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Ermitteln analytischer optimaler Observablen mittels symbolischer Regression für
den LHC:

Experimente am LHC führen zu hochdimensionalen Datensätzen, wo einzelne Prozesse durch
eine große Anzahl von Parametern beschrieben werden. Relevante Informationen für die Mes-
sung eines Modellparameters zu extrahieren erschwert sich dadurch und moderne Analysemeth-
oden werden erforderlich. In dieser Situation stellen optimale Observablen - statistisch mo-
tiviert - eine mächtige Methode bereit. Sie sind per Konstruktion die Sensibelsten für die
physikalischen Parameter und hängen im Allgemeinen nicht trivial von kinematischen Observ-
ablen ab. Obwohl neuronale Netze sich durch numerisches Kodieren der optimalen Observablen
als effektiv erwiesen haben, ist ein interpretierbarerer Ausdruck, in Form einer mathematischen
Formel, erwünscht.
In dieser Arbeit zeigen wir, wie symbolische Regression benutzt werden kann, um analytische
auf dem Matrix-Element basierende Formeln zu erhalten. Unsere Methode wird genutzt, um
Dimension-6-Wilson-Koeffiziente des SMEFT zu studieren, die Einfluss auf Higgs-Kopplungen
nehmen. Mittels des ZH-Produktionsprozesses wird unser Einsatz vorgestellt und auch erklärt.
Anschließend fokussieren wir uns auf den bekannten Fall von CP-Verletzung in Vektor-Boson-
Fusion, womit unser Ergebnis sowohl mit theoretischen Vorhersagen als auch mit neuronalen
Netzen verglichen wird. Beim Ermitteln der Konfidenzintervalle erweist sich symbolische Re-
gression als konkurrenzfähig gegenüber den neuronalen Netzen.

Learning Analytic Optimal Observables from Symbolic Regression for the LHC:

Experiments at the LHC give rise to high-dimensional data sets where a single event is char-
acterized by many parameters. This makes it challenging to identify the information needed
for the measurement of a model parameter and requires modern analysis techniques. Optimal
observables, being well motivated by statistics, provide a powerful method for such a study.
By construction they are the most sensitive observables to the physical parameters of interest
while in general showing non-trivial dependencies on the kinematic observables. While neural
networks proved to be an efficient technique to numerically encode them, a more interpretable
form is desired as mathematical expressions remain the language of physics.
In this thesis we show how symbolic regression can be used to obtain analytic formulas using
matrix-element information. We apply our method to study dimension-6 Wilson coefficients
of the SMEFT affecting Higgs couplings. We use the process of associated ZH-production
to introduce and explain our approach. Later we focus on the known case of CP-violation
in weak-boson-fusion Higgs production comparing our result to theory predictions as well as
neural networks. From studying calculated confidence intervals, we find our symbolic regression
result to be competitive with the neural nets.
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1 Introduction

Modern LHC physics relies on state-of-the-art statistics and analysis methods to perform precision
measurements for the search of new physics. Using likelihood methods to compare experimental
and simulated data we can extract information on physical parameters. The data sets usually span
a high-dimensional phase-space, making it challenging to extract the relevant information needed
for the analysis of a certain parameter. Machine learning techniques were introduced to resolve
this issue. However due to their complicated internal structure any possibility of interpreting the
results in terms of mathematical expressions is lost.

The properties of the Higgs-boson, the only scalar particle in the Standard Model, are one
of the big questions in modern particle physics. The theory framework for its analysis is the
SMEFT (Standard Model Effective Field Theory) [1, 2]. By introducing dimension-6 operators
with corresponding Wilson coefficients, the SMEFT can be used for model independent searches
for new physics beyond the Standard Model. Any analysis approach boils down to the question
of how to measure a certain model parameter given a certain process. The answer is provided
by optimal observables [3–6] which are based on the matrix-element and per definition contain all
relevant information for the measurement of a specific physical parameter.

While in the past, optimal observables were obtained through theory approximations at parton
level, today neural networks can be used to encode the information directly at detector level [7–9].
Unfortunately, this method is not widely used as neural networks are often perceived as black
boxes. Instead of using a neural network we are going to apply symbolic regression to find an
interpretable expression for the optimal observable, a function of measurable kinematic quantities.
We will apply this method not only on partonic processes but on data including shower and detector
simulations.

We start by giving a short review of the Standard Model followed by an introduction to effective
field theories and present the concept of optimal observables. After explaining the computational
tools needed for our analysis in Sec. 2 we will apply our methods to learn optimal observables
for Wilson coefficients of dimension-6 operators influencing the V V H-couplings. As a kickoff we
look at a toy process of ZH-production in Sec. 3, then we focus on the more complicated case of
weak-boson-fusion in Sec. 4. A brief summary of our results is given in Sec. 5.

1.1 The Standard Model

The Standard Model of particle physics is the most sophisticated theory for the fundamental
interactions of nature. With the discovery of the Higgs boson at the LHC in 2012 the long effort
of confirming the Standard Model was completed. So far it fully describes nearly all experiments
performed in high energy physics.
The Standard model is a quantum field theory which is based on the following 4 aspects:

• The spontaneously broken SU(3)× SU(2)× U(1) gauge symmetry

• The particle content consisting of 12 fermions, 4 gauge bosons and 1 scalar boson

• The 3 fundamental forces defining the electromagnetic, weak and strong interactions

• The Higgs mechanism giving rise to fermion and gauge boson masses by spontaneously
breaking the SU(2)× U(1) symmetry
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Lagrangian

Given this foundation one can construct a Lagrangian LSM that includes all possible terms that
can be constructed from the particle fields as long as they are invariant under the imposed gauge
symmetry as well as the Poincaré group consisting of Lorentz transformations and translations.
Additionally we require the Standard Model to be a renormalizable theory, therefore only terms
with dimensions up to 4 are included. We can break up the Lagrangian into 4 terms:

LSM =Lkin + Lψ + Lφ + LYuk (1)

The first part is the kinetic term containing derivatives of the fields. It describes their propagation
through spacetime and ensures that the fields are dynamical. It is given by:

Lkin =− 1

4
Gµν
a Gaµν −

1

4
W µν
b Wbµν −

1

4
BµνBµν −

∑
f∈{Q,L}

iψ̄f 6Dψf − (Dµφ)†Dµφ (2)

We use ψ for the fermionic fields of all quarks and leptons and φ for the scalar field corresponding
to the Higgs field. G are the gluon fields and W and B are the gauge bosons of the electroweak
theory. The field strength tensors used above are defined as follows:

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcG

µ
bG

ν
c

W µν
a = ∂µW ν

a − ∂νW µ
a − gεabcW

µ
b W

ν
c

Bµν = ∂µBν − ∂νBµ (3)

where gs is the strong and g the weak coupling constant and fabc(εabc) are the structure constants of
the SU(3) (SU(2)) group. For the U(1) group the last term vanishes as it is an Abelian symmetry
group.

We also introduce the covariant derivative which ensures that the Lagrangian is invariant under
gauge transformations:

Dµ = ∂µ + i
gs
2
Gµ
aλa + i

g

2
W µ
b σb + ig′Y Bµ (4)

where λa are the Gell-Mann matrices, σb the Pauli matrices and Y the hypercharge. They are the
generators of their corresponding symmetry group. Applying the covariant derivative for example
on the Higgs field we obtain:

Dµφ = ∂µφ+ i
g

2
σbW

µ
b φ+ i

g′

2
Bµφ (5)

The next term in the Lagrangian is Lψ= 0. Since fermions are charged and chiral we cannot
construct mass terms that are invariant under symmetry transformations. We therefore move on
to Lφ, the Higgs potential. It gives rise to the Higgs mass and self-couplings. It is given by:

Lφ = −µ2φ†φ− λ
(
φ†φ
)2

(6)

Last but not least the Yukawa term LYuk accounts for the interactions between fermions and Higgs:

LYuk =
∑

f∈{Q,L}

Yf ψ̄Lφψf,R + h.c. (7)

Here Yf are the 3× 3 Yukawa matrices.
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Higgs mechanism

The Higgs potential as defined in Eq. (6) leads to a spontaneous symmetry breaking of SU(2)×
U(1)Y → U(1)Q. Taking µ2 < 0, the minimum of the potential is given by:

〈φ〉 =

√
−µ

2

2λ
≡ v√

2
(8)

This means the Higgs field acquires a non-zero vacuum expectation value (VEV) which is not
invariant under the gauge transformations and therefore breaks 3 out of 4 generators of the SU(2)×
U(1)Y group.

We can view the Higgs field as the VEV plus an excitation h. From now on we refer to the
Higgs field given by:

φ =
1√
2

(
0

v + h

)
(9)

In the next step we can insert this expression for the Higgs field into the Lagrangian defined above.
From the Yukawa part given in Eq. (7) we acquire fermion masses given by Yfv/

√
2 as well as

interactions with the Higgs boson. More relevant for the course of this work are the interactions
with the weak gauge bosons as well as their masses. They arise from the kinetic term of the Higgs
field given in Eq. (2). Inserting the covariant derivative given in Eq. (5) the Lagrangian for the
gauge boson masses is given by:

LMV
=

1

8

(
0 v

)( gW3µ + g′Bµ g(W1 − iW2)µ
g(W1 + iW2)µ −gW3µ + g′Bµ

)(
gW µ

3 + g′Bµ g(W1 − iW2)
µ

g(W1 + iW2)
µ −gW µ

3 + g′Bµ

)(
0
v

)
=
v2

8

(
g2W 2

1 + g2W 2
2 + (−gW3 + g′B)

2
)

(10)

We see that in the last term we have mixing between W3 and B meaning their mass matrix is not
diagonal. To resolve this issue we redefine the fields as follows:

Zµ =
1√

g2 + g′2
(−g′Bµ + gW3µ) Aµ =

1√
g2 + g′2

(gBµ + g′W3µ) (11)

The mixing angle is the Weinberg angle θW defined as:

tan θW ≡
g′

g
(12)

Even though W1 and W2 are already in a diagonal mass basis it is worthwhile to redefine them as
well to insure a well defined electromagnetic charge:

W±
µ =

1√
2

(W1 ∓ iW2) (13)

Inserting Eq. (11) and (13) into Eq. (10) we obtain the masses of the weak gauge bosons W±

and Z0 given by:

mW =
1

4
v2g2 mZ =

1

4
v2(g2 + g′2) (14)

while the photon A remains massless. It corresponds to the unbroken U(1)Q symmetry.
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In analogy to the calculation in Eq. (10) we can also obtain the interactions of the weak bosons
with the Higgs. They are then given by:

LV−h =
m2
W

v2
W−
µ W

+µ(2hv + h2) +
1

2

m2
Z

v2
ZµZ

µ(2hv + h2) (15)

This gives us the Feynman rules for example for the ZZH vertex, given by 2im2
Z/v, or the WWH

vertex given by 4im2
W/v. We will use these later for the matrix element calculations in Sec. 3.1

and 4.1.

1.2 Effective field theories

While the Standard Model describes nearly all experiments so far performed in high energy physics
there is a large amount of evidence for it not being a full theory of nature. For instance the
Standard Model does not include dark matter or neutrino masses and does not explain the baryon
asymmetry in the early universe. Additionally it suffers from fine-tuning issues like the hierarchy
problem which requires a precise cancellation between the quantum corrections to the Higgs mass
and the bare mass in order for the Higgs mass to be at the measured value. These and many other
mysteries remain unanswered by the Standard Model.

Unfortunately, regardless of the evidence, the LHC did not discover any new physics resolving
these issues. A reason for that can be that the new physics lies at energy scales we cannot reach
with our experiments. Instead, we have to search for indirect signs of new physics manifesting
in deviations from the Standard Model. A discovered deviation needs to be interpreted within a
theoretical framework in order to understand what the new physics is. Taking a fully constructed
model for such an analyses will, however, be highly inefficient given the amount of models ex-
isting in theory today as well as their large parameter spaces. Instead, a framework for model
independent analysis will prove to be far more useful. This is where the idea of effective field
theories becomes important. They can serve as a bridge between theory models and data analysis
by matching the full theory to an EFT and perform the data analysis in the EFT framework.

The EFT approach is a fundamental concept to physics. The underlying idea is the separation
of energy scales, meaning that at different energy scales we have different physics to consider. For
example we do not have to think about quantum gravity when we want to calculate the speed of a
falling apple hitting the ground, and when throwing a ball against a wall we rarely have to worry
about it tunneling through. The physics at a high energy scale is described by an underlying
theory which we often do not know, and do not need, to understand the physics at lower energies
that are of interest to us. Instead of the underlying theory we can take an effective theory that
includes the relevant effects for the energy scale of interest, but not those which are only relevant
at higher energies. Naturally this approximation is only valid as long as the considered energies
E are smaller than a certain energy scale Λ:

E � Λ (16)

A classic example is the Fermi theory where the W -propagator is approximated by the W -mass
resulting in an effective 4 fermion interaction:

1

q2 −M2
W

−→ 1

M2
W

, q2 �M2
W (17)

Historically this approximation was used before knowing that it is an approximation, i.e. it was
used without the knowledge of the full theory. Detailed explanations and more examples can be
found in [10].
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OBB = −
g′2

4
(φ†φ)BµνB

µν OBB̃ = −
g′2

4
(φ†φ)BµνB̃

µν

OWW = −
g2

4
(φ†φ)W a

µνW
µν a OWW̃ = −

g2

4
(φ†φ)W a

µνW̃
µν a

OBW = −
gg′

4
(φ†σaφ)BµνW

µν a OBW̃ = −
gg′

4
(φ†σaφ)BµνW̃

µν a

OGG = (φ†φ)Ga
µνG

µν a OGG̃ = (φ†φ)Ga
µνG̃

µν a

OB =
ig′

2
(Dµφ)†DνφBµν OB̃ =

ig′

2
(Dµφ)†Dνφ B̃µν

OW =
ig

2
(Dµφ)†σaDνφW a

µν

Table 1: Dimension 6 operators for Higgs-gauge boson interactions. Left column: CP-conserving
operators. Right column: CP-violating operators

The central idea is that we can do the same thing in the context of the Standard Model: We
can consider it to be a low energy effective theory of an underlying and unknown theory which
is valid for energies far beyond the reach of modern and possibly future colliders. This theory
framework is called SMEFT [1, 2] and can be used for analysis of possible deviations from the SM.
In the previous section we discussed how the SM is constructed by renormalizable dimension 4
operators. Since it is only valid up to a certain energy scale, we must include higher order terms.
To have the correct mass dimensions, these terms need to be suppressed by the high energy scale
1/Λd. We usually consider Λ = 1 TeV. The Lagrangian can be written in the following way:

LEFT = LSM +
∑
i

fi
ΛDi−4

Oi (18)

The operators Oi consist of the SM fields and are invariant under the same symmetries as the
SM. Each operator has a corresponding dimensionless coupling constant called Wilson coefficient
fi. Precise measurements of these Wilson coefficients are a way of quantifying the deviations from
the SM and the possibility of new physics.

While dimension-5 operators are related to neutrino physics, for Higgs physics we primarly
focus on dimension-6 operators. Dimension-8 operators are considered too suppressed to make an
impact and are excluded from studies in most cases. Listing and discussing all possible dimension-
6 operators is beyond the scope of this work. Instead we focus on the operators relevant for
Higgs-gauge boson interactions. A list of these operators is given in Tab. 1 and is taken from [11].

Ṽµν for V = B,W,G are dual tensors given by:

Ṽµν = εµνρσV
ρσ (19)

The presence of the Levi-Civita tensor εµνρσ violates CP. Therefore operators with a dual tensor

are CP-violating. In the electroweak theory of the SM operators VµνṼ
µν are not present in the

Lagrangian since they can be written as total derivatives and therefore do not have any effect on
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the physics1. Hence, CP-violation tests in the gauge sector are very sensitive to new physics. We
will discuss such a CP-violating dimension-6 term in Sec. 4.1.

1.3 Optimal observable and score

So far we established that measuring Wilson coefficients in the EFT framework is useful to quan-
tify deviations from the SM. Now we devote ourselves to the question of how to measure these
parameters in the most proficient way.

Optimal observable

Optimal observables are an efficient method for the analysis of a certain physical parameter. For
simple processes this can be an easy to interpret observable like a jet pT that can be obtained
through an educated guess. However, for high-dimensional phase-spaces the optimal observable
can be a complicated and non-trivial function of the kinematic observables, which means that a
more sophisticated way is needed to determine it.

We follow the derivations of [7, 12] to argue that for any parameter given a certain process,
there is a single, best-suited observable for extracting the relevant information from a data set.
We start with the likelihood function for a single event given by:

p(x|θ) =
1

σ(θ)

dσ(x|θ)
dx

(20)

where σ(θ) is the total cross section as a function of the model parameter and dσ(x|θ) is the
differential cross section characterized by a vector of observables x that consists of reconstructed
4-momenta of the final state particles. We make the approximation that the parameter θ is close
to our reference point, usually the SM value, |θ − θref| � 1. This approximation is not limiting
us since the SMEFT parameters are supposed to be very small. Otherwise, large deviations from
the SM would have already been discovered. This allows us to perform a Taylor expansion of the
log-likelihood around the reference point:

log p(x|θ) = log p(x|θref) +∇θ log p(x|θ)
∣∣∣
θ=θref

|θ − θref|+O(|θ − θref|2) (21)

Or equivalently:

p(x|θ) ≈ p(x|θref) exp
(
t(x|θref) |θ − θref|

)
(22)

where we define the quantity we call score as:

t(x|θ) = ∇θ log p(x|θ) (23)

Such a probability distribution is a special case of the exponential family, a well-studied family of
probability distributions. To be precise, t(x|θ) represents the sufficient statistics of the probability
distribution: it was shown that for the purpose of inferring θ, measuring t(x|θ) is exactly as useful
as the full observation of x [13]. Therefore the score is precisely our optimal observable.

1Such a term can be written for the gluon fields as they have non-vanishing boundary conditions. This is related
to the strong CP-problem.
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The likelihood function

Now that we saw that there is an optimal observable, we need to examine it more closely. We start
by focusing on the likelihood function it is based on. Unfortunately, it is impossible to calculate
the likelihood function due to the complicated Monte-Carlo simulation chain needed for event
generation described in detail in Sec. 2.1. The outcome of an event depends on many parameters
that for example come from the shower or the detector response and cannot be measured. We
call these parameters latent variables z. To obtain the likelihood function we need to integrate
them out which is not possible due to their large abundance. Hence, the likelihood function is
intractable. Symbolically it can be written as follows:

p(x|θ) =

∫
dzd

∫
dzs

∫
dzp p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ)︸ ︷︷ ︸

p(x,z|θ)

(24)

Here zp are the parton level variables which include 4-momenta, flavor, charge etc., zs includes the
entire shower information and zd describes the interactions with the detector. We call p(x, z|θ)
the joint likelihood. From the joint likelihood we can similarly define the joint score:

t(x, z|θ) ≡ ∇θ log p(x, z|θ) =
p(x|zd)p(zd|zs)p(zs|zp)∇θp(zp|θ)
p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ)

= ∇θ log p(zp|θ) (25)

We see that for the joint score the θ-independent, intractable likelihoods cancel out, which leaves
us only with the parton level variables zp. Inserting Eq. (20) we can write the joint score in terms
of the cross section:

t(x, z|θ) =
∇θp(zp|θ)
p(zp|θ)

=

(
σ(θ)∇θdσ(zp|θ)− dσ(zp|θ)∇θσ(θ)

σ2(θ)

)(
σ(θ)

dσ(zp|θ)

)

=
∇θdσ(zp|θ)

dσ(zp|θ)
− ∇θσ(θ)

σ(θ)
(26)

The differential cross section is given by:

dσ(zp|θ) =
(2π)4f1(x1, Q

2)f2(x2, Q
2)

8x1x2s
|M|2(zp|θ) dΦ(z) (27)

with the momentum fractions xi of the partons, the squared center-of-mass energy s, the parton
density functions (PDFs) fi(xi, Q

2) with the momentum transfer Q2, the phase-space element
dΦ(zp) and the squared matrix element |M|2. Inserting Eq. (27) into Eq. (26) many terms cancel
and we are left with:

t(x, z|θ) =
∇θ|M|2(zp|θ)
|M|2(zp|θ)

− ∇θσ(θ)

σ(θ)
(28)

From simulated data we can extract the information on zp to obtain the squared matrix-element
and hence, the joint score can be calculated analytically.

Learning the score

Summarizing the previous discussion, we clarified that on the one hand we can define the optimal
observable or score needed to extract information on a model parameter, but it is intractable. On
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the other hand we have the joint score which we can calculate from parton level kinematics, but
is not a function of the observable quantities from the detector.

Luckily, these two quantities are related and we show in the next step that the joint score can
be used to estimate the score. We follow the derivation in [7] and start by assuming that there
is a function ĝ(x) that can approximate a function g(x, z). We choose the L2-norm and get the
following loss functional:

L[ĝ(x)] =

∫
dx dz p(x, z|θ) |g(x, z)− ĝ(x)|2

=

∫
dx

[
ĝ2(x)

∫
dz p(x, z|θ)− 2ĝ(x)

∫
dz p(x, z|θ)g(x, z) +

∫
dz p(x, z|θ)g2(x, z|θ)

]
︸ ︷︷ ︸

F (x)

(29)

The desired choice for ĝ(x) has to minimize the loss or equivalently F (x). Applying calculus of
variation yields:

0 =
δF

δĝ
= 2ĝ(x)

∫
dz p(x, z|θ)︸ ︷︷ ︸
p(x|θ)

−2

∫
dz p(x, z|θ)g(x, z) (30)

Therefore the function ĝ(x) that extremizes the loss is given by:

ĝ(x) =
1

p(x|θ)

∫
dz p(x, z|θ)g(x, z) (31)

Now we replace g(x, z) with the joint score from Eq. 25 and obtain:

ĝ(x) =
1

p(x|θ)

∫
dz p(x, z|θ)∇θp(x, z|θ)

p(x, z|θ)
=

1

p(x|θ)

∫
dz∇θp(x, z|θ) =

∇θp(x|θ)
p(x|θ)

= t(x|θ) (32)

where in the last step we simply interchanged integral and derivative. We therefore showed that
indeed the joint score can be used to estimate the optimal observable. Such a function can be
learned through a neural network or a symbolic regression fit by minimizing the squared loss which
for a sample of N events is given by

L[t(x|θ)] =
1

N

N∑
i=1

|t(x, z|θ)− t(x|θ)|2 (33)

In the following we will refer to it as the mean squared error (MSE).
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2 Tools

In this section we introduce the relevant tools we need for our analysis. The general procedure
is to generate events, compute the optimal observable introduced in Sec. 1.3 and apply symbolic
regression on it to obtain an analytic expression for it. For each of these steps we need a different
computational tool that will be explained in the following.

2.1 Event simulation

We are interested in simulated data of LHC collisions for our analysis. The event generation is
performed through a simulation chain consisting of three parts: the parton level process depending
on the underlying physical model of interest, the shower and the detector response. In many cases
we perform our analysis already after the first step to obtain a better understanding of the physics.
To be able to compare results to real experimental data it is however important to make sure our
analysis tools work also on realistic data.

Parton level event generation

We use MadGraph5 [14, 15], a general purpose matrix-based event generator, to generate the
data we need for our analysis. First of all we provide MadGraph5 with the relevant model. The
model is essentially the Lagrangian of the theory with the corresponding Feynman rules including
all physical parameters. The required UFO (Universal FeynRules Output) format of the model can
be obtained by FeynRules. Further, we specify the process of interest for which MadGraph5
will automatically generate the corresponding Feynman diagrams as well as the computer code
needed to evaluate the matrix element at a given phase-space point.

For the generation of the Feynman diagrams, at first, all possible combinations of the external
particles are considered and if vertices exist that can connect the particles for a given combination
the diagrams are saved in the output. More details on this algorithm as well as an intuitive
example can be found in [15].

The squared matrix element is evaluated by the ALOHA [16] package. It uses helicity am-
plitudes methods which are faster and less involved than trace techniques. For the generation of
amplitudes first a set of wavefunctions for the external particles is initialized using their helicities
and momenta. Depending on the particle interactions of the corresponding Feynman diagram, the
wavefunctions of the propagators are obtained. Taking all the obtained wavefunctions the ampli-
tude for the diagram can be computed. The amplitudes from all diagrams can then be summed
and squared yielding the final result.

The total cross section is obtained through Monte-Carlo integrations of the squared matrix
element as the integrals can not be calculated analytically. Therefore a phase-space generator
generates phase-space points according to some distribution function which is not the true dis-
tribution. The weight of the event corresponds to its contribution to the real distribution. For
example, if the amount of generated events is twice as large as it would be according to the true
distribution their event weights would be 0.5. Hence we obtain a weighted sample that is used for
the integration. The output of MadGraph5 is however a set of unweighted events. To obtain
unweighted events from a weighted sample the standard rejection/acceptance method is applied.
For each event a random number is thrown and the event is kept if its weight is below the random
number. The resulting events are distributed according to the true distribution and have equal
weights.
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An important feature of MadGraph5 that will be of use to us for the calculation of the
optimal observable is the reweighting option. As already mentioned above, for the event generation
we provide MadGraph5 with our theory model which consists of the Feynman rules and all
physical parameters including the Wilson coefficients of interest. Given the definition of the
optimal observable in Eq. (23) we are interested in the derivative of the squared matrix element
with respect to the parameter, i.e. we want to see how the change of the parameter influences
the result. Therefore we can additionally provide MadGraph5 with different benchmarks for a
certain Wilson coefficient, meaning other numerical values for the parameter of interest than given
in the model files. After the event generation for the original parameter values the reweighting
process will calculate a new weight for each benchmark value for every generated event. The new
weight is given by:

wnew =
|M|2new
|M|2old

wold (34)

where the old weight is the weight after the unweighting procedure which was the same for all
events. These weights will be later used by MadMiner in Sec. 2.2.

Shower and hadronisation

From the event generation above we get the 4-momenta of the incoming and outgoing particles of
the defined process. But the momenta of the outgoing particles are not what we are able to directly
measure at the LHC or any other collider experiment. This is due to the shower induced by the
outgoing partons and the subsequent hadronisation process. The simulation of this development
can be performed by Pythia8 [17], a general purpose shower and hadronisation generator, that
can be implemented into MadGraph5 and automatically follows the event generation.

What happens after the collision is that free partons (quarks and gluons) coming from the hard
process, described by the Feynman diagram, split into two. For example a quark can radiate of
a gluon, a gluon can split into a quark anti-quark pair or a pair of gluons. The resulting partons
keep splitting as long as their energy is sufficiently large, forming a shower. The shower evolution
is based on the DGLAP splitting kernels P(z) which are derived in [18]. For a single parton they
give the probability that it will split into 2 partons with energy fraction z.

Once reaching the low energy non-perturbative regime the hadronisation process starts. Here
the previously individual partons group together forming hadrons. The simulated hadronisation is
based on the Lund string framework [19]. The basic principle behind is color confinement, meaning
that there cannot exist free quarks, only color neutral objects. Taking for example a quark and an
anti-quark that would form together a color neutral state, the color confinement can be modeled
with a color flux tube connecting the two partons. As the distance between the partons grows, the
force between them grows linearly and the energy stored in the tube increases. At some point the
tube breaks producing a new quark anti-quark pair. The remaining two string pieces can break
further if their energy is large enough until only on-shell hadrons can be produced.

In the final step, unstable hadrons decay into stable particles mostly being pions. In this step
the decay of other particles like Z, W or Higgs is also implemented according to the available
decay channels.

In the output file the full information on the shower evolution is saved. For each particle its
4-momenta, mother and daughter particles, status (at which point the particle was produced),
color and particle ID is recorded.
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Detector response

The process described above happens already within the beam pipe so that only the final stable
constituents of the showers enter the detector system. The full modeling of particle propagation in
the detector, calorimeter response and particle reconstruction can be a very challenging and time
consuming task. Full detector event simulations including interactions with detector material can
take up to several minutes per event. For phenomenological studies like ours it is sufficient to use
simplified detector simulation software like Delphes [20] which adds smearing to the final state
object kinematics to mimic realistic detector smearing effects.

Delphes provides a simulation framework for a multipurpose detector consisting of an inner
tracking system, electromagnetic and hadronic calorimeters, and a muon system. The process
consists of detector response simulation and object reconstruction. In the first part, the final state
particles from Pythia8 propagate through the magnetic field of the inner tracker. The tracks
that are left by charged particles can be used to reconstruct their momenta. During propagation
a perfect angular resolution is assumed while on the norm of the transverse momentum vector
(orthogonal to the beam pipe) a smearing is applied. Tracking efficiency, energy and momentum
resolutions can be specified. After passing the tracking system particles deposit energy in the
calorimeter cells. The resolution is determined by the granularity of the cells. With a simplified
particle-flow algorithm, tracks of charged particles are matched with their corresponding cells to
separate the cell signal for charged and neutral particles. Finally the objects are reconstructed
using the cell and track information. Most importantly jet reconstruction is implemented through
the FastJet package. The algorithm aims to combine all shower remnants originating from a
parton to recover its original 4-momenta. The reconstructed particles and their 4-momenta are
saved in the output and can be analyzed.

2.2 MadMiner

In this section we are going to introduce MadMiner [12], a Python package for machine learning-
based inference techniques. It includes a large set of functions documented in [21] that can be
used for typical analysis in high energy physics, out of which we will examine the ones relevant
for the course of this work.

Obtaining the joint score

Starting an analysis with MadMiner we first choose a physical process and a set of elementary
kinematic observables that summarize the observed event. For the parameters we declare differ-
ent benchmarks for which MadGraph5 performs the reweighting from Eq. (34). MadMiner
generates an automatic script that calls MadGraph5 and performs the event generation dis-
cussed in Sec. 2.1. In the next step we extract the relevant information from the output files of
MadGraph5 (or Delphes if we are interested in the full process) by defining the observables
of interest, e.g. pT of a jet or ∆φ of 2 particles, and implementing cuts if needed. Events that
satisfy the requirements induced by the cuts are selected and the specified kinematic observables
are computed from the 4-momenta.

Finally we have to calculate the joint score for each event. Taking for example one EFT operator
as introduced in Sec. 1.2, the matrix element of a certain process is given by the SM contribution
and a new physics term proportional to the corresponding Wilson coefficient. Schematically the
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squared matrix-element can therefore be written as:

|M|2 = p0 + aθ + bθ2 (35)

In this notation p0 is the contribution from the SM, b corresponds to the squared new physics
term and a is the interference between both. We take the first term of the joint score in Eq. (28)
and insert Eq. (35):

∇θdσ(zp|θ)
dσ(zp|θ)

=
∇θ|M|2(zp|θ)
|M|2(zp|θ)

=
a+ 2bθ

p0 + aθ + bθ2
(36)

To obtain the joint score we thus need to extract the parameters p0, a and b. Analytically we will
do this by hand in Sec. 3.1 when calculating the squared matrix element. Within MadMiner a
so called morphing technique [7, 22] is used where the joint score is calculated event by event. For
a given phase-space point p0, a and b are essentially constants and the squared matrix element is
a parabola in θ. Now we make use of the weights from the reweighting procedure. The weights
are essentially equivalent to the squared matrix element apart from normalization which cancels
out. The constants can be extracted by simply solving a linear system of equations. Having 3
unknown we need the weights for 3 benchmark values2. The set of benchmarks is called morphing
basis.

For the second term of the joint score in Eq. (26) we have to perform the phase-space integration
to obtain the total cross section. We can interchange derivation and integration and write:

∇θσ(θ)

σ(θ)
=

∫
1

x1x2
f1(x1, Q

2)f2(x2, Q
2)(a+ 2bθ)dΦ(zp)∫

1
x1x2

f1(x1, Q2)f2(x2, Q2)(p0 + aθ + bθ2)dΦ(zp)
(37)

Since the PDFs depend on the phase-space there is no way of further simplifying this expression.
It is not possible for us to calculate this term analytically, yet MadMiner can use the the same
morphing technique as before. Instead of applying it on the weights, it is applied on the total
cross-section from MadGraph5 Monte-Carlo integration. For fixed θ it is a constant that does
not depend on phase-space and needs to be calculated just once.

Putting everything together, MadMiner saves the event observables and the joint score as
NumPy [23] arrays.

Machine learning

As discussed in Sec. 1.3, the joint score can be used to estimate the optimal observable. One way
to do this, is to apply machine learning techniques and obtain a neural net for the score. This
can be done by the Sally (Score Approximates Likelihood LocallY) estimator implemented in
MadMiner. Sally was proven to be more effective in extracting information on parameters
than conventional histogram methods [7–9].

The architecture is a fully connected neural net. It is possible to choose the observables we
want to train on. During training the loss as defined in Eq. (33) is minimized by the AMSGrad
[24] optimizer.

The goal of this work is to replace the Sally algorithm with a method that approximates the
score with an analytic function. Such a function is easier to interpret than a neural net. However,
we will use Sally as a benchmark to compare its performance to our method in Sec. 4.5.

2If we have more than one parameter we would have to specify more benchmarks.
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Setting limits

The objective of any analysis in high energy physics is to obtain the famous confidence intervals
on the parameters of interest. Especially in the era of beyond SM searches precision measurements
are required to narrow the error bars on the SM parameters so that possible deviations from the
SM would lie outside the uncertainty region and can be detected.

We discussed in the previous section how to obtain the optimal observable through a neural
net. We established in Sec. 1.3 that it is per definition the best observable for the parameter
measurement but we do not know yet how well it can measure said parameter, i.e. what are its
uncertainties. This is essential for the comparison of the goodness of different observables. The
smaller the uncertainty on the parameter, the better the observable. The statistical methods [25]
needed for this analysis are implemented in MadMiner and are explained in the following.

For the analysis we consider two hypothesis of which the first is the SM hypothesis H0 with
θ = 0 and the second is the new physics hypothesis H1 with a finite θ. According to the Neyman-
Pearson lemma the best way of discriminating two hypothesis is to consider their log-likelihood
ratio. From there we want to calculate p-values for different θ, i.e. the probability of observing data
at least as extreme as predicted by H0 under assumption of H0. A small p-value would indicate
that it is unlikely that H0 is correct. The p-values can be translated into confidence regions which
means that essentially we want to find the θ that sets the exclusion region at 68 (95) % confidence
level (CL).

The first step would be to generate test data for many different θ. Luckily we do not have
to simulate new events a hundred times but can sample from a single simulation. Therefore
MadMiner uses again the morphing setup discussed previously. For a given event it had already
obtained the constants p0, a and b and thus can calculate a weight for any parameter θ. Afterwards,
the events are sampled with the usual acceptance/rejection method according to the new weights.
We call the new samples the test data as opposed to the observed3 data.

For each of the new test samples we calculate the expected log-likelihood of observing the test
data under the hypothesis H0. This is not the full log-likelihood of the event but is rather based
on histograms of a single given observable which in our case will be the score. Naturally, the true
value of θ maximizes the likelihood. The test statistic q for any θ is given by the ratio of the
log-likelihood of θ and the best log-likelihood:

q(θ) = −2 log
p(x|θ)

p(x|θbest)
(38)

The larger q(θ), the less compatible is θ with the observed data. From the test statistic we can
directly obtain the corresponding p-value:

p(θ) =

∫ ∞
q(θobs)

f(q, k)dq (39)

With k the degrees of freedom (amount of parameters) and f(q, k) the probability density function
for χ2 given by

f(q, k) =
1

2k/2Γ(k/2)
qk/2−1 exp(−q/2) (40)

which is implemented through the SciPy [26] package.

3In a real analysis this would be real data from experiments. In our case it comes from simulations as well.
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2.3 Symbolic regression

In this section we introduce PySR [27], a julia based python package for symbolic regression, that
we will use to obtain an analytic function for the optimal observable. This task is the central
aspect of this work and it is therefore important to understand the algorithm in detail to be able
to adapt it if needed.

Figure 1: Diagrammatic representation of the PySR algorithm.

For the given optimization task PySR uses genetic programming to find a symbolic expression
for the provided data. The basic idea is to start with a large set of random unfit configurations and
to improve them by applying different kinds of operations, similar to natural genetic processes.

The algorithm uses tree diagrams for the construction of symbolic expressions. Such a tree
consists of nodes that represent either an operator or an operand. Each operator node can connect
to one node for unary operators like sin or exp or two nodes for binary operators like + or −.
The operands can either be variables from the data or constants from the algorithm. We provide
PySR with a list of operators of our choice to be used in the tree construction.

A diagrammatic description of the algorithm is depicted in Fig. 1. We start by initializing a
set of populations. The hyperparameter populations sets the amount of populations and is per
default set to the amount of processors (procs) used. The amount of individuals per populations
is given by npop. Each individual is a formula represented by a tree. During initialization the
trees are constructed through 3 random operators from the given operator list. The populations
at first evolve separately where new individuals are created and old once discarded. They advance
through many generations set by the hyperparameter ncyclesperiterations.

Starting with the current population a subsample of 10 trees is taken and the best one is chosen
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according to its score4 given by:

score =
MSE

baseline
+ complexity · parsimony (41)

where the MSE is the one given in Eq. (33), the baseline is the MSE between the data and the
constant unity function and the complexity of a tree is given by the amount of nodes:

complexity = #nodes (42)

parsimony is a hyperparameter influencing how much equations with high complexity should be
punished. If it is large, trees of low complexities are preferred.

The best tree from the subsample undergoes mutation to create a new tree. Such a mutation
is a set of randomly chosen changes to the tree such as exchanging, adding, inserting or deleting
a node. After mutation the decision needs to be made weather to accept the new tree to the
population or not.

This is based on simulated annealing, a useful technique for a search of a global optimum in
a high dimensional space. The idea is to accept worse solutions with a certain probability to
prevent the algorithm from being stuck in a local optimum, while in each round the probability
of accepting a worse solution is decreased. A new tree is accepted with the probability:

p = exp

(
−scorenew − scoreold

alpha · T

)
(43)

with T the annealing temperature that is linearly decreased from 1 to 0 with every generation and
alpha a hyperparameter. If the new tree is better than the old one (scorenew < scoreold), the new
tree is accepted. If the new score is however larger, the acceptance probability is exponentially
suppressed.

If a tree is accepted it replaces the oldest member of the population. It is important to make
clear that it does not replace the tree that was chosen for mutation, since it was the best from
the subsample and therefore a comparatively good fit it would be counterproductive to discard it
from the population.

To create a new generation, this procedure is repeated for the amount of subsamples that are
in the population, i.e. for a population of 1000 individuals it is performed 100 times. However
in each loop the samples are chosen randomly for simplicity at the cost that not every individual
might be considered. Afterwards the annealing temperature is reduced and the next generation is
being created.

Once the last generation is obtained, the entire population undergoes an optimization process.
This includes tree simplification and operator combination where for example a branch that sums
two constants is replaced by a single constant. A constant optimization is performed only in 10 %
of the cases since it is very time consuming. This is somewhat problematic since the constants
generated during tree construction/mutation are random numbers from the normal distribution
and naturally would not give a good fit. We will discuss a method to improve the outcome later
in Sec. 3.4.

After optimization the hall of fame is created. It saves for each complexity the best result
from all populations according to the MSE. A function with a higher complexity is only added if
its MSE is lower than for the previous one. Since we not only obtain a single result but a list of

4This is not to be confused with the score that is the optimal observable.
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formulas, we have the opportunity to choose a result that fits our needs balancing low expressivity
and good MSE.

Before the start of the next iteration, a migration step is performed. Equations are re-
placed by members from other populations or the hall of fame according to the parameters
fractionReplaced and fractionReplacedHof. The hyperparameter niterations sets the amount
of iterations performed in total. We usually choose this number to be very large since having access
to the hall of fame at all times we can stop the algorithm once its performance reaches a plateau.

Another relevant hyperparameter is maxsize that sets the maximal complexity of a function.
We can also add constraints for every operator restricting the complexity of its branch to obtain
readable results. Unless further specified, we will use the following settings:

• populations=10

• npop=1000

• niterations=300

• ncyclesperiteration=200

• alpha=1

• parsimony=10−7

• fractionReplaced=0.5

• fractionReplacedHof=0.2

• maxsize=50
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3 ZH production

For our first attempt on applying symbolic regression to learn the optimal observable we consider
the ZH production process shown in Fig. 2. The main advantage of this toy process is that it
only has 2 final state particles. From energy-momentum conservation we only have 2 degrees of
freedom in the center of mass frame. This keeps the analysis simple and gives us the opportunity
to focus on the performance of our symbolic regression tool.

q

q̄

Z

h

Z∗

Figure 2: Feynman diagram for ZH production

The physical parameter of interest is the Wilson coefficient of one of the dimension 6 operators
introduced in Tab. 1 that influences the ZZH-vertex. We will focus on one parameter only to
keep the analysis simple. From the list of CP -conserving operators all but OGG are valid choices.
Narrowing it down we require a covariant derivative of the Higgs field to see the influence of the
operator in the momentum distribution. This leaves us only with OB and OW . From these two
we choose the one with the simpler expression:

OB =
ig′

2
(Dµφ)†DνφBµν (44)

The corresponding Wilson coefficient is fB. We will start by deriving the Feynman rules from
this operator followed by the calculation of the matrix element for this process. Therefore we
will consider a simplified process excluding the contribution of the photon propagator and taking
only u-quarks in the initial state. The result can be used to calculate the score analytically and
compare it to MadMiner results. Afterwards we will discuss the symbolic regression results for
2 different values of the Wilson coefficient for the simplified process, the process including the
photon propagator and the one including all quarks. Detector and shower simulation as well as
the determination of the confidence intervals we leave for the more complicated process of WBF
in Sec. 4.

3.1 Feynman rules and matrix element

Feynman rules

We will use the conventions introduced in Sec. 1.1 and start by inserting the expression for the
covariant derivative of the Higgs field from Eq. (5) into the operator in Eq. (44):

LEFT ⊃
fB
Λ2

ig′

2
(Dµφ)†DνφBµν

=
fB
Λ2

ig′

2

(
∂µφ† − ig

2
σkW kµφ† − ig

′

2
Bµφ†

)(
∂νφ+ i

g

2
σkW kνφ+ i

g′

2
Bνφ

)
Bµν (45)

21



Inserting the expression for the Higgs field as in Eq. (9), multiplying out the brackets and keeping
only the relevant terms yields:

⊃ fB
Λ2

ig′

2

{
∂µh√

2

(
ig′

2
Bν − ig

2
W 3ν

)
v√
2

+

(
−ig′

2
Bµ +

ig

2
W 3µ

)
v√
2

∂νh√
2

}
Bµν (46)

=
fB
Λ2

g′v

8

{
∂µh

(
−g′Bν + gW 3ν

)
+
(
g′Bµ − gW 3µ

)
∂νh
}
Bµν (47)

The expressions in the round brackets we can already identify with the Z-boson defined in Eq. (11).
Simultaneously we insert the field strength tensor for Bµν given in Eq. (3):

=
fB
Λ2

g′v

8

√
g2 + g′2 {(∂µh)Zν − Zµ (∂νh)} (∂µBν − ∂νBµ) (48)

Multiplying out we can collect terms by a caucious interchange of indices:

=
fB
Λ2

g′v

4

√
g2 + g′2 {(∂νh)Zµ (∂νBµ)− Zµ (∂νh) (∂µBν)} (49)

Further we insert the momentum operator pµ = −i∂µ and obtain:

=
fB
Λ2

g′v

4

√
g2 + g′2

(
ZµpνHhp

B
µBν − pνHhZµpBν Bµ

)
(50)

=
fB
Λ2

g′v

4

√
g2 + g′2

(
pHν p

B
µ − pH · pBgµν

)
hZµBν (51)

We can again use Eq. (11) to replace the B -field and obtain the final result:

=
fB
Λ2

g′v

4

(
pHν p

B
µ − pH · pBgµν

)
hZµ (gAν − g′Zν) (52)

From this expression we get two different vertex factors. One of them accounts for the AZH
coupling, an interaction that does not exist in the Standard Model. It is given by:

− ifB
Λ2

gg′v

4

(
pHν p

A
µ − pH · pAgµν

)
(53)

We will discuss its influence in Sec. 3.5. The second is the desired vertex for the ZZH coupling.
Writing it down we have to be careful since we have two identical particles, we need to symmetrize
the whole term:

fB
Λ2

g′2v

4

(
pHν p

Z1
µ + pHµ p

Z2
ν − gµνpH ·

(
pZ1 + pZ2

))
hZµ

1Z
ν
2 (54)

Taking into account the Standard Model contribution derived in Sec. 1.1 the whole expression for
the ZZH-vertex is given by:

iLµν = i
2m2

Z

v
gµν + i

fB
Λ2

g′2v

4

(
pHν p

Z1
µ + pHµ p

Z2
ν − gµνpH ·

(
pZ1 + pZ2

))
(55)
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Matrix element

The matrix element for the process shown in Fig. 2 is given by:

iM = ν̄(p1)

[
−i g

2 cos θW
γµ (V − Aγ5)

]
u(p2)

[
−i

k2 −m2
Z

(
gµν − kµkν

m2
Z

)]
iLνλε

λ (56)

with p1 and p2 being the momenta of the incoming quarks, k the momentum of the propagator,
Lνλ the vertex from Eq. (55) and ελ the polarization of the outgoing Z-boson. V and A are the
corresponding vector and axial-vector couplings of the Z-boson. Their value depends on the quark
flavor.

We can write the squared matrix element averaging over initial spins and summing over final
state polarizations in the following way:

|M|2 =
1

4

g2

4c2θ
ν̄(p1)γ

µ(V − Aγ5)u(p2)ū(p2)γ
ρ(V − Aγ5)ν(p1)

×

(
−gµν + kµkν

m2
z

k2 −m2
z

)(
−gρσ + kρkσ

m2
z

k2 −m2
z

)
LνλLσκελε

∗
κ (57)

We replace the spinors with the trace over γ-matrices and give the result:

=
g2

4c2θ
(V 2 + A2) [pρ1p

µ
2 + pµ1p

ρ
2 − gρµ(p1 · p2)]

(
−gµν + kµkµ

m2
z

k2 −m2
z

)(
−gρσ + kρkσ

m2
z

k2 −m2
z

)
LνλLσκελε

∗
κ

(58)

The first simplification we can perform is to neglect the terms containing kµ in the propagator,
contracted with the fermion current they give 0 in the limit of massless fermions. This can be
easily shown in the following way:

[pρ1p
µ
2 + pµ1p

ρ
2 − gρµ(p1 · p2)] kµ =pρ1 (p2 · k) + pρ2 (p1 · k)− kρ (p1 · p2) (59)

=pρ1(p2 · p1) + pρ2(p1 · p2)− (pρ1 + pρ2)(p1 · p2) = 0 (60)

Where we used k = p1 + p2. For the matrix element squared this yields:

|M|2 =
g2

4c2θ

(V 2 + A2)

(k2 −m2
z)

2
[pρ1p

µ
2 + pµ1p

ρ
2 − gρµ(p1 · p2)] gµνgρσLνλLσκ

(
−gλκ +

pZλpZκ
m2
z

)
(61)

=
g2

4c2θ

(V 2 + A2)

(k2 −m2
z)

2
[p1σp2ν + p1νp2σ − gσν(p1 · p2)]LνλLσκ

(
−gλκ +

pZλpZκ
m2
z

)
(62)

where we performed the sum over the polarizations.
This is as far as we can go if we want to keep the expression restricted to one line. According

to the expression in Eq. (35) we will look at the terms for SM contribution p0, the interference
term aθ and the quadratic term bθ2 separately. For the SM part the vertex structure is simply
given by:

LνλLσκ
∣∣∣
SM

=
4m4

z

v2
gνλgσκ (63)
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We can arrive at a rather simple expression for p0 in the following way:

p0 =
g2(V 2 + A2)m4

Z

v2c2θ(k
2 −m2

z)
2

[p1σp2ν + p1νp2σ − gσν(p1 · p2)] gνλgσκ
(
−gλκ +

pZλpZκ
m2
z

)
(64)

=
g2(V 2 + A2)m4

Z

v2c2θ(k
2 −m2

z)
2

[p1σp2ν + p1νp2σ − gσν(p1 · p2)]
(
−gνσ +

pνZp
σ
Z

m2
z

)
(65)

=
g2(V 2 + A2)m4

Z

v2c2θ(k
2 −m2

z)
2

[
(p1 · p2) +

2

m2
z

(p1 · pZ)(p2 · pZ)

]
(66)

=
g2(V 2 + A2)m2

Z

v2c2θ(k
2 −m2

z)
2

2E1E2

[
m2
Z + (EZ − pZz )(EZ + pZz )

]
(67)

=
g2(V 2 + A2)m2

Z

v2c2θ(k
2 −m2

z)
2

2E1E2

[
2m2

Z + p2T
]

(68)

In the last step we used the following notation for the momenta imposing energy-momentum
conservation:

p1 =

E1

~0
E1

 p2 =

 E2

~0
−E2

 pZ =

EZ

~pT
pZz

 pH =

EH

−~pT
pHz

 (69)

with the transverse momentum ~pT =
(
px py

)T
.

For the interference term the vertex factor can be written as:

LνλLσκ
∣∣∣
interference

=
fB
Λ2
m2
Zg
′2 [pλHkν + pνHp

λ
Z − pH · (k + pZ)gνλ

]
gσκ (70)

The first term proportional to kν can be neglected following the same reasoning as in Eq. (60).
Inserting this again into the general form of the matrix element given in Eq. (62) yields:

aθ =
fB
Λ2

g2g′2m2
Z(V 2 + A2)

4c2θ(k
2 −m2

Z)2
[p1σp2ν + p1νp2σ − gσν(p1 · p2)]

×
[
pνHp

λ
Z − pH · (k + pZ)gνλ

](
−gσλ +

pZλp
σ
Z

m2
Z

)
(71)

Expanding the brackets in the second line we get:

=
fB
Λ2

g2g′2m2
Z(V 2 + A2)

4c2θ(k
2 −m2

Z)2
[p1σp2ν + p1νp2σ − gσν(p1 · p2)]

×
[
−pνHpσZ + pH · (k + pZ)gνσ + pνHp

σ
Z − pH · (k + pZ)

pνZp
σ
Z

m2
Z

]
(72)

=
fB
Λ2

g2g′2m2
Z(V 2 + A2)

4c2θ(k
2 −m2

Z)2
[p1σp2ν + p1νp2σ − gσν(p1 · p2)] pH · (k + pZ)

(
gνσ − pνZp

σ
Z

m2
Z

)
(73)
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We recognize that we obtain a term proportional to the SM as in Eq. (65) including an additional
momentum dependence. We simplify and obtain:

=
fB
Λ2

g2g′2(V 2 + A2)

4c2θ(k
2 −m2

Z)2
2E1E2 (pH · (k + pZ))

[
2m2

Z + p2T
]

(74)

For the last step we insert k = pZ + pH :

=
fB
Λ2

g2g′2(V 2 + A2)

4c2θ(k
2 −m2

Z)2
2E1E2

(
m2
H + 2(pH · pZ)

) [
2m2

Z + p2T
]

(75)

The calculation for the quadratic term can be performed in full analogy. The only difference to the
calculation of the interference term is that we have one more term for which we have to contract
the indices. Thus we only write the final result:

bθ2 =
f 2
B

Λ4

g2g′4v2(V 2 + A2)

64c2θ(k
2 −m2

Z)2m2
Z

2E1E2

(
m2
H + 2(pH · pZ)

)2 [
2m2

Z + p2T
]

(76)

To write out the full matrix element squared we combine the terms from Eq. (68), (75) and (76)
to obtain:

|M|2 =
g2(V 2 + A2)

c2θ(k
2 −m2

Z)2
2E1E2

(
mZ

v
+
fB
Λ2

g′2v

8mZ

(m2
H + 2pHpZ)

)2 (
2m2

Z + p2T
)

(77)

3.2 Kinematic observables

Before we start our analysis of the score, which will be a non-trivial function of kinematic observ-
ables, we need to choose the observable quantities we want our function to depend on.

From the matrix element in Eq. (56) we can already see that pT will be a useful observable.
Furthermore we have a scalar product of the two outgoing particles which includes the momenta
in the z-direction. Instead of pz we will use the pseudorapidity η as it is usually done in high
energy physics. It is given by:

η = − ln

(
tan

θ

2

)
(78)

where θ is the angle between the particle momentum and the positive direction of the beam axis.
For consideration we choose the sum of the pseudorapidities η+ = ηZ + ηH and their difference
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Figure 3: Kinematic distributions for different Wilson coefficients with η± = ηZ ± ηH
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η− = ηZ − ηH . We can look at the distribution of these variables to determine which of them are
sensitive to a change of the Wilson coefficient.

As described in Sec. 2.1 we generate 500k events with MadGraph5 using the EWdim6 [28]
model file that implements our operator. We perform the simulation for 3 values of the Wilson
coefficient: fB = 0, 2, 10. Even though the last one is ruled out by experiments it will be useful to
us for illustrative purposes. The distributions for the kinematic observables are depicted in Fig.
3.

At first sight it appears that the Wilson coefficient affects only pT and η+ while the η− dis-
tribution does not show any dependence on fB. This is however an artifact of looking at one
dimensional histograms. To decide whether η+ or η− is sensitive to new physics, we have to
look at 2d histograms of these two variables. To eliminate any possible correlations with pT we
construct the histograms for different slices in pT . We will focus on areas with pT > 300 GeV
which are more sensitive to new physics. For the histograms we compare fB = 0 and fB = 10.
Additionally, we take the ratio of the histograms as a proxy for the score and divide the histogram
for fB = 10 by the one for fB = 0.
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Figure 4: Kinematic correlation of η− and η+. The right column shows the histogram ratio as a
proxy for the score.
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To have enough statistics in the high pT -region for fB = 0 we generate more events and
normalize the histogram accordingly. The results are shown in Fig. 4. The histogram ratio shows
that indeed, unlike the suggestion of the one dimensional histograms in Fig. 3, η− is the sensitive
observable for the Wilson coefficient. We clearly see that towards large |η−| the ratio increases
while it does not change in the η+ direction.

From these histograms we can also understand the one dimensional distribution for η+. We see
that towards larger pT the distribution in the η+−η− plane becomes more narrow and more round.
This is simply because large η+ correspond to cases where both final state particles fly in the same
direction with a high pz, such a scenario is highly unlikely if also the transverse momentum is
required to be large and is therefore limited by energy-momentum conservation. Thus, for a large
Wilson coefficient, where we have more events in the high pT -region, these events will naturally
be at lower |η+| values and for low Wilson coefficients we have more events in the low pT -region
of which a significant part will have large |η+| values.

For further analysis we therefore discard η+ and only use pT and η− as the relevant kinematic
observables for the score fit.

3.3 Score for fB

Now that we established what variables we are going to use, we can analyze the score in terms
of these observables. As a starting point we calculate the score analytically and compare it to
MadMiner results.

Therefore we approximate the score with the expression in Eq. (36). For the full score we
would have to take the term of Eq. (37) into account which is not analytically calculable. The
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Figure 5: Joint score for fB = 0. Top: calculated approximation. Bottom: result from Mad-
Miner.
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approximate score in the case of the SM is then given by:

t(x, z|fB = 0) ≈ a+ 2bfB
p0 + afB + bf 2

B

∣∣∣∣∣
fB=0

=
a

p0
=
fBg

′2v2

4Λ2m2
Z

(
m2
H + 2pHpZ

)
(79)

In the last step we inserted the results from the squared matrix element calculation of Eq. (68)
and (75). This obtained a very compact result. The calculated score is shown in the top row of
Fig. 5. The lower row shows the full score obtained through MadMiner. The first difference we
see is a constant offset between the two results. This is due to the constant term of the total cross
section that we explicitly neglected in our approximation. Furthermore we see some discrepancies
in the pT . 215 GeV region. This value corresponds to the sum of the masses of the final states.
It is an artifact originating from MadGraph5 due to a condition that the center of mass energy
should at least be twice as large as the sum of the external masses for the calculation of the matrix
element to ensure numerical stability. Since this region is not significantly important to us we can
neglect it for further considerations. We conclude that our analytic calculation sufficiently agrees
with the result from MadMiner.

A few more words can be said about the distribution of the score. First of all the score grows
with pT . We remember that the score is a derivative of the log-likelihood with respect to θ. The
bigger the change, the larger the derivative. Therefore this behavior is expected since we already
established that high pT -regions are more sensitive to a change of the Wilson coefficients. For
the η− distribution in the middle plots it looks like the score is larger for small η− but this is an
artifact from the phase space. Looking at the 2d plots on the right hand side we see that for a
given slice in pT the score grows towards large |η−|. This corresponds to the observation we made
with the 2d histogram ratios in Fig. 4 where the ratio increased towards larger |η−|. Additionally
we want to point out that in the 2d plot the score shows a smooth color gradient without any
noise. This indicates that the score is fully described by these 2 variables and there are no other
degrees of freedom in the system which confirms the discussion in Sec. 3.2.

In the next step we want to qualitatively understand how the score changes when increasing
the Wilson coefficient. In Fig. 6 we show the score for fB = 0, 2, 10 for each variable while keeping
the other variable fixed. We see that in the sensitive regions, i.e. large pT and large |η−|, the
score decreases with growing Wilson coefficient. This behavior might seem puzzling at first, as for
higher score values we would expect a bigger increase. However, we need to remember that the
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θ � 1 θ � 1

approximation
leading term quadratic term

a

p0
+

1

p0

(
2b− a2

p0

)
θ

2

θ

scaling constant or linear decreasing with θ

Table 2: Approximations for the first term of the joint score in Eq. (36).

score considers the relative change and not the absolute one since it takes the derivative of the
log-likelihood and not the likelihood itself. Therefore it is the relative change that decreases while
the absolute one still increases.

This discussion can be done in a far more general framework. Taking again the general ex-
pression for the first term of the joint score from Eq. (36) we can perform two approximations, for
θ � 1 and θ � 1. In the first case of large θ we can simply neglect the constant and linear terms
in the denominator as well as the interference term in the numerator. We remain with:

t(x, z|θ � 1) ≈ 2

θ
(80)

This is exactly what we see in Fig. 6 for fB = 10 where the score is limited from above by 0.2.
For small θ we perform a first order Taylor expansion. The joint score is than given by:

t(z|θ) ≈ a

p0
+

1

p0

(
2b− a2

p0

)
θ (81)

The joint score will decrease as long as 2b < a2/p0. To what extent this approximation is ap-
propriate and when it breaks is highly dependent on the parameters a, b and p0 which of course
depend on the phase-space.
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Figure 7: Joint score for small Wilson coefficients fB for different pT with |η−| ≈ 0. Dotted line is
the Taylor expansion of Eq. (81).
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To see how this applies on our data we additionally generate events for fB = 0.5, 1, 4. For each
Wilson coefficient we compare the true joint score to the prediction from the Taylor expansion.
We calculate the score approximation for different values of pT while fixing |η−| ≈ 0 for simplicity.
The results are shown in Fig. 7. Note that to avoid the problem with the missing constant in our
calculation we only fit the slope to the true score value at fB = 0.

We see that for fB ≤ 0.5 the approximation fits for all pT regions as predicted. For pT ≤ 500
GeV the approximation is even valid almost upto fB = 4 and for pT ≤ 750 GeV upto fB = 1. As
it was the case for large θ the score decreases here as well. To conclude, while the approximation
is valid for many regions in phase space, it is not wise to neglect higher orders of the Taylor
expansion if we focus our analysis on the high pT regions which are most sensitive to θ.

3.4 Symbolic regression on joint score

After establishing a general understanding of the joint score as well as its dependence on kinematic
observables, we can apply symbolic regression to find a formula for the score. Since we are looking
at a simplified process without any latent variables, the score is essentially the joint score and we
expect the fit error to go to 0.

Some modifications on the data set are necessary to use PySR. First of all we scale our input
data in the following way:

xp = pT/mH xη = |η−| (82)

This ensures that all quantities are dimensionless and in the same order of magnitude. For the
PySR algorithm this is helpful because of the random constant sampling in the tree construction
or mutation process. From Sec. 2.3 we remember that a weakness of the algorithm was that there
is no constant optimization after mutation and before acceptance, but only at the end of a full
SR iteration and only for 10 % of the population. Having the input variables in the same order
of magnitude increases the chances that the random constants are at least in the right order of
magnitude.

Furthermore, the PySR run time scales very badly with the size of the data set. Reducing the
data set by taking for instance every 500-th event is problematic, since most of the data points lie
in the low score region which are of less interest to us, whereas high-scored data points are very
sparse. This can be seen best in Fig. 5. With such a sampling we will simply lose the data of
interest. Instead, we sample points according to intervals in pT , i.e. for each interval we take a
fixed amount of data points and collect 800 phase-space points in total. This of course leads to a
bias in the fit as the reduced data set is not representative of the old one. To balance this effect
we introduce an optimization step in which we take the PySR output and fit the constants on
the original data set. We rely on the python package lmfit [29] for non-linear optimization and
curve fitting which is based on scipy.optimize [26].

3.4.1 Polynomial functions for fB = 0

From Fig. 6 and 5 we expect the true function to be a polynomial in xp and xη. To establish a
baseline we fit polynomials of degrees 2 to 4 using lmfit. The results are shown in Fig. 8 with
the fit parameters given in Tab. 3. They are compared to the best PySR result discussed below.
We see that already the polynomial of degree 2 describes most of the data well. For a better
accuracy in the high |η−| regions terms including x3η are needed. These are the origin of the major
improvement in the MSE for the polynomials of degree 3 and 4.
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Figure 8: Score as a function of pT for the polynomial fits and the PySR output, including
optimization, for the simplified ZH setup with fB = 0, corresponding to Tab. 3.

polynomial d = 2 polynomial d = 3 polynomial d = 4 PySR PySR optimized

MSE 3.49 · 10−3 8.16 · 10−4 1.28 · 10−4 1.23 · 10−4 7.65 · 10−5

dof 6 10 15 9 9

1 -0.03145 -0.1810 -0.1231 -0.1495 -0.134807(46)
xp -0.2022 0.4871 -0.06404 -0.01553 -0.036030(78)
xη -0.1783 0.1837 -0.04830 0.0045 0.002083(55)
x2p 0.1805 0.1303 0.1612 0.1453 0.148277(26)

xpxη 0.2303 -0.3434 0.1124 -0.01553 -0.00787(10)
x2η 0.02861 -0.1036 0.06492 - -

x3p - -0.001788 −4.504 · 10−4 - -

x2pxη - 0.1022 -0.03152 0.01854 0.022835(68)

xpx
2
η - 0.1449 -0.1551 - -

x3η - 0.01001 -0.01976 6.333 · 10−4 0.0013648(50)

x4p - - 6.936 · 10−5 - -

x3pxη - - -0.002264 - -

x2px
2
η - - 0.07835 0.005143 -0.002813(67)

xpx
3
η - - 0.03080 -0.007064 -0.011333(26)

x4η - - 0.001368 - -

x2px
3
η - - - 0.01970 0.023525(22)

Table 3: Polynomial score functions for the simplified ZH setup with fB = 0. The right column
shows the results from a post-processing fit to the PySR function. All values for t(xp, xη)× 10.
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We can conclude that a polynomial of degree 4 is enough to describe the data and that in such
a case it would not be necessary to make use of an involved fitting tool like PySR. For illustrative
purposes we do it anyway.

For the general settings described in Sec. 2.3 using the operators +, −, ×, square and cube
we obtain the hall of fame with the most prominent results given in Tab. 4. The figure on the
right hand side shows the MSE after optimization for all formulas. In the algorithm of PySR
more complex functions are only accepted to the hall of fame if they come with an improvement
in the MSE. This behavior can be slightly distorted after optimization for a couple of reasons.
There can be a function with a higher complexity but fewer free parameters so its predecessor
has a larger improvement during optimization. Another reason could be that the output function
simply describes the reduced data set better than it does the full one, regardless of the constants.
For our analysis we ignore these outliers.

It is interesting to look at the the evolution of the hall of fame in more detail. Looking at low
complexity functions, we can learn which terms are the most dominant ones much better than
from the coefficients of the polynomial in Tab. 3. For instance, the function of complexity 10 has
a comparable MSE as the polynomial of degree 2. Instead of 6 parameters we have only 3 and
we see that the relevant terms are x2p, x

2
pxη and the constant. For higher complexities we observe

that, correlation terms between xp and xη, especially x2px
3
η, are essential. Last is an order 5 term

which is not present in the polynomial fits. It is the reason why the PySR result gives a better
MSE. On the other hand terms with a higher order in xp than 2 do not appear at all. This is in
agreement with the comparatively small coefficients for the polynomials in Tab. 3.

To conclude, symbolic regression provides a better and more compact formula than the poly-
nomials. For our best result we have a factor 1.6 MSE improvement compared to the fourth-order
polynomial having only 9 free parameters as opposed to 15. This is a result of the algorithm’s
tree construction. For example we can have a term (a+ x)4 which has a complexity of only 5 and
just one free parameter but is a polynomial of degree 4. When expended, the prefactors are all
correlated while in the polynomial fit we would have 5 independent parameters. These correlations
can enforce too strong restrictions and limit the potential of improvement during optimization,
but they also simplify the expressions. A big advantage of the algorithm is that irrelevant terms

cmpl. dof function MSE

7 1 axp(xp + xη) 3.81 · 10−2

10 3 ax2p(b+ xη)− c 2.49 · 10−3

14 3 ax2p + bx2px
2
η − c 6.64 · 10−4

22 4 ax2p + bx2px
2
η − cxpxη − d 3.09 · 10−4

32 6
a(x2p + xη) + bx2pxη − (cxp − d)2

2.06 · 10−4

+ex2px
3
η − f

34 7
a(x2p + xη) + bx2pxη − (cxp − d)2

7.77 · 10−5

+ex3η(xp − f)2 − g

49 9
ax2p + bx2pxη − cxη(xp − d)

7.65 · 10−5

+ex3η(xp − f)2 + gx2px
2
η − hxp − i

10 20 30 40 50
complexity

10 4

10 3

10 2

M
SE

Table 4: Hall of fame for simplified ZH setup for fB = 0. The last formula corresponds to the
PySR result shown in Tab. 3. MSE is given for t(xp, xη)× 10.
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are removed from the tree and only important once are kept. These on the other hand are not
restricted by the order of polynomial unless explicitly specified.

Last but not least, even though we have no latent variables in the system and the joint score
is given by a simple expression in Eq. (79), our fit performance stagnates at a MSE of 7.65 ·
10−5. This is due to the fact that we use η− instead of pZz and pHz . The connection between
the two parametrizations includes log and tan which are operators we did not give to PySR and
therefor cannot obtain a perfect result. For all practical purposes the obtained approximations
are sufficient.

3.4.2 Rational function for fB = 10

From the previous discussion in Sec. 3.3 we deduce that a polynomial function will not be a good
fit on the data due to the score being limited from above by 2/θ for large θ. We therefore extend
our search to the space of rational functions by including the division operator into PySR. We
increase the maximal complexity to 75 as we expect this regression task to be more complicated
than the previous one.
From the obtained hall of fame we choose the following result:

t(xp, xη|fB = 10) = axp − b+
c(xη + d)

e+
f

xp
(
(xp − g)4 + h

) (
i (xη − j)2 + k

) (83)

Corresponding data is shown in Fig. 9 and Tab. 5. We see that, unlike for the previous case, the
raw PySR result shows a poor fit when it comes to the general shape of the score distribution.
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Figure 9: Score as a function of pT and η− for the rational PySR output for the simplified ZH
setup with fB = 10, corresponding to Tab. 5.
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PySR default PySR optimized
Eq.(83) Eq.(84) Eq.(85)

MSE 8.85 · 10−4 7.52 · 10−5 7.38 · 10−5 5.42 · 10−5

a 0.2201 0.02318(20) 0.01534(20) 0.00805(17)
b 0.2427 0.169067(79) 0.166262(71) 0.166229(67)

c(′) 0.0249 6.2(10) 0.09973(32) 0.06691(36)

d(′) 0.7070 13.667(54) 1.5949(23) 1.712(22)
e 0.1405 56.6(96) - -

f (′) 0.7046 374(42) 2.680(21) 1.928(18)
g 0.2855 -13.834(86) 18.56(14) 23.54(20)

h(′) 0.1270 -3.945(96)·104 7.97(23)·10−6 1.206(33)·10−5

i(′) 0.5750 2.05(30)·10−5 0.42702(54) 0.05091(78)
j 0.3189 0.336749(58) 0.32375(55) -0.5942(55)
k 0.1192 4.61(67)·10−5 - -
y fixed 2 fixed 2 fixed 2 3.3771(78)
z fixed 4 fixed 4 fixed 4 3.5724(43)

Table 5: Rational function for the simplified ZH setup with fB = 10. We compare the original
parameters from PySR to different optimization. All values for t(xp, xη)× 10.

However, there is a significant improvement from the optimization fit of more than a factor of 10
in the MSE.

Comparing the values in the first and second column of Tab. 5 we can understand why the
PySR result is a poor fit. All constants are in the same order of magnitude while the true values
from the optimization span over several orders of magnitude. Additionally, the function in Eq. (83)
suffers from flat directions, i.e. fully correlated parameters. This causes problems both for the
optimization within PySR as well as for our post-processing as can be seen by the large fit errors.
This can be taken care of by redefining the parameters of the above function in the following way:

t(xp, xη|fB = 10) = axp − b+
c′xη + d′

1 +
f ′

xp
(
h′ (xp + g)4 − 1

) (
i′ (xη − j)2 + 1

) , (84)

with

c′ =
c

e
d′ =

cd

e
f ′ =

f

ehk
h′ =

1

h
i′ =

i

k

Thus, we have removed the two redundant parameters e and k and obtained a much more stable
fit result with a slight improvement in the MSE. It is shown in the right panel of Fig. 9.

One more step that can be done in post-processing. is to check whether the exponents in the
fraction are a reasonable choice. The exponents used by PySR are fixed through the operators
square and cube. To allow for non-integer values we would have to include the power operator.
However, this will complicate the regression process and produce results that will be difficult to
interpret. There is unfortunately no option to restrict the power operator to use constants only.
Even if we restrict the operator complexity to 1, we could still obtain expressions like x

xη
p which

are not useful to us. Instead we take the integer value of the exponents of our result and turn
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them into fitable parameters. The score reads now:

t(xp, xη|fB = 10) = axp − b+
c′xη + d′

1 +
f ′

xp (h′|xp + g|z − 1) (i′|xη − j|y + 1)

(85)

We take absolute values to prevent the expression from being complex. We observe a significant
shift in one of the parameters z = 2→ 3.37 as well as an improvement in the MSE of about 35 %.
For a real analysis the expression of Eq. (84) would be sufficient. The MSE is comparable to the
one obtained in Sec. 3.4.1.

Ultimately, from this example we learn that post-processing is essential for rational functions
with fully correlated parameters if we want to accurately fit regions with high score values. How-
ever, this has to be taken with a grain of salt: there is nothing that guarantees that a poor fit
will become good after optimization. A bad parametrization might just be what it is: a bad
parametrization.

3.5 Photon propagator

For the next step we include the photon propagator which we derived in Sec. 3.1 simulating
a realistic process for finite fB. We still consider only u-quarks for simplicity. Note that the
presence of the photon propagator does not add any latent variables. For the squared matrix
element of the process the contributions of the photon- and Z-propagator are first summed and
than squared.

Looking at the joint score shown in Fig. 10 we see how it differs from the process with Z only
in Fig. 8 and 9.

In the case of the SM the joint score was given by a/p0, the interference term normalized over
the SM term. The new physics term in the matrix element is now a sum of the Z and the photon
contribution. Since the photonic vertex factor comes with a minus sign relative to the ZZH vertex
as shown in Eq. (53), the interference term is smaller. While the score previously reached values
up to 1, the maximal values in this case are at about 0.4.

With a smaller interference term we expect the quadratic term to be more dominant for
fB = 10. We already discussed in Sec. 3.3 that once we can neglect everything but the quadratic
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Figure 10: Joint score for ZH process including photon propagator for fB = 0, 10.
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term for large Wilson coefficients, the score is bound by a constant. Indeed we see that this bound
is more prominent than it was for the Z only process.

In the following we fit the score in the same manner as we did in the previous chapter.

3.5.1 Results for fB = 0

For fB = 0 the data is even simpler to fit than it was before. We therefore just give the best result
from the hall of fame:

t(xp, xη|fB = 0)× 10 = −a+ b(xp − c)2 + dxη(xp − e)2 − fx2η(xp − g)2 + hx3η(xp − i)2 (86)

with

a = 0.025668(21) b = 0.048981(17) c = 0.19081(51) d = 0.008893(27)

e = 0.6110(32) f = 1.9(11) · 10−7 g = 167(47) h = 0.0078760(65) i = 0.48588(52)

With a MSE of 3.05 · 10−5 the fit is a factor of 2 better than for the process without photon in
Sec. 3.4.1. The parameters g and h have large errors indicating a high correlation. Therefore one
can assume the contribution of fx2ηx

2
p is negligible and replace fx2η(xp− g)2 with fx2η. This yields

f = 0.0055627(52), a much more stable result, while the MSE is unchanged.
In general the formula has a very similar structure to the ones given in Tab. 4. The highest

order in xp is again 2 and the important x3ηx
2
p term is present.

3.5.2 Results for fB = 10

While for fB = 0 we obtained an even better and simpler fit than we did for the process without
the photon, the situation turns out to be far more complex for fB = 10 due to the sharper
bound. With the previous hyperparameter settings not only do we not obtain any reasonable
parametrizations, but the algorithm does not include any functions with a higher complexity than
30. Increasing the amount of populations or iterations did not cause an improvement. The reason
behind this performance is the acceptance probability of the simulated annealing.

During mutation a certain change to the tree can be in principle the right one, but because of
a wrong constant its MSE might be much worse compared to the tree before mutation and since
no constant optimization is performed in this step, the acceptance probability might simply be
too low to accept the new result. Increasing the hyperparameter alpha in Eq. (43) by several
orders of magnitude would result in a higher acceptance probability but the convergence of the
algorithm would suffer severely. Instead we find a way to modify the acceptance probability which
we justify in the following.

Neglecting parsimony the original formula for the acceptance probability was given by

pold = exp

(
− MSEnew − MSEold

alpha · T · baseline

)
(87)

with the baseline being the MSE to the constant unit function. The main problem is that only the
absolute difference between the new (after mutation) and old (before mutation) MSE is considered.
This makes the algorithm dependent on absolute numbers rather than the relative improvement.
Therefore we introduce a new acceptance probability considering the relative change of the MSE
given by:

pnew = exp

(
− MSEnew − MSEold

alpha · T · MSEold

)
(88)
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Figure 11: Toy data justifying new acceptance probability.

We demonstrate the effect of this new acceptance formula on a very simple toy example shown in
Fig. 11. First we generate toy data for the function y = 0.5x2 adding noise. To simulate a bad fit
in the first round of the algorithm, we construct a linear function y1 = mx. Assuming this linear
function undergoes a constant optimization we get m = 1.88 with MSE = 1.90. In the next round
this linear function is chosen for mutation. A very simple and likely mutation that would directly
bring us to the correct shape, is to insert a node with the squaring operator to obtain y2 = 1.88x2.
Not changing the constant however results in MSE = 240 and an acceptance probability of 10−3 %
according to Eq. (87) with alpha = 100. Therefore the algorithm is likely to reject the new and
correct form of the function without a constant optimization even for a high alpha. The new
acceptance probability would give 28 %, a much more promising result.

For data that is easy to describe, the inefficiency caused by pold is balanced by a large amount
of mutation attempts. For our toy model it could add a new branch to the tree with a quadratic
term like y3 = 1.88x + bx2. According to pold, the formula with for example b = 0.4 would be
accepted with a probability of 47 %. If this function gets accepted and optimized we get b′ = 0.48
and m′ = 0.08 with MSE = 0.077 which is about as good as the MSE for y = 0.5x2 due to the
noise.

For our fB = 10 data, for the process including the photon propagator, the amount of mutations
needed to balance this inefficiency is beyond the limit of computer power available to us, so we
have to rely on pnew. It makes sure that the algorithm can get out of local minimas more easily
no matter what the absolute value of the MSE is. Choosing alpha = 100 gives for a relative
difference of one order of magnitude an acceptance probability of 90 %, for 2 orders 37 % when
T = 1.

With the new acceptance probability we obtain the hall of fame given in Tab. 6. Unlike
with pold we obtain formulas with higher complexity as expected. We choose the expression of
complexity 73 and show it in the last panel of Fig. 12.
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cmpl. dof function MSE

16 5 axp + bxη − c(d− exp)2 1.57 · 10−2

22 6 axp + bxη − c(d− exp)2 + f/xp 9.46 · 10−3

30 8 (axp − b)/(cx3p + d+ e(xp − xη + fp + gp/x)/x)− h 3.82 · 10−3

42 9 (axp − b)/(cx3p + d+ e(xp + f − (gxη − h/x2p)/x)/(xp + xη/xp))− i 1.22 · 10−3

45 8 (xp − a)/(bx3p + c+ d(xp + e− f(xη − g/x2p(xp + y))/xp)/(xp + x2η/xp))− h 7.96 · 10−4

47 10 (xp − a)/(bx3p + c+ d(xp + e− f(xη − g/(hx2p(xp + xη) + i))/xp)/(xp + x2η/xp))− j 6.71 · 10−4

50 10
(xp − a)/(bx3p + c+ d(xp + e− f(xη − g/(hx2p(xp + x2η − xη) + i))/xp) 6.03 · 10−4

/(xp + x2η/xp))− j

63 14
(axp − b)/(cx3p + d+ e(xp + f − g(hx2p + xη + i− j

5.64 · 10−4

/(kx2p(xp + (xη − l)2 − xη) +m))/xp)/(xp + x2η/xp))− n

73 15
(axp − b)/(cx3p + d(xp − e(fx2p + xη + g − h/(i(j − xp)2(xp + x2η) + k))/xp) 1.44 · 10−4

/(xp + lxη(mxpxη + xη)) + n)− o

Table 6: Hall of fame for process with fB = 10 including photon. MSE given for t(xp, xη)× 10

Writing it in a more readable way:

t(xp, xη|fB = 10) =
axp − b

cx3p + d

xp −
e

xp

(
fx2p + xη + g − h

i(j − xp)2(xp + x2η) + k

)
xp + lxη(mxpxη + xη)

+ n

− o (89)

We can again simplify and redefine parameters:

t(xp, xη|fB = 10) =
xp − b′

c′x3p +

e′xη + f ′x2p + g′ − h′

i′(j − xp)2(xp + x2η) + 1

x2p + lxpx2η(mxp + 1)
+ n′

− o (90)

with

b′ =
b

a
c′ =

c

a
e′ = e

d

a
f ′ =

d

a
(1− ef) g′ = e

d

a
g h′ =

d

a

h

k
i′ =

i

k
n′ =

n

a

This way we removed the parameters a, d and k having 12 degrees of freedom left.
Similar to what we did in Sec. 3.4.1 we can compare this result to some standard rational

function fits. For the numerator we choose a polynomial of order 4 and for the denominator
we try degrees 1 to 4. The results are shown in Fig. 12. The best performance is of course
obtained for the largest amount of parameters. A fourth-order polynomial with 2 variables has 15
degrees of freedom. Putting the same kind of polynomial in the numerator as well we have one
correlation that can be removed so that we have 29 parameters. For the other rational functions
we respectively have 24, 20 and 17 free parameters. Comparing the MSE, PySR is somewhere in
between the d = 2 and d = 3 results. It fails to perfectly fit the upper edge like d = 3 or d = 4
though the amount of points in this area is not significant. The best of the rational functions has
more than twice as many parameters but improves the MSE only by 30 %, the function with the
d = 3 denominator has 8 more parameters and an improvement of only 10 %.
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Figure 12: Score as a function of pT for rational fits and the PySR output, including optimization,
for the simplified ZH setup including photon propagator for fB = 10. The numerator of the
rational function fits is a fourth-order polynomial. MSE given for t(xp, xη)× 10

To conclude, we first showed that an acceptance probability considering the relative improve-
ment of the MSE is needed for an algorithm to be efficient enough to regress on complex data.
With the new results we showed again that PySR gives compact functions with a minimal amount
of free parameters which are favored over the long expressions of basic rational functions with a
fixed polynomial order in numerator and denominator.

3.6 Two quark flavors

Finally, we include all incoming quarks and generate events for the full partonic process

pp −→ ZH

In the distribution of the score we encounter a double branch structure shown in Fig. 13. We
now have a discrete latent variable in our process which is the quark flavor. The Z-boson couples
differently to up-type quarks than it does to down-type quarks, as the vector coupling has a
dependence on the quark charge and isospin. Because of the photon contribution in the matrix
element, which couples equally to all quarks, the Z-coupling does not cancel in the fraction of the
score as it did in the case without photon in Eq. (79).

Comparing Fig. 10 where we only had u-quarks to 13, we see that for fB = 0 the lower branch
corresponds to up-type quarks and the upper to down-type quarks5. The situation is reversed for
the case of fB = 10.

5Due to the nature of the PDFs we mostly have u- and d-quarks in the data set, however c- and s-quarks can
appear as well. Since particle charge and isospin are the only relevant quantities for the Z-coupling, we cannot
distinguish between the quark generations.
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Figure 13: Joint score for ZH process including all quarks for fB = 0, 10.

For the case of fB = 0 only the interference term between SM and new physics is relevant for
the score. The vector and axial-vector couplings for the different quark types are given by:

Vu =
1

2
− 8

3
sin2 θW Au =

1

2

Vd = −1

2
+

2

3
sin2 θW Ad = −1

2

Therefore calculating (V 2 + A2) we find that this term is larger for d-quarks.
In the interference term, as discussed in the beginning of Sec. 3.5, the photon contribution is

subtracted due to the relative minus sign of the vertex factors. Since the photon couples equally
to all quarks, only the difference in the Z-contribution matters for the score. Hence, down-type
quarks have a higher score.

As for the case of fB = 10 where the quadratic term of the new physics contribution is
dominant, the 2/fB bound is reached once the interference term is negligible. As it is smaller for
the up-type quarks, the score approaches the limit faster in this case.

In this chapter we want to investigate the performance of PySR for this double-branch struc-
ture. The expectation is to find a marginalized result that lies between the two branches.
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Figure 14: Score as a function of pT for fourth-order polynomial fit and PySR including optimiza-
tion, for the full partonic ZH setup for fB = 0. MSE given for t(xp, xη)× 10
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3.6.1 Results for fB = 0

The hall of fame is displayed in Tab. 7 of which the best result of complexity 29 is shown in
the right panel of Fig. 14 next to the polynomial baseline. The two fits show a comparable
performance. In this case we expect a higher MSE than in the previously discussed cases as due
to the latent variable the MSE cannot go to 0 even in theory. In Fig. 14 we see that the fit lies
approximately in between the two branches. However, due to the |η−| dependence the branches
overlap so that it is difficult to see which data points belong to which branch and where the fit
lies in between, i.e. is it in the middle or closer to one of the branches? For a deeper analysis we
have to look at distributions of the two variables where we fix one of them. We combine this with
a detailed study of the hall of fame.

From Tab. 7 we choose the functions of complexity 7, 9, 11, 13 and 29 for a detailed study. A
display of these functions is shown in Fig. 15. The upper panels show the pT -distribution for a
fixed |η−| and the lower panels show the |η−|-distributions for 2 values of pT .

We start with the simplest expression of complexity 7 consisting only of a squared term in pT
and a correlation term linear in pT and |η−|. It has a single free parameter. Looking at the upper
two panels we see that the fit matches the data for small pT but significantly undershoots both
branches for larger values. The |η−|-distributions show a good agreement with the data only at
low |η−| and low pT . For a formula with low complexity this behavior is expected since these are
the regions containing most of the data.

Clearly, one parameter cannot be enough to describe both the dependencies in pT and in
|η−|. The additional parameter for complexity 9 comes with a significant improvement in the
MSE. The prefactor of the pT term is now ab and only a bit larger than the parameter a of the
previous function, so there is no significant difference for data with η− = 0 or low pT values.
The correlation term with its own constant is now squared in pT instead of linear. This causes
a significant improvement in the high pT regions for large |η−| as can be seen in the upper right
panel.

If the correlation term is additionally also squared in η−, as it is for complexity 11, we observe
an improvement in the lower left panel for low pT regions. High pT regions are barely affected by
this, since the higher pT , the smaller are the maximal values for η− due to phase-space reasons
discussed in Sec. 3.2. For values of |η−| < 1.5 such a squared term doesn’t win by a lot against a
linear one. Since the improvement affects only few events the MSE changes only very insignificantly

cmpl. dof function MSE

7 1 axp(xp + xη) a = 0.0375 6.51 · 10−3

9 2 ax2p(xη + b) a = 0.0203 ab = 0.0406 4.35 · 10−3

11 2 ax2p(x
2
η + b) a = 0.0111 ab = 0.0462 4.32 · 10−3

13 3 ax2p + bxpx
2
η − c a = 0.0648 b = 0.0088 c = 0.0625 1.96 · 10−3

17 4 ax2p + bxpx
2
η − cxη − d 1.84 · 10−3

19 4 ax2p + bxpx
2
η − cxp − dxη 1.74 · 10−3

21 5 ax2p + bxpx
2
η − cxp − dxη + e 1.72 · 10−3

27 6 ax2p + bxpx
2
η − cxpxη − dxp + exη + f 1.63 · 10−3

28 7 ax2p(bxη − c)2 + dxpx
2
η + ex2p − fxp − gxη 1.43 · 10−3

29 8 ax2p + b(x2η + c)(xη(dxp − e)(xp − f) + xp + g)− h 1.29 · 10−3

Table 7: Hall of fame for full partonic ZH setup with fB = 0. All values are given for t(xp, xη)×10
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Figure 15: Sliced kinematic distributions for the score of the full partonic ZH process with fB = 0,
showing the HoF results of Tab. 7.

between complexity 9 and 11.
For the following equations the tree structure changes and the bracket we had in the previous

expressions ”opens up”. This is important as the squared pT -term is not simultaneously used
for both the pure pT dependence and the correlation term. For complexity 13 this allows the
correlation term to be linear in pT and squared in |η−|. Additionally we have a constant term
appearing for the first time. This constant is necessary for a good parametrization of the score
due to the constant contribution from the total cross section. Comparing to complexity 11 the
prefactor of the squared pT term is about 1.5 times larger. As a result we observe a good agreement
with the data in the pT distributions. While all previous fits were very close or even below the lower
branch, complexity 13 lies in between the branches with a tendency towards the upper branch.
However, in the |η−|-distribution the new equation seems to be less than optimal and loses against
complexity 11. But since there is a lot more data in regions with high pT and low |η−| than there
is in regions with high |η−| and low pT complexity 13 performs better in the overall MSE than the
previous one.

With growing complexity we see how the equation is being ”fine-tuned” by gradually adding
linear terms in |η−| and pT to improve the fit. The tree structure changes again at complexity
28 and makes room for more efficient and compact parametrizations. The function of complexity
29 consists of several brackets being multiplied with each other rather than a sum of terms.
Such a structure allows for more correlation terms while keeping the amount of parameters low.
Expanding the brackets we mostly find the same terms as we saw for low complexities. A new and
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Z only Z and γ all quarks

MSE 7.68 · 10−5 3.05 · 10−5 1.30 · 10−3

(7.65 · 10−5) (1.29 · 10−3)

a 0.136316(29) 0.025668(21) 0.038766(15)
b 0.148896(27) 0.048981(17) 0.062109(84)
c 0.12362(21) 0.19081(51) 0.1537(25)
d 0.019829(88) 0.008893(27) -1.33(78)·10−4

e 0.1552(25) 0.6110(32) -8.0(24)
f 5.02(92) · 10−4 1.9(11) · 10−7 0.01385(25)
g 0.959(69) 167(47) 0.364(20)
h 0.022549(28) 0.0078760(65) 0.00470(11)
i 0.24413(51) 0.48588(52) 0.375(14)

Table 8: Coefficients for PySR result of Eq. (86) from one quark setup including photon propagator
optimized on all 3 data sets. The MSE of the original optimized PySR result of the data set is
given in brackets for comparison. All values for t(xp, xη)× 10.

important correlation term x3ηx
2
p appears. We already discussed its significance in Sec. 3.4.1, it

drastically improves the fit for phase-space regions with large |η−|. We see how this parametrization
fits even the phase-space areas with a small amount of points. In all 4 panels the fit lies exactly
between the branches. Moreover, this formula is consistent with the ones obtained in all previous
studies of fB = 0 data, showing that there is no conceptional difference in the dependencies on
the kinematic variables of the three considered processes. The variations caused by the different
coupling constants can be absorbed by the free parameters. To illustrate that we choose the result
of one of the considered cases and optimize it for all three data sets. We choose the analytic
expression obtained from the one-quark process including the photon propagator in Eq. (86)
because of its simple form. Applying it on the one-quark process with Z only and the two quark
process we obtain the coefficients given in Tab. 8. We also take the MSE of this fit and compare
it to the MSE corresponding to the original result of the data set. The differences between the
MSE are negligible proving that indeed one expression is enough to describe all 3 data sets.

Such a comparison of different PySR results can be helpful to point out differences and sim-
ilarities of two parametrizations. Because PySR is based on a random construction of trees, we
will never obtain the exact result twice and for complex expression the similarities cannot always
be recognized at first glance. Moreover, as we are working with data sets where we cannot reduce
the error to 0 there is no global minimum in the function space, i.e. there is no single expression
that describes the data perfectly, but there are many that do it sufficiently well.
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Figure 16: Score as a function of pT for fourth-order polynomial fit and PySR including optimiza-
tion, for the full partonic ZH setup for fB = 10. MSE given for t(xp, xη)× 10

3.6.2 Results for fB = 10

In analogy to the previous chapter we will discuss the hall of fame results for fB = 10. Unlike for
the previous case, this data does not have a simple leading term p2T that accounts for most of the
data. It is dominated by the limited growth behavior which is difficult to describe without the use
of exponential functions. We therefore do not expect useful expressions from the low complexity
results. The hall of fame results are shown in Tab. 9 and Fig. 17.

Starting with the pT -distribution of the upper panels we quickly see that all equations up to
complexity 23 are essentially linear in pT with many of them overlapping. Of course a linear
function is by no means sufficient to describe this data. Even though a x2p term would improve
the fit in regions at about pT < 400 GeV it would drastically overshoot the limit for large pT and
is therefore not considered by PySR.

Also in the |η−|-distributions the low complexity results show poor fits and barely any improve-
ment among each other. The correlation term x4pxη appearing in the denominator for complexity
16,23 and 25 is supposed to implement the limited growth behavior. In the MSE we see its impact
in the improvement from complexity 10 to 16 but its expressivity is too limited to show a visible
effect.

From complexity 16 to 25 the MSE shows only minor improvements from the insertion of
linear and cubed xη terms. A significant improvement we see only once the polynomial in the
denominator consists of many terms including higher orders to ensure the cut off. Now that we
have a more efficient limitation in the function, a cubed contribution in pT can be added to the

cmpl. dof function MSE

10 3 axp + bx3η − c a = 0.3487 b = 0.0043 c = 0.3492 1.61 · 10−2

16 4 axp − b/(cx4pxη + d) a = 0.3032 b = 0.0960 c = 0.0213 d = 0.3033 1.26 · 10−2

20 4 axp − b/(cx5pxη + d) a = 0.2860 b = 0.0942 c = 0.0117 d = 0.3005 1.21 · 10−2

23 5 axp + bx3η − c/(dx4pxη + e) 1.19 · 10−2

25 7 axp + bx3η + cxη − d/(ex4p(xη + f) + g) 1.14 · 10−2

45 12 axp + bxη − c(xp − d)3 + e− f/(gx3px3η − xη(hxp + i) + j(xp + k)6 + l) 4.65 · 10−3

51 13 axp + bxη − c(xp − d)3 + e− f/(gx3px3η − xη(h+ i) + j(xp + k)6 + l +m/xp) 4.65 · 10−3

Table 9: Hall of fame for the complete ZH setup with fB = 10. MSE is given for t(xp, xη)× 10.
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Figure 17: Sliced kinematic distributions for the score of the full partonic ZH process with fB = 10,
showing the HoF results of Tab. 9.

polynomial part of the equation. This matches the low pT data better than it was possible with
the linear term. We see in Fig. 17 how the function for complexity 45 describes most of the data
well. A slight overshoot in areas of high pT and high |η−| can be observed. However, as we can
see from Tab. 9, adding more terms into the denominator for complexity 51 does not improve the
MSE and since only few points are affected by this overshoot we accept the result obtained here.
Note, that in the case of one quark flavor we had an expression of complexity 73, a much more
complex result.

From Fig. 17 we can clearly see that the upper branch is more populated than the lower one.
This comes from the fact that we have more u-quarks in a pp collision than d-quarks. Therefore it
is reasonable that the fit will be closer to the upper branch, though it is hard to tell by eye where
exactly it should be. Essentially, this issue corresponds to finding out where the theoretical limit
of the MSE lies. A convenient way to do so is to introduce a proxy described in the following.

We create a 2d histogram in the two kinematic variables. The value of each bin is given by the
average score of the data points in the bin. Such a histogram is shown in the left panel of Fig.
18. For each bin we can calculate the MSE between the score of each data point and the average
score. The average over all bins would give us a theoretical limit for the MSE.

Of course this result depends highly on the amount of bins we choose: too many bins will
result in bins containing only one data point leading to an error of 0. Having too few bins we
do not only average over events in two branches for the same point in phase-space, but also over
a larger phase-space which will result in a too large MSE. In order to decide which amount of
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Figure 18: Left: Mean score for 70× 70 bins. Right: average MSE between mean score of bin and
score in bin compared to amount of events per bin.

bins to choose we plot the average MSE in dependence of the bin amount, while keeping track of
the maximal, mean and median amount of events per bin. This is displayed in the right panel of
Fig. 18. In the area of 30-100 bins the MSE does not change significantly so we deduce that any
amount of bins within this interval is reasonable.

Since the gap between the two branches is different for different regions in pT , the MSE of the
proxy should be compared individually for different pT -intervals. In Tab. 10 we show the MSE
for the rational function fit with denominator and numerator of degree 4, the PySR result of
complexity 45 and the proxy for 50 and 100 bins. Our fit results are comparable to the 50 bin
proxy. PySR is slightly worse for very large pT .

To conclude, in this case we found that the double branch structure is easier to fit than it was
in the case of one quark. Due to the lower branch, the high pT region is smeared out and the
theoretical score limit is reached for less events loosening the conditions of the cutoff requirement
for the fit.

denom. d=4 PySR proxy (50 b.) proxy (100 b.)

pT < 250 GeV 1.11e-03 1.20e-03 1.18e-03 1.01e-03
250 < pT < 500 GeV 4.61e-02 4.62e-02 4.54e-02 4.17e-02
500 < pT < 750 GeV 3.71e-02 3.72e-02 3.52e-02 2.98e-02
pT > 750 GeV 1.22e-02 1.31e-02 1.11e-02 8.12e-03

Table 10: Comparing MSE of proxy to rational function fit and PySR result for different pT bins
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4 Weak Boson Fusion

In this section we are going beyond our toy model of the ZH-production and look at weak-boson-
fusion instead. Having 3 particles in the final state, this process is fundamentally more difficult
to describe due to the increased amount of degrees of freedom. We are going to apply the same
methods to obtain the optimal observable for a dimension-6 Wilson coefficient and connect this
analysis to the question of CP-violation in the V V H-interaction. As before, we start by introducing
the process and studying the data at parton level. Afterwards we add detector effects for a realistic
analysis and conclude with a comparison of confidence intervals for different observables.

4.1 Feynman rules, matrix element, CP-observable

Assuming only u- and d-quarks in the initial state the Feynman diagram is given by:

u(pu) d(qd)

h

d(pd) u(qu)

W+(k+)

W−(k−)

Figure 19: Feynman diagram for weak boson fusion

The process of weak-boson-fusion is dominated by the contribution of the W -propagators. There-
fore, we choose the WWH-coupling for a detailed study. In this chapter we additionally want to
investigate the CP-violation, which is why the operator of our choice from Tab. 1 is the following:

OWW̃ = −(φ†φ)W̃ k
µνW

µνk = −(φ†φ)εµνρσW
ρσkW µνk (91)

Feynman rules

In analogy to Sec. 3.1 we start by deriving the Feynman rule for the vertex. We insert the
expressions for the Higgs field from Eq. (9) and the field strength tensor from Eq. (3) and keep
only terms contributing to the WWH-coupling:

LEFT ⊃ −
fWW̃

Λ2
(φ†φ)εµνρσW

ρσkW µνk (92)

⊃ −
fWW̃v

Λ2
εµνρσ(∂ρW σk − ∂σW ρk)(∂µW νk − ∂νW µk)h (93)

Expanding the brackets yields:

= −
fWW̃v

Λ2
εµνρσ(∂ρW σk∂µW νk − ∂σW ρk∂µW νk − ∂ρW σk∂νW µk + ∂σW ρk∂νW µk)h (94)
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We rewrite the expression in terms of physical fields using W± = (W 1 ± iW 2)/
√

2. We neglect
the W 3-contribution in this calculation for simplicity, but note that they will give rise to ZZH,
AAH and ZAH couplings.

⊃ −
fWW̃v

Λ2
εµνρσ(kρ+W

+σkµ−W
−ν + kρ−W

−σkµ+W
+ν − kσ+W+ρkµ−W

−ν − kσ−W−ρkµ+W
+ν

− kρ+W+σkν−W
−µ − kρ−W−σkν+W

+µ + kσ+W
+ρkν−W

−µ + kσ−W
−ρkν+W

+µ)h (95)

= −4
fWW̃v

Λ2
εµνρσk

σ
+k

ρ
−W

+µW−νh (96)

In the last step we renamed indices and combined terms, taking into account that the Levi-
Civita tensor is fully anti-symmetric. We use k± for the momenta of W±. Together with the SM
contribution from Sec. 1.1 the vertex factor can be written as:

iLµν = 2i
m2
W

v
gµν − 4i

fWW̃v

Λ2
εµνρσk

σ
+k

ρ
− (97)

Matrix element

The matrix element is given by:

iM = ū(qd)Γ
µu(pu)

−igµα + k+µk+α
m2
W

k2+ −m2
W

 iLαβ

−igνβ +
k−νk−β
m2
W

k2− −m2
W

 ū(qu)Γ
νu(pd) (98)

where p denotes the momenta of the incoming and q the outgoing quarks. The qq′W vertex is
given by:

Γµ = −i g

2
√

2
γµ(1− γ5)Vqq′ (99)

with Vqq′ being the corresponding CKM matrix entry. We can easily show that terms proportional
to k± will drop out in the limit of massless fermions:

ū(qd)k+µγ
µ(1− γ5)u(pu) = ū(qd)/k+(1− γ5)u(pu)

= ū(qd)(/pu − /qd)(1− γ
5)u(pu)

= −ū(qd)/qd(1− γ
5)u(pu) + ū(qd)(1 + γ5)/puu(pu)

= −ū(qd)md(1− γ5)u(pu) + ū(qd)(1 + γ5)muu(pu) (100)

We inserted k+ = pu − qd and made use of the Dirac equation in the last step. Since both terms
in the final expression are proportional to the quark masses they can be neglected. The simplified
matrix element can thus be written as:

iM = −i(ū(qd)Γ
µu(pu))Lµν (ū(qu)Γ

νu(pd))

(k2− −m2
W ) (k2+ −m2

W )
(101)

For the matrix element squared we evaluate the traces of the γ-matrices separately. For the first
term we obtain:∑(

ū(qd)Γ
∗µu(pu)

)(
ū(pu)Γ

µ′u(qd)
)

=
g2

8
V 2
udTr

[
/qdγ

µ(1− γ5)/puγ
µ′(1− γ5)

]
(102)

48



=
g2

4
V 2
udqdλpuλ′Tr

[
γλγµγλ

′
γµ
′
(1− γ5)

]
(103)

=g2V 2
udqdλpuλ′

[
gλµgλ

′µ′ + gλ
′µgλµ

′ − gλλ′gµµ′ + iελµλ
′µ′
]

(104)

and similarly for the second term:∑(
ū(qu)Γ

∗νu(pd)
)(

ū(pd)Γ
ν′u(qu)

)
(105)

=g2V 2
udquκpdκ′

[
gκνgκ

′ν′ + gκ
′νgκν

′ − gκκ′gνν′ + iεκνκ
′ν′
]

(106)

The SM contribution to the WWH-vertex is given by:

L∗µνLµ′ν′
∣∣∣
SM

= 4
m4
W

v2
gµνgµ′ν′ (107)

The prefactor of 4 cancels with the averaging over the initial spins. Taking all the ingredients
together and contracting the indices we end up with the following matrix element squared:

|M|2
∣∣∣
SM

= g4V 4
ud

m4
W

v2
(qd · qu)(pu · pd)

(k2− −m2
W )

2
(k2+ −m2

W )
2 (108)

For the interference term the Lorentz structure is given by:

L∗µνLµ′ν′
∣∣∣
interference

= −16
m2
WfWW̃

Λ2
gµνεµ′ν′ρσk

σ
+k

ρ
− (109)

For the squared matrix element we obtain:

|M|2
∣∣∣
interference

= −8g4V 4
ud

m2
WfWW̃

Λ2

((pd · pu) + (qu · qd))
(k2− −m2

W )
2

(k2+ −m2
W )

2 εµνρσp
µ
dp

ν
uq
ρ
dq
σ
u (110)

To compute the approximate joint score for this single process we take the ratio of the interference
and the SM term and get:

t(x, z|fWW̃ = 0) ≈ −8
v2

m2
WΛ2

(pd · pu) + (qu · qd)
(qd · qu)(pu · pd)

εµνρσp
µ
dp

ν
uq
ρ
dq
σ
u (111)

CP-observable

By contracting four 4-momenta with the Levi-Civita tensor we can construct a pseudo-scalar that
is odd under parity transformation and time reversal. It is therefore a CP-violating observable
[30]. In our case of weak boson fusion there is only one way to obtain such a quantity:

εµνρσp
µ
dp

ν
uq
ρ
dq
σ
u (112)

This term is included in the expression for the score in Eq. (111) which is expected from a CP-
violating operator.

In order to evaluate this expression we are going to adapt the notation from [30] by assigning
the initial and final momenta to the positive and negative hemisphere defined by the positive
and negative z-direction (beam axis). We therefore enforce the restriction that for both initial
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and final states there is one quark in each hemisphere. The quark indices are replaced by + and
− to indicate their hemisphere rather than their quark flavor. For the initial momenta we have
p± = (E±, 0, 0,±E±).

To evaluate the Levi-Civita tensor we remember that it is fully anti-symmetric so that terms
with two equal indices give 0 and the exchange of two indices leads to a sign flip. We write:

εµνρσp
µ
+p

ν
−q

ρ
+q

σ
− = ε1423 (−E+E−q+xq−y) + ε1432 (−E+E−q+yq−x)

+ ε4123 (E+E−q+xq−y) + ε4132 (E+E−q+yq−x) (113)

= (−E+E−q+xq−y)− (−E+E−q+yq−x)− (E+E−q+xq−y) + (E+E−q+yq−x) (114)

= 2E+E− (q+yq−x − q+xq−y) (115)

We insert the relations q±x = q±T cosφ± and q±y = q±T sinφ± and recognize the trigonometric
identity:

= 2E+E−q+T q−T (sinφ+ cosφ− − cosφ+ sinφ−) (116)

= 2E+E−q+T q−T sin (φ+ − φ−) = 2E+E−q+T q−T sin ∆φ (117)

The CP-violating observable therefore primarily depends on the azimuthal angle between the
two outgoing quarks as well as their transverse momenta and the energies of the initial quarks.
Inserting this result into the score of Eq. (111) we obtain:

t(x, z|fWW̃ = 0) ≈ −8
v2

m2
WΛ2

2E+E− + (q+ · q−)

(q+ · q−)
q+T q−T sin ∆φ (118)

At this point we want to emphasize, that the score is the optimal observable of the CP-violating
Wilson coefficient fWW̃ and not CP-violation in general. Therefore it is not simply given by
the expression in Eq. (117) but includes additional momenta dependencies. Therefore we expect
sin ∆φ to be the leading term of the optimal observable and additional non-trivial polynomial of
the jet momenta for a more accurate fit.

4.2 Score for f
WW̃

Unlike for the process in Sec. 3 where we separately looked at the contributions of the different
propagators, in this section we will directly look at the full partonic process

pp→ qq′H (119)

which includes the previously mentioned Feynman diagrams with ZZH-, AAH- and ZAH-
vertices.

The kinematic distributions are shown in the upper panels of Fig. 20. For the case of the
Standard Model with fWW̃ = 0 the distribution in ∆φ is symmetric while for fWW̃ = 1 we can
see the predicted sine-shape. For the momentum distribution we again see an increase of events
in the tail for a finite Wilson coefficient due to the momentum dependence in the operator. pT,1
corresponds to the quark with higher energy, the distribution for pT,2 is similar. We also show
the distribution in ∆η which indicates only a small difference betweeen the two histograms. It is
unclear at this point, if the slight increase in events at lower ∆η for higher fWW̃ is meaningful or
just an artifact from looking at 1-dimensional histograms and includes correlations with pT . To
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Figure 20: Top: Kinematic distributions for the WBF process at parton level for fWW̃ = 0, 1.
Bottom: Joint score in dependence of different kinematic observables.

examine this further, we would have to look at multi-dimensional histograms similar to Sec. 3.2
and keep other variables fixed. However, due to the increased amount of degrees of freedom in
this process, such an analysis would be quite involved and is unnecessary. We will show later in
Sec. 4.3 that including ∆η in the symbolic regression gives better observables.

The joint score for the SM is shown in the lower panels of Fig. 20. Most prominently, we see
the predicted dependence on sin ∆φ. Events with a high score appear at large pT values and small
∆η as suggested by the 1-dimensional histograms.

In the next step we want to see how and why the score distribution changes for larger Wilson
coefficients. Firstly, we compare the ∆φ distribution of the score for fWW̃ = 0, 0.5, 1. This is
shown in the upper panels of Fig. 21. The evolution here is quite interesting: starting with a sine,
the score turns into a spoon. Between fWW̃ = 0 and fWW̃ = 0.5 we see that in the latter points
with positive score appear in the region of positive ∆φ, an unpopulated area in the case of the
SM. Here, one can still clearly recognize the sine shape, a trait that is almost completely lost for
the Wilson coefficient of 1.

To understand this peculiar behavior we have to remember the general score behavior from
Tab. 2. We also need to consider that while the interference term is proportional to sin ∆φ, the
quadratic term is symmetric and proportional to sin2 ∆φ. In areas where the quadratic term
dominates, the score is bound by 2/θ. We can clearly see this effect in the area of negative ∆φ
where the upper bound for fWW̃ = 0.5 is at 4 and for fWW̃ = 1 at 2.

For positive ∆φ the balance between the negative interference term and the positive quadratic
term determines the value of the score. We separate the events in 3 categories: t(θ) < 0, 0 <
t(θ) < 2/θ and t(θ) > 2/θ. The first case of negative score values corresponds to the situation
of the SM. The quadratic term in this case is small, its absolute value is smaller than the one of
the interference term so their sum stays negative. However, when the quadratic term is larger
than the interference term, the score is positive and above the 2/θ bound. If the quadratic term
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Figure 21: Top: Joint score for ∆φ for different Wilson coefficients. Bottom: Joint score for
geometric mean of the jet pT for fixed ∆φ.

grows further it is bound by the 2/θ limit from below. This can be clearly seen for fWW̃ = 1
when looking at the lower plots of Fig. 21. They depict the geometric mean of the transverse
momenta for a fixed value of ∆φ. We know that the quadratic term grows with pT faster than the
interference term so we see how the score converges to the limit. For 0.5 the quadratic term is not
large enough to win against the interference term, therefore the limit is not reached in this case.

A small amount of points can be seen in the area of positive score below the limit. They
correspond to small phase-space areas where the quadratic term is comparable to the interference,
but results in a positive score contribution.

We also notice that the maximal pT value for the negative score events is decreasing with
growing Wilson coefficient which is once more because of the rapid growth of the quadratic term
with pT .

4.3 Symbolic regression at parton level

In this section we will apply symbolic regression on the full partonic process without shower or
detector effects. We are going to examine the score in the case of the Standard Model as well as
for the more complicated case of fWW̃ = 1. Here we focus on analyzing the functional form, the
operators and kinematic observables needed for a good MSE.

4.3.1 Results for fWW̃ = 0

We start by providing PySR with the kinematic observables we expect from the considerations
in the previous chapter as well as from Eq. (118). We use the observables:

{ xp,1, xp,2, ∆φ } with xp,i =
pT,i
mH

, (120)
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compl dof function MSE

3 1 a∆φ 1.30e-01
4 1 a sin(∆φ) 1.03e-01
5 1 a∆φxp,1 9.93e-02
6 1 a sin(∆φ)xp,1 4.94e-02
8 1 a sin(∆φ)xp,1xp,2 1.49e-02
10 2 a sin(∆φ)xp,1(xp,2 + b) 1.40e-02
15 4 a(b∆φ2 + xp,1)(xp,2 + c)(sin(∆φ)− d) 1.36e-02

5 10 15 20 25 30
complexity

10 1

M
SE

Table 11: Hall of fame for WBF Higgs production at parton level with fWW̃ = 0.

For the operators we allow sin, +, −, ×, square and cube. We set alpha=1.5 and the maximal
complexity to 30.

The hall of fame is shown in Tab. 11. We see that the largest drop in the MSE occurs once
the algorithm learns the term sin ∆φxp,1xp,2 which was predicted by Eq. (118). No significant
improvement happens for larger complexities. Since the MSE is still rather large we deduce that
more information, i.e. more kinematic observables, is needed for a better fit. We add ∆η and
obtain the hall of fame given in Tab. 12. The results of low complexity are similar to the ones
obtained previously, but complexity 16 and 28 include ∆η and improve the MSE by almost a
factor of 2. For further analysis we will use the result of complexity 16:

t(xp,1, xp,2,∆φ,∆η|fWW̃ = 0) = −xp,1 (xp,2 + c) (a− b∆η) sin(∆φ+ d)

with a = 1.086(11) b = 0.10241(19) c = 0.24165(20) d = 0.00662(32) (121)

The constant d is small ensuring that t ∝ sin ∆φ.

compl dof function MSE

3 1 a∆φ 1.30 · 10−1

4 1 sin(a∆φ) 2.75 · 10−1

5 1 a∆φxp,1 9.93 · 10−2

6 1 −xp,1 sin(∆φ+ a) 1.90 · 10−1

7 1 (−xp,1 − a) sin(sin(∆φ)) 5.63 · 10−2

8 1 (a− xp,1)xp,2 sin(∆φ) 1.61 · 10−2

14 2 xp,1(a∆φ− sin(sin(∆φ)))(xp,2 + b) 1.44 · 10−2

15 3 −(xp,2(a∆η2 + xp,1) + b) sin(∆φ+ c) 1.30 · 10−2

16 4 −xp,1(a− b∆η)(xp,2 + c) sin(∆φ+ d) 8.50 · 10−3

28 7
(xp,2 + a)(bxp,1(c−∆φ)

8.18 · 10−3−xp,1(d∆η + exp,2 + f) sin(∆φ+ g))
5 10 15 20 25 30

complexity

10 2

10 1

M
SE

Table 12: Hall of fame for WBF Higgs production at parton level with fWW̃ = 0 including ∆η.
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cmpl. dof function MSE

3 1 axp,+ 0.140

10 1 a(−sφ + xp,+)/∆η2 0.111

12 2 a+ (−sφ + xp,+)/(b− s3φ) 0.080

15 3 a+ (bsφ + xp,+)/(c− sφ) 0.074

17 4 (asφ + xp,+)/(−sφ + b+ c/∆η)− d 0.066

23 3 (−sφxp,+/xp,× + xp,+)/(a∆η2/xp,× − sφ + b)− c 0.063

29 7 asφ − bsφ/(csφ + dx4p,× + e/xp,×) + fxp,+ − g 0.049

39 9 asφ + bxp,+ − c(sφ + d)/(e/(fxp,+ + xp,+) + x4p,×/∆η
4) + g + (h− ixp,×)/∆η 0.039

49 7
(as3φ + b(s3φ + xp,+)/(c∆η2/(s2φ(−∆ηxp,× + x3p,× 0.040
−dxp,×(∆η/(sφ + e/sφ) + sφ − xp,+)))− fsφ + xp,×) + g

Table 13: Hall of fame for WBF Higgs production with fWW̃ = 1 using xp,×, xp,+, sφ and ∆η

4.3.2 Results for fWW̃ = 1

Judging by the complex shape of the score distribution for fWW̃ = 1, it is going to be far more
challenging for PySR to find a good analytic expression for the optimal observable. Taking the
same operators and variables that showed good and comprehensive results in the case of the SM
does not lead to an equally successful result anymore. An adaptation of the input data is necessary
to ease the regression process.

First of all, we implement the division operator to enable the fit of boundaries. Secondly, the
dependence on sin ∆φ is not as apparent anymore as it was in the case of the SM (see Sec. 4.2). By
providing the sine operator, the algorithm starts building equations not only with ∆φ as argument,
but also ∆η or pT which we know is not justified from a physics perspective and is a waste of
computational time and energy. Instead, we remove the sine operator and directly provide sin ∆φ
as variable.

Additionally we deduce from symmetry considerations that any observable should depend
equally on the two outgoing quark momenta. Alternatively to providing the quark momenta
separately, we use the product and the sum of the momenta as symmetrized input. The new
parameter basis is therefore given by:{

xp,× =

√
pT,1pT,2

mH

, xp,+ =
pT,1 + pT,2

mH

, sφ = sin ∆φ, ∆η

}
(122)

The corresponding hall of fame is given in Tab. 13 with its last two members shown in the lower
panels of Fig. 22. Interestingly, even though the result of complexity 39 has a comparable MSE

cmpl. dof function MSE

3 1 axp,× 0.124

12 2 axp,×/(xp,×/∆η + ∆η + b) 0.116

15 2 (sφ + a)(−sφ + xp,× − b)/(−sφ + xp,× + ∆η/xp,×) 0.054

26 4 a/(b− (sφ − c− d/(s2φ − sφ∆η − sφ/xp,× + ex2p,×))/xp,×) 0.048

31 7 a/(b− (sφ + (cs2φ − d)/(es2φx
2
p,× − sφ∆η + f)− g)/xp,×) 0.039

Table 14: Hall of fame for WBF Higgs production with fWW̃ = 1 using xp,×, ∆φ and ∆η
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Figure 22: PySR results for different complexities and input variables. Two lower panels corre-
spond to Tab. 13, upper right fit corresponds to Tab. 14.

to the result of complexity 49, the shapes of the distributions are entirely different. In the simpler
expression most of the prominent features and boundaries are lost, while they remain very clearly
for complexity 49. The complicated expression appears to fit data with a high score better than
the bulk of events at low score values. The simpler expression on the other hand, fits the low
scored events better than the ones defining the limits, so that overall the two fits have comparable
results.

In the next step we want to check if the sum of the momenta is a necessary quantity for the fit.
We run PySR with the exact same settings, but without xp,+, again and obtain the hall of fame
given in Tab. 14 with its last member shown in the upper right panel of Fig. 22. This function has
the same MSE as the previously discussed ones while having a lower expressivity. The limits are
preserved in this fit as well. The only distinct discrepancy is the narrow peak in the region of high
score values affecting only an insignificant amount of data points. Due to the lower complexity
and the smaller parameter basis we consider this a better result than the previous ones including
xp,+. Writing it out in its expanded and readable form it is given by:

t(p×, sφ,∆η|fWW̃ = 1) =
a′xp,×(e′s2φxp,× − sφ∆η − f ′)

(b′xp,× + sφ − g′)(e′s2φxp,× − sφ∆η − f ′)− c′s2φ − d′

with a′ = 0.75 b′ = 0.38 c′ = 4.2 d′ = 4.6 e′ = 1.1 f ′ = 0.26 g′ = 0.21 (123)

Technically we should have obtained this result already in the first run as the needed parameter
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basis is a subset of the given one. This shows us that the performance of the PySR algorithm
scales badly with the amount of provided variables due to the random tree construction process.
In theory this can be balanced by increasing the amount of populations and individuals.

4.4 Detector effects

In this section we want to investigate the effects of shower and detector simulations on the op-
timal observable. We expect that since the underlying physics is the same as for the partonic
process, the functional form will not change significantly. Referring to Sec. 2.1 we use Pythia8
for shower simulation and Delphes for a fast detector simulation including the anti-kT jet clus-
tering algorithm [31]. We exclude initial state radiation for simplicity. MadMiner still extracts
the parton level information to obtain the joint score while for the fitting procedure only the final
state observables are available to us.

The main influence of the detector on the data is the addition of noise that has a bad impact on
the PySR convergence. While in the case of fWW̃ = 0 we obtain a similar expression to Eq. (121),
the situation is more critical for fWW̃ = 1. We find that instead of applying PySR directly on
the noisy data, it is convenient to take the previously obtained expressions from parton level data
and perform an optimization fit on the detector level data.

In Tab. 15 we compare the parameters from the fit optimizer on detector and parton level
process. The change among the parameters is statistically significant but does not affect the
general picture. The parameters stay within the same orders of magnitude and the relations
among them are conserved. For instance, for fWW̃ = 0 the parameter d is still small and the
relation of a/b is comparable. With c being a constant added to a jet momenta it is most sensitive
to the noise and therefore shows the largest discrepancy among the parameters.

Comparing the MSE we see that for fWW̃ = 0 the detector noise increases the MSE by almost
a factor of 2. However, for fWW̃ = 1 the change is less than 10 %. Additionally the parameter
changes are less significant than for the previous case. This indicates that the parametrization
found for fWW̃ = 1 already had large discrepancies with the parton level data and that these
discrepancies are comparable to those induced by detector noise.

We conclude by saying that the functional form of a well understood PySR result for parton
level data can easily be optimized on the detector level data without loss of important information.

f
WW̃

= 0 parton level detector pull

Eq.(121)

a 1.086(11) 0.9264(20) 14.5
b 0.10241(19) 0.08387(35) 97.6
c 0.24165(84) 0.3542(20) 134.0
d 0.00662(32) 0.00911(67) 7.75

MSE 8.50 · 10−3 1.51 · 10−2

f
WW̃

= 1 parton level detector pull

Eq.(123)

a′ 0.7490(14) 0.8792(31) 93.0
b′ 0.37800(94) 0.4160(19) 40.4
c′ 4.218(18) 3.526(31) 38.4
d′ 4.598(18) 4.759(32) 8.9
e′ 1.1271(26) 1.0950(48) 1.2
f ′ -0.2638(49) -0.2325(68) 6.4
g′ 0.2063(19) 0.2057(34) 0.3

MSE 3.89 · 10−2 4.15 · 10−2

Table 15: Detector effect on the scores for WBF Higgs production, for fixed functional forms
derived at parton level.
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Figure 23: Confidence intervals for different score approximations or candidate observables assum-
ing fWW̃ = 0. Sally uses the observables pT,1, pT,2, ∆φ and ∆η. Sally full uses 18 kinematic
observables describing the full event.

4.5 Exclusion limits

In the last section we are going to investigate the confidence intervals for different (optimal) ob-
servables. We establish a connection between the previously considered MSE and the 1σ exclusion
limit. To that end we use MadMiner to compute the log-likelihood ratios and extract p-values as
described in Sec. 2.2 for the process including detector effects assuming fWW̃ = 0 and an integrated
LHC luminosity of 139 fb−1. We start by considering the observables

a1pT,1pT,2 a2 sin ∆φ a3pT1pT2 sin ∆φ , (124)

with a1 = −8.32(89) · 10−7, a2 = −0.37370(94), and a3 = −5.5386(49) · 10−5 and compare the
results to the SR expression of Eq. (121). Finally, we compare these results to two neural nets
using Sally. For the first we use the same 4 observables as we did for symbolic regression. To
prove that more kinematic observables do not provide additional physical information we train

(optimal) MSE reach
observable all |t(f

WW̃
)| = 0.1 ... 0.5 |t(f

WW̃
)| > 0.5 weighted 1 σ 2 σ

apT1pT2 0.1576 0.0645 1.144 0.298 [-0.86,0.86] —
a sin ∆φ 0.0885 0.0163 0.680 0.223 [-0.38,0.36] [-0.76,0.74]
a sin ∆φpT1pT2 0.0217 0.0076 0.163 0.056 [-0.28,0.28] [-0.56,0.56]
SR Eq.(121) 0.0145 0.0059 0.103 0.031 [-0.26,0.26] [-0.54,0.54]
Sally 0.0129 0.0051 0.092 0.030 [-0.26,0.26] [-0.56,0.54]
Sally full 0.0048 0.0031 0.026 0.014 [-0.26,0.26] [-0.54,0.54]

Table 16: MSE and exclusion limits for different approximations of the score or candidate optimal
observable. The different scenarios correspond to Fig. 23.

57



0.3 0.4 0.5 0.6 0.7 0.8
1  limit

10 2

10 1

to
ta

l M
SE

apT1pT2
asin
asin pT1pT2
SR
Sally
Sally full

0.3 0.4 0.5 0.6 0.7 0.8
1  limit

10 2

M
SE

 o
n 

0.
1<

|t(
)|

<
0.

5

0.3 0.4 0.5 0.6 0.7 0.8
1  limit

10 1

100

M
SE

 o
n 

|t(
)|

>
0.

5

0.3 0.4 0.5 0.6 0.7 0.8
1  limit

10 1

M
SE

 w
ei

gh
te

d

Figure 24: Scaling of the expected exclusion limits with the MSE for the different evaluations from
Tab. 16.

a second neural net using 18 kinematic observables describing the full event. We call it ”Sally
full”. The limits are shown in Fig. 23.

As we expect the observable apT,1pT,2 does not provide a good exclusion limit due to the
absence of the most important kinematic observable ∆φ. For a sin ∆φ the confidence interval
shrinks significantly. Combining the two expressions leads to further improvement. However, the
symbolic regression result from Eq. (121), including additionally a dependence on ∆η, shows only
a minor improvement compared to apT,1pT,2 sin ∆φ. Sally and ”Sally full” give the same result
marking the best limit that can be reached in theory.

Looking at the overall MSE in Tab. 16 it becomes apparent that a perfect description of all
score areas does not necessarily lead to an improvement in the confidence intervals. We see that
both Sally networks significantly improve the MSE with respect to the PySR result, but the
σ-limits do not change at all. This is because a large amount of events is at low score values that
do not influence the measurement of fWW̃ but have a significant impact on the MSE. Events with
a high score are more sensitive to the Wilson coefficient but since they are very rare, they do not
have a significant influence on the MSE.

We therefore evaluate the MSE for intermediate t(fWW̃ ) =0.1 ... 0.5 and for large score values
t(fWW̃ ) > 0.5. We also consider a weighted MSE of the form:

MSEweighted =
1

n

n∑
i=1

gi(x) (gi(x)− ti(x, z|θ))2 (125)
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The results are listed in Tab. 16 and shown in Fig. 23. The overall MSE, the MSE for large score
events as well as the weighted MSE all show similar behavior. In general, the limits improve with
the MSE but a quantitative connection can not be derived. However, the MSE on intermediate
score values appears to decrease linearly with the limits until it reaches the plateau.

For a more intuitive understanding we can look at the squared error for the PySR result,
apT,1pT,2 sin ∆φ and a sin ∆φ shown in Fig. 25. Between the last two parametrizations we can see
a significant improvement in the squared error for intermediate and high score events. This is
precisely the reason for the improved confidence intervals. In comparison, the difference between
the PySR result and apT,1pT,2 sin ∆φ is much smaller and therefore does not have a significant
impact on the confidence intervals. The Sally results show a similar behavior.

To sum up, we saw that our symbolic regression result is indeed better than conventional
observables from theory approximations. However in this example, over complicated results do
not improve the confidence intervals further. The performance of our analytic observable is equal
to the performance of the neural net.
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5 Summary and Outlook

The importance of machine learning in the modern LHC era is growing with the need for better
analysis techniques for precision measurements. However, neural networks come with the disad-
vantage that they are often perceived as black boxes and are difficult to interpret. Especially
considering that traditionally, analytical formulas derived from perturbative quantum field theory
are the language of particle physicists. In this work we showed how symbolic regression can be
used to combine both worlds by using a genetic algorithm to produce analytical expressions.

With the help of the symbolic regression tool PySR we investigated optimal observables for
V V H-couplings. For our toy process we looked at the associated ZH-production process to find
the optimal observable for the dimension-6 Wilson coefficient fB. First of all we considered a
process with just one quark type in the initial state to exclude any latent variables and found an
approximate function for the joint score which is calculated from matrix element information by
MadMiner. For the case of fB = 0 we found that the optimal observable can be described via a
polynomial in the two variables pT and |∆η|. Data obtained from higher Wilson coefficients like
fB = 10 suffers from saturation effects and therefore requires a rational function description. We
found that including an additional Feynman diagram to this process as well as allowing for all
quark types did not change the functional form for fB = 0. For fB = 10 we encountered problems
with the PySR convergence that we fixed by changing the simulated annealing acceptance formula.

Later we turned to a more involved process of weak-boson-fusion studying a CP-violating
dimension-6 operator with the Wilson coefficient fWW̃ . In the case of the SM we found simple
symbolic expressions including the predicted sine-dependence of the azimuthal angle between the
outgoing jets. For higher Wilson coefficients the obtained observables became significantly more
complicated. We continued our analysis by including detector effects and found that optimizing the
functional form obtained from parton level process on detector level data gives better results than
applying PySR directly on detector data. Finally we obtained confidence intervals for (optimal)
observables from theoretical approximation, symbolic regression and neural nets. The exclusion
limits of the PySR expressions showed significant improvement compared to simple theoretical
approximations like sin ∆φ. The confidence interval of the PySR result was equal to those from
the neural nets indicating that symbolic regression can be used for this task instead of neural nets
without any loss in performance.

While not applicable in all places where machine learning is used in particle physics today,
symbolic regression can serve as a bridge between fundamental theory and complex experimental
analyses.
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