet this thesis focuses
on one of the best fitting to data [5]: The Starobinsky or R2-inflation, but with an
additional extension to higher order terms.

5.1 Formalism

The Einstein-Hilbert action of General relativity is given in terms of the Ricci scalar
R

SGR =
M2

P

2

∫
d4x

√
−gR , (5.1)

where g denotes the determinant of the metric, the mostly plus metric convention
(−,+,+,+) and MP = (8πG)−1/2. The cosmological constant is neglected, as it
does not influence the evolution of the universe during this epoch, see Eq. (2.30).
Eq. (5.1) can be extended to the so called f(R)-gravity [23, 24] with

SJ =
1

2

∫
d4x

√
−gJf(R) , (5.2)

where f(R) can be in general an arbitrary function of R. Here it will be

f(R) =M2
P

(
R +

1

6M2
R2 +

c

36M4
R3

)
, (5.3)

with free parameters M and c. The action is dimensionless, which demands that
f(R) has mass dimension four. Knowing, that the Ricci-scalar has mass dimension
two, the dimensionality of M and c follows. Namely, M has mass dimension one
and c is dimensionless. For c = 0 one recovers the pure Starobinsky (or R2) action.
The subscript J denotes the Jordan frame and E will represent the Einstein frame.
The difference between these two frames is, that in the Jordan frame, one can
have non-minimal coupling between fields and gravity, while in the Einstein frame
only minimal couplings exist. Therefore, the complicated structure of f(R) can be
absorbed in an additional field with normal GR. Going from the Jordan frame to
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the Einstein frame consists of multiple steps, where the first one is to introduce a
scalar field s by a Legendre-transformation

SJ =
1

2

∫
d4x

√
−gJ [f(s)− f ′(s)(R− s)] . (5.4)

The prime denotes the derivative with respect to the field s. Varying the action
with respect to s yields the relation R − s = 0. For the Legendre transform to be
well defined, f(R) has to be a convex function, i.e. f ′′(R) > 0 for all R. Therefore,
it is only well defined under the following condition

f ′′(R) =M2
P

(
1

3M2
+

c

6M4
R

)
> 0 (5.5)

⇒ R = s =

{
> −M2

2c
, c > 0

< −M2

2c
, c < 0

. (5.6)

It is convenient to define the action in the Jordan frame as

SJ ≡
∫

d4x
√
−gJ

[
M2

P

2
Ω2R− V (s)

]
, (5.7)

with

Ω2 =
f ′(s)

M2
P

= 1 +
1

3M2
s+

c

12M4
s2 and V (s) =

1

2
[sf ′(s)− f(s)] . (5.8)

To get from the Jordan frame to the Einstein frame one has to perform a Weyl
transformation

gµν,E = Ω2gµν,J . (5.9)

From the transformation property of the metric one can derive the transformed
Christoffel symbols, then the Ricci tensor and finally the Ricci scalar, which is the
relevant quantity here. The transformation property will only be stated in d = 4
dimensions as [25]

RE =
1

Ω2

[
RJ − 6

□JΩ

Ω

]
, (5.10)

RJ = Ω2

[
RE + 6

□EΩ

Ω
− 12gµνE

Ω,νΩ,ν

Ω2

]
, (5.11)

where Ω,µ ≡ ∂µΩ and □E,J ≡ gµνE,J∂µ∂ν . The Weyl transformation can be related to
a scalar field φ through

φ ≡
√

3

2
MP lnΩ2 . (5.12)

Inserting this in Eq. (5.11) gives the Ricci scalar in the Jordan frame in terms of
the new scalar field and the Ricci scalar in the Einstein frame,

RJ = Ω2

[
RE +

√
6

MP

gµνE ∂µ∂νφ− 1

M2
P

gµνE ∂µφ∂νφ

]
, (5.13)
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which can then be inserted in Eq. (5.7), yielding the action in the Einstein frame

SE =

∫
d4x

√
−gE
Ω4

[
M2

P

2
Ω4

(
RE +

√
6

MP

gµνE ∂µ∂νφ− 1

M2
P

gµνE ∂µφ∂νφ

)
− V (s)

]

=

∫
d4x

√
−gE

[
M2

P

2
RE − 1

2
gµνE ∂µφ∂νφ− VE(φ)

]
,

(5.14)
where VE(φ) = V (s(φ))/Ω4. The surface term ∝ gµνE ∂µ∂νφ vanishes. To find the
potential in terms of φ one needs the relations between s and φ. To recover it, the
following equation is inverted

e
√

2
3

φ
Mp = 1 +

1

3M2
s+

c

12M4
s2 (5.15)

⇒ s(φ) =


2M2

c

[
±
√

1 + 3c(e
√

2
3

φ
MP − 1)− 1

]
for c ̸= 0

−3M2

[
1− e

√
2
3

φ
MP

]
for c = 0

. (5.16)

Comparing the formula for s(φ) with the convexity condition for the Legendre trans-
form in Eq. (5.6) shows, that one has to take the solution with the minus sign for
c < 0 and the one with the plus sign for c > 0. Now, the potential can be expressed
in terms of the field φ

VE(φ) =
V (s(φ))

Ω2
=

M2
P

[
cs(φ)3

M2
+ 3s(φ)2

]
36M2

[
1 +

s(φ)

3M2
+
cs(φ)2

12M4

]2 . (5.17)

However, for c < 0 the potential does not have the needed properties for inflation,
as it is unbounded from below. Hence, one can exclude c < 0 as a possible extension
of Starobinsky inflation. For c = 0 the usual Starobinsky potential is obtained

VE(φ) =
3M2

PM
2

4

(
1− e

−
√

2
3

φ
MP

)2

. (5.18)

Comparing this action to the action of single-field inflation (3.19) shows, that the
formalism of Ch. 3 is applicable. Effectively, Starobinsky inflation is equivalent to
single-field inflation with a particular potential.

5.2 Observables in Starobinsky Inflation

For now, c will be set to zero and the well-known Starobinsky inflation is investigated.
In the slow-roll approximation the potential slow-roll parameters are given as

ϵV =
M2

P

2

(
VE,φ
VE

)2

, ηV =M2
P

VE,φφ
VE

. (5.19)
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The derivatives of the potential with respect to the field are given by

VE,φ =

√
3

2
MPM

2e
−
√

2
3

φ
MP

(
1− e

−
√

2
3

φ
MP

)
(5.20)

VE,φφ =M2e
−
√

2
3

φ
MP

(
2e

−
√

2
3

φ
MP − 1

)
. (5.21)

Therefore, the potential slow-roll parameters are

ϵV =
4

3

(
e
√

2
3

φ
MP − 1

)−2

(5.22)

ηV =
4

3

[
2 + 3

(
e
−
√

2
3

φ
MP − 1

)−1

+

(
e
−
√

2
3

φ
MP − 1

)−2
]
. (5.23)

The observables are the spectral index ns, the scalar amplitude As and the tensor-
to-scalar ratio r, which can be written in terms of the potential slow-roll parameters

ns = 1 + 2ηV − 6ϵV (5.24)

As =
VE

24π2M4
P ϵV

(5.25)

r =
At
As

with At =
2VE

3π2M4
P

. (5.26)

The observational constraints from Planck 2018 on these parameters are [5]

APl
s = (2.099± 0.014) · 10−9 (5.27)

nPl
s = 0.9649± 0.0042 (5.28)

rPl < 0.056 . (5.29)

The potential slow-roll parameters have to be evaluated at the field value φ⋆, which
corresponds to the value, where the pivot scale exits the horizon. This happened
about 60 e-foldings before the end of inflation and can therefore be calculated with
Eq. (3.32) yielding

60 = N ≈
∫ φ⋆

φend

1√
2ϵV

1

MP

dφ . (5.30)

In order to fin φ⋆ the inflaton value at the end of inflation φend is needed. It is
defined by the ending of slow-roll, i.e

ϵV (φend) = 1 (5.31)

⇒ φend =MP

√
3

2
ln

(
2√
3
+ 1

)
. (5.32)

Solving the integral of Eq. (5.30) yields:

60 =
1

Mp

√
3

8

∫ φ⋆

φend

(
e
√

2
3

φ
MP − 1

)
dφ

= −3

4

[
2√
3
+ 1− ln

(
2√
3
+ 1

)]
+

3

4
e
√

2
3

φ⋆
MP − φ⋆

(5.33)
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Since this equation cannot be solved analytically it has to be solved numerically.
The solution is

φ⋆ ≈ 5.493MP . (5.34)

For the inflationary model to be successful, it has to match with the observations
from Planck. The only free parameter of the theory M can be calculated from the
scalar amplitude As (5.26), as this the only observable, which depends on it. For
Starobinsky inflation the value reads

M = 1.084 · 10−5Mp (5.35)

and the prediction for the other two observables is

ns = 0.9689 (5.36)

r = 0.00277 , (5.37)

which is consistent with the data.

5.3 Field Dynamics in Starobinsky Inflation

The previous section dealt with Starobinsky Inflation in the slow-roll approximation.
However, exact results can be obtained by solving the background equation. This
leads to the time evolution of the inflaton field.

The background equation is

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (5.38)

0 2 4 6 8
/Mp

0

2

4

6

8

V E
/M

4 p

1e 11
*

end

Figure 5.1: Illustration of the inflation potential with the field values, where the
pivot scale exits the horizon φ⋆ and when inflation ends φend.
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where the Hubble function is given by

H2 =
1

3M2
P

[
1

2
φ̇2 + V

]
. (5.39)

V denotes the potential defined in Eq. (5.18). The Hubble function can be written
in terms of the scale factor as

H =
ȧ

a
=

d

dt
ln a . (5.40)

Thus, to obtain the field evolution the following system of coupled differential equa-
tions has to be solved:

(1) φ̈+

√√√√ 1

3M2
P

[
1

2
φ̇2 +

3M2M2
P

4

(
1− e

−
√

2
3

φ
MP

)2
]
φ̇+

√
3

2
MPM

2e
−
√

2
3

φ
MP

(
1− e

−
√

2
3

φ
MP

)
= 0

(2)
d

dt
ln a−

√√√√ 1

3M2
P

[
1

2
φ̇2 +

3M2
PM

2

4

(
1− e

−
√

2
3

φ
MP

)2
]
= 0

(5.41)
Choosing the right boundary conditions is crucial as this has a large impact on the
solution. Three initial values have be chosen at the initial time tini. Namely,

φ(tini) = φ⋆

φ̇(tini) = 0

ln a(tini) = 0 ,

(5.42)

where φ⋆ is the value obtained in the previous section (5.34). It denotes the field
value, where 60 e-folds of inflation are still to occur. However, this value was ob-
tained in the slow-roll approximation and is therefore only an initial guess. The
time derivative of the inflaton field has to be zero, which can be clearly seen from
the form of the potential in Fig. 5.1. Given the solution for φ(t) the point in time
when inflation ends can be determined with the condition

1 = ϵ(tend) =
φ̇2(tend)

2M2
PH(tend)

. (5.43)

The amount of e-folds that happened during inflation are given by the difference of
the logarithmic scale factor at the initial and final time,

N = ln a(tend)− ln a(tini) ≈ 50− 60 . (5.44)

Setting N = 60 and varying the initial field value to obtain this N gives φ(tini) =
5.421, which is slightly lower than φ⋆ due to the previously made slow-roll approxi-
mation.

The time evolution of interesting quantities can be seen in Fig. 5.2. They are
rescaled, such one can see their behaviour at the same time. From the logarithm
of the scale factor a, one can directly see how many e-folds of inflation occurred, as
log(a(tend))− log(a(tini)) ≈ 60. The oscillatory behaviour in many of the parameters
can be explained with the field, rolling down into the minimum of the potential and
then starting to oscillate. If one would include the decay of the inflaton to other
particles, this behaviour would not be visible, since it would decay before reaching
the minimum. The slow-roll phase of the universe is also clearly visible in this figure,
where Hubble function is only slowly changing
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5.4 Primordial Power Spectrum

So far, only the background evolution of the inflaton field was considered, but fluc-
tuations around this value are necessary to explain the structure in the universe.
The flucutations are best described by the previously introduced gauge invariant
Mukhanov-Sasiki variable Q. The time evolution is given by

Q̈+ 3HQ̇+

[
k2

a2
+ V ′′ − 1

a3
d

dt

(
a3

H
φ2

)]
Q = 0 , (5.45)

where k is the wavenumber, the equation is motivated in Sec. 4.2.2. To solve this
differential equation one chooses the commonly used Bunch-Davies initial conditions.
In the end, the quantity of interest is the primordial power spectrum of the curvature
perturbations R, which are related to the Mukhanov-Sasaki variable by

R =
H

φ̇
Q . (5.46)

Finally, the power spectrum reads as

PR(t, k) =
k3

2π
|R|2 . (5.47)
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Figure 5.2: Background evolution of various quantities as function of time, rescaled
to show the connection. With the inflaton field φ in blue, its derivative φ̇ in orange,
the Hubble function H in red and the logarithm of scale factor showing the e-folds
of inflation in green. The end of inflation is denoted by tend.
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For a fixed k the time evolution of the curvature perturbation is shown in Fig. 5.3.
Curvature perturbations once they exit the horizon, which can be very clearly seen
in the plot. The Horizon exit occurs when k = aH. In order to get to the primordial
power spectrum as a function, which only depends on k, one evaluates PR at the
Horizon exit. The primordial power spectrum in the Starobinsky Inflation scenario
is shown in Fig. 5.4a for multiple values of M to illustrate its effect. The power
spectra are computed with CLASS (see Sec. 7.6).

5.5 R3-Extension

The most natural way to extend the Starobinsky model of inflation is to simply
add a R3-term with an additional dimension-free parameter. The effective nature
of the Lagrangian becomes even more visible now. One looks at gravity from a
phenomenological point of view, where the effects from an extension of GR are
absorbed in the expansion of the Lagrangian around the Ricci-scalar. The presence
of this term may hint towards the UV-completion of Einstein gravity, as the higher
order curvature correspond the quantum effects. Clearly, the question is now, which
effect does this new term have on the known observables?

The modification to the potential for different values of the parameter c can be
seen in Fig. 5.5. For positive field values, it is only monotonically rising if c = 0.
For c > 0 the potential has a maximum. If the initial field value would be larger
than corresponding value inflation would not happen. In order to get the necessary
amount of inflation the field has to stay in the slow-roll regime (V ≪ φ̇) for a
sufficiently long time. If c is too large this condition might not be fulfilled because
the potential is not flat enough in the region around the maximum.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time/s 1e 36

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(t,
k

=
k

)

1e 8

Figure 5.3: Evolution of the curvature perturbation for the reference mode k =
0.05 Mpc−1.
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(a) Pure Starobinsky (c = 0), but different
values of M .
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(b) Fixed M = 1.2 · 10−5MP but varying c.

Figure 5.4: Primordial power spectrum for different values of M and c

To quantify this qualitative argument the time evolution of the background field can
be done in exactly the same way as in pure Starobinsky inflation. Assuming that
the initial field value is at the maximum of the potential one can get which value of
c is needed to get at least a certain amount of e-folds. For this calculation the other
parameter of the model M is fixed to one value. The possible amount of e-folds
is not influence by M , it only modifies the overall scale while leaving the shape
unchanged. Demanding a certain number of e-folds restricts the possible parameter
values for c already quite drastically.

In order to cross-check the upcoming numerical results from the Bayesian inference
analysis it is sensible to study the effect of the new parameter on the observables
As and ns in the slow-roll approximation. The dependence of these observables on
c can be seen in Fig. 5.7 and the effect of c on the full primordial power spectrum

Figure 5.5: Illustration of the inflationary potential for different values of c.

31



CHAPTER 5. STAROBINSKY MODEL OF INFLATION AND ITS
EXTENSION

is shown in Fig. 5.4b. Since R3 is merely an extension of the successful Starobinsky
inflation, c = 0 has to be compatible with the observations. For large values of c
the resulting values of As and ns are incompatible with Planck data.

Figure 5.6: Allowed values for c to obtain at least N⋆ e-folds of inflation
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Figure 5.7: Slow-roll prediction for ns and As as a function of c for fixed M
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CHAPTER 6

Contact with Observations

After the perturbations exit the horizon they stay constant, as discussed in the
previous section (Sec. 5.4), but at some point they re-enter and have to be time
evolved. The effect of the primordial fluctuations can then be seen at later times in
the anisotropies of the CMB as well as in the matter density fluctuations, observable
through the distribution of galaxy and large scale structure. The time evolution is
done with the Boltzmann-Code CLASS (cosmic linear anisotropy solving system,
Sec. 7.6).

6.1 Cosmic Microwave Background

In the early Universe, there is a thermal ensemble of photons. For photons to be in a
thermal equilibrium they need to couple an electromagnetically charged heat bath,
as they do not interact with each other. In the early Universe, photons scatter off free
electrons and nuclei until the temperature drops to a point, where the first atoms are
formed. Now, the photons decouple from the matter content and propagate along
straight lines. Since, this happens almost instantly, we can observe the photons
coming from a spherical surface, the so called last scattering surface. In this work,
only a brief introduction to the CMB power spectrum and polarisation is presented,
for a more detailed overview see Ref.[26], on which this introduction is based.

6.1.1 Statistics of Temperature Anisotropies

The curvature perturbations R inside the horizon lead to density fluctuations δρ in
the primordial plasma which are imprinted in temperature fluctuations ∆T (n) of
the CMB, where n denotes the direction in the Sky. The background temperature is
T0 = 2.726K. Due to the spherical nature of the observation it is sensible to perform
a harmonic expansion

Θ(n) ≡ ∆T (n)

T0
=
∑
ℓ,m

aℓmYℓm(n) , (6.1)

where

aℓm =

∫
dΩY ∗

ℓm(n)Θ(n) . (6.2)
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Yℓm(n) denote the standard spherical harmonics with ℓ = 0, 1, ... and m = −ℓ, ..., ℓ.
to obtain the CMB anuglar power spectrum one combines the alm to

CTT
ℓ =

1

2ℓ+ 1

∑
m

⟨a∗ℓmaℓm⟩ . (6.3)

6.1.2 Transfer Function and Projection Effects

The linear evolution of the curvature perturbation to the temperature fluctuations
in the CMB is given by the transfer function ∆Tℓ(k). For a given curvature pertur-
bation the multipole moments can be inferred as

aℓm = 4π(−i)ℓ
∫

d3k

(2π)3
∆Tℓ(k)RkYℓm(k̂) . (6.4)

The transfer function is the line-of-sight integral over physical source terms ST (k, τ)
and a geometric projection factor PTℓ(k[τ0 − τ ]),

∆Tℓ(k) =

∫ τ0

0

ST (k, τ)PTℓ(k[τ0 − τ ]) , (6.5)

where τ0 is conformal time today. Generally, the transfer function has to be com-
puted numerically. The angular power spectrum can be expressed as

CTT
ℓ =

2

π

∫
dkk2PR(k)∆

2
Tℓ(k) . (6.6)

Figure 6.1: Angular power spectrum of CMB temperature fluctuations, where
DTT
ℓ = ℓ(ℓ+ 1)CTT

ℓ /2π [5].
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Therefore, the CMB power spectrum is the convolution of the primordial power
spectrum PR with the anisotropies of the transfer function. To get the primordial
power spectrum from the observed data, one has to invert the convolution.

6.1.3 CMB Polarisation

Before decoupling, the photons were in equilibrium with the surrounding particles
via Thomson scattering. One expects the CMB to become polarised by scattering
of the free electrons just before decoupling.

The E/B Decomposition
The anisotropies in the polarisation field is defined in terms of the 2× 2 intensity
tensor Iij(n). The components are defined relative to two orthogonal basis vectors,
which are orthogonal to n. The temperature anisotropies T = 1

4
(I11 + I22) are in-

variant under a rotation in the plane of the basis vectors. Therefore, it may be
expanded in terms of scalar spherical harmonics. Linear polarisation is described
by the Stokes parameters

Q =
1

4
(I11 − I22) , U =

1

2
I12 , (6.7)

which transform under a rotation by an angle ψ like a spin-2 field

(Q± iU)(n̂) → e∓2iψ(Q± iU)(n̂) . (6.8)

Therefore, one needs tensor spherical harmonics to describe them, or one can split
them into two scalar fields

E(n̂) =
∑
ℓ,m

aE,ℓmYℓm(n̂) , B(n̂) =
∑
ℓ,m

aB,ℓmYℓm(n̂) (6.9)

and expand them in the usual scalar spherical harmonics. These are called the E-
and B-modes, respectively. While the E-mode polarisation is curl-free the B-modes
are divergence free. In analogy to the temperature fluctuation one can define the
angular spectra for the fluctuations of the E- and B-modes

CXY
ℓ =

1

2ℓ+ 1

∑
m

〈
a∗X,ℓmaY,ℓm

〉
, X, Y = T,E,B , (6.10)

where now also cross-correlation between temperature and E-modes is possible. The
other cross-correlations vanish due to symmetry reasons. Before only the curvature
fluctuations R acted as a source, but now also the tensor fluctuations t are relevant.
The multipole moments can be concisely expressed as

aX,ℓm = 4π(−i)ℓ
∫

d3k

(2π)3
∆Xℓ(k){Rk, tk}Yℓm(k̂) . (6.11)
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Remarkable Facts

i) scalar (density) perturbations create only E-modes and no B-modes

ii) vector (vorticity) perturbations create mainly B-modes.

iii) tensor (gravitational wave) perturbations create both E- and B-modes.
The angular power spectrum of CMB B-modes is related to the primordial
tensor power spectrum Pt(k) as follows

CBB
ℓ = (4π)2

∫
k2dkPt(k)∆

2
Bℓ(k) . (6.12)

Since no other early universe mechanism produces a background of tensor fluctu-
ations that span superhorizon scales at recombination and that B-modes can only
be created by tensor fluctuation implies, that the detection of B-modes would be a
very strong hint that inflation occured.

6.1.4 Coherent Phases and Superhorizon Fluctuations

The Peaks of the TT Spectrum
The power spectrum has structure with clearly visible peaks and is not just white
noise. This can only happen, when all modes of the same wavelength also have
the same phase, so they can interfere coherently. Considering a Fourier mode of
R with wavenumber k, which is conserved outside the horizon (k < aH). These
modes source the density fluctuation when they re-entered the horizon. The density
fluctuations at the last-scattering surface lead to the fluctuations in the CMB. In
order to explain the structure of the CMB power spectrum one needs a mechanism,
which produces coherent initial phases for all Fourier modes. Inflation can be this
mechanism, because the phases of the relevant modes were already set well before
they entered the horizon, because they froze while exiting the horizon during infla-
tion.

The Peaks of the TE Spectrum
The peaks in the TT spectrum are at l > 200, corresponding to angular scales θ < 1◦.
The scales have been inside the horizon when recombination happened. Therefore,
it would be in principle possible to construct a mechanism which achieves the CMB
peaks without using inflation. However, if one considers the TE-spectrum there is
a negative peak around 100 < l < 200, see Fig. 6.2, which corresponds to scales
outside the horizon at the time of recombination. Hence, there is no possibility that
this could have been produced after τ = 0 and one needs something like inflation
which extends conformal time into the negative regime. To get the phases aligned
one needs a primordial mechanism, when they were still in causal contact.

6.2 21cm Intensity Mapping

Another way to probe the inflationary mechanism is to use the distribution of neu-
tral hydrogen (HI) in the universe. With the knowledge of where the hydrogen is
located one can infer the distribution of all matter and get the matter power spec-
trum. The section closely follows Ref.[27, 28]. The mapping of neutral hydrogen
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Figure 6.2: Power spectrum of the cross-correlation between temperature and E-
mode polarisation anisotropies, where DTT

ℓ = ℓ(ℓ+ 1)CTT
ℓ /2π [5].

has great potential, as allows to find a three dimensional map of the matter density
fluctuations as compared to the 2D slice of the CMB. The significance of this as-
pect is illustrated in Fig. 6.3. Neutral hydrogen can be observed through the 21cm
line. It is generated by the forbidden spin-flip transition between the singlet and
the triplet state. Its energy corresponds to a wavelength of λ = 21.106 cm, hence
the name. This transition is highly forbidden with transition rate of 2.9 · 10−15 s−1.
However, due to the sheer abundance of hydrogen in the universe the signal can still
be observed.

The line can be observed in emission or absorption against the CMB, depending on
the spin temperature of the gas. During the evolution of the universe, the difference
between these temperature varies quite a lot and the different phases are schemat-
ically illustrated in Fig. 6.4. Most significantly during the cosmic dawn, where the
first galaxies and stars started to form as well as during the process of reionization.
It describes the period in the evolution the universe, where the newly formed stars
ionized the hydrogen around them. This is not an instantaneous process, which
means, that the fraction of neutral hydrogen in the universe is redshift dependent.

The spin temperature of hydrogen TS is defined by
n1

n0

= 3e−T⋆/TS , (6.13)

where n0 and n1 describe the abundance of the singlet and triplet state, respectively.
T⋆ = 5.9µeV is the energy difference between the hyperfine levels. The spin temper-
ature is coupled to the gas temperature through the Wouthuysen-Field effect, where
Lyman-α photons excite the hydrogen, which might then decay into the other spin
state. The gas in the intergalactic medium (IGM) is heated by X-ray photons [30].
The local brightness temperature is given by

T loc21 = (TS − Tcmb)(1− e−τ ) , (6.14)
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where τ is the optical depth, depending on the local neutral hydrogen density [31].
Now, one can either use approximate calculations, to get to the matter power spec-
trum or one can use a numerical approach to obtain the full, so called light-cone.
A lightcone is a 3D object, with two spatial directions and the redshift, where one
has the 21cm temperature. It is obtained by simulating the evolution of densities
using perturbation theory. This work is mainly focused on the power spectrum, as
it has a lot less parameters, but in Ch. 9 the full light-cones are used, where the
production is discussed in more detail.

Continuing in the power spectrum approach, adjusting for the redshift and using
the optical thinness of the IGM (τ ≪ 1), as well as more simplifications given in
Ref.[28], yields

∆T21 ≈ 189

[
H0(1 + z)2

H(z)

]
ΩHI(z)h mK , (6.15)

Figure 6.3: Volume of the Universe, that can be mapped with 21cm tomography
(cyan) [28].

Figure 6.4: Illustration of the 21cm brightness temperature as a function of red-
shift [29].
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with the reduced Hubble-function h and the mass density of neutral hydrogen

ΩHI =
ρHI

ρc
= Ωb(1− YP )

(
H0

H(z)

)2

(1 + z)3xHI . (6.16)

In this thesis, the considered redshift window is z = 8 ... 10, there the astrophysics
of reionization is managable in terms of simple modelling. Yet, reionization has
not ended and the signal is still observable. This allows for the following empirical
fitting formula for the z-dependence of neutral hydrogen fraction [32]

xHI(z) =
1

2

[
1 +

2

π
tan−1(δ1(z − δ2))

]
. (6.17)

The two parameters δ1 and δ2 are used to account for some variation in the astro-
physics leading to a slightly changed neutral hydrogen fraction. In the analysis they
are going to be nuisance parameters.

As mentioned in the introduction to this section, the 21cm power spectrum P21 is
related to the matter power spectrum Pδ, which in turn can be calculated from the
primordial power spectrum PR as

Pδ(k, τ) =
4

25

(
k

aH

)4

T 2
δ (k, τ)PR , (6.18)

where δ = δρ/ρ̄ and Tδ is the matter transfer function. In this thesis the transfer
function will be calculated numerically with CLASS, discussed in Sec. 7.6.

The 21cm power spectrum P21 is defined through the relation

⟨∆T21(k)∆T21(k′)⟩ ≡ P21(k, z)(2π)
3δ(k − k′) . (6.19)

It is related to the matter power spectrum Pδ in the flat-sky approximation [33] by

P21(k, µ, z) = fobs × b221(z)× Pδ(µ̂, z) , (6.20)

with the Fourier mode k and the line-of-sight r describing

k = |k| and µ =
k · r
kr

. (6.21)

The hatted quantities are the ones, derived from the true cosmology and the ones
without a hat are derived from the fiducial cosmological model, which is probed.

The bias term b21(z) is given by

b21 = ∆T21(z)bHI(z) , (6.22)

where ∆T21 is given in Eq. (6.15) and the bias bHI will be treated as nuisance
parameter. Now, the term describing observational effects fobs of Eq. (6.20) consists
of the following parts

fobs = fAP(z)× fres(k, µ, z)× fRSD(k̂, µ̂, z) (6.23)
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and will be discussed one by one. Starting with the Alcock-Paczinsky effect, which
accounts for the relative change in the power spectrum between true cosmology and
the assumed one

fAP(z) =
D2
AĤ

D̂2
AH

, (6.24)

with the Hubble parameter H and the angular diameter distance DA.

Next, fres describes the final resolution of the instruments, measuring the signal. Its
explicit formula is

fres(k, µ, z) = exp
[
−k2(µ2(σ2

∥ − σ2
⊥) + σ2

⊥)
]
, (6.25)

where σ∥ and σ⊥ are the Gaussian errors of the coordinates parallel and perpendic-
ular to the line-of-sight at redshift z. They can be calculated as

σ∥ =
c

H
(1 + z)2

σν
ν0

and σ⊥ = (1 + z)DAσθ, (6.26)

with σθ =
1√
8 ln 2

λ0
Dbase

(1 + z) and σν =
δν√
8 ln 2

. (6.27)

The experimental values of the parameters and their meaning are given in Tab.7.2
in Sec. 7.5.1.

The next term corrects an apparent anisotropy in the power spectrum arising from
the cosmological redshift as well as fingers-of-God effect [34]

fRSD(k̂, µ̂, z) =
(
1 + β(k̂, z)µ̂2

)2
e−k̂

2µ̂2σ2
NL

with β(k̂, z) = − 1 + z

2b21(z)

d logPδ(k̂, z)

dz
. (6.28)
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Statistics and Tools

7.1 Bayesian Inference

Physics works by predicting mathematically consistent theories and comparing them
to observations, discarding those, which are not compatible with data. Deriving
statistical statements about the validity of a theory is called inference. However,
every observation has some statistical error as the amount of data is always finite and
due to the naturalness of experiments. The experiment itself is part of nature and
can therefore also only be described by the current best model. Hence, one can only
differentiate theories which are statistically not compatible with the observation.
This brief introduction to Bayesian-inference is based on Ref.[35].

The likelihood L({yi}|θµ) describes how probable it is to observe the data points y =
{yi} given a set of model parameters θµ = (θ1, ..., θn). Then, the set of parameters,
which maximise L are an estimator of the true parameters, as they are most likely
produce the observed data. This principle is called maximum likelihood.

Unfortunately, that is not what one is particularly interested in. One would actually
like to know the distribution of the model parameters given a set of data, p(θµ|{yi}).
To interchange the random variable and the condition, one has to use Bayes-theorem:

p(θµ|{yi}) =
L({yi}|θµ)
p({yi})

p(θµ) (7.1)

The posterior distribution p(θµ|{yi}) is given by the product of the prior distribution
p(θµ), i.e. how likely is the model before carrying out the experiment, and the
likelihood, normalised by the evidence p({yi}). The evidence is the probability of
obtaining the data,

p({yi}) =
∫

dnθL({yi}|θµ)p(θµ) . (7.2)

Often, one is interested in the posterior of one explicit parameter, independent of
the rest of the set. This can be achieved by a process called marginalisation, which
is essentially integrating out the other parameters, e.g.

p(θ1|{yi}) =
∫
p(θµ|{yi})dθ2 ... dθn . (7.3)
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In principle it is possible to numerically compute the posterior distribution for a
given model and a given data set. However, that can be very challenging due the
possibly highly-dimensional parameter space. To manage this problem, one uses
some kind of Markov chain Monte Carlo (MCMC) to generate samples θµ, which
are distributed according to p(θµ|{yi}).

7.2 Metropolis-Hastings algorithm

The basic idea of MCMC is to draw values of θ (discarding the subscript µ for
readability) from a distribution and then correcting those draws to get a better ap-
proximation. Each draw θt only ever depends on the previous draw θt−1, which is
the Markov property. The distribution is improved at each step, i.e. it is converging
to the target distribution p(θ|{yi}).
A popular algorithm to do that is the Metropolis-Hastings algorithm [36]. It pro-
ceeds as follows:

1. Draw a starting point θ0, with p(θ0|y) > 0 from a starting distribution p0(θ).

2. For t = 1, 2, .. :

(a) Sample a proposal θ⋆ from a jumping distribution Jt(θ
⋆|θt−1) at time t.

(b) Calculate the ratio of densities,

r =
p(θ⋆|y)/Jt(θ⋆|θt−1)

p(θt−1|y)/Jt(θt−1|θ⋆)
. (7.4)

(c) Set

θt =

{
θ⋆ with probabilitymin(r, 1)

θt−1 otherwise
(7.5)

Step 2 is repeated until the chain has reached the desired length. To summarise the
algorithm one can state the acceptance/rejection rule by: (a) if the jump increases
the posterior density, set θt = θ⋆; (b) if the jump decreases the posterior density, set
θt = θ⋆ with probability equal to the density ratio r, and set θt = θt−1 otherwise.
By construction the posterior is not known, but one can use Bayes-theorem to rewrite

p(θ⋆|y)
p(θt−1|y)

=
L(y|θ⋆)p(θ⋆)

L(y|θt−1)p(θt−1)
, (7.6)

where likelihood and prior are known and the evidence cancels out.
Since one starts from a random point in the parameter space it takes some time
for the chain to equilibrate. Therefore, one discards the first few iteration, which is
called the burn-in, before analysing the rest of the chain.
There are arbitrary many possible jumping distributions, however there are good and
bad ones. A sensible jumping distribution, or sometimes called proposal distribution,
has the following properties:

• It is easy to sample any θ from J(θ⋆|θ).

• It is easy to compute the ratio r.
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• Each jump goes a reasonable distance in the parameter space, otherwise the
random walk is too slow.

• The proposals are not rejected too frequently, otherwise the random walk
wastes too much time standing still.

It is a very challenging task to check whether one has reached convergence or not.
One method to do so is the (R − 1) criterium or Gelman-Rubin statistic [37]. For
this one needs to run multiple chains and it compares the variance within each chain
with the variance between multiple chains, explicitly

x̄j =
1

L

L∑
t=1

x
(j)
t (chain mean) (7.7)

x̄ =
1

J

J∑
j=1

x̄j (grand mean) (7.8)

s2j =
1

L− 1

L∑
t=1

(x
(j)
t − x̄j)

2 (within chain variance) (7.9)

B =
L

J − 1

J∑
j=1

(x̄j − x̄)2 (between chain variance) (7.10)

W =
1

J

J∑
j=1

s2j (7.11)

and the Gelman-Rubin statistic is then

R =
L−1
L
W + 1

L
B

W
. (7.12)

If a set of chains is converged, the between and within chain variance become equal,
and for infinite chain length R → 1. Therefore, if R − 1 ≪ 1 one considers the
chains converged. In this work, R− 1 < 0.05 is required.

7.3 Toy Example

In order to illustrate how MCMC works this sections presents a very simple toy
example. The likelihood is given by

L(y|θ1, θ2) ∝ exp

(
−(y −

√
θ21 + θ22)

2

2

)
, (7.13)

where θi are the parameter of the model and y the data. The normalisation is
irrelevant as one only needs ratios. This likelihood is just a two dimensional ring
with radius y and Gaussian thickness.

As a proposal distribution a simple Gaussian with µ = 0 and two different values
of σprop = {0.3, 3} are chosen. Due to the symmetry of this distribution, it cancels
in the calculation of r in Eq. (7.4). To make it even simpler, the prior is for both
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parameters flat. Then, only the likelihood ratio enters the calculation if the new
point in the chain is accepted. For the simulation y = 4 is set and the starting point
is purposely chosen far away to show the need for a burn-in phase.

In Fig. 7.1a the evolution of a chain with small jumps is shown. The small jumps
come from the small width of the proposal distribution. On can clearly see the
starting point and the walk towards the minimum of the likelihood, i.e. the ring.
Once the chain reaches the ring, it wanders around in circles, shown by the distinct
colour patches. This implies, that the chain has still not properly converged and
one needs a lot more steps. In Fig. 7.1c the marginalised posteriors for the same
set-up as in Fig. 7.1a are plotted, but now for up to 100 times more steps. After
104 steps the chain is definitely not converged, as it still has a strong asymmetry,
but after 106 steps, the chain had enough time to explore the whole parameter
space and thermalise. The blue curve is the correct posterior for this toy example.
Lastly, in Fig. 7.1b the evolution of a chain is shown, however, with a wider proposal
distribution. This chain thermalises a lot quicker, as now it does not have to wander
around in the valley to reach the other side of the ring, it can just jump over the
maximum in the middle. The acceptance rate of the configuration is smaller, because
a lot of the large jumps are rejected, but in the end, the equilibrium is reached faster.

7.4 MontePython

The tool to perform the MCMC analysis in this work is MontePython [38]. It is a
Python package designed to do parameter inference in cosmology. The code is able
to explore the parameter space with multiple techniques, e.g. Nested Sampling,
ensemble MCMCand Metropolis-Hastings. In this work an improved version of
the Metropolis-Hastings algorithm, described in Sec. 7.2, is used. The jumping
distribution is just the old point plus a random jump drawn from a Gaussian proposal
distribution of the form

p = N exp

{
− 1

2c
∆pTC−1∆p

}
, (7.14)

where ∆p are the parameter jumps and C is a matrix with the information about
the parameter correlation and the standard deviations relative to each other. The
actual covariance matrix is given by cC, with the jumping parameter c.

For a optimal proposal distribution one should get an acceptance rate of around
0.25, which can be achieved for Gaussian posterior distributions if the covariance
matrix is approximately the one of the posterior and the jumping parameter is
2.42 [39]. To optimize the proposal function the code has a feature, which allows to
automatically update the covariance matrix. This mechanism considers the worst
parameter, i.e. max(R − 1) and only updates if it is below 3 and above 0.4. The
upper bound is implemented to not make the covariance matrix worse due to a
statistical coincidence. The lower one is chosen to not make an unnecessary update
which might improve the convergence speed marginally but the steps prior to the
update have to be thrown away as they are no longer markovian. At some point
it helps more with convergence to accumulate more steps and not have a slightly
better covariance matrix. The points are no longer Markovian, because they are

44



CHAPTER 7. STATISTICS AND TOOLS

used to create a new proposal function and hence, the next point depends on more
than the previous step.

MontePython is interfaced with CLASS (see. Sec. 7.6), which allows to calculate
the desired observables from the set of parameters proposed by MontePython. The
MontePython package includes several likelihoods such as the Planck likelihoods [5]
and multiple CMB mock-likelihoods [40], which are discussed in Sec. 7.5.1.
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Figure 7.1: Markov chain Monte Carlo simulation for the likelihood in Eq. (7.13).
In (a) and (b) each step in the evolution of the chain is shown, where the differ-
ence in the two plots is the width of the proposal distribution. Plot (c) shows the
marginalised posterior at different times for the same configuration as in (a) but for
much more steps.
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7.5 Likelihoods

The likelihood is the central object in any MCMC analysis. Since, there is only data
from the Planck-satellite one needs to construct a so called mock-likelihood for the
desired forecasts. In this work there are two different classes of mock-likelihoods
considered. First, for future CMB-experiments and second for the square kilometer
array (SKA).

7.5.1 CMB

The likelihoods for future CMB-experiments, explicitly LiteBIRD and CMB-S4, are
already implemented in MontePython and the discussion will follow Ref.[40]. The
data a CMB-experiment will collect are best expressed in spherical harmonics and
receive a contribution from signal and noise,

aXℓm = sXℓm + nXℓm , (7.15)

where X = T,E,B as discussed in the CMB section 6.1. The noise can be modelled
as a Gaussian beam with an additional spatially uniform Gaussian white noise.

NXX′

ℓ =
〈
nX⋆ℓmn

X′

ℓm

〉
= δXX′θ2fwhmσ

2
X exp

[
ℓ(ℓ+ 1)

θ2fwhm

8 ln 2

]
, (7.16)

where θfwhm and σX depend on the experiment and are listed in Tab. 7.1. Off
diagonal noise terms are expected to vanish, as it is expected to be uncorrelated.
The primary CMB photons interact with various different astrophysical objects and
the signal has to be adjusted. This process is called foreground cleaning. After
which, the signal and noise are uncorrelated and the total power spectrum is given
by 〈

aX⋆ℓma
X′

ℓ′m′

〉
=
(
CXX′

ℓ +NXX′

ℓ

)
δℓℓ′δmm′ . (7.17)

Given some fiducial model the power spectra can be calculated with CLASS. The
mock data is obtained by following a simple algorithm:

(i) Generate Gaussian distributed random numbers G
(i)
lm with unit variance.

(ii) Define the T , E and B multipole moments as

aTℓm =
√
C̄TT
ℓ G

(1)
ℓm , (7.18)

aEℓm =
C̄TE
ℓ

C̄TT
ℓ

√
C̄TT
ℓ G

(1)
ℓm +

√
C̄EE
ℓ − (C̄TE

ℓ )2

C̄TT
ℓ

G
(2)
ℓm , (7.19)

aBℓm =
C̄TB
ℓ

C̄TT
ℓ

√
C̄TT
ℓ G

(1)
ℓm +

√
C̄BB
ℓ − (C̄TB

ℓ )2

C̄TT
ℓ

G
(3)
ℓm , (7.20)

where C̄XX′

ℓ ≡ CXX′

ℓ +NXX′

ℓ is the fiducial signal plus the noise.

With the mock data the likelihood for the MCMC analysis is simply given by

L(a|Θ) ∝ exp

(
−1

2
a†C̄(Θ)−1a

)
, (7.21)
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Channel [GHZ] FWHM [arcmin] ∆T [µK arcmin] fsky ℓ range

LiteBIRD 140 31 4.1 0.7 2 - 1350

CMB-S4 150 3.0 1.0 0.4 30 - 3000

Table 7.1: Experimental specifications for the CMB experiments used in this work.

where a = (aTℓm, a
E
ℓm, a

B
ℓm) is the data vector and Θ describes the theoretical model.

Usually, one uses the χ2 functional to describe the likelihood. It is given by

χ2
eff =

∑
ℓ

(2ℓ+ 1)fsky

(
D

|C̄|
+ ln

|C̄|
|Ĉ|

− 3

)
, (7.22)

where |C̄| and |Ĉ| are the determinants of the theoretical and observed data covari-
ances, respectively. D is an elaborate combination of the spectra and given in [40].
The multiplicative factor fsky < 1 is introduced because no experiment can cover
the full sky. The normalisation of χ2

eff is chosen such, that it becomes zero when
theoretical and observed spectra are equal.

The description of the mock data and likelihood requires input from experimen-
tal specifications of the telescopes. This work focuses on the future CMB exper-
iments LiteBIRD [10, 11] and CMB-S4 [15, 14]. Their specifications are listed in
Tab. 7.1 [41].

LiteBIRD

The LiteBIRD satellite is designed to measure the B-mode polarisation of the
CMB. On large angular scales the B-modes carry the imprint of primordial
gravitational waves, whose measurement would provide a powerful probe of the
epoch of inflation. The large sky coverage of this satellite makes it a perfect
candidate to achieve this goal.

CMB-S4

CMB-S4 is a ground based CMB-telescope with various science goals. One
of them is to detect B-mode polarisation. Contrary to LiteBIRD it does not
have a huge sky coverage, but the far better resolution due to it being on the
ground and the technical advantages that carries.

These two experiments have very similar goals but are quite different in their ap-
proaches. This makes them perfect for combining their data. LiteBIRD is superior
on large angular scales and CMB-S4 on small ones.

7.5.2 Square Kilometer Array

In order to able to forecast how the future 21cm experiment Square Kilometer Array
(SKA) will constrain inflationary models one needs a mock-likelihood. The discus-
sion of its construction follows closely Ref.[32].
SKA is a radio telescope consisting of thousands of small antennas spread out over
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an area of approximately one square kilometer. The experiment is based in Aus-
tralia and in South Africa, where each site has different experimental specifications.
This thesis uses for the analysis the specifications for SKA-low, listed in Tab. 7.2,
which is the one based in South Africa [18].

The spectra of the primordial tensor and scalar perturbations Pt and PR are evolved
with CLASS yielding the matter power spectrum Pδ(k). The relation between the
21cm power spectrum and the matter power spectrum is given be Eq. (6.20).

The χ2 defining the likelihood is given by

χ2 =
∑
binsn

∫ kmax

kmin

k2dk

∫ 1

−1

dµ
Vr(z̄n)

2(2π)2

[
(∆P21(k, µ, z̄n))

2

(P21(k, µ, z̄n) + PN)2 + σ2
th(k, µ, z̄n)

]
, (7.23)

where the redshift range is divided into n = 21 bins and each bin has its mean
redshift z̄n and an approximated volume of

Vr(z̄) = 4πfsky

∫
∆r(z̄)

r2dr =
4π

3
fsky

[
r3
(
z̄ +

∆z

2

)
− r3

(
z̄ − ∆z

2

)]
. (7.24)

∆P21 is the difference between the fiducial and the sampled power spectra, see
Sec. 6.2. Now, there are two unspecified terms in Eq. 7.23 left, namely, the noise of
the power spectrum PN and the theory uncertainty σth. The latter depends on the
correlation length (∆k,∆µ,∆z) is discussed in detail in Ref.[32].

The formula for the noise reads [42]

PN(z) =
4πT 2

sysfskyλ
2yD2

A

AΩfcovertobs
, (7.25)

where all the experimental specifications are given in Tab. 7.2. The system temper-
ature is a combination of sky temperature and the receiver temperature

Tsys = Tsky + Trx

with Tsky = 25 K

(
408 MHz

ν

)2.75

and Trx = 0.1Tsky + 40 K . (7.26)

Finally, y is defined as

y =
18.5MPc

1 MHz

(
1 + z

10

)1/2

. (7.27)

7.6 CLASS

The Boltzmann-Code CLASS (The Cosmic Linear Anisotropy Solving System [43])
is used in two ways in this analysis. First, the possibility to calculate the primor-
dial power spectrum from an arbitrary inflationary potential is implemented. The
potential only has to fulfil a few conditions: It has to be positive, its slope negative
and one can write down an analytic expression for it and its first two derivatives. To
calculate the primordial power spectrum CLASS uses the equations from Sec. 5.4.
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Parameter Value/Formula Explanation

λ0 21.11 cm wavelength
ν0 1420.405752MHz frequency

Dbase 1 km maximal baseline
D 40m antenna diameter
tobs 10000 hrs total observation time
Ndish 224 number of antennas
fsky 0.58 sky coverage
z 8 ... 10 considered redshift range
k 0.01 ... 0.2MPc−1 wavenumber
Ω 1.2λ/D)2 field of view
A Ndishπ(D/2)

2 total area
fcover Ndish(D/Dbase)

2 covering fraction

Table 7.2: Experimental specifications of SKA1-LOW [18]

From the primordial power spectrum CLASS is able to time evolve the perturba-
tions up to a desired redshift using the transfer functions from Sec. 6.1 and 6.2. It
can then calculate the angular power spectrum a CMB-experiment would measure
at z = 1100 as well as the matter power spectrum at e.g. z = 9, as shown in Fig. 7.2.

Figure 7.2: Example angular and matter power spectra calculated with CLASS
using the Planck best-fit values.
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Results and Forecasts

Finally, all the theory and methods are introduced and it is possible to discuss the
analysis. To perform the analysis one needs to decide on which parameters describe
the model. Here, the set consisting of

{ωb, ωcdm, h, τreio,M, c,N⋆} (8.1)

is chosen. Where the first four parameters describe the cosmology and the last three
describe the inflationary scenario:

• Baryon density today ωb = Ωbh
2

• Cold dark matter density today ωcdm = Ωcdmh
2

• Reduced Hubble constant today h = H0/100

• Optical thickness at reionization τreio

• First Starobinsky parameter M

• Second Starobinsky parameter c

• e-folds of inflation after the reference mode exited the horizon N⋆

Even though the mechanism for inflation alters standard GR the evolution of the
Universe is considered in a FLRW-cosmology, because the higher curvature terms
become neglible after inflation.
Given this parameter set CLASS calculates the desired spectra, MontePython cal-
culates the likelihood for this set and then proposes a new set according to the
rules of the Metropolis-Hastings algorithm, described in Section 7.2. All parameters
have a flat prior except N⋆, for which a Gaussian one with µ = 55 and σ = 5 was
chosen as the chains converge considerably faster and the difference in the results
is marginal. These values are motivated by the flatness and horizon problems. The
prior for c disallows negative values, as discussed in Ch. 5. The reference scale is
set to k⋆ = 0.05MPc−1. To perform the MCMC analysis a total of 8 chains with up
to 5.5 million steps combined are used. As convergence criterium R − 1 < 0.05 is
chosen. All plots are made with the plotting tool GetDist [44].

This section shows the results of this procedure for the various likelihoods considered.
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It starts with the data from the Planck collaboration and then forecasts for the next
generation CMB experiments and the SKA are discussed.

8.1 Planck Results

The Planck data is used to reproduce the results in Ref.[5] and verify the validity of
the framework used in the forecasts. The marginalised posterior distributions of the
parameter set (8.1) from this analysis are shown in Fig. 8.1. The best-fit values as
well as the mean and its error are given in Tab. 8.1. All of the obtained values are
compatible with the Planck results. The best-fit values for the two most interesting
parameters for this work are

M

MP

= 1.103 · 10−5 and c = 4.135 · 10−5 , (8.2)

which are also consistent with previous work on the extension of the Starobinsky
model [45, 46, 47]. The parameter c in front of the R3 term, describing the extension
of the model, is clearly compatible with 0. This is absolutely necessary, as the pure
Starobinsky model is the best-fit model of the Planck data. Negative values of c are
excluded, as this leads to an unphysical inflationary potential. It is worth noting,
that the data shows a slight bias towards non-zero values of c and therefore, towards
an extension of the Starobinsky model.

8.2 CMB Forecasts

The next step is to show what the next generation CMB experiments can do to
improve the constraints on the inflationary parameters. To do so, the mock likeli-
hoods, discussed in Sec. 7.5.1, are used. For the fiducial, or assumed true, value the
best-fit parameter values from the MCMC analysis of the Planck data is used.

The forecasts are done for the two experiments, LiteBIRD and CMB-S4 alone and
their consistent combination. For the combination one uses LiteBIRD for ℓ = 2 ... 50
and CMB-S4 for ℓ = 51 ... 3000 to profit from the higher sky coverage of LiteBIRD
as well as the higher angular resolution of CMB-S4. It is important to note that one
cannot just combine their full ℓ ranges as they both measure the same phenomenon.

The marginalised distributions are shown in Fig. 8.2 and the values in Tab. 8.1.
Even though LiteBIRD and CMB-S4 are both CMB-experiments their different fo-
cus can be seen in the different constraints they produce. The superior polarisation
sensitivity of LiteBIRD manifests itself in the parameter τreio. There, the constraints
are a lot stronger compared to the ones from CMB-S4. However, with any other pa-
rameter CMB-S4 has the upper hand. For example, ωb is extracted from alternating
peak heights of the acoustic peaks. Naturally, CMB-S4 yields a better measurement
due to the large number of multipoles it can probe. Fortunately, one can consis-
tently combine these to and get the best of both worlds, as is shown by the yellow
contours in Fig. 8.2. This combination would allow a measurement of the assumed
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true value of M = 1.119 · 10−5MP and c = 4.135 · 10−5 to

M

MP

= (1.064 ... 1.147) · 10−5 (95%CL) (8.3)

c = (1.015 ... 8.3) · 10−5 (95%CL) , (8.4)

and therefore show at a 2σ level, that an extension of the Starobinsky model of
inflation is necessary.
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Figure 8.1: Marginalised posterior CMB posterior for the extended Starobinsky
model, based on Planck (TT , TE,EE+low-ℓ EE+low-ℓ TT ).
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8.3 Square Kilometer Array Forecasts

This section presents the sensitivity of the future 21cm experiment SKA to the
extended Starobinsky parameters. For the analysis, the likelihood discussed in
Sec. 7.5.2 is used. Without any information from the CMB, the power spectrum
is not sufficient to constrain all the parameters of Eq. (8.1). However, adding in-
formation from the future CMB experiments LiteBIRD and CMB-S4 is more than
enough to set tight constraints on the parameters. Even, solely a combination with
the Planck data is sufficient to provide a measurement [48].

First, the addition of SKA to the two CMB experiments is investigated individually.
The marginalised distributions are shown in Fig. 8.3. The contours show the same
differences as the sole comparison of LiteBIRD and CMB-S4 in Fig. 8.2. It can be
explained with the same properties of the experiments and how the parameters are
determined, like in Sec. 8.2.

Finally, all of the experiments are combined, i.e. SKA with LiteBIRD low-ℓ and
CMB-S4 high-ℓ, to give the best possible constraints. The corresponding best-fit,
mean and 95%CL limits are given in Tab. 8.1 and the contours in Fig. 8.4. The
cosmological parameters benefiting significantly from SKA are ωcdm and h. Despite
the fact, that this analysis is mainly focused on the inflationary parameters, this
kind of improvement leads to a big advancement in the global analysis. While
the combination with SKA still leaves a narrow correlation between N⋆ and the
Starobinsky parameter M , resulting in no improvement in the constraint for M

M

MP

= (1.064 ... 1.148) · 10−5 (95%CL), (8.5)

it provides an improved reach in the second Starobinsky parameter c, as compared
to the CMB projection of Eq. (8.4),

c = (2.89 ... 5.73) · 10−5 (95%CL). (8.6)

The strong correlation between M and N⋆ can be explained by looking at how
CLASS solves the background equation (3.24). Given the number of e-folds of in-
flation, it evolves back in time until the initial field value is found, resulting in the
desired N⋆. The initial value has a large influence on the exit point of the reference
mode k⋆, which in turn defines the observables As and ns, as they are just the am-
plitude and slope of the power spectrum evaluated at k⋆. In Sec. 5.4 the effect of the
Starobinsky parameters M and c on these two observables is qualitatively investi-
gated and it is shown that in the considered parameter space M mostly determines
them. It might be possible to break this degeneracy by considering a more sophis-
ticated reheating mechanism, which would set tighter constraints on the amount of
inflation one gets.
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Data Parameters Best-fit Mean±σ 95% lower 95% upper

100 ωb 2.228 2.232+0.015
−0.015 2.203 2.26

ωcdm 0.1206 0.1208+0.0012
−0.0012 0.1185 0.1232

Planck h 0.6696 0.6703+0.0053
−0.0053 0.6600 0.6808

(TT , TE,EE+low-ℓ EE τreio 0.04781 0.05315+0.0074
−0.0077 0.03764 0.0687

+low-ℓ TT ) 105M/MP 1.103 1.119+0.117
−0.0987 0.9005 1.329

105c 4.135 6.069+2.840
−5.402 — < 15.96

N⋆ 58.24 57.17+3.73
−4.47 49.65 65.24

100 ωb 2.229 2.223+0.018
−0.017 2.190 2.256

ωcdm 0.1204 0.1209+0.001
−0.0011 0.1188 0.1231

h 0.6705 0.6679+0.0057
−0.0055 0.657 0.6785

LiteBIRD τreio 0.04735 0.04775+0.002
−0.002 0.04391 0.05171

105M/MP 1.144 1.121+0.077
−0.077 0.9676 1.273

105c 2.633 6.345+2.996
−4.801 — < 14.62

N∗ 57.79 57.08+3.18
−3.19 51.04 63.27

100 ωb 2.227 2.228+0.004
−0.004 2.221 2.235

ωcdm 0.121 0.1208+0.0007
−0.0007 0.1192 0.1223

h 0.6681 0.669+0.0027
−0.0027 0.6634 0.6749

CMB-S4 τreio 0.04478 0.04634+0.0064
−0.0058 0.03258 0.05963

105M/MP 1.098 1.105+0.021
−0.021 1.065 1.145

105c 5.166 4.794+1.923
−2.461 0.7769 9.543

N∗ 58.44 58.45+1.45
−1.35 55.66 61.26

100 ωb 2.227 2.228+0.004
−0.004 2.221 2.235

ωcdm 0.1206 0.1207+0.0005
−0.0005 0.1197 0.1216

LiteBIRD low-ℓ h 0.6696 0.6695+0.0018
−0.0018 0.6659 0.673

+ τreio 0.04829 0.04779+0.0017
−0.0019 0.04425 0.05148

CMB-S4 high-ℓ 105M/MP 1.108 1.106+0.022
−0.021 1.064 1.147

105c 4.177 4.573+1.786
−1.944 1.015 8.300

N∗ 58.71 58.59+1.24
−1.25 56.15 61.08

100 ωb 2.228 2.227+0.003
−0.003 2.222 2.232

LiteBIRD low-ℓ ωcdm 0.1206 0.1207+0.0001
−0.0001 0.1205 0.1209

+ h 0.6694 0.6692+0.0004
−0.0003 0.6685 0.670

CMB-S4 high-ℓ τreio 0.04792 0.04734+0.0014
−0.0016 0.04445 0.05033

+ 105M/MP 1.100 1.106+0.023
−0.023 1.064 1.148

SKA 105c 4.350 4.325+0.692
−0.690 2.891 5.734

N∗ 58.95 58.68+0.77
−0.75 57.20 60.18

Table 8.1: Best-fit values, mean, error bars, and 95%CL limits for the parameters
shown in Fig. 8.1, Fig. 8.2 and Fig. 8.4.
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CHAPTER 9

21cm Inference with Deep Learning

In this additional part of the thesis, some more technical advancements of the previ-
ous analysis are explored. However, the physical focus shifts from inflation to dark
matter (DM), epoch of reionization (EoR) and cosmic dawn (CD) parameters. From
one light-cone of 21cm brightness fluctuation ∆T21(x, ν), with on-sky coordinates
x and frequency ν, one obtains the posterior for all parameters of interest, using
an elaborate set-up of neural networks (NN), explicitly a 3D convolutional neural
network (CNN) and a conditional invertible neural network (cINN). First, the pro-
duction of the training set, then basics of deep learning are discussed. Furthermore,
the exact architecture is presented before showing the results.

9.1 Dataset

To train a neural network one needs a large amount of training data. For this task,
this means producing many light-cones (see Sec. 6.2) with the semi-numerical code
21cmFAST [49, 50]. They are produced from coeval cubes in redshift space by
evolving density and velocity perturbations at first and second order perturbation
theory using the Zel’dovich approximation [51].

The parameters of choice for this analysis are exactly like in Ref. [52]:

• Warm dark matter mass mWDM ∈ [0.3, 10] keV:
The limits are set very conservatively to observe a wide range of parameter
behaviour, where at the upper limit the model looks almost like CDM.

• Dark matter density parameter Ωm ∈ [0.2, 0.4]:
It controls structure formation, where a large range is allowed including the
limits set by Planck [4].

• Minimum virial temperature Tvir ∈ [104, 105.3] K:
It determines the minimum virial temperature of halos for cooling to be effi-
cient for star formation.

• Ionisation efficiency ζ ∈ [10, 250]:

It is a composite parameter given by ζ = 30
(
fesc
0.3

) (
f⋆
0.05

) (Nγ/b

4000

)(
2

1+nrec

)
, with

59



CHAPTER 9. 21CM INFERENCE WITH DEEP LEARNING

the fraction of ionising photons escaping into the IGM fesc, the fraction of
galactic gas in stars f⋆, the number of ionising photons per baryon in stars Nγ/b

and the typical number density of recombinations for hydrogen in the IGM
Nrec. The parameter range allows for a wide range of different recombination
scenarios.

• Specific X-ray luminosity (with energies < 2 keV) per unit star formation rate
that escapes host galaxies LX ∈ [1038, 1042] erg s−1M⊙ yr.

• X-ray energy threshold for self absorption by host galaxiesE0 ∈ [100, 15000] eV:
X-rays with energies below E0 do not escape the host galaxy.

The light-cones are produced by sampling the parameters from a flat prior. The
box size is given by 200Mpc and a resolution of 1.42Mpc. The redshift range is
z = 5 ... 35. Each light-cone has the dimension (2350, 140, 140) pixel, where it
is important to note, that Ωm has an impact on the length of each light-cone in
terms of redshift. Hence, only a one with Ωm = 0.4 reaches z = 35. Due to the
very large allowed parameter ranges some very unsensible combinations can happen.
For that reason, it is imposed, that τreio is within 5σ of the Planck measurement
(0.054 ± 0.007) [4] and the IGM mean neutral fraction at redshift 5 is below 0.1.
With these settings 5000 light-cones are produced.

9.2 Basics of Deep Learning

This brief introduction to deep learning largely follows the lecture notes on Mod-
ern Machine Learning for LHC Physicists, given by Tilman Plehn at Heidelberg
University [53].

9.2.1 Neural Network

A neural network can be understood as a fit function with a huge amount of param-
eters θ, such that

fθ(x) ≈ f(x) . (9.1)

One can think of the very complex function fθ(x) in terms of small building blocks,
which are all connected to each other. The complexity of the problem defines how
many building blocks one needs. The network consists of multiple layers, where each
output is the input of the next one:

x→ x(1) → x(2) → ... → x(N) ≡ fθ(x) , (9.2)

if the network is fully connected, or dense, the next vector collects all information
from the previous vector. Splitting the vector x in each D entries each step can be
written as

x
(n)
i = W

(n)
ij x

(n−1)
j + b

(n)
i , (9.3)

where b is called the bias and W the weights. For now, this can only describe linear
functions, but of course one needs non-linearity. One very simple way to introduce
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non-linearity in the network is by an activation function on each node. A common
choice is the rectified linear unit

ReLU(xj) ≡ max(0, xj) =

{
0 xj ≤ 0

xj xj > 0
, (9.4)

which alters Eq. (9.3) to

x
(n)
i = ReLU[W

(n)
ij x

(n−1)
j + b

(n)
i ] . (9.5)

Now, the network can describe very complex non-linear function and by adding more
layers it can describe even more complex functions.

To determine the parameters θ one minimizes a loss function L, which can be any
sensible function, depending on the situation. To illustrate the idea, a simple mean-
squared-error (MSE) loss is chosen. It is given by

L ∝
∑
j

|fj − fθ(xj)|2 (9.6)

and to minimise it one needs the derivative. To not overcomplicate notation, the
bias is set to zero for now and one gets

dL
dW

(n)
ij

= −2
√
L
(
W (N) · · ·W (n+1)

)
ij
x
(n−1)
j . (9.7)

The derivatives of the network are simply given by the chain rule. An efficient
algorithm to compute the derivatives for each layer is called back propagation. To
find the minimum of the loss, one needs to update the network parameters iteratively.
One choice for this procedure is called stochastic gradient descent method, where
the update happens in the following way

θ
(t+1)
j = θ

(t)
j − α

〈
∂L(t)

∂θj

〉
with θj ∈ {b,W} , (9.8)

where expectation value is defined over a minibatch, as it is to computationally
expensive to take it over the whole training set. The learning rate α determines
the size of the step one takes in the direction of the minimum. Of course, more
sophisticated version of this update procedure exist, the most prominent one being
the Adam optimizer [54].

9.2.2 Convolutional Neural Network

The convolutional neural network (CNN) is an idea from research on image recog-
nition, which is essentially what a light-cone is, a 3D image. A CNN learns the
correlation between pixels, by performing a convolution with a matrix-like filter
encoding information about the neighbourhood of each pixel. There exist a few
standard operations for CNNs, they will be explained for a 2D CNN, due do the
fact that one can better imagine them and they are easily generalised to higher
dimension. The network input is a 2D image as (n×n)-dimensional matrix and the
output is usually a 1D vector, where the size depends on the task.
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• Zero padding (n× n) → (n+ 2× n+ 2): It increases the size of the input by
adding zeros at the boundary to use a filter for the pixels at the boundary.

• Convolution (n × n) → (n − nc-size + 1 × n − nc-size + 1): The input image
is convoluted with learnable filters of size nc-size × nc-size and a stride of one.
They play the role of nodes

x′ij = ReLU
∑
r,s

[Wrsxi+r,j+s + b] . (9.9)

• Feature maps nf−maps× (n×n) → nf−maps× (n×n): To increase the express-
ibility of the network multiple filters are introduced. They turn one image into
nf−maps feature maps x′(k) which mixes information from all input maps

x′(k) =

nf−maps−1∑
l=0

∑
r,s

[W (kl)
rs x

(l)
i+r,j+s + b(k)] . (9.10)

This defines a convolutional layer, of which multiple are stacked.

• Pooling: (n × n) → (n/p × n/p): The size of a feature map is reduced by a
downsampling algorithm. A patch with fixed size p × p is reduced to single
pixel by taking the average or the maximum. This is needed, as one wants a
compact network output in the end.

• Flattening: (n × n) → (n2 × 1): The final output of the network has to be a
vector for this task. Therefore, the 2D object is flattened to a vector.

• Fully connected layers n2 → nd-node: On the flattened vector a normal fully
connected NN can be used like in Eq. (9.5), where nd-node depends on the task
at hand. Multiple of dense layers are stacked at the end before giving the final
output.

Training the CNN works exactly like for a standard NN.

9.3 BayesFlow

A CNN is already a great tool for parameter recovery. However, one only gets an
estimate without an error. For Bayesian inference tasks, the BayesFlow set-up [55]
is a good architecture. This section presents how the combination of a summary
network and a conditional invertible neural network (cINN) can learn the posterior
of a given parameter set, following Ref. [55]. The idea is illustrated in Fig. 9.1, where
the networks are trained with simulations from a model of interest. Then, only one
measurement is needed to obtain the posterior for the parameters of the model.

First, one has to deal with notation. The number of parameters of a mathe-
matical model are donated as D and the parameters themselves as a vector θ =
(θ1, θ2, ..., θD), the number of observations in a dataset as N . The simulated data
is x1:N = (x1,x2, ...,xN) with xi a vector or scalar. Observed or test data gets a
superscript o, such that it reads xo1:N . The trainable parameters of the summary
neural network are ψ and the one from invertible neural network are ϕ.
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9.3.1 Finding the Posterior

For now, assume that N = 1 to not make the notation too confusing and that
the summary network does not exist, i.e. the raw data x is fed directly into the
invertible neural network. The goal is to find an approximate posterior:

pϕ(θ|x) ≈ p(θ|x) (9.11)

for all possible θ and x. Thus, the objective is to find network parameters ϕ̂, which
minimize the Kullback-Leibler (KL) divergence between the approximate and true
posterior

ϕ̂ = argmin
ϕ

Ep(x)[KL(p(θ|x)||pϕ(θ|x))] (9.12)

= argmin
ϕ

Ep(x)[Ep(θ|x)(log p(θ|x)− log pϕ(θ|x))] (9.13)

= argmax
ϕ

Ep(x)[Ep(θ|x)[log pϕ(θ|x)]] (9.14)

= argmax
ϕ

∫ ∫
p(x,θ) log pϕ(θ|x)dxdθ , (9.15)

where the exact posterior density can be dropped as it does not depend on ϕ and
the minus sign changes argmin to argmax.

The approximate posterior can be reparameterized with a conditional invertible
neural network (cINN) fϕ : R → R for which f−1

ϕ exists. This network implements
a normalizing flow between θ and a Gaussian latent variable z:

θ ∼ pϕ(θ|x) ⇐⇒ θ = f−1
ϕ (z;x) withz ∼ ND(z|0, I ) (9.16)

allowing the use of change of variable rule yielding

pϕ(θ|x) = p(z = fϕ(θ;x))

∣∣∣∣det(∂fϕ(θ;x)∂θ

)∣∣∣∣ . (9.17)

Figure 9.1: Conceptual idea of performing bayesian inference with BayesFlow. Fig-
ure from Ref. [55].

63



CHAPTER 9. 21CM INFERENCE WITH DEEP LEARNING

Therefore, Eq. (9.15) becomes

ϕ̂ = argmax
ϕ

∫ ∫
p(x,θ)(log p(fϕ(θ;x)) + log | detJfϕ |)dxdθ , (9.18)

with the Jacobian Jfϕ of fϕ evaluated at θ and x.
By using the a Monte Carlo estimate it is possible to maximize the likelihood with
M simulated datasets and the data-generating parameters {(x(m), (θ(m)}Mm=1:

ϕ̂ = argmin
ϕ

1

M

M∑
m=1

− log p(fϕ(θ
(m);x(m)))− log | detJ (m)

fϕ
|) (9.19)

= argmin
ϕ

1

M

M∑
m=1

(
∥fϕ(θ(m);x(m))∥22

2
− log | detJ (m)

fϕ
|
)
, (9.20)

where the first term comes from the fact, that z is prescribed to a unit Gaussian
distribution.

Now, it is time to reintroduce the summary network with its output vector x̃ =
hψ(x1:N). The summary network is trained jointly with the cINN, which changes
the objective to

ϕ̂, ψ̂ = argmax
ϕ,ψ

Ep(x,θ,N)[log pϕ(θ|hψ(x1:N))] , (9.21)

and the Monte Carlo estimate to

ϕ̂, ψ̂ = argmin
ϕ,ψ

1

M

M∑
m=1

(
∥fϕ(θ(m);hψ(x

(m)
1:N))∥22

2
− log | detJ (m)

fϕ
|

)
. (9.22)

Eq. (9.22) is going to be the loss function L and is therefore minimized in training
yielding the correct posterior after successfully finding the minimum. The minimiza-
tion can be achieved with any gradient descend algorithm.

9.3.2 Composing Invertible Networks

The cINN is composed of multiple affine building blocks (ABC) [56]. An ABC per-
forms an invertible non-linear transformation. Therefore, one not only get fϕ(u) = v
but also f−1

ϕ (v) = u for free. Here, u is the input vector and v the output vector.
To make the transformation trivially invertible the input vector is split into two
parts

u = (u1,u2) withu1 = u1:D/2 andu2 = uD/2+1:D , (9.23)

with the D/2 is to understood as a floor division. The operation of the ABC is now
the following:

v1 = u1 ⊙ exp(s1(u2)) + t1(u2) (9.24)

v2 = u2 ⊙ exp(s2(v1)) + t1(v1) , (9.25)
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with the element-wise multiplication ⊙ and the outputs are again concatenated.
The inverse operation is given by:

u2 = (v2 − t2(v1))⊙ exp(−s2(v1)) (9.26)

u1 = (v1 − t1(u2))⊙ exp(−s1(u2)) . (9.27)

The functions s1, s2, t1, t2 are four separate fully connected neural networks, in this
case with a ReLU activation. These networks do not need to be invertible for the
cINN to be invertible, as they are always only used in the forward direction. Due
to the construction of the transformation, the Jacobian is always a strictly upper or
lower triangular matrix, which make the computation of the determinant very easy.
For the whole cINN multiple of these blocks are put together, where the output
of one is the input of the next, but the dimensions are permuted to increase the
expressivity.

So far the output of the summary network is not incorporated in the cINN. This
is achieved very easily by giving its output vector x̃ as an additional input at each
block, i.e.

v1 = u1 ⊙ exp(s1(u2, x̃)) + t1(u2, x̃) (9.28)

v2 = u2 ⊙ exp(s2(v1, x̃)) + t1(v1, x̃) . (9.29)

So a complete pass through the cINN can expressed as fϕ(θ; x̃) = z and the inverse
direction f−1

ϕ (z; x̃) = θ.

9.4 Architecture and Training

9.4.1 Architecture

The set-up consists of two neural networks, where the summary network is far
more expressive compared to the cINN. As a summary network a 3D CNN is used,
following Ref. [52] and their use for parameter inference. Its exact architecture
is given in Tab. 9.1. The kernel size of the first filter has an asymmetric shape
of (3 × 3 × 102) to reflect the difference between fluctuations in z-direction and
spatial-direction. Furthermore, a stride of (1× 1× 102) reduces the dimensionality
of the following layers, making it computationally cheaper, while still capturing
the relevant physics. The kernel size of the hidden layers is set to (3 × 3 × 2)
and max pooling layers are applied only in the spatial direction. In front of three
fully connected layers is one global average pooling layer to impede overfitting, i.e.
learning the training data so well, that the network cannot interpolate to the test
data. The hidden layers use a ReLU activation function.

The cINN is made up of the building blocks, described in Sec. 9.3.2. Here, 8 ABCs
are set in sequence where each of the internal fully connected NN has 256 nodes
with one hidden layer and ReLU activation.

For composing the cINN FrEIA (Framework for Easily Invertible Architectures) [57]
is used. While the training and evaluation is performed in the PyTorch frame-
work [58].
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Layer Shape

Input Layer (1,140,140,2350)
3x3x102 Conv3D (32,138,138,23)
3x3x2 Conv3D (32,136,136,22)
2x2x1 Max Pooling (32,68,68,22)
3x3x2 Conv3D (64,66,66,21)
1x1x0 Zero Padding (64,66,66,20)
3x3x2 Conv3D (64,66,66,20)
2x2x1 Max Pooling (64,33,33,20)
3x3x2 Conv3D (128,31,31,19)
1x1x0 Zero Padding (128,33,33,19)
3x3x2 Conv3D (128,31,31,18)
Global Average Pooling (128)
Dense (128)
Dense (128)
Dense (128)
Dense (6)

Table 9.1: 3D CNN model summary.

9.4.2 Training

The dataset of 5000 light-cones is divided into 1000 for testing, 400 for validation
and the rest for training. The batch size is always set to 8 and for adjusting the
weight, the Adam optimizer is used. Training the full set-up is composed of three
stages:

Stage 1:
First, only the summary network is trained. As a loss function a normal MSE-loss
is used, since the correct labels of the parameters are known. The learning rate
is initially set to 4 · 10−4 and after 15 and 20 epochs decreased by a factor of 0.5.
The network is trained for 31 epochs and the evolution of the loss can be seen in
Fig. 9.2a. Note, that one does not need perfect convergence here, as this is only the
first stage.

Stage 2:
Next, only the cINN is trained with the fixed, pretrained CNN from stage 1. The
loss is the one defined in Eq. (9.20) and its evolution is shown in Fig.9.2b. For this
training a constant learning rate of 4 · 10−4 is used and training is stopped after 150
epochs.

Stage 3:
Finally, everything is trained together, which is necessary to ensure convergence to
the correct minimum. The loss is defined in Eq. (9.22). The learning rate is adjusted
every five steps. Starting from 4 · 10−4 it is reduced by a factor of 0.3 until it stays
constant after epoch 20. Its effect can be seen in the loss curve. The training is
aborted after 32 epochs.

This alternating training scheme is necessary, because the summary network is much
more complicated than the cINN and needs a head start in training. Otherwise, the
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summary network makes random predictions and it never learns a useful summary
of the input. The architecture and hyperparameters are summarized in Tab. 9.2.

Number of parameters 6
Batch size 8
Batches per epoch 450
Output dimension summary network 6
Coupling layers 8
Fully connected coupling layer architecture 256, for all layers
Epochs 31,150,32
Training / testing points 3600 / 1000

Table 9.2: Network set-up and hyperparameters.
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Figure 9.2: MSE-loss for the training and validation data set as a function of the
training epoch.
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9.4.3 Performance Validation

To asses the performance of the set-up a number of metrics are used:

• Parameter Recovery:
The mean of the marginalized posterior should statistically frequent coincide
with the true value of the parameter, for a perfect approximation. To quan-
tify the deviation, two metrics are used, which are based on how sample of
true parameters {θ(m)}Mm=1 is explained by a sample of estimated parameter
{θ̂(m)}Mm=1. The estimated parameters are the means.
Coefficient of determination (R2): It measures the proportion of variance and
the formula is given by

R2 = 1−
M∑
m=1

(
θ(m) − θ̂(m)

)2(
θ(m) − θ̄(m)

)2 . (9.30)

For perfect parameter recovery R2 equals 1.
Normalized root mean square deviation (NRMSE): It is given by

NRMSE =

√
1
M

∑M
m=1

(
θ(m) − θ̂(m)

)2
θmax − θmin

, (9.31)

where the normalisation allows for comparison throughout all parameters.

• Simulation-Based Calibration [59]:
It is a self-consistency check to visually detect systematic biases. One generates
a histogram using the rank statistic

r(m) =
L∑
l=1

I[θ(l)<θ̃(m)] , (9.32)

where θ̃(m) is a true parameter, used to generate data, and θ(l) are samples
from the approximate posterior for the previously generate data. If it is self-
consistent the resulting histogram is uniformly distributed. Common failure
modes, like over- and under-confidence as well as biases a visually detectable.

• Latent Space examination:
The training objective is to map to unit Gaussian in the latent space. There-
fore, upon good convergence, one expects the latent space to have a Gaussian
structure.

• Calibration Error [60]:
Errcal quantifies how well the coverage of an approximate posterior matches
the coverage of an unknown true posterior. For each parameter the marginalised
approximate posterior is given and the α-credible intervals can be calculated,
with α ∈ (0, 1). For each α the fraction of true parameter values lying in the
interval is denoted with αθ. For a perfectly calibrated approximate posterior:
αθ = α. The calibration error is defined as

Errcal =
L∑
l=1

|α(l)
θ − α(l)| , (9.33)
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with L equally spaced α(l). The calibration error ranges from 0 to 1, with 0
indicating perfect calibration.

9.5 Results

This section discusses the results of parameter inference with the set-up and training
described in Sec. 9.4. First, in Fig. 9.3 the parameter recovery is shown. There are
clear differences in performance, listed in Tab. 9.3.

The worst parameter is mWDM, especially for large masses. But for that, there is a
physical explanation, as for large mWDM, it starts to look more like CDM. However,
the networks uncertainty accounts for that, as there is actually information lost and
an analysis with power spectra comes to the same result [61]. The outliers in Tvir
can be explained with mWDM as well [52]. A threshold for early star formation is set

by Tvir, but also by MJeans ∝ (Ωmh
2)1/2

(
mWDM

keV

)−4
M⊙. For large mWDM the Jeans

mass limit is dominating and the minimum virial temperature has little effect on
the era of reionization, resulting in the outliers. The errorband is dominated by
those, for small mWDM the network is very certain about its output. The R2-value
of E0 is not perfect, but the uncertainty is larger as well. The true value is therefore
still within the one σ region. The rest of the parameter set shows almost perfect
parameter recovery.

In order to check for consistency, a simulation based calibration is performed. The
resulting histograms are shown in Fig. 9.4, for a sample size of 10000 and 50 bins.
The grey shaded region is the expected variation, based on the 99% quantile of a Bi-
nomial. Therefore, one has the expected variance and the histograms are uniformly
distributed, implying self-consistent sampling.

As a last performance check, the latent space is investigated. As the learning objec-
tive is to map to normal Gaussian, for a converged network one would expect it to
be distributed as such. It is shown in Fig. 9.5. The distribution follows a Gaussian,
but for same parameters is a slightly wider. However, it is safe to state, that the
network is in a minimum.

mWDM Ωm E0 LX Tvir ζ

R2 0.621 0.981 0.803 0.987 0.764 0.969

NRMSE 0.181 0.039 0.130 0.032 0.135 0.048

Errcal 0.011 0.007 0.025 0.016 0.050 0.028

Table 9.3: Various metrics (see Sec. 9.4.3) to check the performance of the network
for all parameters.
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Figure 9.3: Parameter recovery, with the mean of the marginalized posterior (red
dots) and the 68% Cl intervals in light blue. R2, NRMSE and Errcal are calculated
according to Eq. (9.30), Eq. (9.31) and Eq. (9.33), respectively.
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Figure 9.4: Simulation based calibration for all parameters. A uniform distribution
indicates no bias, with the shaded region indicating the variation one expects in a
uniform distribution, here the 99% quantile of a Binomial.
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Finally, one can look at the full posterior, given one simulation, which can be taken
as an assumed measurement. The light-cone is chosen semi-randomly from the test
data set. Its only requirement is, that its parameters are not at the boundaries of
the parameter ranges. The values are

mWDM = 1.71 keV , Ωm = 0.318 , E0 = 663 eV ,

LX = 1040 erg s−1M⊙ yr , Tvir = 104.70K , ζ = 51.4 ,
(9.34)

but can be adjusted to anything, within the parameter range one likes. Since the
network is already trained, changing the fiducial model and getting the posterior
is next to no additional work. The 2D posterior with its correlations is shown in
Fig. 9.6 and the 1D in Fig. 9.7. The true value is within the one σ region for
all parameters. A comparison to previous work, like Ref. [62] with a full MCMC
analysis is difficult, as no noise model is included in this work, so far. However, the
3D CNN from Ref. [52], which is identical to the summary network in this work,
performed equally well for light-cones with and without noise. Hence, one might
take a look at the contours, but one has to stay cautious. The CL-intervals in this
work are of the same order of magnitude as in Ref. [62], showing a successful set-up.
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CHAPTER 10

Summary and Conclusion

This thesis starts by discussing the standard model of cosmology and then continues
with its problems and how inflation can solve them. The physics of single-field
inflation is presented, followed by the theory of cosmological perturbations, which
is used to describe the evolution of the quantum mechanical fluctuations during
inflation. Before discussing how one can observe the effects of inflation in the CMB
and in large scale structure the particular inflationary model of interest is presented,
an extension of the Starobinsky model, and the physics discussed. Some analytic
motivations are presented to get an intuition for the parameters.

The central task of this thesis is a Markov chain Monte Carlo analysis with multiple
likelihoods from future 21cm (SKA) and CMB (LiteBIRD and CMB-S4) experi-
ments. The general algorithm and the tools, MontyPython for the MCMC and
CLASS for the evolution of perturbations, are explained, before discussing how the
likelihoods are constructed.

First of all the results are consistent with the analysis from the Planck collaboration
for the 2018 data. The second Starobinsky parameter c, which describes the exten-
sion, is not considered in the Planck analysis, however it needs to be consistent with
zero. The results show a slight bias towards non-zero c. The best-fit values from
this analysis are used as fiducial values for the forecasts. First, only the combination
of the future CMB experiments is considered, already giving a huge improvement in
the constraints, excluding c = 0 at 95% CL. The different strength of these experi-
ments is visible as well, where the LiteBIRD satellite is superior in constraining τreio
due to its large sky coverage, but for every other parameter the better resolution of
the ground base CMB-S4 experiment is more important.

Adding the SKA likelihood improves the results drastically, especially for the cos-
mological parameters h and ωcdm as well as the second Starobinsky parameter c,
excluding a c = 0 at 99% CL, if the best-fit value from the Planck analysis is in
fact the true value. Therefore, SKA will be able to find hints for physics pointing
towards a modification of standard General Relativity.

There exist multiple ideas how to improve the analysis. The likelihood for SKA uses
a empirical fitting formula for some of the astrophysical processes, while one could
try to implement the full model in MontePython and CLASS. Of course this comes
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with computational cost and challenges as it increases the parameter space, but it
would also open new possibilities as it would be possible to consider a larger redshift
range, where the fitting formula in this thesis is not applicable. Additionally, the
degeneracy between N⋆ and M might be resolvable with a better description of the
reheating process. Again, one could try to implement different reheating scenarios
in CLASS

One of those ideas, an improved consideration of astrophysical processes is explored
in the end. But more as a proof of concept, where the parameter set changes to
EoR and CD parameters with dark matter properties. Now, the inference is done
in a likelihood-free way using, directly from the simulated 21cm data. The set-up
is self consistent and produces the correct posterior, where the inclusion of DM
parameters shows, that fundamental parameters can be inferred with this method.
So far, no noise model is included, making it difficult to compare the results to other
works who use MCMC. Finally, including a more elaborate inflation mechanism in
the simulation will allow the determination of those parameters using likelihood-free
inference in the future.
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APPENDIX A

Hubble Slow-Roll Projections

The analysis of this work is very focused on the Starobinsky model of inflation.
However, the framework can also be used to constrain inflation in a model indepen-
dent way, using the Hubble slow-roll (HSR) parameters, defined in Eq. 3.16. The
parameter set is then given by

{ωb, ωcdm, h, τreio, Ãs, ϵH , ηH , ξ
2
H , ω

3
H}. (A.1)

The pipeline of the analysis is exactly the same as before. CLASS is used to deter-
mine the power spectra from expansion of the Hubble function and MontePython
performs the MCMC. First, the constraints from the Planck collaboration are repro-
duced in Fig. A.1, where only the distribution for the HSR-parameters are shown.
Again, the best-fit values are used as fiducial values for the forecasts. For Lite-
BIRD, CMB-S4 and the combination of Planck with SKA the contours are shown
in Fig. A.1, while the combination of LiteBIRD low-ℓ with CMB-S4 high-ℓ as well
as LiteBIRD low-ℓ with CMB-S4 high-ℓ and SKA is shown in Fig. A.2. All of the
best-fit, mean and 95%CL interval values are given in Tab. A.1.
The qualitative performance of the future experiments is the same as in the model
dependent analysis. The best projected constraints come from combination of future
21cm and CMB experiments.
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Figure A.1: Marginalized CMB posteriors for the HSR parameters based on Planck
(TT , TE, EE+low-ℓ EE+low-ℓ TT ), Planck+SKA, LiteBIRD, CMB-S4.
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Data Parameters Best-fit Mean±σ 95% lower 95% upper

109Ãs 2.059 2.080+0.039
−0.057 1.987 2.186

ϵH 0.0001111 0.005445+0.002930
−0.005313 — < 0.01393

Planck ηH −0.01953 −0.007755+0.007628
−0.012983 −0.02712 0.01599

ξ2H 0.02493 0.01809+0.07614
−0.07272 −0.1175 0.1587

ω3
H 0.1008 0.4431+0.5342

−0.7216 −0.8662 1.812

109Ãs 2.034 2.047+0.028
−0.029 1.986 2.102

Planck ϵH 0.001220 0.003338+0.001678
−0.003156 — < 0.009013

+ ηH −0.0175 −0.01283+0.00353
−0.00658 −0.02158 −0.001015

SKA ξ2H 0.02386 0.02238+0.00687
−0.00676 0.00856 0.0356

ω3
H 0.01487 0.1594+0.5060

−0.1722 −0.1846 0.5023

109Ãs 2.052 2.061+0.030
−0.042 1.995 2.131

104ϵH 1.086 1.151+0.260
−0.316 0.5912 1.736

LiteBIRD ηH −0.01991 −0.01897+0.00938
−0.01229 −0.03931 0.002793

ξ2H 0.04889 0.02338+0.13927
−0.09424 −0.2021 0.2296

ω3
H −0.2849 0.04961+0.67578

−0.68982 −1.059 1.155

109Ãs 2.06 2.059+0.028
−0.030 2.002 2.118

104ϵH 1.104 1.113+0.053
−0.057 1.007 1.221

CMB-S4 ηH −0.0191 −0.0198+0.0018
−0.0018 −0.02334 −0.01632

ξ2H 0.01098 0.03418+0.03331
−0.03942 −0.03461 0.1062

ω3
H 0.3613 −0.09232+0.73948

−0.37747 −1.157 0.8509

109Ãs 2.053 2.059+0.011
−0.011 2.037 2.08

LiteBIRD low-ℓ 104ϵH 1.109 1.112+0.060
−0.064 0.9925 1.235

+ ηH −0.01999 −0.01966+0.00166
−0.00165 −0.02291 −0.01636

CMB-S4 high-ℓ ξ2H 0.02682 0.0288+0.0316
−0.0359 −0.03628 0.09762

ω3
H −0.003998 0.03371+0.51047

−0.37005 −0.7958 0.8296

LiteBIRD low-ℓ 109Ãs 2.06 2.058+0.008
−0.008 2.042 2.073

+ 104ϵH 1.114 1.114+0.060
−0.062 0.9967 1.235

CMB-S4 high-ℓ ηH −0.01951 −0.01964+0.00031
−0.00033 −0.02026 −0.01902

+ ξ2H 0.02687 0.02238+0.00568
−0.00568 0.01128 0.03339

SKA ω3
H 0.1544 0.1347+0.1561

−0.1525 −0.1974 0.4407

Table A.1: Best-fit values, mean, error bars, and 95%CL limits for the HSR param-
eters shown in Figs. A.1 and A.2.
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