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Abstract

With the discovery of the Higgs boson the LHC experiments have closed the most important gap in our
understanding of fundamental interactions. We now know that the interactions between elementary particles can be
described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is valid to
arbitrarily high energy scales and do not require an ultraviolet completion. In these notes I cover three aspects to help
understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: many facets of
Higgs physics, QCD as it is relevant for LHC measurements, and standard phenomenological background
knowledge. The lectures should put young graduate students into a position to really follow advanced writeups and
first research papers. In that sense they can serve as a starting point for a research project in LHC physics. With this
new, significantly expanded version I am confident that also some more senior colleagues will find them useful and
interesting.
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From the author
These notes are based on lectures at Heidelberg University between the Summer 2009 and in the Winter 2013/2014,
written up in coffee shops around the world. Obviously, in the Fall of 2012 they were heavily adapted to the new and
exciting experimental realities. It felt great to rewrite the Higgs chapter from a careful description of possible
experimental signals into a description of an actual experimental research program. I promise I will do it again once
the LHC discovers physics beyond the Standard Model.

To those familiar with the German system it will be obvious that the target audience of the lecture are students who
know field theory and are starting to work on their master thesis; carefully studying these notes should put you into a
position to start actual research in LHC physics. The way I prefer to learn physics is by calculating things on a piece
of paper or on the blackboard. This is why the notes look the way they look. Because this is not a text book there is
less text in the notes than actual talk during the lecture; to give you an idea, covering these notes takes me more than
two semesters, each of them 14 weeks with 90 minutes of lecture twice a week. So when reading these notes, take a
break here and there, get a coffee and think about the physics behind the calculation you just followed.

The text is divided into three main parts:

– In the first part I focus on Higgs physics and collider searches. To understand what we are looking for I start
with the most minimalistic and not renormalizable models describing massive gauge bosons. I then slowly
advance to the usual fundamental Higgs scalar we are really searching for. At the end of this part what
everybody should understand is the usual set of ATLAS or CMS graphs shown in Figure 11, where many
colored lines represent different search channels and their discovery potential. Many QCD issues affecting
Higgs searches I will skip in the Higgs part and postpone to the...

– ...QCD part. Here, I am taking at least one step back and study the theory which describes Higgs production and
everything else at the LHC. Two core discussions shape this part: first, I derive the DGLAP equation by
constructing the splitting kernels. This leads us to the parton shower and to the physical interpretation of
resumming different logarithms in the QCD perturbation series. Second, there are two modern approaches
combining parton shower and matrix element descriptions of jet radiation, which I introduce at least on the level
of simplified models. Throughout the QCD discussion I avoid the more historically interesting deep inelastic
scattering process and instead rely on the Drell–Yan process or its inverted R ratio process for motivation and
illustration. Because the first two parts of the lecture notes are really advanced quantum field theory, something
is missing: there are...

– ...many aspects of LHC physics we need to take into account once we look at experimental LHC results. Some
of them, like old fashioned jets and fat jets, helicity amplitudes, or missing transverse energy I cover in the third
part. This part will expand in the online version over the coming years while I will keep these lecture notes up
to date with actual discussions of LHC data.

At the end there follows a brief sketch of how to compute a cross section from a Lagrangian and without using
Feynman rules. This is of course not what we do, but the brief writeup has proven useful many times.
What is almost entirely missing is an introduction to searches for new physics completing the Standard Model of
particle physics beyond the weak scale. Covering this topic appropriately would at least double the length of these
notes. For the structure of such models and their signatures I instead refer to our review article [1] and in particular to
its second chapter.

Last, but not least, the literature listed at the end of each part is not meant to cite original or relevant research papers.
Instead, I collected a set of review papers or advanced lecture notes supplementing these lecture notes in different
directions. Going through some of these mostly introductory papers will be instructive and fun once the basics have
been covered by these lecture notes.

I am still confident that these notes are far from bug free. So if you read them and you did not email me at least a few
typos and complaints about poor explanations, you did not read them carefully enough.
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1 Higgs physics

Understanding the nature of electroweak symmetry breaking — or slightly more specifically deciphering the Higgs
mechanism — is the main goal of the ATLAS and CMS experiments at the LHC. Observing some kind of Higgs
boson and studying its properties involves many experimental and theoretical issues focused around understanding
hadron collider data and QCD predictions to unprecedented precision. The latter will be the main topic of the second
half of this lecture.
On the other hand, before we discuss the details of Higgs signatures, backgrounds, and related QCD aspects we should
start with a discussion of electroweak symmetry breaking. Higgs physics at the LHC means much more than just
finding a light fundamental Higgs boson as predicted by the Standard Model of particle physics. As a matter of fact,
the discovery of a light Higgs boson was announced on July 4th, 2012, and we will briefly discuss it in Section 1.4.

In our theory derivation in Section 1.1 we prefer to follow an effective theory approach. This means we do not start by
writing down the Higgs potential and deriving the measured gauge boson and fermion masses. Instead, we step by
step include gauge boson and fermion masses in our gauge theories, see what this means for the field content, and
show how we can embed this mechanism in a renormalizable fundamental gauge theory. Only this last step will lead
us to the Standard Model and the Higgs potential. In Section 1.2 we will return to the usual path and discuss the
properties of the renormalizable Standard Model including high energy scales. This includes new physics effects in
terms of higher–dimensional operators in Section 1.2.1, an extended supersymmetric Higgs sector in Section 1.2.6,
and general effects of new particles in the Higgs potential in Section 1.2.7.
In Section 1.3 we will start discussing Higgs physics at colliders, leading us to the Higgs discovery papers presented
in Section 1.4. Higgs production in gluon fusion, weak boson fusion, and in association with a gauge boson will be in
the focus of Sections 1.5 to 1.7, with a special focus on QCD issues linked to jet radiation in Section 1.6.2. The LHC
experiments have shown that they can not only discover a Higgs resonance, but also study many Higgs properties,
some of which we discuss in Section 1.8.
In our approach to the Higgs mechanism it is clear that a fundamental Higgs particle is not the only way to break the
electroweak symmetry. We therefore discuss alternative embeddings in strongly interacting physics in Section 1.9.
This part will also include a very brief introduction to the hierarchy problem. Finally, in Section 1.10 we will touch on
a slightly more speculative link between Higgs physics and inflation.

1.1 Electroweak symmetry breaking

As a starting point, let us briefly remind ourselves what the Higgs boson really is all about and sketch the Standard
Model Lagrangian with mass terms for gauge bosons and fermions. As a matter of fact, in a first step in Section 1.1.2
we will try to make a photon massive without introducing a physical Higgs field. Even for the SU(2) gauge theory of
the electroweak Standard Model we might get away without a fundamental Higgs boson, as we will show in
Section 1.1.3. Then, we will worry about quantum fluctuations of the relevant degrees of freedom, which leads us to
the usual picture of the Higgs potential, the Higgs boson, and the symmetries related to its implementation. This
approach is not only interesting because it allows us to understand the history of the Higgs boson and identify the key
steps in this triumph of quantum field theory, it also corresponds to a modern effective field theory picture of this
sector. Such an effective field theory approach will make it easy to ask the relevant questions about the experimental
results, guiding us towards the experimental confirmation of the Higgs mechanism as part of the Standard Model of
elementary particles.

1.1.1 What masses?

The relevance of the experimental Higgs discovery cannot be over–stated. The fact that local gauge theories describe
the fundamental interactions of particles has been rewarded with a whole list of experimental and theoretical Nobel
prizes. What appears a straightforward construction to us now has seen many challenges by alternative approaches,
some justified and some not all that justified. The greatest feature of such a gauge theory lead to the Nobel prize given
to Gerald ’t Hooft and Martinus Veltman: the absence of a cutoff scale. Mathematically we call this validity to
arbitrarily high energy scales renormalizability, physically it means that the Standard Model describing the
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interactions of quarks and leptons is truly fundamental. There is the usual argument about the Planck scale as an
unavoidable cutoff and the apparent non–renormalizability of gravity, but the final word on that is still missing.
What is important to notice is that the Nobel prize for ‘t Hooft and Veltman would have had to be exchanged for a
Fields medal without the experimental discovery of the Higgs boson. Massive local gauge theories are not
fundamental without the Higgs mechanism, i.e. without spontaneous symmetry breaking in a relativistic framework
with doublet fields and hence predicting the existence of a narrow and relatively light Higgs boson. The Higgs
discovery is literally the keystone to a fundamental theory of elementary particles — without it the whole construction
would collapse.

When people say that the Higgs mechanism is responsible for the masses of (all) particles they actually mean very
specific masses. These are not the proton or neutron masses which are responsible for the masses of people, furniture,
or the moon. In a model describing the fundamental interactions, the mass of the weak gauge bosons as the exchange
particles of the weak nuclear force has structural impact. Let us briefly remind ourselves of the long history of
understanding these masses.
The first person to raise the question about the massive structure of the weak gauge boson, without knowing about it,
was Enrico Fermi. In 1934 he wrote a paper on Versuch einer Theorie der β-Strahlen, proposing an interaction
responsible for the neutron decay into a proton, an electron, and an anti-neutrino. He proposed an interaction
Lagrangian which we nowadays write as

L ⊃ GF
(
ψ1 ∗ ψ2

) (
ψ3 ∗ ψ4

)
. (1.1)

The four external fermions, in our case quarks and leptons, are described by spinors ψ. The star denotes the
appropriate scalar, vector, or tensor structure of the interaction current, which we will leave open at this stage. On the
one hand we know that spinors have mass dimension 3/2, on the other hand the Lagrangian density has to integrate to
the action and therefore has to have mass dimension four. This means that in the low energy limit the Fermi coupling
constant has to have mass dimension GF ∼ 1/Λ2 with an appropriate mass scale Λ. We now know that in the proper
theory, where the Fermi interaction should include an exchange particle, this scale Λ should be linked to the mass of
this exchange particle, the W boson.
The key to understanding such a dimensionful coupling in terms of massive exchange particles was published by
Hideki Yukawa in 1935 under the title On the interaction of elementary particles. He links the mass of exchange
particles to the potential they generate after Fourier transform,

V (r) = −e
r

massless particle exchange

V (r) = −g2 e
−mr

r
massive particle exchange with m. (1.2)

Yukawa did not actually talk about the weak nuclear force at the quark level. His model was based on fundamental
protons and neutrons, and his exchange particles were pions. But his argument applies perfectly to Fermi’s theory at
the quark level. Using Eq.(1.2) we can link the mass of the exchange particle, in units of c = 1 and ~ = 1, to the reach
of the interaction. For radii above 1/m the massive Yukawa potential is suppressed exponentially. For the weak
nuclear force this is the structure we need, because the force which links quarks for example to protons and neutrons is
incredibly hard to observable at larger distances.
What is still missing in our argument is the link between a coupling strength with mass dimension and massive
exchange particles. Since the 1920s many physicists had been using a theory with a quantized electromagnetic field to
compute processes involving charged particles, like electrons, and photons. The proper, renormalizable quantum field
theory of charged particles and the photon as the exchange particle was proposed by Sin-Itiro Tomonaga in 1942.
Julian Schwinger independently developed the same theory, for example in his papers Quantum electrodynamics I A
covariant formulation and On quantum electrodynamics and the magnetic moment of the electron, both published in
1948. The development of quantum electrodynamics as the theory of massless photon exchange was from the
beginning driven by experimental observations. For example the calculation of the Lamb shift was a key argument to
convince physicists that such a theory was not only beautiful, but also useful or ‘correct’ by experimental standards.
The extension of QED to a non–abelian SU(2) gauge group was proposed by Sheldon Glashow, Julian Schwinger’s
student, in 1961, but without any hint of the Higgs mechanism.
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Combining these three aspects gives us a clear picture of what people in the 1950s knew as the basis to solve the
puzzle of the weak nuclear force: interactions between fundamental particles are very successfully described by
massless photon exchange; interactions with a finite geometric range correspond to a massive exchange particle; and
in the low energy limit such a massive particle exchange can reproduce Fermi’s theory.

The main question we will discuss in these lecture notes is how to construct a QED–like quantum theory of massive
exchange particles, the W± and Z0 bosons. Usually, the first reason we give to why the photon is massless is the local
U(1) gauge invariance which essentially defines the QED Lagrangian. However, we will see in Section 1.1.2 that
making the photon massive requires much more fundamental changes to the theory. This problem, linked to work by
Yoichiro Nambu and specifically to Goldstone’s theorem, was what Peter Higgs and his contemporaries solved for
Lorentz-invariant gauge theories in 1964. The idea of spontaneous symmetry breaking was well established in solid
state physics, going back to the work by Landau and Ginzburg, by Bardeen, Cooper, Schrieffer, and by Anderson on
super-conductivity. However, these systems did not have a Higgs state. Historically, Walter Gilbert triggered Peter
Higgs’ first paper in 1964 by making the wrong statement that spontaneous symmetry breaking would fail for
Lorentz-invariant theories. This fundamental mistake did not keep him from receiving a Nobel Prize in 1980, but for
chemistry. Statements of this kind were very popular at the time, based on more and more rigorous proofs of
Goldstone’s theorem. Needless to say, the Higgs discovery is a good indication that all of them are wrong for local
gauge theories.
The actual Higgs particle only features in Peter Higgs’ second paper in 1964. The very clear prediction of the new
particle in this paper is supposedly due to Yoichiro Nambu, the journal referee for the paper. The same mechanism of
spontaneous symmetry breaking in high energy physics was, independently of and even slightly before Peter Higgs’
papers, proposed by Francois Englert and Robert Brout. It is probably fair to assume that Robert Brout, had he not
passed away in 2011, would have been the third Nobel Laureate in Physics, 2013. Still in 1964 the group of Gerald
Guralnik, Carl Hagen, and Thomas Kibble published a more detailed and rigorous field theoretical study of the Higgs
mechanism. In 1966 Peter Higgs wrote a third paper, in which he worked out many details of the Higgs mechanism
and the Higgs boson, including scattering rates and decay widths. Still without linking the Higgs mechanism to the
weak force, this can be considered the first phenomenological study of the Higgs boson.

Combining the Higgs mechanism with QED and applying this combination to the weak interaction is the birth of the
Standard Model of elementary particles. Steven Weinberg proposed A model of leptons in 1967, for the first time
including fermion masses generated by the Higgs mechanism. Together with Abdus Salam’s paper on Weak and
Electromagnetic Interactions from 1968 the Standard Model, as we know it today, was now complete. However, most
physics aspects which we link to the Higgs boson nowadays, did not feature at the time. One reason is that the actual
proof of renormalizability by Gerald ’t Hooft and Martinus Veltman still had to be given in 1972, so asking questions
about the high energy behavior of the Standard Model was lacking the formal basis. Because in these lecture notes we
are to some degree following the historic or effective field theory approach the discussion of the renormalizable field
theory and its ultraviolet behavior will have to wait until Section 1.2.3.

If we want to follow this original logic of the Higgs mechanism and the prediction of the new particle we now know
that to do. First, we need to understand what really keeps the photon from acquiring even a tiny mass. This will allow
us to construct a gauge theory Lagrangian for massive weak bosons. Finally, we will see how the same mechanism
will allow us to include massive fermions in the electroweak theory.

1.1.2 Massive photon

Even though this is not the physical problem we are interested in, we start by breaking electrodynamics and giving a
mass to the (massless) photon of our usual locally U(1)Q-symmetric Lagrangian. To its kinetic F · F term we would
like to add a photon mass term m2A2/2, which we know is forbidden by the gauge symmetry. We will see that adding
such a photon mass term to the Lagrangian requires a bit of work, but is not a very hard problem. The key idea is to
also add an innocent looking real (uncharged) scalar field without a mass and without a coupling to the photon, but
with a scalar–photon mixing term and a non–trivial gauge transformation. The result is called the Boulware–Gilbert
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model or Stückelberg mass generation,

L = −1

4
FµνF

µν +
1

2
e2f2A2

µ +
1

2
(∂µφ)

2 − efAµ∂µφ

= −1

4
FµνF

µν +
1

2
e2f2

(
Aµ −

1

ef
∂µφ

)2

, (1.3)

where f is a common mass scale for the photon mass and the mixing. It ensures that all terms in the Lagrangian have
mass dimension four — remembering that bosonic fields like Aµ and φ have mass dimension one. The additional
factor e will become the usual electric charge, but at this stage it is a dimensionless number without any specific
relevance in this interaction-less Lagrangian. Because all terms in Eq.(1.3) have mass dimension four and there are no
inverse powers of mass our theory should be renormalizable.
We can define a simultaneous gauge transformation of both fields in the Lagrangian

Aµ −→ Aµ +
1

ef
∂µχ φ −→ φ+ χ , (1.4)

under which the Lagrangian is indeed invariant: the kinetic term for the photon we leave untouched, so it will be
gauge invariant just as it was before. The simultaneous gauge invariance is then defined to keep the second term in
Eq.(1.3) invariant. If we now re-define the photon field as Bµ = Aµ − ∂µφ/(ef) we need to compare the new and the
old kinetic terms

Fµν

∣∣∣
B

= ∂µBν − ∂νBµ = ∂µ

(
Aν −

1

ef
∂νφ

)
− ∂ν

(
Aµ −

1

ef
∂µφ

)
= ∂µAν − ∂νAµ = Fµν

∣∣∣
A
, (1.5)

and then rewrite the Lagrangian of Eq.(1.3) as

L = −1

4
FµνF

µν +
1

2
e2f2B2

µ = −1

4
FµνF

µν +
1

2
m2
BB

2
µ . (1.6)

This Lagrangian effectively describes a massive photon field Bµ, which has absorbed the real scalar φ as its additional
longitudinal component. This is because a massless gauge boson Aµ has only two on–shell degrees of freedom, a left
handed and a right handed polarization, while the massive Bµ has an additional longitudinal polarization degree of
freedom. Without any fundamental Higgs boson appearing, the massive photon has ‘eaten’ the real scalar field φ. Of
course, the new field Bµ is not simply a photon with a mass term, because this is still forbidden by gauge invariance.
Our way out is to split the massive photon field into the transverse degrees of freedom Aµ and the longitudinal mode φ
with their different gauge transformations given by Eq.(1.4). This means that this mechanism is not linked to a
specific way of breaking the gauge invariance, as will be the case for the Higgs mechanism. Instead, we extend the
photon gauge transformation to a combined gauge transformation of the transverse photon degrees of freedom and an
additional scalar field.

What kind of properties does this field φ need to have, so that we can use it to provide a photon mass? From the
combined gauge transformation in Eq.(1.4) we immediately see that any additional purely scalar term in the
Lagrangian, like a scalar potential V (φ), needs to be symmetric under the linear shift φ→ φ+ χ, to not spoil gauge
invariance. This means that we cannot write down polynomial terms φn, like a mass or a self coupling of φ. An
interaction term φAA would not be possible, either. Only derivative interactions proportional to ∂φ which are
attached to other (conserved) currents are allowed. In that case we can absorb the shift by χ into a total derivative in
the Lagrangian.

This example illustrates a few vital properties of Nambu–Goldstone bosons (NGB). Such massless physical states
appear in many areas of physics and are described by Goldstone’s theorem. It applies to global continuous symmetries
of the Lagrangian which are violated by a non–symmetric vacuum state, a mechanism called spontaneous symmetry
breaking. Based on Lorentz invariance and states with a positively definite norm we can then prove:
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If a global symmetry group is spontaneously broken into a group of lower rank, its broken generators correspond to
physical Goldstone modes. These scalar fields transform non–linearly under the larger and linearly under the smaller
group. This way they are massless and cannot form a potential, because the non–linear transformation only allows
derivative terms in the Lagrangian.
One common modification of this situation is an explicit breaking of the smaller symmetry group. In that case the
Nambu-Goldstone bosons become pseudo–Goldstones and acquire a mass of the size of this hard-breaking term.

Before Peter Higgs and his colleagues proposed their mechanism of electroweak symmetry breaking they were caught
between two major no-go theorems. First, they needed an additional degree of freedom to make massless gauge
bosons massive. Secondly, the spontaneous breaking of a gauge symmetry supposedly predicted massless scalar states
which were clearly ruled out experimentally. These two problems solve each other once we properly treat the special
case that the spontaneously broken symmetry is a local gauge symmetry. It turns out that the Goldstone theorem does
not apply, because a local gauge theory cannot be Lorentz invariant and only have positively defined states
simultaneously. Instead of becoming massless scalars the Goldstone modes are then ‘eaten’ by the additional degrees
of freedom of the massive gauge bosons. This defines the incredibly elegant Higgs mechanism. The gauge boson mass
is given by the vacuum expectation value breaking the larger symmetry. A massive additional scalar degree of
freedom, the Higgs boson, appears if there are more Goldstone modes than degrees of freedom for the massive gauge
bosons.

1.1.3 Standard Model doublets

One of the complications of the Standard Model is its SU(2) doublet structure. In the last section we have chosen not
to introduce a charged SU(2) doublet, which is why there are no degrees of freedom left after the photon gets its
mass. This means that our toy model is not going to be well suited to provide the three degrees of freedom needed to
make SU(2) gauge bosons massive. What it illustrates is only how by introducing a neutral scalar particle without an
interaction but with a mixing term we make gauge bosons heavy, in spite of gauge invariance.

Fermion fields have mass dimension 3/2, so we know how mass and interaction terms in the renormalizable
dimension-4 Lagrangian have to look. For example, the interaction of fermions with gauge bosons is most easily
written in terms of covariant derivatives. The terms

LD4 = QLi /DQL +QRi /DQR + LLi /DLL + LRi /DLR −
1

4
FµνF

µν ... (1.7)

describe electromagnetic interactions introducing a covariant derivative Dµ = ∂µ + ieqAµ with the photon field also
appearing in the field strength tensor Fµν = ∂µAν − ∂νAµ. We can replace the definition of the field strength in terms
of the gauge field by a definition in terms of the covariant derivative, for example acting on a test function f(x) with
[A, f ] = 0,

Fµν f =
1

ieq
[Dµ, Dν ] f

=
1

ieq
(∂µ + ieqAµ)(∂ν + ieqAν) f − 1

ieq
(∂ν + ieqAν)(∂µ + ieqAµ) f

= (∂µAν)f +Aν(∂µf) +Aµ(∂νf)− (∂νAµ)f −Aµ(∂νf)−Aν(∂µf)

= ((∂µAν)f − (∂νAµ)) f . (1.8)

In this form the partial derivative acts only on the gauge field, so unlike the first line the definition in the last line is not
an operator equation. In this derivation we assume that the gauge field is abelian, i.e. [Aµ, Aν ] = 0. While the
generalization of the field strength to non-abelian gauge groups is obvious then we start from the covariant derivatives
we need to add the field commutation explicitly to the definition in terms of the gauge fields. So the same general
form works for the weak SU(2) interactions, except that the weak interaction knows about the chirality of the fermion
fields, so we have to distinguish /DL and /DR. The covariant derivatives we write in terms of the SU(2) basis matrices
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or Pauli matrices τ1,2,3 or τ+,−,3, with τ± = (τ1 ± iτ2)/2.

DLµ=∂µ + ig′
(
q − τ3

2

)
Bµ + ig

∑
a=1,2,3

W a
µ

τa
2

=∂µ + ieqAµ + igZ

(
−qs2

w +
τ3
2

)
Zµ + i

g

2

(
τ1W

1
µ + τ2W

2
µ

)
≡∂µ + ieqAµ + igZ

(
−qs2

w +
τ3
2

)
Zµ + i

g√
2

(
τ+W

+
µ + τ−W

−
µ

)
DRµ=DLµ

∣∣∣∣
τ=0

τ+ =

(
0 1
0 0

)
τ− =

(
0 0
1 0

)
τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
, (1.9)

The explicit sum in the first line we will omit in the rest of this lecture. All indices appearing twice include an implicit
sum. The fields Bµ and W a

µ are the new gauge bosons. In the second line we re-write the covariant derivative in the
photon Aµ and the Z boson mass eigenstates. What is not obvious from this argument is that we can actually write the
ratio g′/g in terms of a rotation angle, which implicitly assumes that we can rotate the B and W 3 fields into the
physical mass-eigenstate photon and Z fields(

Aµ
Zµ

)
=

(
cw sw
−sw cw

)(
Bµ
W 3
µ

)
. (1.10)

The details of this rotation do not matter for the Higgs sector. The normalization of the charged gauge fields we will
fix later. At this level the two weak couplings g and gZ do not necessarily coincide, but we will get back to this issue
in Section 1.1.6.

Before we generalize the Boulware-Gilbert model to the weak gauge symmetry of the Standard Model it is instructive
to review the form of the mass term for massive gauge bosons following from Eq.(1.9). In particular, there will appear
a relative factor two between the two bases of the Pauli matrices, i.e. in terms of W 1,2 and W±, which often causes
confusion. For later use we also need a sum rule for the SU(2) generators or Pauli matrices τ1,2,3 as written out in
Eq.(1.9). They satisfy the relation τaτb = δab + iεabcτc or the commutator relation [τa, τb] = 2iεabcτc. Summing over
indices we see that∑

a,b

τaτ b =
∑
a,b

(
δab + iεabcτc

)
=
∑

δab + i
∑
a6=b

εabcτc =
∑

δab + i
∑
a<b

(
εabc + εbac

)
τc =

∑
δab . (1.11)

The basis of three Pauli matrices we can write in terms of τ1,2,3 as well as in terms of τ+,−,3. The latter correspond to
two charged and one neutral vector bosons. While the usual basis is written in terms of complex numbers, the second
set of generators reflects the fact that for SU(2) as for any SU(N) group we can find a set of real generators of the
adjoint representation. When we switch between the two bases we only have to make sure we get the standard
normalization of all fields as shown in Eq.(1.9),

√
2
(
τ+W

+
µ + τ−W

−
µ

)
=
√

2

(
0 W+

µ

0 0

)
+
√

2

(
0 0
W−µ 0

)
!
= τ1W

1
µ + τ2W

2
µ =

(
0 W 1

µ

W 1
µ 0

)
+

(
0 −iW 2

µ

iW 2
µ 0

)
⇔ W+

µ =
1√
2

(
W 1
µ − iW 2

µ

)
W−µ =

1√
2

(
W 1
µ + iW 2

µ

)
. (1.12)

To track these factors of two in the definitions of the weak gauge field we have a close look at the dimension-2 mass
term for charged and neutral gauge bosons

LD2 =
m2
W

2

(
W 1,µW 1

µ +W 2,µW 2
µ

)
+
m2
Z

2
ZµZµ = m2

WW
+,µW−µ +

m2
Z

2
ZµZµ . (1.13)
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The relative factor two in front of the W mass appears because the Z field is neutral and the W field is charged. This
difference also appear for neutral and charged scalars discussed in field theory. In our conventions it corresponds to
the factors 1/

√
2 in the SU(2) generators τ±.

Of course, in the complete Standard Model Lagrangian there are many additional terms involving the massive gauge
bosons, e.g. kinetic terms of all kinds, but they do not affect our discussion of U(1)Y and SU(2)L gauge invariance.

Guessing the form of the fermion masses the one thing we have to ensure is that we combine the left handed and right
handed doublets (QL, LL) and singlets (QR, LR) properly:

LD3 = −QLmQQR − LLmLLR + ... (1.14)

This form strictly speaking requires a doublet structure of the Higgs–Goldstone fields, which we will briefly comment
on later. For now we ignore this notational complication. Following our labeling scheme by mass dimension fermion
masses will be included as LD3. Dirac mass terms simply link SU(2) doublet fields for leptons and quarks with right
handed singlets and give mass to all fermions in the Standard Model. This helicity structure of mass terms we can
easily derive by introducing left handed and right handed projectors

ψL =
11− γ5

2
ψ ≡ PLψ ψR =

11 + γ5

2
ψ ≡ PRψ , (1.15)

where ψ is a generic Dirac spinor and PL,R are projectors in this 4× 4 Dirac space. At this stage we do not need the
explicit form of the gamma matrices which we will introduce in Eq.(2.109). The mass term for a Dirac fermion reads

ψ 11ψ = ψ (PL + PR)ψ

= ψ
(
P2
L + P2

R

)
ψ

= ψ†γ0

(
P2
L + P2

R

)
ψ with ψ = ψ†γ0

= ψ†
(
PRγ0PL + PLγ0PR

)
ψ with {γ5, γµ} = 0

= (PRψ)†γ0(PLψ) + (PLψ)†γ0(PRψ) with γ†5 = γ5,P†L,R = PL,R
= (PRψ)11(PLψ) + (PLψ)11(PRψ)

= ψR 11ψL + ψL 11ψR . (1.16)

The kinetic term stays diagonal

ψ /∂ψ = ψ /∂
(
P2
L + P2

R

)
ψ

= ψ (PR /∂PL + PL /∂PR)ψ

= (PLψ) /∂(PLψ) + (PRψ) /∂(PRψ)

= ψL /∂ψL + ψR /∂ψR . (1.17)

The link between the chiral projectors and coupling structures we discuss in Section 4.
In general, these mass terms can be matrices in generation space, which implies that we might have to rotate the
fermion fields from an interaction basis into the mass basis, where these mass matrices are diagonal. Flavor physics
dealing with such 3× 3 mass matrices is its own field of physics with its own reviews and lecture notes, so we will
omit this complication here. For our discussion of electroweak symmetry breaking it is sufficient to study one fermion
generation at a time.

The well known problem with the mass terms in Eq.(1.14) is that they are not gauge invariant. To understand this
issue of fermion masses we check the local weak SU(2)L transformation

U(x) = exp
(
iαa(x)

τa
2

)
≡ ei(α·τ)/2 , (1.18)
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which only transforms the left handed fermion fields and leaves the right handed fields untouched

LL
U→ ULL QL

U→ UQL

LR
U→ LR QR

U→ QR . (1.19)

It is obvious that there is no way we can make left–right mixing fermion mass terms as shown in Eq.(1.14) invariant
under this left handed SU(2)L gauge transformation, where one of the fermion field picks up a factor U and the other
is unchanged,

QLmQQR
U→ QLU

−1mQQR 6= QLmQQR . (1.20)

In analogy to the massive photon case, to write a gauge–invariant Lagrangian for massive fermions we have to add
something else to our minimal Standard Model Lagrangian. Note that this addition does not have to be a fundamental
scalar Higgs field, dependent on how picky we are with the properties of our new Lagrangian beyond the issue of
gauge invariance.

To see what we need to add let us also look at the local U(1) transformations involved. We start with a slightly
complicated-looking way of writing the abelian hypercharge U(1)Y and electric charge U(1)Q transformations,
making it more obvious how they mix with the neutral component of SU(2)L to give the electric charge.
Let us start with the neutral component of the SU(2)L transformation V = exp (iβτ3/2). Acting on a field with an
SU(2)L charge this it not a usual U(1) transformation. What we can do is combine it with another, appropriately
chosen transformation. The resulting transformation is proportional to the unit matrix and to the hypercharge y and
commutes with all other matrices

exp(iβq) V † = exp(iβq) exp

(
− i

2
βτ3

)
with V = U(x)

∣∣∣
τ3

= exp

(
i

2
βτ3

)
= exp

(
iβ
y11 + τ3

2

)
exp

(
− i

2
βτ3

)
with q ≡ y11 + τ3

2
yQ =

1

3
yL = −1

= exp

(
i
β

2
y11
)
. (1.21)

The relation between the charge q, the hypercharge y, and the isospin τ3 is called the Gell-Mann–Nishijima formula.
The indices Q and L denote quark and lepton doublets. Acting on a left handed field the factor τ3 above is replaced by
its eigenvalue ±1 for up–type and down–type fermions. The U(1)Y charges or quantum numbers y are the quark and
lepton hypercharges of the Standard Model. As required by the above argument, properly combined with the isospin
they give the correct electric charges qQ,L. Since τ3 and the unit matrix commute with each other the combined
exponentials have no additional factor a la Baker–Campbell–Hausdorff eAeB = eA+Be[A,B]/2. In analogy to
Eq.(1.19) left handed and right handed quark and lepton fields transform under this U(1)Y symmetry as

LL → exp (iβqL)V †LL = exp

(
i
β

2
yL11

)
LL QL → exp (iβqQ)V †QL = exp

(
i
β

2
yQ11

)
QL

LR → exp (iβqL)LR QR → exp (iβqQ)QR . (1.22)

Under a combined SU(2)L and U(1)Y transformation the left handed fermions see the hypercharge, while the right
handed fermions only see the electric charge. In the following we will use the above transformations when referring to
the left handed and right handed transformations U and V . Just as for the SU(2)L transformation U we do not have to
compute anything to see that such different transformations of the left handed and right handed fermion fields do not
allow for a Dirac mass term.

1.1.4 Sigma model

One way of solving this problem is to introduce an additional field Σ(x). This field will in some way play the role of
the real scalar field we used for the photon mass generation. Its physical properties will become clear piece by piece
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from the way it appears in the Lagrangian and from the required gauge invariance. The equation of motion for the Σ
field will also have to follow from the way we introduce it in the Lagrangian.
Following the last section, we first introduce Σ into the fermion mass term. This will tell us what it takes to make this
mass term gauge invariant under the weak SU(2)L transformation defined in Eq.(1.19)

QLΣmQQR
U→ QLU

−1Σ(U)mQQR
!
= QLΣmQQR ⇔ Σ→ Σ(U) = UΣ . (1.23)

If the result should be a dimension-4 Lagrangian the mass dimension of Σ has to be m0 = 1. The same we can do for
the right handed transformation V in terms of the hypercharge, as described in Eq.(1.22)

QLΣmQQR
V→QL exp

(
−iβ

2
y11
)

Σ(V )mQ exp (iβq)QR

= QLΣ(V ) exp

(
−iβ

2
y11
)

exp (iβq)mQQR exp

(
i
β

2
y11
)

always commuting

= QLΣ(V )V mQQR
!
= QLΣmQQR ⇔ Σ→ Σ(V ) = ΣV † . (1.24)

Combining this with Eq.(1.23) gives us the transformation property we need

Σ→ UΣV † . (1.25)

For any Σ with this property the LD3 part of the Lagrangian has the required U(1)Y × SU(2)L symmetry,
independent of what this Σ field really means. From the way it transforms we see that Σ is a 2× 2 matrix with mass
dimension zero. In other words, including a Σ field in the fermion mass terms gives a U(1)Y and SU(2)L-invariant
Lagrangian, without saying anything about possible representations of Σ in terms of physical fields

LD3 = −QLΣmQQR − LLΣmLLR + h.c. + ... (1.26)

Fixing the appropriate transformations of the Σ field allows us to include fermion masses without any further
complication.

In a second step, we deal with the gauge boson masses. We start with the left handed covariant derivative already used
in Eq.(1.9)

DLµ = ∂µ + ig′
(
q − τ3

2

)
Bµ + igW a

µ

τa
2

= ∂µ + ig′
y

2
Bµ + igW a

µ

τa
2
. (1.27)

Instead of deriving the gauge transformation of Σ let us start with a well–chosen ansatz and work backwards step by
step, to check that we indeed arrive at the correct masses. First, we consistently require that the covariant derivative
acting on the Σ field in the gauge-symmetric Lagrangian reads

DµΣ = ∂µΣ + ig′ΣBµ
y

2

∣∣∣
q=0

+ igW a
µ

τa
2

Σ = ∂µΣ− ig′ΣBµ
τ3
2

+ igW a
µ

τa
2

Σ , (1.28)

If we introduce the abbreviations Vµ ≡ Σ(DµΣ)† and T ≡ Στ3Σ† we claim we can write the gauge boson mass terms
as

LD2 = −v
2

4
Tr[VµV

µ]−∆ρ
v2

8
Tr[TVµ] Tr[TV µ] . (1.29)

The trace acts on the 2× 2 SU(2) matrices. The parameter ∆ρ is conventional and will be the focus of Section 1.1.6.
We will show below that this form is gauge invariant and gives the correct gauge boson masses.
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Another structural question is what additional terms of mass dimension four we can write down using the
dimensionless field Σ and which are gauge invariant. Our first attempt of a building block

Σ†Σ
U,V→ (UΣV †)†(UΣV †) = V Σ†U†UΣV † = V Σ†ΣV † 6= Σ†Σ (1.30)

is forbidden by the right handed SU(2) and hypercharge U(1) invariance written out in Eq.(1.24). On the other hand,
a circularly symmetric trace Tr(Σ†Σ)→ Tr(V Σ†ΣV †) = Tr(Σ†Σ) changes this into a gauge invariant combination,
which allows for the additional potential terms, meaning terms with no derivatives

LΣ = −µ
2v2

4
Tr(Σ†Σ)− λv4

16

(
Tr(Σ†Σ)

)2
+ · · · , (1.31)

with properly chosen prefactors µ, v, λ. This fourth term finalizes our construction of the relevant weak Lagrangian

L = LD2 + LD3 + LD4 + LΣ , (1.32)

organized by mass dimension.
As rule of thumb we will later notice that once we express the potential of Eq.(1.31) in terms of the usual Higgs
doublet |φ|2, the prefactors will just be µ and λ. The parameter µ and the factor v appearing with every power of Σ
have mass dimension one, while λ has mass dimension zero. Higher–dimensional terms in a dimension-4 Lagrangian
are possible as long as we limit ourselves to powers of Tr(Σ†Σ). However, they lead to higher powers in v which we
will see makes them higher–dimensional operators in our complete quantum theory.

To check that Eq.(1.29) gives the correct masses in the Standard Model we start with Tr(Σ†Σ) and assume it acquires
a finite (expectation) value after we properly deal with Σ. The definitely simplest way to achieve this is to assume

Σ(x) = 11 . (1.33)

This choice is called unitary gauge. It looks like a dirty trick to first introduce Σ(x) = 11 and then use this field for a
gauge invariant implementation of gauge boson masses. Clearly, a constant does not exhibit the correct transformation
property under the U and V symmetries, but we can always work in a specific gauge and only later check the physical
predictions for gauge invariance. The way the sigma field breaks our gauge symmetry we can schematically see from

Σ→ UΣV † = U11V † = UV †
!
= 11 , (1.34)

which requires U = V to be the remaining U(1) gauge symmetry after including the Σ field. Certainly, Σ = 11 gives
the correct fermion masses in LD3 and makes the potential LΣ an irrelevant constant. What we need to check is LD2

which is supposed to reproduce the correct gauge boson masses. Using the covariant derivative from Eq.(1.28) acting
on a constant field we can compute the auxiliary field Vµ in unitary gauge

Vµ = Σ(DµΣ)† = 11(DµΣ)†

= −igW a
µ

τa
2

+ ig′Bµ
τ3
2

= −igW+
µ

τ+√
2
− igW−µ

τ−√
2
− igW 3

µ

τ3
2

+ ig′Bµ
τ3
2

= −i g√
2

(
W+
µ τ+ +W−µ τ−

)
− igZZµ

τ3
2
, (1.35)

with Zµ = cwW
3
µ − swBµ and the two coupling constants gZ = g/cw and g′ = gsw/cw as defined in Eq.(1.10). This

gives us the first of the two terms in the gauge boson mass Lagrangian LD2

Tr[VµV
µ] = −2

g2

2
W+
µ W

−µ Tr(τ+τ−)− g2
Z

4
ZµZ

µ Tr(τ2
3 )

= −g2W+
µ W

−µ − g2
Z

2
ZµZ

µ , (1.36)
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using τ2
± = 0, Tr(τ3τ±) = 0, Tr(τ±τ∓) = 1, and Tr(τ2

3 ) = Tr 11 = 2. The second mass term in LD2 proportional to
∆ρ is equally simple in unitary gauge

T = Στ3Σ† = τ3

⇒ Tr(TVµ) = Tr

(
−igZZµ

τ2
3

2

)
= −igZZµ

⇒ Tr(TVµ) Tr(TV µ) = −g2
ZZµZ

µ . (1.37)

Inserting both terms into Eq.(1.29) yields the complete gauge boson mass term

LD2 = −v
2

4

(
−g2W+

µ W
−µ − g2

Z

2
ZµZ

µ

)
−∆ρ

v2

8

(
−g2

ZZµZ
µ
)

=
v2g2

4
W+
µ W

−µ +
v2g2

Z

8
ZµZ

µ + ∆ρ
v2g2

Z

8
ZµZ

µ

=
v2g2

4
W+
µ W

−µ +
v2g2

Z

8
(1 + ∆ρ)ZµZ

µ . (1.38)

Identifying the masses with the form given in Eq.(1.13) and assuming universality of neutral and charged current
interactions (∆ρ = 0) we find

mW =
gv

2
mZ =

√
1 + ∆ρ

gZv

2

∆ρ=0
=

gZv

2
=

gv

2cw
. (1.39)

The role of a possible additional and unwanted Z-mass contribution ∆ρ we will discuss in Section 1.1.6 on custodial
symmetry. Given that we know the heavy gauge boson masses (mW ∼ 80 GeV) and the weak coupling (g ∼ 0.7)
from experiment, these relations experimentally tell us v ∼ 246 GeV.

Let us just recapitulate what we did until now — using this Σ field with its specific transformation properties and its
finite constant value Σ = 11 in unitary gauge we have made the fermions and electroweak gauge boson massive.
Choosing this constant finite field value for Σ is not the only and not the minimal assumption needed to make the
gauge bosons heavy, but it leads to the most compact Lagrangian. From the photon mass example, however, we know
that there must be more to this mechanism. We should for example be able to see the additional degrees of freedom of
the longitudinal gauge boson modes if we step away from unitary gauge.

If a finite expectation value of the terms in the potential LΣ should be linked to electroweak symmetry breaking and
the gauge boson masses we can guess that the minimal assumption leading to finite gauge boson masses is
〈Tr(Σ†(x)Σ(x))〉 6= 0 in the vacuum. Every parameterization of Σ with this property will lead to the same massive
gauge bosons, so they are all physically equivalent — as they should be given that they are only different gauge
choices. In the canonical normalization we write

1

2
〈Tr(Σ†(x)Σ(x))〉 = 1 ∀x , (1.40)

which instead of our previous Σ(x) = 11 we can also fulfill through

Σ†(x)Σ(x) = 11 ∀x . (1.41)

This means that Σ(x) is a unitary matrix which like any 2× 2 unitary matrix can be expressed in terms of the Pauli
matrices. This solution still forbids fluctuations which in the original condition Eq.(1.40) on the expectation value
only vanish on average. However, in contrast to Σ(x) = 11 it allows a non–trivial x dependence. A unitary matrix Σ
with the appropriate normalization can for example be written as a simple linear combination of the basis elements,
i.e. in the linear representation

Σ(x) =
1√

1 +
wawa
v2

(
11− i

v
~w(x)

)
with ~w(x) = wa(x)τa , (1.42)



1.1 Electroweak symmetry breaking 17

where ~w(x) has mass dimension one which is absorbed by the mass scale v. These fields are a set of scalar
Nambu-Goldstone modes. From the photon mass example for Goldstone’s theorem we know that they will become
the missing degrees of freedom for the three now massive gauge bosons W± and Z. The normalization scale v fixes
the relevant energy scale of our Lagrangian.

Another way of parameterizing the unitary field Σ in terms of the Pauli matrices is

Σ(x) = exp

(
− i
v
~w(x)

)
with ~w(x) = wa(x)τa , (1.43)

Because the relation between Σ and ~w is not linear, this is referred to as a non–linear representation of the Σ field.
Using the commutation properties of the Pauli matrices we can expand Σ as

Σ = 11− i

v
~w +

1

2

(−1)

v2
waτawbτb +

1

6

i

v3
waτawbτbwcτc +O(w4)

= 11− i

v
~w − 1

2v2
wawa11 +

i

6v3
wawa ~w +O(w4) using Eq.(1.11)

=

(
1− 1

2v2
wawa +O(w4)

)
11− i

v

(
1− 1

6v2
wawa +O(w4)

)
~w . (1.44)

From this expression we can for example read off Feynman rules for the longitudinal gauge fields ~w, which we will
use later. The different ways of writing the Σ field in terms of the Pauli matrices of course cannot have any impact on
the physics.

Before we move on and introduce a physical Higgs boson we briefly discuss different gauge choices and the
appearance of Goldstone modes. If we break the full electroweak gauge symmetry SU(2)L × U(1)Y → U(1)Q we
expect three Goldstone bosons which become part of the weak gauge bosons and promote those from massless gauge
bosons (with two degrees of freedom each) to massive gauge bosons (with three degrees of freedom each). This is the
point of view of the unitary gauge, in which we never see Goldstone modes.
In the general renormalizable Rξ gauge we can actually see these Goldstone modes appear separately in the
gauge boson propagators

∆µν
V V (q) =

−i
q2 −m2

V + iε

[
gµν + (ξ − 1)

qµqν

q2 − ξm2
V

]

=



−i
q2 −m2

V + iε

[
gµν − qµqν

m2
V

]
unitary gauge ξ →∞

−i
q2 −m2

V + iε
gµν Feynman gauge ξ = 1

−i
q2 −m2

V + iε

[
gµν − qµqν

q2

]
Landau gauge ξ = 0 .

(1.45)

Obviously, these gauge choices are physically equivalent. However, something has to compensate, for example, for
the fact that in Feynman gauge the whole Goldstone term vanishes and the polarization sum looks like a massless
gauge boson, while in unitary gauge we can see the effect of these modes directly. The key is the Goldstone
propagator, with its additional propagating scalar degrees of freedom

∆V V (q2) =
−i

q2 − ξm2
V + iε

, (1.46)

for both heavy gauge bosons (V = Z,W+). The Goldstone mass
√
ξmV depends on the gauge: in unitary gauge the

infinitely heavy Goldstones do not propagate (∆V V (q2)→ 0), while in Feynman gauge and in Landau gauge we have
to include them as particles. From the form of the Goldstone propagators we can guess that they will indeed cancel the
second term of the gauge boson propagators.
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These different gauges have different Feynman rules and Green’s functions, even a different particle content, so for a
given problem one or the other might be the most efficient to use in computations or proofs. For example, the proof of
renormalizability was first formulated in unitary gauge. Loop calculations might be more efficient in Feynman gauge,
because of the simplified propagator structure, while many QCD processes benefit from an explicit projection on the
physical external gluons. Tree level helicity amplitudes are usually computed in unitary gauge, etc...

1.1.5 Higgs boson

At this stage we have defined a perfectly fine electroweak theory with massive gauge bosons. All we need is a finite
vacuum expectation value for Σ, which means this field spontaneously breaks the electroweak symmetry not by
explicit terms in the Lagrangian but via the vacuum. The origin of this finite vacuum expectation value is not
specified. This aspect that the Higgs mechanism does not actually specify where the vacuum expectation value v
comes from is emphasized by Peter Higgs in his original paper. If we are interested in physics at or above the
electroweak energy scale E ∼ v some kind of ultraviolet completion of this Σ model should tell us what the Σ field’s
properties as a quantum object are.

If we consider our Σ model itself the fundamental theory and promote the Σ field to a quantum field like all other
Standard Model fields, we need to allow for quantum fluctuations of Tr(Σ†Σ) around the vacuum value
Tr(Σ†Σ) = 2. Omitting the Goldstone modes we can parameterize these new degrees of freedom as a real scalar field

Σ →
(

1 +
H

v

)
Σ , (1.47)

as long as this physical field H has a vanishing vacuum expectation value and therefore

1

2
〈Tr(Σ†Σ)〉 =

〈(
1 +

H

v

)2
〉

= 1 ⇔ 〈H〉 = 0 . (1.48)

This real Higgs field is the fourth direction in the basis choice for the unitary matrix Σ for example shown in
Eq.(1.42), where only wa are originally promoted to quantum fields.
The factor in front of the fluctuation term H/v is not fixed until we properly define the physical Higgs field and make
sure that its kinetic term does not come with an unexpected prefactor. On the other hand, if we assume that the neutral
Goldstone mode w3 has the correct normalization, the Higgs field should be added to Σ such that it matches this
Goldstone, as we will see later in this section and then in more detail in Section 1.2.
The non–dynamical limit of this Higgs ansatz is indeed our sigma model in unitary gauge Σ†Σ = 11, equivalent to
H = 0. Interpreting the fluctuations around the non–trivial vacuum as a physical Higgs field is the usual Higgs
mechanism.

For this new Higgs field the Lagrangian LΣ defines a potential following the original form of Eq.(1.31)

LΣ = −µ
2v2

2

(
1 +

H

v

)2

− λv4

4

(
1 +

H

v

)4

+ ... (1.49)

The dots stand for higher–dimensional terms which might or might not be there. We will have a look at them in
Section 1.2.1. Some of them are not forbidden by any symmetry, but they are not realized at tree level in the Standard
Model either. The minimum of this potential occurs at H = 0, but this potential is not actually needed to give mass to
gauge bosons and fermions. Therefore, we postpone a detailed study of the Higgs potential to Section 1.2.1.

Let us recall one last time how we got to the Higgs mechanism from a static gauge invariant theory, the Σ model.
From an effective field theory point of view we can introduce the Goldstone modes and with them gauge boson
masses without introducing a fundamental Higgs scalar. All we need is the finite vacuum expectation value for Σ to
spontaneously break electroweak symmetry. For this symmetry breaking we do not care about quantum fluctuations of
the Σ field, which means we do not distinguish between the invariant Tr(Σ†Σ) and its expectation value. Any
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properties of the Σ field as a quantum field are left to the ultraviolet completion, which has to decide for example if Σ
is a fundamental or composite field. This way, the Higgs field could just be one step in a ladder built out of effective
theories. Such a non–fundamental Higgs field is the basis for so-called strongly interacting light Higgs models where
the Higgs field is a light composite field with a different canonical normalization as compared to a fundamental scalar.

Counting degrees of freedom we should be able to write Σ as a complex doublet with four degrees of freedom, three
of which are eaten Goldstones and one is the fundamental Higgs scalar. On the pure Goldstone side we can choose for
example between the linear representation of Eq.(1.42) and the non–linear representation of Eq.(1.43). If we extend
the linear representation and for now ignore the normalization we find

Σ =

(
1 +

H

v

)
11− i

v
~w =

1

v

(
v +H − iw3 −w2 − iw1

w2 − iw1 v +H + iw3

)
=

√
2

v
(φ̃φ) . (1.50)

The last step is just another way to write the 2× 2 matrix as a bi-doublet in terms of the two SU(2)L doublets
containing the physical Higgs field and the Goldstone modes for the massive vector bosons W and Z,

φ =
1√
2

(
−w2 − iw1

v +H + iw3

)
φ̃ = −iτ2 φ∗ =

1√
2

(
v +H − iw3

w2 − iw1

)
. (1.51)

This description of the Higgs field as part of the SU(2)L doublet in the linear representation has a profound effect on
the form of the Lagrangian: we can only include the Higgs field in SU(2)L-invariant ways, for example using the
combination φ†φ. In the presence of a new mass scale Λ the structure and mass dimension of the doublet field φ will
help us organize the most general electroweak and Higgs Lagrangians, for example allowing for additional terms
φ†φ/Λ2. In contrast, the non–linear representation of Eq.(1.43) cannot be cast into such a SU(2) invariant form, and
the Higgs field appears as a singlet under the weak gauge symmetry. In an extended Lagrangian we can simply add a
general power series in H/v or H/Λ to any gauge operator.

The vacuum expectation value v appearing in the φ and φ̃ doublets corresponds to 〈Σ〉 = 11. In this form the
normalization of the two real scalars w3 and H is indeed the same, so their kinetic terms will be of the same form.
The over–all factors 1/

√
2 in the definition of the doublets are purely conventional and sometimes lead to confusion

when some people define v = 246 GeV while others prefer v = 174 GeV. The latter choice is a little less common but
has the numerological advantage of v ∼ mt. For the fermion sector Eq.(1.14) this bi-doublet structure is important,
because it means that we give mass to up–type fermions and down–type fermions not with the same field φ, but with φ
and φ̃.

Following Eq.(1.50) we can for example derive the couplings of the physical Higgs boson to the massive W and Z
gauge bosons from Eq.(1.38) with custodial symmetry,

LD2 =
(v +H)2g2

4
W+
µ W

−µ +
(v +H)2g2

Z

8
(1 + ∆ρ)ZµZ

µ

⊃ 2vHg2

4
W+
µ W

−µ +
2vHg2

Z

8
(1 + ∆ρ)ZµZ

µ

= gmW HW+
µ W

−µ +
gZmZ

2
(1 + ∆ρ)HZµZ

µ . (1.52)

The same we can do for each fermion, where Eq.(1.14) in the diagonal limit and with the appropriate normalization of
the Yukawa coupling yf =

√
2mf/v becomes

LD3 → −yf
(v +H)√

2
ψfψf⊃ −

yf√
2
Hψfψf . (1.53)

The couplings of the scalar Higgs boson are completely determined by the masses of the particles it is coupling to.
This includes the unwanted correction ∆ρ to the Z mass.
Apart from problems arising when we ask for higher precision and quantum corrections, the effective sigma model
clearly breaks down at large enough energies which can excite the fluctuations of the sigma field and for example
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produce a Higgs boson. This is the job of the LHC, which is designed and built to take us into an energy range where
we can observe the structure of electroweak symmetry breaking beyond the effective theory and the Goldstone modes.
The observation of a light and narrow Higgs resonance roughly compatible with its Standard Model definition in
Eq.(1.47) is only a first step into this direction.

1.1.6 Custodial symmetry

Analyzing the appearance of ∆ρ in Eq.(1.29) and Eq.(1.39) we will see that not only higher energies, but also higher
precision leads to a breakdown of the effective sigma model. At some point we start seeing how the relative size of the
W and Z masses are affected by quantum fluctuations of the sigma field, i.e. the three Goldstone modes and the
Higgs boson itself. Diagrammatically, we can compute these quantum effects by evaluating Higgs contributions to the
one-loop form of the W and Z propagators.
From the construction in Section 1.1.4 we know that electroweak symmetry breaking by a sigma field or Higgs doublet
links the couplings of neutral and charged currents firmly to the masses of the W and Z bosons. On the other hand, the
general renormalizable Lagrangian for the gauge boson masses in Eq.(1.29) involves two terms, both symmetric under
SU(2)L × U(1)Y and hence allowed in the electroweak Standard Model. The mass values coming from Tr[VµV

µ]
give mW and mZ proportional to g ≡ gW and gZ . The second term involving (Tr[TVµ])2 only contributes to mZ .
The relative size of the two gauge boson masses can be expressed in terms of the weak mixing angle θw, together with
the assumption that GF or g universally govern charged current (W±) and neutral-current (W 3) interactions. At tree
level this experimentally very well tested relation corresponds to ∆ρ = 0 or

m2
W

m2
Z

=
g2

g2
Z

= cos2 θw ≡ c2w . (1.54)

In general, we can introduce a free parameter ρ which breaks this relation

g2
Z → g2

Z ρ mZ → mZ
√
ρ = mZ

√
1 + ∆ρ , (1.55)

which from measurements is very strongly constrained to be unity. It is defined to correspond to our theoretically
known allowed deviation ∆ρ. In LD2 the Z-mass term precisely predicts this deviation. To bring our Lagrangian into
agreement with measurements we better find a reason to constrain ∆ρ to zero, and the SU(2)L × U(1)Y gauge
symmetry unfortunately does not do the job.

Looking ahead, we will find that in the Standard Model ρ = 1 is actually violated at the one-loop level. This means
we are looking for an approximate symmetry of the Standard Model. What we can hope for is that this symmetry is at
least a good symmetry in the SU(2)L gauge sector and slightly broken elsewhere. One possibility along those lines is
to replace the SU(2)L × U(1)Y symmetry with a larger SU(2)L × SU(2)R symmetry. At this stage this extended
symmetry does not have to be a local gauge symmetry, a global version of SU(2)L combined with a global SU(2)R is
sufficient. This global symmetry would have to act like

Σ→ UΣV † U ∈ SU(2)L V ∈ SU(2)R

Tr(Σ†Σ)→ Tr
(
V Σ†U†UΣV †

)
= Tr(Σ†Σ) . (1.56)

In this setup, the three components of Wµ form a triplet under SU(2)L and a singlet under SU(2)R. If we cannot
extract τ3 as a special generator of SU(2)L and combine it with the U(1)Y hypercharge the W and Z masses have to
be identical, corresponding to cw = 1 at tree level.
In the gauge boson and fermion mass terms computed in unitary gauge the Σ field becomes identical to its vacuum
expectation value 11. The combined global SU(2)L transformations act on the symmetry breaking vacuum expectation
value the same way as shown in Eq.(1.25),

〈Σ〉 → 〈UΣV †〉 = 〈U11V †〉 = UV †
!
= 11 . (1.57)

The last step, i.e. the symmetry requirement for the Lagrangian can only be satisfied if we require U = V . In other
words, the vacuum expectation value for Σ breaks SU(2)L × SU(2)R to the diagonal subgroup SU(2)L+R. The
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technical term is precisely defined this way — the two SU(2) symmetries reduce to one remaining symmetry which
can be written as U = V . Depending on if we look at the global symmetry structure in the unbroken or broken phase
the custodial symmetry group either refers to SU(2)R or SU(2)L+R.

Even beyond tree level the global SU(2)L × SU(2)R symmetry structure can protect the relation ρ = 1 between the
gauge boson masses shown in Eq.(1.54). From Eq.(1.56) we immediately see that it allows all terms in the Higgs
potential LΣ, but it changes the picture not only for gauge boson but also for fermion masses. If fermions reside in
SU(2)L as well as SU(2)R doublets we cannot implement any difference between up–type and down–type fermions
in the Lagrangian. The custodial symmetry is only intact in the limit for example of identical third generation fermion
masses mb = mt.
The measured masses mt � mb change the protected tree level value ρ = 1: self energy loops in the W propagator
involve a mixture of the bottom and top quark, while the Z propagator includes pure bottom and top loops. Skipping
the loop calculation we quote their different contributions to the gauge boson masses as

∆ρ ⊃ 3GF

8
√

2π2

(
m2
t +m2

b − 2
m2
tm

2
b

m2
t −m2

b

log
m2
t

m2
b

)
=

3GF

8
√

2π2

(
2m2

b +m2
bδ − 2m2

b

1 + δ

δ
log (1 + δ)

)
defining m2

t = m2
b(1 + δ)

=
3GF

8
√

2π2

(
2m2

b +m2
bδ − 2m2

b

(
1

δ
+ 1

)(
δ − δ2

2
+
δ3

3
+O(δ4)

))
=

3GF

8
√

2π2
m2
b

(
2 + δ − 2− 2δ + δ + δ2 − 2

3
δ2 +O(δ3)

)
=

3GF

8
√

2π2
m2
b

(
1

3
δ2 +O(δ3)

)
=
GFm

2
W

8
√

2π2

((
m2
t −m2

b

)2
m2
Wm

2
b

+ · · ·

)
. (1.58)

In the Taylor series above the assumption of δ being small is of course not realistic, but the result is nevertheless
instructive: the shift vanishes very rapidly towards the chirally symmetric limit mt ∼ mb. The sign of the contribution
of a chiral fermion doublet to ∆ρ is always positive. In terms of realistic Standard Model mass ratios it scales like

∆ρ ⊃ 3GF

8
√

2π2
m2
t

(
1− 2

m2
b

m2
t

log
m2
t

m2
b

)
=

3GFm
2
W

8
√

2π2

m2
t

m2
W

(
1 +O

(
m2
b

m2
t

))
, (1.59)

remembering that the Fermi coupling constant has a mass dimension fixed by GF ∝ 1/m2
W .

We have already argued that hypercharge or electric charge break custodial symmetry. From the form of the covariant
derivative DµΣ including a single τ3 we can guess that the SU(2)R symmetry will not allow B field interactions
which are proportional to sw ∼

√
1/4. A second contribution to the ρ parameter therefore arises from Higgs loops in

the presence of g′ 6= 0

∆ρ ⊃ −11GFm
2
Zs

2
w

24
√

2π2
log

m2
H

m2
Z

. (1.60)

The loop diagrams responsible for the contribution are simply virtual Higgs exchanges in the W and Z self energies,
which not only have a different factorizing couplings, but also different W and Z masses inside the loop. These
masses inside loop diagrams appear as logarithms. The sign of this contribution implies that larger Higgs masses give
increasingly negative contributions to the ρ parameter.

There is another parameterization of the same effect, namely the T parameter. It is part of an effective theory
parameterization of deviations from the tree level relations between gauge boson masses, mixing angles, and neutral



22 1 HIGGS PHYSICS

and charged current couplings. If we allow for deviations from the Standard Model gauge sector induced by vacuum
polarization corrections Π(p2) and their momentum derivatives Π′(p2) we can write down additional Lagrangian
terms

∆L =−
Π′γγ

4
F̂µν F̂

µν − Π′WW

2
ŴµνŴ

µν − Π′ZZ
4

ẐµνẐ
µν

−
Π′γZ

4
F̂µνẐ

µν −ΠWW m̂2
W Ŵ

+
µ Ŵ

−µ − ΠZZ

2
m̂2
ZẐµẐ

µ . (1.61)

The field strengths F̂µν , Ŵµν , Ẑµν are based the fields Âµ, Ŵµ, Ẑµ. The hats are necessary, because the kinetic terms
and hence the fields do not (yet) have the canonical normalization. To compute the proper field normalization we
assume that all Π′ are small, so we can express the hatted gauge fields in terms of the properly normalized fields as

Âµ =

(
1−

Π′γγ
2

)
Aµ + Π′γZZµ Ŵµ =

(
1− Π′WW

2

)
Wµ Ẑµ =

(
1− Π′ZZ

2

)
Zµ . (1.62)

To check this ansatz, we can for example extract all terms proportional to the photon–Z mixing Π′γZ arising from
Eq.(1.62) and find

−1

4
F̂µν F̂

µν
∣∣∣
γZ

= −1

4

(
∂µÂν − ∂νÂµ

) (
∂µÂν − ∂νÂµ

) ∣∣∣
γZ

= −1

4

(
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) (
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) ∣∣∣
γZ

= −
Π′γZ

4
(∂µAν − ∂νAµ) (∂µZν − ∂νZµ)−

Π′γZ
4

(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −
Π′γZ

2
(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −
Π′γZ

2
ZµνF

µν +O(Π′2) = −
Π′γZ

2
Ẑµν F̂

µν +O(Π′2) . (1.63)

The field shift in Eq.(1.62) indeed absorbs the explicit new contribution in Eq.(1.61). Assuming that this works for all
gauge field combinations the Lagrangian including the loop–induced ∆L gets the canonical form

L ⊃− 1

4
FµνF

µν − 1

2
WµνW

µν − 1

4
ZµνZ

µν

− (1 + ΠWW −Π′WW ) m̂2
WW

+
µ W

−µ − 1

2
(1 + ΠZZ + Π′ZZ) m̂2

ZZµZ
µ . (1.64)

The physical Z mass now has to be m2
Z = (1 + ΠZZ + Π′ZZ) m̂2

Z . Just as in the usual Lagrangian we can link the two
gauge boson masses through the (hatted) weak mixing angle m̂W = ĉwm̂Z . In terms of this mixing angle we can
compute the muon decay constant, the result of which we quote as

ŝ2
w

s2
w

= 1 +
c2w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)
or

ĉ2w
c2w

= 1− s2
w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)
. (1.65)

With this result for example the complete W–mass term in Eq.(1.64) reads

L ⊃ −(1 + ΠWW −Π′WW ) ĉ2w m̂
2
Z W

+
µ W

−µ

= −(1 + ΠWW −Π′WW )

[
1− s2

w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
c2w(1−ΠZZ + Π′ZZ) m2

Z W
+
µ W

−µ
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[
1−Π′WW + Π′ZZ + ΠWW −ΠZZ −

s2
w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
m2
Z W

+
µ W

−µ

= −
[
1− αS

2(c2w − s2
w)

+
c2wαT

c2w − s2
w

+
αU

4s2
w

]
m2
Z W

+
µ W

−µ . (1.66)
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Figure 1: Allowed range of Higgs masses in the Standard Model after taking into account electroweak precision data,
most notably the ρ parameter contribution from the Higgs itself, Eq.(1.60). Figure from the LEP electroweak working
group, with updates available under http://lepewwg.web.cern.ch/LEPEWWG.

In the last step we have defined three typical combinations of the different correction factors as

S =
4s2
wc

2
w

α

(
−Π′γγ + Π′ZZ −Π′γZ

c2w − s2
w

cwsw

)
T =

1

α
(ΠWW −ΠZZ)

U =
4s4
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(
Π′γγ −

Π′WW

s2
w

+ Π′ZZ
c2w
s2
w

− 2Π′γZ
2cw
sw

)
. (1.67)

Two of these so-called Peskin–Takeuchi parameters can be understood fairly easily: the S-parameter corresponds to a
shift of the Z mass. This is not completely obvious because it seems to also involve photon terms. We have to
remember that the weak mixing angle is defined such that the photon is massless, while all mass terms are absorbed
into the Z boson. The T parameter obviously compares contributions to the W and Z masses. The third parameter U
is less important for most models.

To get an idea how additional fermions contribute to S and T we quote the contributions from the heavy fermion
doublet:

∆S =
Nc
6π

(
1− 2Y log

m2
t

m2
b

)
∆T =

Nc
4πs2

wc
2
wm

2
Z

(
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

log
m2
t

m2
b

)
, (1.68)

with Y = 1/6 for quarks and Y = −1/2 for leptons. While the parameter S has nothing to do with our custodial
symmetry, ρ and T ∼ ∆ρ/α are closely linked. Their main difference is the reference point, where ρ = 1 refers to its
tree level value and T = 0 is often chosen for some kind of light Higgs mass and including the Standard Model
top-bottom corrections. A similar third set of parameters going back to Altarelli and Barbieri consists of ε1,2,3, where
the leading effect on the custodial symmetry can be translated via ε1 = αT .

Typical experimental constraints form an ellipse in the S vs T plane along the diagonal. They are usually quoted as
∆T with respect to a reference Higgs mass. Compared to a 125 GeV Standard Model Higgs boson the measured
values range around T ∼ 0.1 and S ∼ 0.05. Additional contributions ∆T ∼ 0.1 tend to be within the experimental
errors, much larger contributions are in contradiction with experiment.
There are two reasons to discuss these loop contributions breaking the custodial symmetry in the Standard Model.
First, ∆ρ is experimentally very strongly constrained by electroweak precision measurements, which means that
alternative models for electroweak symmetry breaking usually include the same kind of approximate custodial

http://lepewwg.web.cern.ch/LEPEWWG
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symmetry by construction. As a matter of fact, this constraint is responsible for the death of technicolor models,
which describe the Higgs boson as a bound state under a new QCD-like interaction and which we will discuss in
Section 1.9.1.
Even more importantly, in the Standard Model we can measure the symmetry violations from the heavy quarks and
from the Higgs sector shown in Eqs.(1.58) and (1.60) in electroweak precision measurements. Even though the Higgs
contributions depend on the Higgs mass only logarithmically, we can then derive an upper bound on the Higgs mass
of the order of O(200 GeV), as shown in Figure 1. This strongly suggests that if we are faced (mostly) with the
Standard Model at the weak scale the Tevatron and at the LHC will be looking for a fairly light Higgs boson — or
something that very much looks like a light fundamental Higgs boson. This is the reason why in the absence of other
hints for new physics at the LHC the discovery of a light Standard–Model–like Higgs boson is not unexpected. Any
significant deviation of a Higgs boson from the Standard Model prediction would have to be compensated by
additional yet unobserved particles in the relevant self energy diagrams.
Turning this argument around, we should firmly keep in mind that the ρ parameter only points to a light fundamental
Higgs boson if we assume the Standard Model Higgs mechanism. For any other model it might point to something
similar to a light Higgs field, but does not have to be fundamental. Including additional fields in a model can even turn
around this prediction and prefer a heavy Higgs state. By now, studying electroweak precision data given the
measured Higgs mass is one of the most sensitive consistency tests of the Standard Model.

The symmetry breaking pattern we describe in this section is a nice example to check the predictions from the
Goldstone theorem quoted in Section 1.1.2, so our last question is: how do physical modes which we introduce as
Σ(x) = exp(−i ~w/v) transform under the different broken and unbroken global SU(2) symmetries which make up
the custodial symmetry and can we construct a model of electroweak symmetry breaking around the custodial
symmetry? This brings us back to the example of the photon mass, where we first saw Goldstone’s theorem at work.
Under the usual SU(2)L symmetry we know the transformation reads Σ→ UΣ with U = exp(iα · τ/2). The
transformation properties of the Goldstone modes ~w follow from the infinitesimal transformations

11− iw · τ
v
→
(

11 + i
α · τ

2

)(
11− iw · τ

v

)
= 11 +

i

v

(
−w · τ +

v

2
α · τ

)
+ · · ·

!
= 11− iw

′ · τ
v

implying w → w′ = w − v

2
α , (1.69)

so U is a non–linear transformation, since w′a is not proportional to wa. The same independent structure we find for
the SU(2)R transformation. This model of electroweak symmetry breaking we call a non–linear sigma model. In our
discussion of the Goldstone theorem we already quoted its most important feature: when we construct a Lagrangian
this non–linear symmetry transformation forbids mass terms, gauge interactions, Yukawa couplings, and quadratic
potential terms for these modes in Σ. As discussed in Section 1.1.2 only derivative terms like the kinetic term and
derivative couplings are allowed under the SU(2)L and SU(2)R symmetries.

Similarly, we can evaluate the transformation of these physical modes under the remaining diagonal symmetry group
SU(2)L+R with Σ→ UΣU† and instead find
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(
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(
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(
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+ · · ·

= 11− iw · τ
v

+ i
τ (α× w)

v
+ · · ·

implying wi → w′i = wi − εijkαjwk , (1.70)



1.2 The Standard Model 25

which is a linear transformation. In the fourth line we use the commutator

[τa, τb] = 2iεabcτc ⇒ (α · τ)(w · τ) = α · w + iτ (α× w) using Eq.(1.11)
⇒ [(α · τ), (w · τ)] = 2iτ (α× w) . (1.71)

In other words, when we transform the physical modes corresponding to the broken generators in Σ by the larger
symmetry SU(2)L × SU(2)R we find a non–linear transformation, while the approximate symmetry SU(2)L+R

leads to a linear transformation. This is precisely what Goldstone’s theorem predicts for the spontaneous breaking of a
global electroweak symmetry.

1.2 The Standard Model
Before we discuss all the ways we can look for a Higgs Boson and go through the Higgs discovery in the summer of
2012 we briefly review the Higgs mechanism in the Standard Model. This will link the somewhat non–standard
effective theory approach we used until now to the standard textbook arguments. In the last sections we have seen that
there does not really need to be such a fundamental scalar, but electroweak precision data tells us whatever it is the
Higgs should look very similar to a light fundamental scalar, unless we see some seriously new states and effects
around the weak scale.
To make it a little more interesting and since we are already in the mood of not taking the Standard Model Higgs
sector too literally, in Section 1.2.1 we include higher–dimensional operators on top of the usual renormalizable
dimension-4 operators in the Higgs potential. Such operators generally occur in effective theories based on ultraviolet
completions of our Standard Model, but their effects are often small or assumed to be small.
Once we want to analyze the behavior of the Higgs sector over a wide range of energy scales, like we will do in
Sections 1.2.3 and 1.2.4, we need to take the Standard Model seriously and in turn find constraints on the structure and
the validity of our Standard Model with a fundamental Higgs boson.

1.2.1 Higgs potential to dimension six

In the renormalizable Standard Model all terms in the Lagrangian are defined to be of mass dimension four, like
mf ψ̄ψ or ψ̄∂µψ or FµνFµν . This mass dimension is easy to read off if we remember that for example scalar fields or
vector-boson fields contribute mass dimension one while fermion spinors carry mass dimension 3/2. The same
renormalizability assumption we usually make for the Higgs potential, even though from the previous discussion it is
clear that higher–dimensional terms — stemming from higher powers of Tr(Σ†Σ) — can and should exist.
Starting from the Higgs doublets introduced in Eq.(1.51) and for now ignoring the Goldstone modes the simplified
Higgs–only doublet

φ =
1√
2

(
−w2 − iw1

v +H + iw3

)
∼ 1√

2

(
0

v +H

)
(1.72)

leaves us with only two renormalizable potential terms in Eq.(1.49), now written in terms of the Higgs doublet and
with µ2 and λ as prefactors

−LΣ = VSM = µ2|φ|2 + λ|φ|4 + const . (1.73)

To emphasize that renormalizability is a strong and not necessarily very justified theoretical assumption in LHC Higgs
physics, we allow for more operators in the Higgs potential. Following the discussion in Section 1.1.5 we will use the
linear representation in terms of the doublet φ to organize the extended Lagrangian by mass dimensions. If we expand
the possible mass dimensions and the operator basis, there are exactly two gauge–invariant operators of dimension six
we can write down in terms of the Higgs doublet |φ|2, i.e. before electroweak symmetry breaking

O1 =
1

2
∂µ(φ†φ) ∂µ(φ†φ) O2 = −1

3
(φ†φ)3 . (1.74)

There exists one more possible operator (Dµφ)†φ φ†(Dµφ), but it violates custodial symmetry, so we ignore it in our
analysis. The prefactors in the Lagrangian are conventional, because to construct a Lagrangian we have to multiply
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these operators with general coefficients of mass dimension minus two, parameterized in terms of an unknown mass
scale Λ

LD6 =

2∑
i=1

fi
Λ2
Oi . (1.75)

As long as the typical energy scale E in the numerator in our matrix element is small (E � Λ), the corrections from
the additional operators are small as well.

Before we compute the Higgs potential including O2 we look at the effects of the dimension-6 operator O1. It
contributes to the kinetic term of the Higgs field in the Lagrangian, before or after symmetry breaking

O1 =
1

2
∂µ(φ†φ) ∂µ(φ†φ)

=
1

2
∂µ

(
(Ĥ + v)2

2

)
∂µ

(
(Ĥ + v)2

2

)

=
1

2
(Ĥ + v)2 ∂µĤ ∂µĤ . (1.76)

We use the symbol Ĥ for the Higgs field as part of φ. From the similar case of the gauge fields in Eq.(1.61) we can
guess that there will be a difference between Ĥ and the physical Higgs field H at the end of the day. The contribution
from O1 leaves us with a combined kinetic term

Lkin =
1

2
∂µĤ∂

µĤ

(
1 +

f1v
2

Λ2

)
!
=

1

2
∂µH ∂µH ⇔ H =

√
1 +

f1v2

Λ2
Ĥ . (1.77)

This is a simple rescaling to define the canonical kinetic term in the Lagrangian, corresponding to a finite wave
function renormalization which ensures that the residuum of the Higgs propagator is one. This kind of condition is
well known from the LSZ equation and the proper definition of outgoing states. It means we have to eventually
replace Ĥ with H in the entire Higgs sector. In most cases such a wave function renormalization will not lead to
observable physics effects, because it can be absorbed for example in coupling renormalization. However, in this case
the setup of the electroweak sector does not give us enough freedom to absorb this scaling factor, so it will appear in
the observable couplings similar to a form factor in strongly interacting models.

Taking into account the additional dimension-6 operator O2 we can write the Higgs potential as

V = µ2|φ|2 + λ|φ|4 +
f2

3Λ2
|φ|6 . (1.78)

The positive sign in the last term of the potential V ensures that for f2 > 0 the potential is bounded from below for
large field values φ. The non–trivial minimum at φ 6= 0 is given by

∂V

∂ |φ|2
= µ2 + 2λ|φ|2 +

3f2

3Λ2
|φ|4 !

= 0 ⇔ |φ|4 +
2λΛ2

f2
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µ2Λ2

f2

!
= 0 , (1.79)

defining the minimum position |φ|2 = v2/2. The two solutions of the quadratic equation for v2/2 are
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(1.80)
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The first solution we have expanded around the Standard Model minimum, v2
0 = −µ2/λ. The second, high–scale

solution is not the vacuum relevant for our Standard Model. Note that from the W,Z masses we know that
v = 246 GeV so v is really our first observable in the Higgs sector, sensitive to the higher–dimensional operators.

To compute the Higgs mass as the second observable we could study the second derivative of the potential in the
different directions, but we can also simply collect all quadratic terms contributing to the Lagrangian by hand. The
regular dimension-4 contributions in terms of the shifted Higgs field Ĥ are

VSM = µ2 (Ĥ + v)2

2
+ λ

(Ĥ + v)4

4
=
µ2

2

(
Ĥ2 · · ·

)
+
λ

4

(
· · · 6Ĥ2v2 · · ·

)
. (1.81)

Only the terms in the parentheses contribute to the Higgs mass in terms of µ, v and λ. Including the additional
potential operator in terms of Ĥ gives

O2 = −1

3
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3

(Ĥ + v)6

8

= − 1

24

(
Ĥ6 + 6Ĥ5v + 15Ĥ4v2 + 20Ĥ3v3 + 15Ĥ2v4 + 6Ĥv5 + v6

)
. (1.82)

Combining both gives us the complete quadratic mass term to dimension six
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v4Ĥ2

= −1

2

(
µ2 + 3λv2 +

5

4

f2v
4

Λ2

)
Ĥ2
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Including dimension-6 operators the relation between the vacuum expectation value, the Higgs mass and the factor in
front of the |φ|4 term in the potential changes. Once we measure the Higgs mass at the LHC, we can compute the
trilinear and quadrilinear Higgs self couplings by collecting the right powers of H in the Higgs potential, in complete
analogy to the Higgs mass above. We find

Lself =− m2
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2v

[(
1− f1v

2
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+
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. (1.84)
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This gives the Feynman rules
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 (1.85)

and

− i3m
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 (1.86)

From this discussion we see that in the Higgs sector the Higgs self couplings as well as the Higgs mass can be
computed from the Higgs potential and depend on the operators we take into account. As mentioned before, in the
Standard Model we use only the dimension-4 operators which appear in the renormalizable Lagrangian and which
give us the Higgs mass and self couplings

m2
H = 2λv2 = −2µ2 and Lself = −m

2
H

2v
H3 − m2

H

8v2
H4 , (1.87)

with v = v0 = 246 GeV. Given the measured Higgs mass the Higgs self coupling comes out as λ ' 1/8. When the
Higgs sector becomes more complicated, not the existence but the form of such relations between masses and
couplings will change. With this information we could now start computing Higgs observables at the LHC, but let us
first see what else we can say about the Higgs potential from a theoretical point of view.

The Higgs self couplings computed in Eq.(1.86) are structurally different from their dimension-4 counter parts in that
their higher dimensional modifications are momentum dependent. They are proportional to f1, which means they arise
from the operator O1 shown in Eq.(1.76). For large momenta such terms will cause problems, because the momentum
in the numerator can exceed the suppression 1/Λ. In our derivation part of this operator is absorbed into a
wave function renormalization, ensuring the appropriate kinetic term of the Higgs scalar dictated by the definition of
outgoing states in an interacting field theory. The question is if we can define a wave function renormalization which
also removes the momentum dependent terms for the Higgs self couplings. If Ĥ is the original Higgs field as part of φ
we can relate it to the physical Higgs field H using the generally parameterization

H =

(
1 +

a0v
2

Λ2

)
Ĥ +

a1v

Λ2
Ĥ2 +

a2

Λ2
Ĥ3 . (1.88)

The powers of v and Λ are chosen such that all additional terms are related to a dimension-6 operator (1/Λ2) but the
aj have no mass dimension. Unlike for our first attempt we now include powers of the Higgs field in the wave
function renormalization. Even higher terms in Ĥ would be allowed, but it will turn out that we do not need them.
The canonically normalized kinetic term for the real scalar field H is
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Terms of higher mass dimension or including higher powers of Ĥ will only appear once we go to dimension-8
operators. This general form based on Eq.(1.88) we should use to remove all contributions from the dimension-6
operator O1 to the kinetic term of the Higgs field Ĥ

Lkin =
∂µĤ∂
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2
+
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=

[
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µĤ

2
. (1.90)

Comparing Eq.(1.89) and Eq.(1.90) we can identify the general pre-factors aj with the specific f1 from our
dimension-6 ansatz. This gives us a0 = f1/2, a1 = f1/2, and a2 = f1/6. The wave function renormalization
Eq.(1.88) then reads
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Ĥ3 +O(Ĥ4) +O

(
1

Λ4

)
. (1.91)

In this alternative, generalized canonical normalization of the Higgs field we avoid any momentum dependent
contributions to the Higgs self couplings. The prize we pay is that we have to apply the shift defined in Eq.(1.91)
throughout the entire Standard Model Lagrangian. This means that the higher dimensional operator O1 leads to
multiple Higgs couplings to any pair of massive gauge bosons or massive fermions. This observation is at the heart of
the so-called strongly interacting light Higgs (SILH).
Because the wave function renormalization is not a physical observable; the two approaches are physically equivalent
and predict the same physical observables to a precision 1/Λ2. Beyond dimension-6 operators they will become
different. However, to properly define the external Higgs states in the interacting theory we need to ensure that the
wave function and its commutators are properly defined. Looking at Eq.(1.91) we see that either the field H or the
field Ĥ will induce a wave function normalization and hence a field commutator dependent on the field value.

We will see later that multiple Higgs couplings to other states are a serious challenge to the LHC, as are the
momentum dependent terms in the Higgs self couplings. This means that for the interpretation of LHC data these
dimension-6 interactions do not pose a serious problem.

1.2.2 Mexican hat

To understand the well known picture of a Mexican hat which usually illustrates the Higgs mechanism we have to
include Goldstone modes again. The Higgs doublets including all degrees of freedom are defined in Eq.(1.51). For our
illustration it is sufficient to extend Eq.(1.72) by including all neutral degrees of freedom in the Higgs doublet

φ =
1√
2

(
−w2 − iw1

v +H + iw3

)
∼ 1√

2

(
0

v +H + iw3

)
. (1.92)

In this approximation we can again compute the potential defined in Eq.(1.78), but omitting the dimension-6 terms

V = µ2(φ†φ) + λ(φ†φ)2
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3
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4
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)2
. (1.93)

In the unbroken phase, i.e. in the absence of a vacuum expectation value or for v = 0 the potential reads

V =
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2
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H2 + w2
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+
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4
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H2 + w2

3

)2
. (1.94)

This form depends only on a radius in the two-dimensional plane formed by the Higgs and Goldstone field values
|φ| =

√
H2 + w2

3/
√

2. Its first derivative with respect to |φ| is V ′ = µ2|φ|+ 3λ|φ|3/4, so there exists only a
minimum at |φ| = 0 or equivalently at H = w3 = 0, where the potential becomes V = 0. Towards larger field values
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Figure 2: Mexican hat form of the Higgs potential, figure from the University of Edinburgh website.

the potential increases first proportional to |φ|2 and finally proportional to |φ|4, always rotationally symmetric in the
H-w3 plane.

In the broken phase with v = 246 GeV the form of the potential changes. We can follow exactly the derivation
following Eq.(1.78) where the minimum condition in the complex plane is |φ| = v/

√
2. This minimum is rotationally

symmetric; on the real H axis it requires H = ±v while on the imaginary w3 axis it appears at w3 = ±iv. For large
field values |φ| � v the potential rapidly increases proportional to |φ|4. This form of the potential is shown in
Figure 2.
To determine the masses of the particles corresponding to the Higgs and Goldstone fields we choose one point on the
degenerate vacuum circle, e.g. φ = v. There we can compute the mass matrix from the second derivatives of the
potential at the minimum

(
M2

H

)
jk

=
∂2V

∂2 {Hw3}

∣∣∣∣∣
minimum

. (1.95)

For real fields, where the mass term is proportional to L ⊃ −V ⊃ −m2H2/2 there is no factor 1/2 in this relation.
Inserting the full form of the neutral potential given in Eq.(1.93) we first find
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= µ2 + 3λv2 = 2λv2 . (1.96)

In the last step we use the relation µ2 = −λv2 at the minimum. This second derivative is identical to the known Higgs
mass, but to be save we still compute the complete mass matrix and determine the mass eigenvalues. The second



1.2 The Standard Model 31

diagonal entry in the neutral Higgs–Goldstone mass matrix is

∂V

∂w3
= µ2w3 +

λ

2

(
(v +H)2 + w2

3

)
2w3

= µ2w3 + λw3

(
(v +H)2 + w2

3

)
∂2V

∂w2
3

∣∣∣∣∣
minimum

= µ2 + λ
(
(v +H)2 + w2

3

)
+ 2λw2

3

∣∣∣∣∣
minimum

= µ2 + λv2 = 0 . (1.97)

The off-diagonal entry of the symmetric mass matrix is

∂2V

∂H∂w3

∣∣∣∣∣
minimum

=
∂

∂w3

[
µ2(v +H) + λ(v +H)

(
(v +H)2 + w2

3

)] ∣∣∣∣∣
minimum

= 2λ(v +H)w3

∣∣∣∣∣
minimum

= 0 (1.98)

Putting all this together we find that the Higgs and Goldstone basis is identical with the mass eigenstates of the
symmetric mass matrix

M2
H =

(
2λv2 0

0 0

)
(1.99)

If we fix our vacuum to the positive real axis φ = v the Higgs mode living on the real axis is massive while the
Goldstone mode living orthogonally in the direction of the flat potential valley is massless. The fact that we had to fix
the vacuum to the real axis is a direct consequence of our linear gauge choice in Eq.(1.50). In the unitary form of
Eq.(1.43) the Goldstone mode is aligned with the potential valley over the entire Higgs–Goldstone field plane.

This result confirms Goldstone’s theorem, at least in the first step. If we consider the Goldstone modes simply
additional scalars they are massless. Historically, this was the big problem with spontaneous symmetry breaking,
because such massless scalars with weak charge would have been observed. From Eq.(1.46) we know that after
breaking a local gauge symmetry the Goldstones become part of the massive gauge fields, and their mass is not a
physical parameter.

1.2.3 Unitarity

If we want to compute transition amplitudes at very high energies the Goldstone modes become very useful. In the V
rest frame we can write the three polarization vectors of a massive gauge boson as

εµT,1 =

 0
1
0
0

 εµT,2 =

 0
0
1
0

 εµL =

 0
0
0
1

 . (1.100)

If we boost V into the z direction, giving it a four-momentum pµ = (E, 0, 0, |~p|), the polarization vectors become

εµT,1 =

 0
1
0
0

 εµT,2 =

 0
0
1
0

 εµL =
1

mV

 |~p|0
0
E

 E�mV−→ 1

mV

 |~p|0
0
|~p|

 ≡ 1

mV
pµ . (1.101)

Very relativistic gauge bosons are dominated by their longitudinal polarization |~εL| ∼ E/mV � 1. This longitudinal
degree of freedom is precisely the Goldstone boson, so at high energies we can approximate the complicated vector
bosons Z,W± as scalar Goldstone bosons w0, w±. The problem which gauge–dependent mass value ξmV to assign
to the Goldstone fields does not occur, because in the high energy limit we automatically assume mV → 0. This
simplification comes in handy for example when we talk about unitarity as a constraint on the Higgs sector. This
relation between Goldstones and gauge bosons at very high energies is called the equivalence theorem.
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Based on the equivalence theorem we can compute the amplitude for W+W− →W+W− scattering at very high
energies (E � mW ) in terms of scalar Goldstones bosons. Three diagrams contribute to this processes: a four-point
vertex, the s-channel Higgs exchange and the t-channel Higgs exchange:

+ +

To confirm these Feynman diagrams and to compute the corresponding amplitude we need some basic Feynman rules,
for example the Goldstone couplings to the Higgs boson and the four-Goldstone couplings. We start with the Higgs
doublet, again including the Goldstone modes in analogy to Section 1.2.2

φ =
1√
2

(
−w2 − iw1

v +H + iw3

)
⇒ φ†φ =

1

2

(
w2

1 + w2
2 + w2

3 + (v +H)2
)

(1.102)

(
φ†φ

)2
=

1

4

(∑
i

w2
i

)2

+
1

2
(v +H)

2
∑
i

w2
i +

1

4
(v +H)4

=
1

4

(∑
i

w2
i

)2

+

(
v H +

v2

2
+
H2

2

) ∑
i

w2
i +O(w0) .

In the last step we neglect all terms without the Goldstone fields. Note that there are no three-Goldstone vertices, only
triple dimension-four couplings including the Higgs and a coupling factor v. Only keeping the relevant terms
contributing to the four-Goldstone and Higgs–Goldstone–Goldstone couplings at dimension four the potential
becomes

V = µ2|φ|2 + λ|φ|4 ⊃ λ|φ|4 =
m2
H

2v2
|φ|4

=
m2
H

2v2

1

4

(∑
i

w2
i

)2

+ vH
∑
i

w2
i +O(w0)


=
m2
H

8v2

(∑
i

w2
i

)2

+
m2
H

2v
H
∑
i

w2
i +O(w0) . (1.103)

Focussing on the scattering of charged Goldstones w±w± → w±w± we use the corresponding fields
w± = (w1 ± iw2)/

√
2 following Eq.(1.12). They appear in the above expression as w2

1 + w2
2 = 2w+w−, so we find

the terms

V ⊃ m2
H

2v2
w+w−w+w− +

m2
H

v
Hw+w− , (1.104)

which fix the two Feynman rules we need. Linking the Lagrangian to the Feynman rule for the quartic coupling
involves one complication: for each positively charged Goldstone in the vertex there are two ways we can identify
them with the Lagrangian fields. In addition, there are also two choices to identify the two negatively charged
Goldstones, which implies an additional combinatorial factor four in the Feynman rule. Including a common factor
(−i) the two Feynman rules then become −2im2

H/v
2 and −im2

H/v.
The potential in Eq.(1.103) has an interesting feature which has recently lead to some discussions on the computation
of Higgs decays to two photons. The question is if the one-loop Hγγ amplitude mediated by a closed W boson loop
should vanish in the limit mW → 0. This is indeed the case for a closed fermion loop contributing to the same process
through the Yukawa coupling. The W loop, in contrast, consists of transverse and longitudinal W modes. The latter
we can describe in terms of Goldstone modes which couple to the external Higgs field following Eq.(1.103). Because
mW never appears in this potential there is no reason why the Goldstone modes should decouple, and indeed they do
not.
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The amplitude for the Goldstone scattering process is given in terms of the Mandelstam variables s and t which
describe the momentum flow p2 through the two Higgs propagators and which we will properly introduce in
Section 2.1.1

A = i
−2im2

H

v2
+

(
−im2

H

v

)2
i

s−m2
H

+

(
−im2

H

v

)2
i

t−m2
H

=
m2
H

v2

[
2 +

m2
H

s−m2
H

+
m2
H

t−m2
H

]
. (1.105)

The factor i which ensures that the amplitude is real appears between the transition rate computed from the Feynman
rules and the actual transition amplitude, as shown in Eq.(4.48).

For this process we want to test the unitarity of the S matrix, which we write in terms of a transition amplitude
S = 11 + iA. The S matrix should be unitary to conserve probability

11 !
= S†S = (11− iA†)(11 + iA) = 11 + i(A−A†) +A†A ⇔ A†A = −i(A−A†) . (1.106)

If we sandwich (A−A†) between identical asymptotically free fields, which means that we are looking at forward
scattering with a scattering angle θ → 0, we find in the high energy limit or for massless external particles

−i〈j|A−A∗T |j〉 = −i〈j|A−A∗|j〉 = 2 ImA(θ = 0) ⇒ σ ≡ 1

2s
〈j|A†A|j〉 =

1

s
ImA(θ = 0) .

(1.107)

Assuming that our Lagrangian is hermitian this imaginary part corresponds only to absorptive terms in the scattering
amplitude. This is the usual formulation of the optical theorem reflecting unitarity in terms of the transition amplitude
A.

To include the dependence on the scattering angle θ we decompose the transition amplitude into partial waves

A = 16π

∞∑
l=0

(2l + 1)Pl(cos θ) al with
∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δll′ , (1.108)

ordered by the orbital angular momentum l. Pl are the Legendre polynomials of the scattering angle θ, which obey an
orthogonality condition. The scattering cross section including all prefactors and the phase space integration is then
given by

σ =

∫
dΩ
|A|2

64π2s

=
(16π)2

64π2s
2π

∫ 1

−1

d cos θ
∑
l

∑
l′

(2l + 1)(2l′ + 1) ala
∗
l′ Pl(cos θ)Pl′(cos θ)

=
8π

s

∑
l

2(2l + 1) |al|2 =
16π

s

∑
l

(2l + 1) |al|2 . (1.109)

The relation between the integral over the scattering angle θ and the Mandelstam variable t we will discuss in more
detail in Section 2.1.1. Applied to each term in the partial wave expansion the optical theorem requires

16π

s
(2l + 1) |al|2 =

1

s
ImA(θ = 0)

∣∣∣∣∣
l

=
1

s
16π(2l + 1) Im al ⇔ |al|2

!
= Im al , (1.110)
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using Pl(cos θ = 1) = 1. This condition we can rewrite as

(Re al)2 +

(
Im al −

1

2

)2

=
1

4
⇒ |Re al| ≤

1

2
, (1.111)

once we recognize that the condition on Im al and on Re al is a circle around al = (0, 1/2) with radius 1/2.

It is important to remember that in the above argument we have formulated the constraint for each term in the sum
over the Legendre polynomials. Mathematically, this is well justified, but of course there might be physics effects
which lead to a systematic cancellation between different terms. This is why the constraint we compute is referred to
as perturbative unitary. For Goldstone scattering we compute the supposedly leading first term in the partial wave
expansion from the amplitude

a0 =
1

16πs

∫ 0

−s
dt |A| =

1

16πs

∫ 0

−s
dt
m2
H

v2

[
2 +

m2
H

s−m2
H

+
m2
H

t−m2
H

]
=

m2
H

16πv2

[
2 +

m2
H

s−m2
H

− m2
H

s
log

(
1 +

s

m2
H

)]
=

m2
H

16πv2

[
2 +O

(
m2
H

s

)]
. (1.112)

In the high energy limit s� m2
H this translates into an upper limit on the Higgs mass which in Eq.(1.105) enters as

the Goldstone coupling in the numerator

m2
H

8πv2
<

1

2
⇔ m2

H < 4πv2 = (870 GeV)2 . (1.113)

This is the maximum value of mH consistent with perturbative unitarity for WW →WW scattering. Replacing the
Higgs mass by the self coupling we can formulate the same constraint as λ < 2π. The leading term in our analysis of
perturbative unitarity is simply the size of the four-Goldstone coupling, the two Higgs diagrams are sub-leading in
m2
H/s. This means that perturbative unitarity seriously probes the limitations of perturbation theory, so we should

include higher order effects as well as higher dimensional operators to get a reliable numerical prediction in the range
of mH . 1 TeV.
Of course, if we limit s to a finite value this bound changes, and we can compute a maximum scale smax which leaves
WW →WW perturbatively unitary for fixed mH : for mH . v this typically becomes

√
smax ∼ 1.2 TeV. This

number is one of the motivations to build the LHC as a high energy collider with a partonic center–of–mass energy in
the few-TeV range. If something had gone wrong with the Standard–Model–like Higgs sector we could have expected
to see something else curing unitarity around the TeV scale. A Higgs boson too heavy to be produced at the LHC
would essentially not been able to function as a Higgs boson.

In many discussions of unitarity and the Higgs sector we explain the role of the Higgs boson in the unitarization of
WW scattering as a cancellation of the leading divergences through virtual Higgs exchange. Clearly, this is not what
we see in our argument. Nevertheless, both answers are correct, because the separation of a gauge–invariant transition
amplitude into Feynman diagrams is gauge dependent. Our Higgs–Goldstone gauge assumes the existence of a Higgs
boson when we include the coupling strength mH in the Feynman rules for the Goldstones. With that assumption we
are no longer allowed to test the assumption that the Higgs not be there. All we can do is decouple the Higgs by
making it heavier, which gives us the limit shown in Eq.(1.113). In the unitary gauge, where the gauge bosons are
massive and the Goldstones are eaten, the Higgs is an additional state which we can remove at the expense of ruining
renormalizability. At tree level this gauge gives us a cancellation of the leading divergences from gauge boson
exchange with the help of the Higgs diagrams. Because the transition amplitude is gauge invariant the limit on the
Higgs mass will be identical.

One last but very important comment we need to make: this unitarity argument only works if the WWH coupling is
exactly what it should be. While perturbative unitarity only gives us a fairly rough upper limit on mH , it also uniquely
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fixes gWWH to its Standard Model value. Any sizeable deviation from this value again means new physics appearing
at the latest around the mass scales of Eq.(1.113).
Looking at processes like WW → ff̄ or WW →WWH or WW → HHH we can fix all Higgs couplings in the
Standard Model, including gHff , gHHH , gHHHH , using exactly the same argument. The most important result of the
unitarity test is probably not the upper bound on the Higgs mass, but the underlying assumption that the unitarity test
only works in the presence of one Higgs boson if all Higgs couplings look exactly as predicted by the Standard Model.

1.2.4 Renormalization group analysis

The unitarity condition derived above is the first of a series of theoretical constraints which we can derive as self
consistency conditions on a Higgs boson turning the Standard Model with its particle masses into a renormalizable
theory. We can derive two additional theoretical constraints from the renormalization group equation of the Higgs
potential, specifically from the renormalization scale dependence of the self coupling λ(Q2). Such a scale dependence
arises automatically when we encounter ultraviolet divergences and absorb the 1/ε poles into a minimal counter term.
We will discuss this running of couplings in more detail in Section 2.2.1 focussing on the running QCD coupling αs.
In the case of a running quartic Higgs coupling λ the one-loop s, t and u-channel diagrams only depending on λ itself
are

+ + +

Skipping the calculation we quote the complete renormalization group equation including diagrams with the Higgs
boson, the top quark and the weak gauge bosons inside the loops

d λ

d logQ2
=

1

16π2

[
12λ2 + 6λy2

t − 3y4
t −

3

2
λ
(
3g2 + g′2

)
+

3

16

(
2g4 + (g2 + g′2)2

)]
, (1.114)

with yt =
√

2mt/v. This formula will be the basis of the discussion in this section.

The first regime we study is where the Higgs self coupling λ becomes strong. Fixed order perturbation theory as we
use it in the unitarity argument runs into problems in this regime and the renormalization group equation is the
appropriate tool to describe it. If we reside in a somewhat strongly interacting regime the leading term in Eq.(1.114)
reads

d λ

d logQ2
=

1

16π2
12λ2 +O(λ) =

3

4π2
λ2 +O(λ) . (1.115)

Because of the positive sign on the right hand side the quartic coupling will become stronger and eventually diverge
for large scales Q2. Obviously, this divergence should not happen in a physical model and will give us a constraint on
the maximum value of λ allowed. The approximate renormalization group equation we can solve by replacing
λ = x−1

d λ

d logQ2
=

d

d logQ2

1

x
= − 1

x2

d x

d logQ2

!
=

3

4π2

1

x2

⇔ d x

d logQ2
= − 3

4π2
⇔ x(Q2) = − 3

4π2
logQ2 + C . (1.116)

The boundary condition λ(Q2 = v2) = λ0 fixes the integration constant C

x0 =
1

λ0
= − 3

4π2
log v2 + C ⇔ C = x0 +

3

4π2
log v2

⇒ x(Q2) = − 3

4π2
logQ2 + x0 +

3

4π2
log v2 = − 3

4π2
log

Q2

v2
+ x0

⇔ λ(Q2) =

[
− 3

4π2
log

Q2

v2
+

1

λ0

]−1

= λ0

[
1− 3

4π2
λ0 log

Q2

v2

]−1

. (1.117)
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.

Figure 3: Triviality or Landau pole (upper) and stability bounds (lower) for the Standard Model Higgs boson in the
mH −Q plane. Similar arguments first appeared in Ref. [2], the actual scale dependence can be seen in Refs. [3, 4].

We start from scales Q ∼ v where the expression in brackets is close to one. Moving towards larger scales the
denominator becomes smaller until λ hits a pole at the critical value Qpole

1− 3

4π2
λ0 log

Q2
pole

v2

!
= 0 ⇔ 3

4π2
λ0 log

Q2
pole

v2
= 1

⇔ log
Q2

pole

v2
=

4π2

3λ0

⇔ Qpole = v exp
2π2

3λ0
= v exp

4π2v2

3m2
H

(1.118)

Such a pole is called a Landau pole and gives us a maximum scale beyond which we cannot rely on our perturbative
theory to work. In the upper line of Figure 3 we show Qpole versus the Higgs mass, approximately computed in
Eq.(1.118). As a function of the Higgs mass Qpole gives the maximum scale where our theory is valid, so we have to
reside below and to the left of the upper line in Figure 3. Turning the argument around, for given Qpole we can read off
the maximum allowed Higgs mass which in the limit of large cutoff values around the Planck scale 1019 GeV
becomes mH . 180 GeV, in good agreement with the observed Higgs mass around 125 GeV.
This limit is often referred to as the triviality bound, which at first glance is precisely not what this theory is — trivial
or non–interacting. The name originates from the fact that if we want our Higgs potential to be perturbative at all
scales, the coupling λ can only be zero everywhere. Any finite coupling will hit a Landau pole at some scale. Such a
theory with zero interaction is called trivial.

After looking at the ultraviolet regime we can go back to the full renormalization group equation of Eq.(1.114) and
ask a completely different question: if the Higgs coupling λ runs as a function of the scale, how long will λ > 0
ensure that our Higgs potential is bounded from below?
This bound is called the stability bound. On the right hand side of Eq.(1.114) there are two terms with a negative sign
which in principle drive λ through zero. One of them vanishes for small λ ∼ 0, so we can neglect it under the
assumption that we only study very weakly interacting Higgs sectors. In the small-λ regime we therefore encounter
two finite competing terms

d λ

d logQ2
=

1

16π2

[
−3

4m4
t

v4
+

3

16

(
2g4 +

(
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[
−12m4

t

v4
+

3

16

(
2g4 +

(
g2 + g′2

)2)]
log

Q2

v2
. (1.119)

The usual boundary condition at λ(v2) = m2
H/(2v

2) is the starting point from which the top Yukawa coupling drives
λ through zero. This second critical scale λ(Q2

stable) = 0 also depends on the Higgs mass mH . The second (smaller)
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contribution from the weak gauge coupling ameliorates this behavior. The condition for a zero Higgs self coupling is

λ(v2) =
m2
H

2v2
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= − 1

16π2
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−12m4

t
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+
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16
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=
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log
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Q2
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v2
=

1

42
log
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v
=

1

42
⇔ mH ≈

v

4
, (1.120)

where for the numerical estimate we assume a running mass mt = 163 GeV up to Qstable = 10v. From Eq.(1.119) we
see that only for energy scales below Qstable(mH) or for Higgs masses above mH(Qstable) the Higgs potential is
bounded from below and our vacuum stable. In Figure 3 we show the bound on the Higgs mass as a function of Qstable
as the lower curve, above which our consistent theory has to reside. Towards larger Qstable � v the critical Higgs mass
will increase, but for a numerical evaluation we need to know the running couplings. However, from Fig. 3 we
confirm typical values

mH =

{
70 GeV for Qstable = 103 GeV

130 GeV for Qstable = 1016 GeV . (1.121)

For any maximum validity scale Qstable this stability bound translates into a minimum Higgs mass balancing the
negative slope in Eq.(1.119) for which our theory is then well defined.
Our discussion of the triviality bound and of the stability of our vacuum has a weak spot: it follows from Eq.(1.114)
and assumes that only the renormalizable couplings enter the behavior of the Higgs vacuum at large energy scales. On
the other hand, if we start from low energies we should at some point reach energy scales where higher–dimensional
operators enter the picture. Even in the Standard Model such operators get induced by loops, and non–perturbative
studies indicate that they stabilize the Higgs potential and prevent the sign change in λ. If that should be true it would
mean that our perturbative approximation only considering the leading renormalizable operators does not allow us to
extrapolate to energy scales beyond 1010 GeV or more and that vacuum stability is simply not an issue.

Summarizing what we know about the Higgs mass in the Standard Model we already have indirect experimental as
well as theoretical constraints on this otherwise free parameter in the Higgs sector.
Strictly in the Standard Model, electroweak precision data points to the mass range mH . 200 GeV. This means at the
LHC we were either looking for a light Higgs boson or we should have expected a drastic modifications of our
Standard Model, altering this picture significantly. If a discovery of a Higgs boson around mH = 125 GeV means
good or bad news is in the eye of the beholder. Certainly, at this mass we do not have to expect huge deviations from
the Standard Model motivated by the Higgs sector.
From the renormalization group we have two pieces of information on the Higgs mass, again in the renormalizable
Standard Model: the Landau pole or triviality bound gives an upper limit on mH as a function of the cutoff scale.
Vacuum stability gives a lower bound on mH as a function of the cutoff scale. Running both cutoff scales towards the
Planck mass Qpole, Qstable → 1019 GeV, we see in Figure 3 that only Higgs mass values around
mH = 130 · · · 180 GeV are allowed for a truly fundamental and stable Standard Model. Above this parameter range
the Higgs sector interacts too strongly and soon develops a Landau pole, while below this Higgs mass window the
Higgs sector is too weakly interacting to give a stable vacuum. The exact numbers including renormalization group
running at two loops gives the stability condition in two forms [5]

mH > 129.6 GeV + 2 (mt − 173.35 GeV)− αs(mZ)− 0.1184

0.0014
GeV± 0.3 GeV

mt < (171.36± 0.46) GeV , (1.122)

where the error bars have to be taken with a grain of salt, if we follow the strict rules about combining experimental
and theory uncertainties described in Section 3.4. If vacuum stability should really be a problem, the observed value
of the Higgs mass around 125 GeV is at the edge of the vacuum stability bound, again leaving everything open.
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1.2.5 Top–Higgs renormalization group

The two critical scales in the running of the Higgs self coupling are not the only interesting feature of the
renormalization group equation Eq.(1.114). If we limit ourselves to only the top and Higgs sector it reads

d λ

d logQ2
=

1

16π2

(
12λ2 + 6λy2

t − 3y4
t

)
. (1.123)

The definition of a fixed point λ∗ is that the function λ(Q2) has to stick to this value λ∗ once it reaches it. An
attractive fixed point is a value λ∗ which is automatically approached when the argument Q2 reaches the
corresponding infrared or ultraviolet regime. If we assume that the Higgs self coupling is closely related to the Higgs
mass, mH =

√
2λv, a fixed point really tells us something about the observable Higgs mass.

Including all couplings in Eq.(1.114) we see that there is no obvious fixed point of λ for either large (UV) or small
(IR) scales Q. The solution of the RGE for λ alone we compute in Eq.(1.117). In the infrared the scalar four point
couplings as well as its derivative vanish,

lim
logQ2→−∞

λ(Q2) = λ∗ = 0 lim
logQ2→−∞

dλ

d logQ2
= lim

logQ2→−∞

3λ2

4π2
= 0 . (1.124)

This means that in the infrared the scalar self coupling alone would approach zero. Such a vanishing fixed point
λ∗ = 0 is called a Gaussian fixed point. Obviously, higher powers of λ in the RGE will not change this infrared
pattern. The triviality bound is the first example of an attractive IR fixed point in renormalization group running.

The question is if we can find something interesting when we go beyond the pure Higgs system. The largest
electroweak coupling is the top Yukawa, already included in Eq.(1.123). In complete analogy we can compute the
Higgs loop corrections to the running of the top Yukawa coupling

d y2
t

d logQ2
=

9

32π2
y4
t . (1.125)

Again, the top Yukawa is closely related to the top mass, mt = ytv/
√

2. The top Yukawa also has an attractive
Gaussian IR fixed point at yt,∗ = 0, but this is not what we are after. Instead, we define the ratio of the two couplings
as

R =
λ

y2
t

(1.126)

and compute the running of that ratio,
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(
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√
65− 1

16
' 0.44 . (1.127)

This is not a fixed point in any of the two couplings involved, but a fixed point in the ratio of the two. It is broken by
the gauge couplings, most notably by the αs correction to the running top Yukawa or top mass. With the non–Gaussian
IR fixed point for the coupling ratio R as well as the Gaussian fixed points for the individual couplings the question is
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how they are approached. It turns out that the system first approaches the fixed-point region for R and on that line
approaches the double zero-coupling limit. In the far infrared this predicts a ratio of the top mass to the Higgs mass of

λ

y2
t

=
m2
H

2v2

v2

2m2
t

∣∣∣∣∣
IR

=
m2
H

4m2
t

∣∣∣∣∣
IR

= 0.44 ⇔ mH

mt

∣∣∣∣∣
IR

= 1.33 (1.128)

At first sight this is not in good agreement with the Standard Model value. On the other hand, the top and Higgs
masses we usually quote are not running masses in the far infrared. If the analysis leading to Eq.(1.128) is done
properly, including gravitational effects in the ultraviolet, it predicts for a top pole mass of mt = 172 GeV a Higgs
mass mH = 126 GeV. Puzzling.

While the Wetterich fixed point in Eq.(1.127) is the most obvious to discuss in these lecture notes we should also
mention that there exists a prototypical fixed point of this kind: the Pendleton-Ross fixed point relates the strong
coupling and the top mass αs/y2

t in the infrared. It is strictly speaking only valid for non–perturbatively large strong
coupling, making it hard to predict a value for the top mass. Together with a more detailed analysis of the actual
running the link to the strong couplings predicts a top pole mass in the 100-200 GeV range. What does the obvious
quantitative applicability of these fixed points really mean? They suggest that our Standard Model is rooted at high
scales and our weak–scale infrared parameters are simply fixed by a renormalization group analysis. Unfortunately,
infrared fixed points imply that during the renormalization group evolution we forget all of the high–scale physics.
Someone up at high scales wants to know that he/she is in charge, but does not want to reveal any additional
information. If we do not find any signature of new physics at the LHC we will have to study such predictions and
extract the underlying high–scale structures from the small effect around general fixed point features.

1.2.6 Two Higgs doublets and supersymmetry

In Section 1.1.5 we indicate how in the Standard Model the SU(2)L doublet structure of the fermions really involves
the Higgs field H and its conjugate H† to give mass to up–type and down–type fermions. One motivation to use two
Higgs doublets instead of one is to avoid the conjugate Higgs field and instead give mass up–type and down–type
fermions with one Σ(u,d) field each. Such a setup is particularly popular because it appears in supersymmetric
theories.

There are (at least) two reasons why supersymmetric models require additional Higgs doublets: first, supersymmetry
invariance does not allow us to include superfields and their conjugates in the same Lagrangian. The role which H†

plays in the Standard Model has to be taken on by a second Higgs doublet. Second, the moment we postulate
fermionic partners to the weakly charged scalar Higgs bosons we will generate a chiral anomaly at one loop. This
means that quantum corrections for example to the effective couplings of two gluons to a pseudoscalar Higgs or
Goldstone boson violate the symmetries of the Standard Model. This anomaly should not appear in the limit of
massless fermions inside the loop, but it does once we include one supersymmetric Higgsino state. The easiest way to
cancel this anomaly is through a second Higgsino with opposite hypercharge.
Two-Higgs–doublet models of type II are not the only way to extend the Standard Model Higgs sector by another
doublet. The crucial boundary condition is that the second Higgs doublet should not induce flavor changing neutral
currents which have never been observed and are forbidden in the Standard Model. The simplest flavor–compatible
approach is to generate all fermion masses with one Higgs doublet and add the second doublet only in the gauge
sector. This ansatz is forbidden in supersymmetry and usually referred to as type I. As mentioned above, type II
models separate the up–type and down–type masses in the quark and lepton sector and link them to one of the
doublets each. In both cases, type I and type II, we can disconnect the lepton sector from the quark sector and for
example flip the assignment of the two doublet in the lepton sector. Models of type III use a different way to avoid
large flavor changing neutral currents. In an appropriate basis only one of the Higgs doublets develops a vacuum
expectation value. It does not induce any flavor changing mass terms. The other doublet couples to two fermions of
masses m1,2 proportional to

√
m1m2. This way, flavor changing neutral currents are sufficiently suppressed. In the

gauge boson sector is it important that none of these three models allow for a Z0W+H− coupling, so they obey the
custodial symmetry discussed in Section 1.1.6 at tree level. In our discussion of fermion masses and couplings we will
limit ourselves to a model of type II, though. A supersymmetrized Standard Model Lagrangian together with a type II
two-Higgs–doublet model we refer to as the minimal supersymmetric Standard Model (MSSM).
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Using two sigma fields to generate the gauge boson masses is a straightforward generalization of Eq.(1.29),

LD2 = −v
2
u

2
Tr
[
V (u)
µ V (u)µ

]
− v2

d

2
Tr
[
V (d)
µ V (d)µ

]
. (1.129)

As for one Higgs doublet we define V (u,d)
µ = Σ(u,d)(DµΣ(u,d))† for two Σ fields. In unitary gauge we can compute

the corresponding gauge boson masses following Eq.(1.35). The squares of the individual vacuum expectation values
add to the observed value of v = 246 GeV. This structure can be generalized to any number of Higgs doublets. For
two Higgs doublets it allows us to use the known value of v and a new mixing angle β as a parameterization:

v2
u + v2

d = v2 ⇔ vu = v sinβ and vd = v cosβ . (1.130)

For our type II setup the fermion mass terms in Eq.(1.26) include the two Higgs doublets separately

LD3 = −QLmQuΣu
11 + τ3

2
QR −QLmQdΣd

11− τ3
2

QR + ... , (1.131)

with the isospin projectors (11± τ3)/2.

To study the physical Higgs bosons we express each of the two sigma fields in the usual representation

Σ(u,d) = 11 +
H(u,d)

vu,d
− i ~w(u,d)

vu,d
~w(u,d) = w(u,d)

a τa , (1.132)

which means that the longitudinal vector bosons are

~w = cosβ ~w(u) + sinβ ~w(d) . (1.133)

Following Eq.(1.51) we can parameterize each of the Higgs doublets in terms of their physical Goldstone and Higgs
modes. We first recapitulate the available degrees of freedom. Following the structure Eq.(1.51) we parameterize the
two Higgs doublets, now in terms of H and consistently omitting the prefactor 1/

√
2.(

H+
u

H0
u

)
=

(
ReH+

u + i ImH+
u

vu + ReH0
u + i ImH0

u

) (
H0
d

H−d

)
=

(
vd + ReH0

d + i ImH0
d

ReH−d + i ImH−d

)
(1.134)

As required by electroweak symmetry breaking we have three Goldstone modes, a linear combination of ImH0
u and

ImH0
d gives the longitudinal Z while a linear combination of H+

u and H−d gives the longitudinal polarization of W±.
The remaining five degrees of freedom form physical scalars, one charged Higgs boson H±, two neutral CP-even
Higgs bosons H0

u, H
0
d mixing into the mass eigenstates h0 and H0, and a pseudo-scalar Higgs boson A0 from the

remaining imaginary part.

In addition to introducing two Higgs doublets the supersymmetric Standard Model fixes the quartic Higgs coupling λ.
From Eq.(1.87) we know that the quartic coupling fixes the Higgs mass to m2

H = 2λv2, which means that
supersymmetry fixes the Higgs boson mass(es). In broken supersymmetry we have to consider three different sources
of scalar self interactions in the Lagrangian:

1. F terms from the SUSY-conserving scalar potential W ⊃ µ ·HuHd include four-scalar interactions
proportional to Yukawa couplings as well as mass terms proportional to |µ|2,

LW = −|µ|
2

2

(
|H+

u |2 + |H−d |
2 + |H0

u|2 + |H0
d |2
)
. (1.135)

Note that there is the usual relative sign between the definition of the scalar potential and the Lagrangian.
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2. in the Higgs sector the gauge–coupling mediated SUSY-conserving D terms involve abelian U(1)Y terms
D = gH†H as well as non–abelian SU(2)L terms Dα = g′H†ταH with the Pauli matrices as SU(2)L
generators,

LD =− g2

16

[(
|H+

u |2 + |H0
u|2 − |H−d |

2 − |H0
d |2
)2

+ 4 |H+
u H

0
d +H0

uH
−
d |

2
]

− g′2

16

(
|H+

u |2 + |H0
u|2 − |H−d |

2 − |H0
d |2
)2

. (1.136)

The sign of the D terms in the Lagrangian is indeed predicted to be negative.

3. last, but not least scalar masses and self couplings appear as soft SUSY breaking parameters

Lsoft = −
m2
Hu

2

(
|H+

u |2 + |H0
u|2
)
−
m2
Hd

2

(
|H−d |

2 + |H0
d |2
)
− b

2

(
H+
u H

−
d −H

0
uH

0
d + h.c.

)
(1.137)

All these terms we can collect into the Higgs potential for a two Higgs doublet model

V =
|µ|2 +m2

Hu

2

(
|H+

u |2 + |H0
u|2
)

+
|µ|2 +m2

Hd

2

(
|H0

d |2 + |H−d |
2
)

+
b

2

(
H+
u H

−
d −H

0
uH

0
d + h.c.

)
+
g2 + g′2

16

(
|H+

u |2 + |H0
u|2 − |H−d |

2 − |H0
d |2
)2

+
g2

4
|H+

u H
0
d +H0

uH
−
d |

2 (1.138)

This full form we would like to simplify a little before focussing on the neutral states. Because now we have two
Higgs doublets to play with we can first rotate them simultaneously without changing the potential V . We choose
H+
u = 0 at the minimum of V , i.e. at the point given by

∂V

∂H+
u

=|H+
u |
(
|µ|2 +m2

Hu

)
+
b

2
H−d

+
g2 + g′2

4
|H+

u |
(
|H+

u |2 + |H0
u|2 − |H−d |

2 − |H0
d |2
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+
g2

2
H0
d

(
H+
u H

0
d +H0

uH
−
d

)
H+
u =0−→ b

2
H−d +

g2

2
H0
dH

0
uH
−
d

!
= 0 . (1.139)

This minimization condition can be fulfilled either as H−d = 0 or as b+ g2H0
dH

0
u = 0. Choosing a field dependent

value of the SUSY breaking parameter b is hard to justify — our minimum condition should be a condition on the
fields and not on the Lagrangian parameters. The condition H−d = 0 simplifies the functional form of the potential at
the minimum to

V
∣∣∣
minimum

=
|µ|2 +m2

Hu

2
|H0

u|2 +
|µ|2 +m2

Hd

2
|H0

d |2 − b|H0
u||H0

d |+
g2 + g′2

16

(
|H0

u|2 − |H0
d |2
)2

. (1.140)

At the minimum we absorb the phase of b into a rotation of H0
dH

0
u, so the entire b term then becomes real.

In this re-rotation we have simply removed the charged Higgs and Goldstone states from the potential. Because there
are no charged vacuum expectation values this should not affect the rest of the neutral spectrum. We will use the
simplified supersymmetric Higgs potential for our study of the neutral Higgs states. Looking for the minimum of the
neutral part of the Higgs potential will allow us to relate the two vacuum expectation values vu,d to the parameters in
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the potential. The minimum conditions are

0
!
=

∂V

∂|H0
u|

∣∣∣∣∣
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d

)
0 =|µ|2 +m2
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− bvu

vd
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4

(
v2
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d

)
(1.141)

From the Standard Model Higgs sector with custodial symmetry, Eq.(1.39), we know how to replace the gauge
couplings squared by the gauge boson masses

m2
Z =

g2 + g′2

2

(
v2
u + v2

d

)
m2
W =

g2

2

(
v2
u + v2

d

)
. (1.142)

The minimum conditions then read

|µ|2 +m2
Hu = b cotβ +

m2
Z

2
cos(2β) |µ|2 +m2

Hd
= b tanβ − m2

Z

2
cos(2β) . (1.143)

These relations can be used to express b and |µ| in terms of the gauge boson masses and the angle β. This suggests
that the extended Higgs sector will be governed by two independent mass scales, mZ ∼ vu,d and

√
b. For now, we

will still keep b and |µ| to shorten our expressions.

The masses of all physical modes as fluctuations around the vacuum state are given by the quadratic approximation to
the potential around the vacuum. Because the interaction eigenstates Hu,d do not have to be mass eigenstates for their
real or imaginary parts the matrix of second derivatives defines a scalar mass matrix just like in Eq.(1.95)

(
M2

)
jk

=
∂2V

∂H0
j ∂H

0
k

∣∣∣∣∣
minimum

(1.144)

We will compute the masses of all three scalar Higgs states, beginning with the pseudoscalar mass mA. If this state is
a superposition of ImH0

u and ImH0
d the relevant terms in Eq.(1.140) are

V ⊃
|µ|2 +m2

Hu

2
(ImH0

u)2 +
|µ|2 +m2

Hd

2
(ImH0

d)2 + b ImH0
u ImH0

d (1.145)

+
g2 + g′2

16
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)
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4
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Hu
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+
g2 + g′2

4

[
(ReH0

u)2 + (ImH0
u)2 − (ReH0

d)2 − (ImH0
d)2
]

+
g2 + g′2

2
(ImH0

u)2 .

Evaluating this derivative at the minimum of the potential and with both scalar fields replaced by their vacuum
expectation values gives us the masses

m2
ImHu =

(
|µ|2 +m2

Hu

)
+
g2 + g′2

4

(
v2
u − v2

d

)
= b

vd
vu

= b cotβ and m2
ImHd = b tanβ , (1.146)
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where we use the minimum condition Eq.(1.143) and the symmetry under the exchange Hu ↔ Hd. The parameter b
indeed has mass dimension two. For the mixed second derivative we find

∂2V

∂(ImH0
u)∂(ImH0

d)

∣∣∣∣∣
minimum

= b . (1.147)

Without any assumptions the mass matrix for the two CP-odd Higgs and Goldstone mode is symmetric and has the
form

M2
A = b

(
cotβ 1

1 tanβ

)
with the eigenvalues

 m2
G = 0

m2
A =

2b

sin(2β)

. (1.148)

The massive state A0 is a massive pseudoscalar Higgs, while the Goldstone is massless, as expected, and will be
absorbed by the massive Z boson. The mixing angle between these two Goldstone/Higgs modes is given by β,

2(M2
A)12

m2
A −m2

G

=
2b

2b

sin(2β)
− 0

= sin(2β) . (1.149)

Without going into any details we can assume that the Yukawa couplings of the heavy pseudoscalar A0 will depend on
the mixing angle tanβ. It turns out that its coupling to bottom quarks is enhanced by tanβ while the coupling to the
top is reduced by the same factor.

Exactly the same calculation as in Eq.(1.146) we can follow for the two CP-even scalar Higgs bosons, starting with
ReH0

u. The relevant quadratic terms in the potential now are

V ⊃
|µ|2 +m2

Hu

2
(ReH0

u)2 +
g2 + g′2

16
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(ReH0

u)2 + (ImH0
u)2 − (ReH0

d)2 − (ImH0
d)2
]2

(1.150)
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2
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The mass follows once we evaluate this second derivative at the minimum, which means with both real parts of the
scalar Higgs fields replaced by vacuum expectation values:

m2
ReHu =

(
|µ|2 +m2
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)
+
g2 + g′2

4

(
v2
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d + 2v2
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)
using Eq.(1.143)

= b cotβ +
g2 + g′2

2
v2
u

= b cotβ +m2
Z sin2 β

m2
ReHd = b tanβ +m2

Z cos2 β .

As mentioned above, b has the dimension mass squared. Going back to Eq.(1.140) we see that the mixed derivative
includes two terms

∂2V

∂(ReH0
u)∂(ReH0

d)
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16
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2
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=− b− m2
Z

2
sin(2β) . (1.151)
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Collecting all double derivatives with respect to the real part of the scalar fields we arrive at the mass matrix for the
two CP-even Higgs bosons ReH0

u and ReH0
d . The Lagrangian parameter b we can replace by the physical Higgs and

gauge boson masses and the mixing angle β,

M2
h,H =

b cotβ +m2
Z sin2 β −b− m2

Z

2
sin(2β)

−b− m2
Z

2
sin(2β) b tanβ +m2
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=

m
2
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2
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2
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Z

2
sin(2β)

−m
2
A +m2

Z

2
sin(2β)

m2
A

2
sin(2β) tanβ +m2

Z cos2 β


=

m2
A cos2 β +m2

Z sin2 β −m
2
A +m2

Z

2
sin(2β)

−m
2
A +m2

Z

2
sin(2β) m2

A sin2 β +m2
Z cos2 β

 . (1.152)

The mass values for the mass eigenstates h0, H0, ordered by mass mh < mH , are

2m2
h,H = m2

A +m2
Z ∓

√
(m2

A +m2
Z)

2 − 4m2
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2
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' m2
A ∓

√
m4
A + 2m2

Am
2
Z (1− 2 cos2(2β)) for mA � mZ

' m2
A ∓m2

A

√
1−

4m2
Z

m2
A

cos(4β) . (1.153)

In the limit of a heavy pseudoscalar the supersymmetric Higgs sector with its fixed quartic couplings predicts one light
and one heavy scalar mass eigenstate,

m2
h,H =

m2
A

2
∓ m2

A

2

[
1− 2m2

Z

m2
A

cos(4β)

]
=

{
m2
Z cos(4β)

m2
A

. (1.154)

The mass of the lighter of these two states depends on the parameter β, but it is bounded from above to mh < mZ . As
we will see in the following section this upper bound is modified by loop corrections, but it is fair to say that
supersymmetry predicts one light Higgs. If that is sufficient to claim that the discovery of a 125 GeV Higgs boson is
the first discovery predicted by supersymmetry is a little controversial, though.

The mixing angle between the two CP-even scalar states is in general independent of the pseudoscalar mixing angle β.
We denote it as α, and it can be computed from the mixing matrix shown in Eq.(1.152). The couplings of the light and
heavy scalar Higgs to up–type and down–type quarks are modified both in terms of α and in terms of β, where α
appears in the numerator through Higgs mixing and β appears in the denominator of the Yukawas mq/v, replacing v
by vu and vd. The correction factors for the light Higgs boson h0 are cosα/ sinβ for up–type quarks and
− sinα/ cosβ for down–type quarks. The same factors for the heavy Higgs H0 are sinα/ sinβ when coupling to
up–type quarks and cosα/ cosβ when coupling to down–type quarks.

To keep the equations simple we ignore the charged Higgs entirely, even though its existence would be the most
striking sign of an extended Higgs sector with (at least) one additional doublet. At tree level a full analysis of the
Higgs potential in Eq.(1.138) gives us a massless Goldstone and a massive charged Higgs scalar with

mH± =
√
m2
W +m2

A . (1.155)

Its Yukawa coupling include up–type and down–type contributions, dependent on the chiralities of the fermions.
However, after adding all chiralities the coupling factor typically becomes (m2

d tan2 β +m2
u cot2 β), very similar to

the pseudoscalar case.
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Figure 4: Masses of all supersymmetric Higgs states as a function of the pseudoscalar Higgs mass, computed with
FeynHiggs. Figures of this kind can be found for example in Ref. [6].

In the large-mA limit m2
A ∼ b� m2

Z the Higgs mass matrix as shown the first line of Eq.(1.152) is simplified and
essentially aligns with its pseudoscalar counter part Eq.(1.148),

M2
h,H ' b

(
cotβ −1
−1 tanβ

)
⇒ α = π − β (1.156)

This means cosα = sinβ and sinα = − cosβ. The correction factors for the h0 Yukawa couplings become unity
while the couplings of the heavy Higgs H0 are tanβ enhanced for down–type quarks and tanβ suppressed for
up–type quarks. From a phenomenological point of view the light supersymmetric Higgs scalar behaves just like a
Standard Model Higgs boson while the heavy scalar and pseudoscalar Higgs bosons are hardly distinguishable. Both
of them and the charged Higgs have large masses of order mA. In Figure 4 we show all masses of the physics Higgs
bosons, now including radiative corrections which we will discuss in Section 1.2.7. For large pseudoscalar masses we
clearly see the decoupling of all three heavy states from the one light Higgs boson.
As a matter of fact, this decoupling regime where the light supersymmetric Higgs boson is indistinguishable from a
Standard Model Higgs of the same mass is exact and includes all couplings and properties. Small deviations from the
Standard Model couplings, suppressed by a finite mass ratio mh/mA, are one motivation for the Higgs coupling
analysis discussed in Section 1.8.1.

1.2.7 Coleman–Weinberg potential

In Section 1.2.1 we discuss the form of the Higgs potential, as defined by all allowed renormalizable operators in the
Lagrangian. We make it a little more interesting by including dimension-6 operators which are not renormalizable, but
we stick to a power series in φ†φ. A different kind of contribution to the Higgs potential can arise from loops of states
which couple to the Higgs boson.
We start by limiting ourselves to dimension-4 operators and replace the tree level potential Eq.(1.78) by an
effective potential, including a tree level and a loop contribution. The question is if we can induce spontaneous
symmetry breaking with a non–trivial vacuum position of the Higgs field through a loop–induced potential.

Our toy model is a φ4 theory of a single real massive scalar field, a little simpler than the complex Higgs–Goldstone
field in the Standard Model

L =
1

2
(∂µφ)2 − m2

0

2
φ2 − λ0

4
φ4 (1.157)

Using some basic field theory we can elegantly describe this alternative source of spontaneous symmetry breaking.
We first review the generating functional for a free real scalar field theory (following Mark Srednicki’s conventions
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changed to our metric)

Z0(J) =

∫
Dφ eiS0(φ)+i

∫
d4x Jφ

=

∫
Dφ ei

∫
d4x (L0+Jφ)

= e
i
2

∫
d4x1d

4x2 J(x1)∆(x1−x2)J(x2)

with ∆(x1 − x2) = −
∫

d4k

(2π)4

e−ik(x1−x2)

k2 −m2
0

∆̃(k2) = − 1

k2 −m2
0

. (1.158)

In this form we see how we can compute propagators or other time ordered products of field operators using
functional derivatives on the generating functional

i∆(x1 − x2) ≡ 〈0|Tφ(x1)φ(x2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
Z0(J)

∣∣∣∣∣
J=0

. (1.159)

The vacuum expectation value of the free field itself is zero, as is the expectation value for any odd number of scalar
fields. This is because there will always be one factor J left after the functional derivative which then gets set to zero.

Once we switch on an interaction λ0 this does not have to be true any longer. Moving from Z to iW = logZ means
we omit the unconnected interaction diagrams. In analogy to the free theory we define an effective action Γ in terms
of exact propagators and exact vertices as

ZΓ(J) =

∫
Dφ eiΓ(φ)+i

∫
d4x Jφ ≡ eiWΓ(J) . (1.160)

This effective action defines a stationary field configuration φJ through

δ

δφ(x)

(
Γ(φ) +

∫
d4x′J(x′)φ(x′)

)
= 0 ⇔ δΓ(φ)

δφ(x)

∣∣∣∣∣
φJ

= −J(x) . (1.161)

Such a stationary point of the exponential allows us to expand the effective action and the corresponding generating
functional defined in Eq.(1.160) in terms of the field fluctuations.
At this point it would help if we could make physics sense out of the field configuration φJ(x). We only quote that to
leading terms in ~ (i.e. at tree level) we can express the interacting generating functional for connected diagrams in
terms of the effective action at this stationary point as a Legendre transform,

W (J) = Γ(φJ) +

∫
d4xJ(x)φJ(x) . (1.162)

A proper derivation of this formula can be found in Chapter 21 of Mark Srednicki’s field theory book. Using this
relation we can speculate about a non–trivial expectation value of an interacting scalar field in the presence of a finite
source J . In analogy to Eq.(1.159) we need to compute

〈0|φ(x)|0〉J =
δ

δJ(x)
W (J)

=
δΓ(φJ)

δJ(x)
+ φJ(x) +

∫
d4x′ J(x′)

δφJ(x′)

δJ(x)
using Eq.(1.162)

=

∫
d4x′

δΓ(φJ)

δφJ(x′)

δφJ(x′)

δJ(x)
+ φJ(x) +

∫
d4x′ J(x′)

δφJ(x′)

δJ(x)

=

∫
d4x′

(
δΓ(φJ)

δφJ(x′)
+ J(x′)

)
δφJ(x′)

δJ(x)
+ φJ(x) using Eq.(1.161)

= φJ(x) . (1.163)
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On the way we apply the definition of the stationary point in Eq.(1.161). The expectation value we are looking for is
nothing but the stationary point of the effective action Γ. In the limit J = 0 this value φJ(x) becomes a vacuum
expectation value.

Motivated by the general expectation that a classical solution will change much more slowly than the quantum field
we assume that φJ is constant,

φ(x) = φJ + η(x) and eiWΓ(J) =

∫
Dη eiΓ(φJ+η)+i

∫
d4x J (φJ+η) . (1.164)

The path integral over φJ is trivial and only changes the irrelevant normalization of the generating functional. The
expanded exponential around the saddle point with its vanishing first derivative reads

Γ(φ) +

∫
d4x J(x)φ(x) = Γ(φJ) +

∫
d4x J(x)φJ(x) +

1

2

∫
d4x1d

4x2 η(x1)

(
δ2Γ(φ)

δφ(x1)δφ(x2)

)
φ=φJ

η(x2)

≡ Γ(φJ) +

∫
d4x J(x)φJ(x) +

1

2

∫
d4x1d

4x2 η(x1)Γ(2)(φJ)η(x2) . (1.165)

This means the linear term vanishes by definition around the stationary point while the source term does not contribute
beyond the linear term. The last step is the definition of Γ(2)(φJ). Exponentiating this action we can make use of the
definition of the functional determinant for real scalar fields,

Z(η) =

∫
Dη e−i

∫
dnx1 d

nx2 η(x1)Mη(x2) ≡ 2(2π)n

detM
. (1.166)

Inserting this formula into the definition of the generating functional for connected Green functions WΓ gives us
immediately

iWΓ(J) = log

[
eiΓ(φJ )+i

∫
d4xJ(x)φJ (x)

∫
Dη e i2

∫
d4x1d

4x2 η(x1)Γ(2)(φJ )η(x2)

]

= iΓ(φJ) + i

∫
d4x J(x)φJ(x) + log

[
2(2π)n

det
(
−Γ(2)(φJ)

)]1/2

using Eq.(1.166)

= iΓ(φJ) + i

∫
d4x J(x)φJ(x) +

1

2
log det

(
2n+1πn

)
− 1

2
log det

(
−Γ(2)(φJ)

)
= i

[
Γ(φJ) +

∫
d4x J(x)φJ(x) +

i

2
Tr log

(
−Γ(2)(φJ)

)
+ const

]
. (1.167)

In the last step we exploit the general operator identity commuting the logarithm and the trace. Finite terms in a
potential we can ignore. Comparing this result to Eq.(1.162) we see that the exact generating functional WΓ includes
an additional loop–induced term,

WΓ(J) = W (J) +
i

2
Tr log

(
−Γ(2)(φJ)

)
. (1.168)

In other words, the Legendre transform of the full effective connected generating functional WΓ includes an
additional Tr log contribution. We need to translate this loop–induced contribution to the effective action into
something we can evaluate for our model. The underlying concept is the effective potential. If φJ does not propagate,
its effective action only includes potential terms and no kinetic term. In other words, we can define an effective
potential which the propagating field η(x) feels as

Veff = V0 + Vloop = − 1

L4

[
Γ(φJ) +

i

2
Tr log

(
−Γ(2)(φJ)

)]
. (1.169)

The relative factor L4 is the phase space volume which distinguishes the action from the Lagrangian. It will drop out
once we compute Vloop. In this definition of the effective potential we naively assume that both terms are finite and
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well defined. It will turn out that this is not the case, so we should add to the definition in Eq.(1.169) something like
‘finite terms of’ or ‘renormalized’.

Until now our argument has been very abstract, so let us see if computing the effective potential for our real scalar
field Eq.(1.157) clarifies things. Following the definition in Eq.(1.165) we find

−Γ(2)(φJ) = − δ2

δη(x1)δη(x2)

∫
d4x

[
−1

2
η∂2

µη −
m2

0

2
(φJ + η)2 − λ0

4
(φJ + η)4

] ∣∣∣∣∣
η=0

= −
∫
d4x

δ2

δη(x1)δη(x2)

[
−1

2
η∂2

µη −
m2

0

2

(
η2 + · · ·

)
− λ0

4

(
η4 + 4η3φJ + 6η2φ2

J + · · ·
)] ∣∣∣∣∣

η=0

= ∂2
µ +m2

0 + 3λ0φ
2
J . (1.170)

The Tr log combination we know how to compute once we assume we know the eigenvalues of the d’Alembert
operator ∂2. Because it will turn out that in four space–time dimensions we need to remove ultraviolet divergences
through renormalization we compute it in n = 4− 2ε dimensions. The formula for this n-dimensional
scalar loop integral is standard in the literature:

Tr log
(
∂2 + C

)
=
∑
p

log
(
−p2 + C

)
= Ln

∫
dnp

(2π)n
log
(
−p2 + C

)
= −iLn Γ

(
−n

2

) Cn

(4π)n/2
. (1.171)

The loop–induced contribution to the effective potential, now including the renormalization scale to protect the mass
dimension, is then

Vloop = − i

2L4
Tr log

(
∂2 +m2

0 + 3λ0φ
2
J

)
= −µ4−n

R L4−n 1

2(4π)n/2
Γ
(
−n

2

) (
m2

0 + 3λ0φ
2
J

)n/2
= −µ2ε

R

1

2(4π)2−εΓ (−2 + ε)
(
m2

0 + 3λ0φ
2
J

)2−ε
= −µ2ε

R

1

2(4π)2−ε
Γ (ε)

(−2 + ε)(−1 + ε)

(
m2

0 + 3λ0φ
2
J

)2−ε
= − 1

2(4π)2

1

2− 3ε

(
1

ε
− γE + log(4π)

)(
m2

0 + 3λ0φ
2
J

)2(
1− ε log

m2
0 + 3λ0φ

2
J

µ2
R

+O(ε2)

)
= − 1

64π2

(
1

ε
− γE + log(4π) +

3

2

)(
m2

0 + 3λ0φ
2
J

)2
+

1

64π2

(
m2

0 + 3λ0φ
2
J

)2
log

m2
0 + 3λ0φ

2
J

µ2
R

. (1.172)

In the second to last line we use the simple trick

Cε = elogCε = eε logC = 1 + ε logC +O(ε2) . (1.173)

The expression for Vloop is divergent in the limit ε→ 0, so we need to renormalize it. In the MS scheme this simply
means subtracting the pole 1/ε− γE + log(4π), so the renormalized effective potential or
Coleman–Weinberg potential becomes

Veff = V0 + V (ren)
loop = V0 +

1

64π2

(
m2 + 3λφ2

J

)2(
log

m2 + 3λφ2
J

µ2
R

− 3

2

)
. (1.174)
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The bare mass and coupling appearing in Eq.(1.172) implicitly turn into their renormalized counter parts in the MS
scheme. Combining the tree level and the loop–induced potentials we see how this additional contribution affects our
real scalar φ4 theory defined by Eq.(1.157) in its massless limit

Veff =
λ

4
φ4
J +

9λ2

64π2
φ4
J

(
log

3λφ2
J

µ2
R

− 3

2

)
=
λ

4
φ4
J

[
1 +

9λ

16π2

(
log

3λφ2
J

µ2
R

− 3

2

)]
. (1.175)

In the limit where the logarithm including a physical mass scale µR ≡M becomes large enough to overcome the
small coupling λ we can compute where the expression in brackets and hence the whole effective potential passes
through zero. Close to this point the potential also develops a non–trivial minimum, i.e. a minimum at finite field
values,

d

dφ2
J

Veff(φJ) =
λ

2
φ2
J

[
1 +

9λ

16π2

(
log

3λφ2
J

M2
− 3

2

)]
+
λ

4
φ4
J

9λ

16π2

1

φ2
J

' λ

2
φ2
J

[
1 +

9λ

16π2
log

3λφ2
J

M2
+

9λ

32π2

]
with − log

φ2
J

M2
� 1

' λ

2
φ2
J

[
1 +

9λ

16π2
log

3λφ2
J

M2

]
with

λ

4π2
� 1

≡ 0 ⇔ φ2
J,min =

M2

3λ
e−16π2/(9λ) . (1.176)

The finite term −3/2 in Eq.(1.175) is numerically sub-leading and hence often omitted. Moreover, compared with
Eq.(1.175) the leading contribution only applies the derivative to the over–all factor φ4

J , not to the argument inside the
logarithm. This minimum is exclusively driven by the loop contribution to the scalar potential. This means that the
loop–induced Coleman–Weinberg potential can break electroweak symmetry, when applied to the Higgs field in the
Standard Model. However, the position of this minimum we should take with a grain of salt, because logarithms of the
kind log(φJ/M) will appear in many places of the higher order corrections. The mechanism of generating a physical
mass scale through a strong interaction combined with a renormalization group analysis or renormalization scale is
called dimensional transmutation.

In the Standard Model we can compute the size of the Higgs self coupling, λ = m2
H/(2v

2) = 0.13. Forgetting the fact
that our toy model is a real scalar theory we can then compute the corresponding field values at the minimum or
vacuum expectation value. In the loop–induced minimum it comes out very small,

φ2
J,min

M2
= 2.6× e−135 ' 10−60 . (1.177)

To explain the gauge boson masses and the Higgs boson in the Standard Model the Coleman–Weinberg potential is
not well suited. However, in the supersymmetric Higgs sector discussed in Section 1.2.6 it is very useful to compute
the mass of the lightest supersymmetric Higgs boson beyond tree level. We left this scenario with the prediction
mh < mZ , which is clearly ruled out by the measured value of mH = 125 GeV. The question is if loop corrections to
the supersymmetric Higgs potential can increase this Higgs mass bound, such that it agrees with the measurement.

The toy model we will study is the light supersymmetric Higgs boson combined with a second heavy scalar, the scalar
partner of the top quark. Top squarks are the supersymmetric partners of the chiral left handed and right handed top
quarks. They can mix, which means that we have to define a set of mass eigenstates t̃1,2. From Section 1.2.6 we know
that there are two independent kinds of four-scalar couplings between the stops and the Higgs bosons: F -term Yukawa
interactions proportional to the top Yukawa yt and D-term gauge interactions. If we limit ourselves to the large top
Yukawa corrections and neglect stop mixing we only have to consider one scalar state t̃. To simplify things further we
also assume that this scalar be real, neglecting the imaginary part of the electrically and weakly charged
supersymmetric top partner.
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The Lagrangian we study is the purely real stop–Higgs system with a stop–stop–Higgs–Higgs coupling yt, extended
from the Higgs system given in Eq.(1.87) to

L =
1

2
(∂µH)

2
+

1

2

(
∂µt̃
)2 − m2

t̃

2
t̃2 − y2

t

4
t̃2H2 + Higgs terms . (1.178)

The last term is the renormalizable four-point interaction between the two scalar fields. Its leading coupling strength is
the supersymmetric Yukawa coupling, i.e. the F term scalar interaction introduced in Eq.(1.135) with yt =

√
2mt/v.

The form of the Higgs potential at tree level is unchanged compared to the Standard Model because the stop t̃ does not
have a finite vacuum expectation value. To see what the Coleman–Weinberg effective potential Eq.(1.174) tells us
about this case we need to briefly recapitulate its derivation. The basis of our derivation is an expansion of the
Legendre transformed effective action Eq.(1.165) around a stationary point. This stationary point is the classical or
tree level solution, Eq.(1.162), so we can assume that the Coleman–Weinberg potential comes from a loop diagram.
Because the only coupling in our scalar φ4 theory is the scalar self coupling λ the relevant diagram must be the scalar
one-point diagram. The trace we compute in Eq.(1.171) is linked to a loop integral with one scalar propagator,
confirming this interpretation. Finally, the MS renormalization of the loop mass m and the coupling λ in Eq.(1.174) is
exactly what we would expect from such a calculation. In the final expression we see that the mass renormalization as
well as the coupling renormalization can trigger symmetry breaking. In the example shown in Eq.(1.176) we limit
ourselves to the coupling λ alone, to illustrate the loop–induced effect in addition to the tree level φ4 term.

Looking at the Lagrangian Eq.(1.178) we are instead interested in the effect which an additional massive scalar has on
the Higgs potential. This means we have to consider the general Coleman–Weinberg form in Eq.(1.174) in the limit
λ = 0. The mass which appears in the loop–induced potential is the mass which appears in the relevant one-point loop
integral. Now, this integral is a closed stop loop coupling to the Higgs propagator through the four-point coupling y2

t .
More generally, the loop–induced or Coleman–Weinberg potential derived in Eq.(1.174) induced only by a massive
loop contributing to the Higgs propagator is

Veff =
1

64π2

∑
(−1)S ndof m

4(φJ)

(
log

m2(φJ)

µ2
R

− 3

2

)
. (1.179)

Spin effects in the closed loop are taken care of by (−1)S = +1 for bosons and (−1)S = −1 for fermions. The
number of degrees of freedom is ndof = 1 for a real scalar, 2 for a complex scalar, and 4 for a fermion. The mass m is
the MS mass of the particle running inside the loop. One widely used approximation is the generalization of
Eq.(1.180) to the Standard Model including the Higgs mode, the Goldstone modes, and the large top Yukawa
mt = ytv

√
2 = ytφJ . In that case the Higgs potential in Eq.(1.78) includes a negative mass term m2 → −2µ2 and a

unit prefactor instead of λ/4,

Veff = V0

+
1

64π2
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−2µ2 + 12λφ2

J

)2(
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−µ2 + 12λφ2

J

µ2
R

− 3

2

)
+

3
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J

)2(
log
−2µ2 + 4λφ2

J

µ2
R

− 3

2

)
− Nc

16π2
(ytφJ)4

(
log

y2
t φ

2
J

µ2
R

− 3

2

)
. (1.180)

The MSSM differs from our toy model in two ways. First, the stop is not a single neutral scalar, but a set of two
charged scalars. If both of them couple proportional to y2

t to the Higgs boson and we omit the sub-leading finite term
−3/2 we find

Vloop =
2Nc
64π2

(ytφJ)
4

(
log

m2
t̃1

µ2
R

+ log
m2
t̃2

µ2
R

)
=

Nc
32π2

(ytφJ)
4

log
m2
t̃1
m2
t̃2

µ2
R

. (1.181)

The prefactor reflects the complex stop field with its two degrees of freedom. Second, for this model to be complete
we need to also take into account the top quark contribution from Eq.(1.180). By definition this includes both
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Figure 5: Branching ratios of the Standard-Model Higgs boson as a function of its mass, computed with HDECAY.
Off–shell effects in the decays to WW and ZZ are taken into account. Figure found for example in Refs.[7, 8].

chiralities with ndof = 4, so altogether we find

V (MSSM)
loop =

Nc
32π2

(ytφJ)4

(
log

m2
t̃1

µ2
R

+ log
m2
t̃2

µ2
R

− 2 log
m2
t

µ2
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)

=
Nc

32π2
(ytφJ)4 log

m2
t̃1
m2
t̃2

m4
t

. (1.182)

This is the leading loop correction to the lightest Higgs mass in the MSSM, lifting the allowed mass range at tree
level, m2

h < m2
Z , to include the measured value of 125 GeV. Looking in more detail, in Eq.(1.182) we assume the stop

mass matrix to be diagonal. If we allow for a non–diagonal stop mass matrix the value increases even further and we
find power corrections to mh proportional to the off-diagonal entries in the stop mass matrix. All these corrections
allow the observed Higgs mass around 125 GeV to be consistent with the MSSM prediction — remembering that the
light Higgs mass is actually a prediction from the quartic gauge couplings in the MSSM. However, the observed Higgs
mass suggests that the additional Higgs bosons is heavy and that the mixing between the stop interaction eigenstates is
strong.

1.3 Higgs decays and signatures
Signatures for new particles at colliders consist of a production process and a decay pattern. Both, the production and
the decay can contribute to unique kinematic features which we can use to extract signal from background events. The
actual new particle is then described by a Breit–Wigner propagator for unstable particles which we will discuss in
detail in Section 2.1.2. Since the Higgs boson is a scalar there are no correlations between production and decay
process, which simplifies the calculation and simulation of Higgs signatures. For backgrounds this factorization might
of course not hold.

Unlike the production processes the Higgs decay pattern is as simple as it can be. At tree level all decay rates are
determined by the Higgs coupling to Standard Model particles, which are fixed by unitarity. The rule for different
Higgs decays is simple; because by definition the Higgs field couples to all particles (including itself) proportional to
their masses it will preferably decay to the heaviest states allowed by phase space. This goes back to the condition
〈Σ〉 = 11 translated into the appearance of the combination (v +H) in the Higgs field φ and in the Lagrangian.
This behavior we see in Figure 5. Starting at low masses this first applies to decays to ττ and bb̄. The relative size of
their branching ratios around 10% : 90% is given by their Yukawa couplings in the appropriate renormalization
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scheme (yb/yτ ∼ 1.4), times an additional color factor Nc = 3 for the bottom quarks. Once the off–shell decays to
WW are allowed, they very soon dominate. The dominant decays to bottom pairs and W pairs become equal for
Higgs masses around 130 GeV. This is why we can consider ourselves lucky with an observed Higgs mass around
125 GeV: nature has chosen exactly the Higgs mass which allows us to observe the largest number of different Higgs
decays and this way extensively study the Higgs sector, as discussed in Section 1.8.1.
Because of the small mass difference between the W and Z bosons the decay to ZZ is not as dominant, compared to
the WW decay which has two degrees of freedom (W+W− and W−W+) in the final state. In particular in the region
where the W decays first becomes on–shell we see a drop of in the still off–shell Z decays. For large Higgs masses the
ratio of H →WW and H → ZZ decays is fixed by the relative factor of two, corresponding to the number of degrees
of freedom forming the final state. Above the top threshold the tt̄ decay becomes sizeable, but never really dominates.

We can roughly estimate the Higgs width from its decay channels: in general, we know that particles decaying
through the weak interaction have a width–to–mass ratio of Γ/m ∼ 1/100. The main Higgs decay is to bottom
quarks, mediated by a small bottom Yukawa coupling, mb/mW . 1/30. First, this means that in the Standard Model
we expect ΓH/mH ∼ 10−5, consistent with the exact prediction ΓH ∼ 4 MeV. Second, loop–induced couplings can
compete with such a small tree level decay width. In particular the loop–induced decay to two photons plays an
important role in LHC phenomenology. It proceeds via a top and a W triangle which enter with opposite signs in the
amplitude and hence interfere destructively. The W contribution in the Standard Model is around four times as large
as the top contribution, so it fixes the sign of the loop–induced coupling.
The structure of the γγH coupling is similar to the production via the loop–induced ggH coupling which we will
discuss in Section 1.5 and then generalize to the photon case in Section 1.5.3. The reason for considering this decay
channel are the LHC detectors. To extract a Higgs signal from the backgrounds we usually try to measure the
four-momenta of the Higgs decay products and reconstruct their invariant mass. The signal should then peak around
mH while the backgrounds we expect to be more or less flat. The LHC detectors are designed to measure the photon
momentum and energy particularly well. The resolution in mγγ will at least be a factor of 10 better than for any other
decay channel, except for muons. Moreover, photons do not decay, so we can use all photon events in the Higgs
search, while for example hadronically decaying W/Z → 2 jets are not particularly useful at the LHC. These
enhancement factors make the Higgs decay to two photons a promising signature, in spite of its small branching ratio
around 2 · 10−3. More details of the different decay channels we will give in Section 1.5.4.

Because an observed Higgs sector can deviate from the minimal Standard Model assumptions in many ways the LHC
or other future colliders will study the different Higgs decays and, as a function of mH , answer the questions

– are gauge–boson couplings proportional to mW,Z?

– are these couplings dimension-3 operators?

– are fermion Yukawa couplings proportional to mf?

– is there a Higgs self coupling, i.e. a remnant of the Higgs potential?

– do λHHH and λHHHH show signs of higher–dimensional operators?

– are there any other unexpected effects, like a Higgs decay to invisible particles?

But before we study the Higgs we need to discover it...

1.4 Higgs discovery
Of course we cannot discover particles which do not get produced, and for such a discovery we need to understand the
production mechanism. On the other hand, once we know the decay signatures of a Higgs boson we should be able to
at least roughly understand what the LHC has been looking for. In that sense there is no need to further delay a brief
account of the Higgs discovery, as announced on the 4th of July, 2012.

Without knowing any theoretical particle physics we first need to discuss the main feature or problem of hadron
collider physics: there is no such thing as a signal without a background. More precisely, there is no kinematic
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configuration which is unique to signal events and cannot appear as an unlucky combination of uninteresting Standard
Model or QCD processes and detector effects. This implies that any LHC measurement will always be a
statistics exercise based on some kind of event counting combined with a probability estimate for the signal nature of
a given event.

Because signals are new things we have not seen before, they are rare compared to backgrounds. Digging out signal
events from a large number of background events is the art of LHC physics. To achieve this we need to understand all
backgrounds with an incredible precision, at least those background events which populate the signal region of phase
space. Such a background description will always be a combination of experimental and theoretical knowledge. The
high energy community has agreed that we call a 5σ excess over the known backgrounds a signal discovery

S√
B

= #{σ} > 5 (Gaussian limit)

Pfluct < 2.9× 10−7 (fluctuation probability) . (1.183)

More details on this probability measure we will give later in this section and in Section 3.4. This statistical definition
of a ‘discovery’ goes back to Enrico Fermi, who asked for 3σ. The number of researchers and analyses in high energy
physics has exploded since those days, so nowadays we do not trust anybody who wants to sell you a 3σ evidence as a
discovery. Everyone who has been around for a few years has seen a great number of those go away. People usually
have reasons to advertize such effects, like a need for help by the community, a promotion, or a wish to get the
Stockholm call, but all they are really saying is that their errors do not allow them to make a conclusive statement. On
the other hand, in the Gaussian limit the statistical significance improves with the integrated luminosity as

√
L. So all

we need to do is take more data and wait for a 3σ anomaly to hit 5σ, which is what ATLAS and CMS did between the
Moriond conference in the Spring of 2012 and the ICHEP conference in the Summer of 2012.

In this section we will go through the results presented by ATLAS (and CMS) after the ICHEP conference 2012.
During the press conference following the scientific presentations on the 4th of July 2012 the ATLAS and CMS
spokes-people and the CERN general director announced the discovery of a new particle, consistent with the Standard
Model Higgs boson. To keep it simple, we will limit ourselves to the ATLAS discovery paper [9] — the
corresponding CMS publication [10] is very similar.

To understand the numbers quoted in the Higgs discovery paper we need some basic statistical concepts. This leads us
to the general question on how to statistically test hypotheses for example predicting an event rate Btheo (predicted
background) or (S +B)theo (predicted signal plus background), where the corresponding measured number of events
is N . The actual ATLAS and CMS analyses are much more complicated than our argument in terms of event numbers,
but our illustration captures most relevant points. For simplicity we assume the usual situation where
(S +B)theo > Btheo. If we would like to know how badly our background–only prediction is ruled out we need to
know if there is any chance a fluctuation around Btheo would be consistent with a measured value N . Note that the
index ‘theo’ does not mean that these predictions are entirely based on the underlying theory. If we largely understand
a data set for example in terms of the Standard Model without a Higgs, we can use measurements in regions where we
do not expect to see a Higgs effect to improve or even replace the theoretical predictions.
First, an experimental outcome N < Btheo means that the background prediction is closer than the signal plus
background prediction. This means we are done with that signal hypothesis. It gets a little harder when we observe
Btheo . N < (S +B)theo. In this situation we need to define a measure which allows us to for example rule out a
signal prediction because the measured event rates are close to the background prediction. In this ruling-out mode we
ask the following question: ‘Given that the background prediction and the measurement largely agree, how sure are
we that there is no small signal there?’. To answer this question we compute the statistical distribution of event counts
N ′ around the predicted background value Btheo. In the Gaussian limit this is symmetric curve centered around Btheo
with a standard deviation σB ,

f(N ′;Btheo, σB) =
1√

2πσB
e−(N ′−Btheo)

2/(2σ2
B) . (1.184)

As discussed in Section 3.4, for small event numbers we need to replace this Gaussian with an asymmetric Poisson
distribution, which has the advantage that by definition it does not cover negative event numbers. It is defined in
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Eq.(1.225) or Eq.(2.173). The entire Gaussian integral is normalized to unity, and 68.3% or 95.4% of it falls within
one or two standard deviations σB around Btheo. This number of standard deviations is a little misleading because
symmetric cuts around the central value Btheo is not what we are interested in. A measure of how well (S +B)theo is
ruled out by exactly observing N = Btheo events is the normalized distance from the observed background Stheo/σB .
To quantify which kinds of small signals would be consistent with the observation of essentially the background rate
N = Btheo we make a choice: if (S +B)theo does not fall into the right 5% tail of the background observation it is
fine, if it falls into this tail it is ruled out. Given N = Btheo this defines a critical number of expected signal events.
Any model predicting more signal events is ruled out at the 95% confidence level (CL). These 95% of the probability
distribution are not defined symmetrically, but through integrating from N ′ > −∞ in Eq.(1.184), so the 95%
confidence level corresponds to something like Stheo/σB < 1.5. In practice, this makes it relatively easy to translate
limits from one signal interpretation to another: all we need to do is compute the number of expected signal events in
a given analysis, without any error analysis or other complications. Whenever it comes out above the published
critical value the model is ruled out.
A variation of the ruling-out mode is when the observed number of events lies above or below the background
prediction N 6= Btheo. In this case we still apply the 95% confidence level condition following Eq.(1.184), but replace
the central value Btheo by the number of observed events N . This gives us two critical values for Stheo, the expected
exclusion limit computed around Btheo and the observed exclusion limit around N . If the observed background
fluctuates below the prediction N < Btheo we rule out more models than expected, when it fluctuates above N > Btheo
the exclusion starts to fail. This is the moment when we statistically switch from ruling-out mode to discovery mode.

The problem of a discovery is the fundamental insight that it is not possible to prove any scientific hypothesis correct.
All we can do is prove all alternatives wrong. In other words, we discover a signal by solidly ruling out the
background–only hypothesis. Following the above argument we now observe Btheo < N ∼ (S +B)theo. The question
becomes: ‘How likely is it that the background alone would have fluctuated to the observed number of events?’. To
answer this question we need to again compute the statistical probability around the background hypothesis,
Eq.(1.184). The difference to the argument above is that in the discovery mode this distribution is entirely
hypothetical. A 5σ discovery of a given signal is claimed if at maximum a fraction of 2.9× 10−7 expected events
around the predicted value Btheo lie above the measured value N ∼ (S +B)theo,

p0 ≡
∫ ∞
N

dN ′ f(N ′;Btheo, σB) < 2.9× 10−7 . (1.185)

The function f can be close to a Gaussian but does not have to be. For example for small event numbers it should also
have a Poisson shape, to avoid negative event numbers contributing to the integral. One interesting aspects in this
argument is worth noting: backgrounds at the LHC are usually extracted from data with the help of standard theory
tools. An obvious advantage of Eq.(1.185) is that we can immediately generalize it to more than one dimension, with
a complicated function f indicating the correlated event numbers for several search channels.
Finally, in Eq.(1.185) the signal does not feature at all. Theorist hardly participate in the actual discovery of a new
particle once they have suggested what to look for and delivered an understanding of the background in terms of
simulations. On the other hand, experimentalists really only discover for example the ‘Higgs boson’ because it shows
up in the search for a Higgs boson without any obviously weird features. To claim the discovery of a Higgs boson we
need the 5σ deviation from the background expectations and a solid agreement of the observed features with the signal
predictions. For the Higgs boson this for example means that the observed rates can be mapped on Higgs couplings
which agree with the list in Section 1.3. Such an analysis we present in Section 1.8.1.

Going back to the ATLAS discovery paper — the most important information is included in the abstract: ATLAS has
discovered something in their search for the Standard Model Higgs boson. The analysis uses the data sets collected in
2011 and 2012, with their respective proton–proton energies of 7 TeV and 8 TeV. The channels which contribute to the
statistical discovery are Higgs decays H → ZZ → 4`, H → γγ, and H →W+W− → 2` 2ν. In addition, ATLAS
includes the results from the τ+τ− and bb̄ decays, but their impact is negligible. What ATLAS observes is a peak with
an invariant γγ or 4` mass of 126 GeV and a combined significance of 5.9σ.

What follows after the short introduction are a section on the ATLAS detector (rather useless for us), and a section on
the simulation of the signal and background event samples (not all that relevant for the outcome). Next comes the first
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Figure 6: Left: Higgs mass peak in the m4` spectrum, as shown in the ATLAS Higgs discovery paper [9]. Right: the
correlation of the reconstructed Z and Z∗ masses in the same analysis.

of the three discovery channels, H → ZZ → 4`, where the four leptons include all possible combinations of two
opposite-sign electrons and two opposite-sign muons. The idea of this analysis is to reconstruct the invariant mass of
the four leptons m4` and observe a signal peak at the Higgs mass value over a relatively flat and well understood
background. We discuss more details on this analysis in Section 1.5.4. In the left panel of Figure 6 we see that m4`

distribution. The clearly visible low peak around m4` ∼ mZ ∼ 91 GeV arises from an on–shell Z decay into two
leptons plus a radiated photon, which in turn splits into two leptons. Above the threshold for the continuum production
process pp→ ZZ the background cross section increases again. In between, we cannot even speak of a flat
background distribution, with typically one or two events per mass bin. Nevertheless, the signal peak is clearly visible,
and we can proceed to compute the signal significance, making sure that we use Poisson statistics instead of Gaussian
statistics. The result is quoted in Table 7 of the ATLAS paper — the ZZ decay channel contributes 3.6σ to the Higgs
discovery, with a central Higgs mass value around 125 GeV. This number of sigmas really is the p0 value defined in
Eq.(1.185) translated into a Gaussian equivalent number of standard deviations N/σB . In the right panel of Figure 6
we show an important consistency check of the ZZ sample supposedly coming from a Higgs decay. By definition, all
signal events have a combined value around m4` = 125 GeV. In addition, we know that the four leptons come from,
possibly off–shell, Z bosons. In Section 2.1.2 we will discuss the functional form of m`` around the Z-mass pole.
Quantum mechanics requires the unstable Z boson to decay exponentially, which corresponds to a Breit–Wigner
shape around the resonance. This shape drops rapidly in the vicinity of the pole, but further out develops linear tails.
For our case MH < 2mZ it is most likely that one of the two Z bosons is on its mass shell while the other one decays
into two leptons around m`` ∼ mH −mZ = 35 GeV. This is precisely what we see in Figure 6. Just as a side remark:
in CMS this distribution was originally very different from what we would expect from quantum mechanics.

The second analysis presented in the ATLAS paper is the search for rare H → γγ decays. The basic strategy is to
reconstruct the invariant mass of two photons mγγ and check if it is flat, as expected from the background, or peaked
at the Higgs mass. In the left panel of Figure 7 we show this distribution. The functional shape of the background is
flat, so without any derivation from first principles we can approximate the curve outside the peak region by a
polynomial. This fit to a flat background we can subtract from the measured data points, to make the peak more
accessible to the eye. For the peak shown in the left panel of Figure 7 we could now compute a signal significance, i.e.
the probability that the flat background alone fluctuates into the observed data points.
However, this is not how the analysis is done. One piece of information we should include is that we are not equally
sure that an experimentally observed photon really is a photon everywhere in the detector. Some of the events entering
the distribution shown in the left panel of Figure 7 are more valuable than others. Therefore, ATLAS ranks the photon
phase space or the relevant detector regions by their reliability of correctly identifying two photons and measuring
their invariant mass. In each of these ten regions, listed in the Table 4 of their paper, they look at the mγγ distribution
and determine the individual peak significance. If the detector performance were the same in all ten regions the
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Figure 7: Left: Higgs mass peak in the mγγ spectrum. Right: the same distribution where all events are re-weighted
with the value of S/B for the corresponding sub-selection. Both figures from the ATLAS discovery paper [9].

combination of these ten significances would be the same as the significance computed from the left panel of Figure 7.
Because the individual phase space and detector regimes have different signal and background efficiencies some
events shown in the left panel of Figure 7 are more equal than others, i.e. they contribute with a larger weight to the
combined significance. This is what ATLAS illustrates in the right panel of Figure 7: here, all events are weighted
with the signal–to–background ratio S/B for the respective sub-analysis. It is an interesting development that such a
purely illustrational figure without any strict scientific value enters a Higgs discovery paper. Obviously, the ATLAS
and CMS collaborations feel that their actual results are not beautiful enough even for the scientific community, so
they also deliver the public relations version. What is scientifically sound is the measured signal significance of a mass
peak centered at 126.5 GeV, quoted as 4.5σ in their Table 7, but it cannot be computed from either of the two curves
shown in Figure 7.

The two γγ and ZZ analyses are the main ATLAS results shown in the Higgs discovery talk on July 4th. In the
discovery paper ATLAS adds a third channel, namely leptonic H →WW decays. Obviously, we cannot reconstruct
the 2`2ν mass, which means we need to rely on the transverse momentum balance in the detector to approximately
reconstruct the Higgs mass. The details of this transverse mass measurement you can find in Section 3.3. Similar to
the photon case, the analysis is then split into different regimes, now defined by the number of jets recoiling against
the Higgs. The motivation for this observable is first to reject the top pair background with its additional two b jets and
second to use the sensitivity of signal and background kinematics to the transverse momentum of the Higgs. However,
in Section 2.3.4 we will see that perturbative QCD does not allow us to separately study collinear jets, i.e. jets with
transverse momentum below the Higgs mass, beyond leading order in αs. Such an observable violates collinear
factorization, induces possibly large logarithms, and this way spoils the application of precision QCD predictions.
After fitting the transverse mass distribution instead of simply cutting out the signal region the WW channel
contributes 2.8σ to the final significance, but without a good Higgs mass determination.

The next two sections in the ATLAS discovery paper discuss details of the statistical analysis and the correlation of
systematic uncertainties. After that, ATLAS combines the three analyses and interprets the result in terms of a
Standard Model Higgs boson. First, in the ruling–out mode described above ATLAS gets rid of models with a
Standard Model Higgs boson in the mass ranges 111− 122 GeV and 131− 559 GeV. This kind of exclusions from
LHC (and Tevatron) Higgs analyses are shown in the colors of a great soccer nation. If we know the expected signal
and background numbers and the detector performance, we can compute the number of signal events which we expect
to exclude with a given amount of data if there were only background and no Higgs events. In the left panel of
Figure 8 the dashed line shows the expected exclusion limit as a function of the assumed Higgs mass and in terms of
the signal strength normalized to the Standard Model Higgs rate µ = (σ ×BR)/(σ ×BR)SM. With the quoted amount
of data we would expect to exclude the entire mass range from 110 GeV to 580 GeV, provided this Higgs has Standard
Model production and decay rates. For a hypothetical Higgs boson with only half the number of expected events we
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Figure 8: Left: exclusion limits on a hypothetical signal strength as a function of the Higgs mass [9]. Right: signal
significance as computed from the probability of a background fluctuation for the different channels. This figure is
from the supplementary documentation to Ref. [9].

only expect to exclude Higgs masses from 120 to 460 GeV. Because this expected exclusion limit is a statistical
computation it has error bars which are shown in green (1σ) and yellow (2σ). Replacing our expected event rates with
data we find the solid curve in the left panel of Figure 8. Around a hypothetical Higgs mass of 125 GeV the two
significantly deviate, so we need to switch to discovery mode.

In the right panel of Figure 8 we show the p0 value computed by ATLAS as a function of the hypothetical Higgs mass.
This Higgs mass is not actually needed to predict the background rates, but it enters because we optimize the signal
searches for assumed Higgs masses. For example, we attempt to rule out the γγ background by determining its shape
from a wide mγγ range and test it for deviations with a resolution of few GeV. We see that the H → γγ search as well
as the H → ZZ search point towards Higgs masses around 125 GeV. For the H →WW analysis the assumed Higgs
mass is less relevant, so the p0 value shows a broad excess. Combining all channels gives us the solid black line in the
right panel of Figure 8, with a minimum p0 value around 10−9 or 5.9σ.
Again, we can compute the signal significance which we would have predicted for this situation, shown as the dashed
black line. The prediction reaches only 5σ, which means that assuming we are observing a Standard Model Higgs
boson ATLAS’ signal significance is slightly enhanced by upwards fluctuations in the event numbers.

One final technical term in the ATLAS discovery paper is not yet clear: this number of 5.9σ is described as the ‘local
significance’. The quoted local p0 value is the probability of the background fluctuating into the observed signal
configuration with a Higgs mass around 125 GeV. As mentioned above, ruling out the background should naively not
depend on signal properties like the Higgs mass, but it does. Let us assume that we search for a Higgs boson in mγγ

bins of ±2 GeV and in the mass range of 110 GeV to 150 GeV. If all ten analyses in the different mass windows have
identical p0 values of p0,j = 10−9 and if they are statistically independent, we can approximately compute the
probability of the background faking a signal in at least one of them as

p(global)
0 =

10∑
j=1

p0,j = 10× 10−9 = 10−8 . (1.186)

This means that for a global 5-sigma discovery with pglobal
0 < 2.9× 10−7 we need to require a significantly smaller

values for the combination of the plocal
0 for a given Higgs mass. In the above approximation the reduction is simply an

effect of independent Poisson processes, its proper treatment is significantly more complicated. It is called
look-elsewhere effect, where some people correctly point out that the more appropriate name would be
look-everywhere effect. Obviously, if we combine the γγ and ZZ analyses with the flat p0 value of the WW search
the result is not as easy anymore. The global value p(global)

0 which ATLAS quotes corresponds to 5.1σ for an initial
Higgs mass range of 110 GeV to 600 GeV. The remaining discussion of the Higgs excess in the ATLAS paper we
postpone to Section 1.8.1.
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Figure 9: Left: production cross section for a Standard-Model Higgs boson at the LHC, as a function of the Higgs
mass. Figure from Ref. [7]. Right: updated version including higher order corrections.

Essentially the same details we can find in the CMS discovery paper [10]. The observed local significance in the three
main channels is 5.1σ, with an expected 5.2σ. The additional decay channels H → ττ and H → bb̄ do not contribute,
either by bad luck or expectedly. The main psychological difference between ATLAS and CMS seems to be that by
the ordering of the references ATLAS starts with the well established Standard Model, of which the Higgs mechanism
is a generic part which one would not mind discovering — while CMS starts with the references to the prediction of
the Higgs boson.

1.5 Higgs production in gluon fusion
After discussing the main aspects of the Higgs discovery we now go back to some theoretical physics background.
Looking for the Higgs boson at hadron colliders starts with bad news: at tree level the Higgs hardly couples to
light-flavor quarks and has no coupling to gluons. This is because the Higgs boson couples to all Standard Model
particles proportional to their mass — this is the same operator they get their mass from. Because the SU(3)C
symmetry of QCD is not broken, there is no coupling to gluons at all.
On the other hand, the protons at the LHC contain a lot of gluons, again something we will talk about in more detail in
Section 2, so the question is if we can find and use a loop–induced coupling of two gluons to the Higgs. In spite of the
expected suppression of the corresponding cross section by a one-loop factor (g2/(16π2))2 we would hope to arrive at
an observable production cross section pp→ H . Numerically, it will turn out that the production of Higgs bosons in
gluon fusion is actually the dominant process at the LHC, as shown in Figure 9.

1.5.1 Effective gluon–Higgs coupling

If an effective ggH coupling should be mediated by a closed Standard Model particle loop the top is the perfect
candidate: on the one hand it has a strong coupling to gluons, and on the other hand it has the largest of all Standard
Model couplings to the Higgs boson, mt/v ∼ 0.7. The corresponding Feynman diagram is

q
p

k1

k2

We construct this effective coupling in three steps, starting with the Dirac trace occurring in the top loop. All momenta
are defined as incoming with k2

1 = k2
2 = 0 and p2 = m2

H . The Dirac indices of the two gluons are µ, ν and the loop
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momentum is q, so in the first step we need to compute

Tµν = Tr [( /q +mt) γ
µ ( /q + /k1 +mt) γ

ν ( /q + /k1 + /k2 +mt)] . (1.187)

The calculational problem is the tensor structure of this trace. Because of gauge invariance we can neglect terms
proportional to kµ1 and kν2 ; they would not survive the multiplication with the transverse gluon polarization (k · ε = 0).
In a so-called axial gauge we could also get rid of the remaining terms proportional to kν1 and kµ2 .

However, there is a better way to compute this trace. We know that there is no tree level Higgs coupling of the Higgs
to two gluons, which would correspond to the fields HAµAµ with mass dimension three in the Lagrangian. So we
need to find another operator mediating such a coupling, keeping in mind that it is loop induced and can therefore
include a mass suppression by powers of the top mass. The Higgs can also couple to the field strength in the invariant
form HGµνG

µν with Gµν ≡ ∂µAν − ∂νAµ +O(A2). This operator has mass dimension five and arises from the
dimension-6 gauge–invariant object φ†φGµνGµν after breaking SU(2)L.
The factor in front of this term is the effective coupling we are going to compute in this section. Before that it pays to
briefly look at the operator itself. Switching from position space and its momentum operator to momentum space
∂ → ik shows that the gauge invariant operator linking exactly two gluon fields to a Higgs field has to be proportional
the tensor

GµνGµν
F.T.−→ i

(
k1µA1ν − k1νA1µ

)
i
(
k2µA2ν − k2νA2µ

)
+O(A3)

= − 2 [(k1k2)(A1A2)− (k1A2)(k2A1)] +O(A3)

= − 2(k1k2)A1µA2ν

[
gµν − kν1k

µ
2

k1k2

]
+O(A3)

= −
√

2m2
H A1µA2ν P

µν
T +O(A3) , (1.188)

where PµνT is the transverse tensor

PµνT =
1√
2

[
gµν − kν1k

µ
2

(k1k2)

]
PµνT PTµν = 1 and PµνT k1µ = 0 = PµνT k2ν (k2

1 = 0 = k2
2) . (1.189)

Based on this known tensor structure of Tµν we can extract the scalar form factor F which corresponds to the Dirac
trace of Eq.(1.187)

Tµν ∼ F PµνT ⇔ PTµνT
µν ∼ PTµνPµνT F = F . (1.190)

The exact definition of the full form factor F in the Higgs–gluon coupling will obviously include all prefactors and the
loop integral. This way we project out the relevant gluon tensor structure or the relevant degrees of freedom of the two
gluons contributing to this effective coupling. Terms involving a larger number of gluon fields are related to this ggH
coupling by non–abelian SU(3) gauge invariance.

Our projection requires that we first compute PTµνTµν based on Eq.(1.187). One thing to mention at this stage is that
nobody in the world really computes Dirac traces by hand anymore. There are powerful programs, like FORM, which
do this job for us. Using it we find the form factor

PTµνT
µν =

4mt√
2

(
−m2

H + 3m2
t −

8

m2
H

(k1q)(k2q)− 2(k1q) + q2

)
. (1.191)

Inside this trace there appears the loop momentum q, which in our second step we have to consider as part of the loop
integration. The effective ggH vertex includes the loop integral with the tensor structure from Eq.(1.187) in the
numerator, ∫

d4q

16π4

PTµνT
µν

[q2 −m2
t ][(q + k1)2 −m2

t ][(q + k1 + k2)2 −m2
t ]

=
4mt√

2

∫
d4q

16π4

q2 − 2(k1q)− 8/m2
H(k1q)(k2q)−m2

H + 3m2
t

[q2 −m2
t ][(q + k1)2 −m2

t ][(q + k1 + k2)2 −m2
t ]
. (1.192)
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The non–trivial qµ dependence of the numerator observed in Eq.(1.192) we can take care of using a few tricks. For
example in the first term we use the relation q2/(q2 −m2

t ) = 1 +m2
t/(q

2 −m2
t ) and then shift q, knowing that the

final result for this integral will be finite. This is non–trivial piece of information, because most loop calculations lead
to ultraviolet divergences, which need to be removed by first regularizing the integral and then renormalizing the
parameters. The reason why we do not see any divergences in this process is that for a renormalization we would need
something to renormalize, i.e. a leading order process which receives quantum corrections. However, we only
compute this one-loop amplitude because there is no tree level vertex. There is nothing to renormalize, which means
there are no ultraviolet divergences.
While these tricks help a little, we still do not know how to remove (k1q)(k2q) in the third term of Eq.(1.192). The
method of choice is a Passarino-Veltman reduction which turns tensor integrals into scalar integrals, where a scalar
integral does not have powers of the loop momentum in the numerator. For example, the scalar three-point function is
given by

C(k2
1, k

2
2,m

2
H ;mt,mt,mt) ≡

∫
d4q

iπ2

1

[q2 −m2
t ][(q + k1)2 −m2

t ][(q + k1 + k2)2 −m2
t ]
. (1.193)

The integral measure is d4q/(iπ2), or dnq/(iπn/2) for an arbitrary number of space–time dimensions. This removes
any over–all factors 2 and π from the expression for the scalar integrals, as we will see below. Applied to the tensor
integral in Eq.(1.192) the reduction algorithm gives us∫

d4q

iπ2

PTµνT
µν

[...][...][...]
=

4mt√
2

[
2 +

(
4m2

t −m2
H

)
C(0, 0,m2

H ;mt,mt,mt)
]
. (1.194)

The first term not proportional to any scalar integral has a curious origin. It comes from a combination of O(ε) terms
from the Dirac trace in n = 4− 2ε dimensions and a two-point function which using the integration measure 1/iπn/2

always includes an ultraviolet divergence 1/ε. Note that these terms appear in the calculation in spite of the fact that
the final result for the effective gluon–Higgs coupling is finite.

Scalar integrals we can for example calculate using the Feynman parameterization

1

A1A2 · · ·An
=

∫ 1

0

dx1 · · · dxn δ
(∑

xi − 1
) (n− 1)!

(x1A1 + x2A2 + · · ·+ xnAn)n
, (1.195)

but we usually obtain shorter analytical expressions using the Cutkosky cutting rule which links the imaginary part of
a diagram or a scalar integral to the sum of all cut Feynman graphs.

The cut rule is directly related to the unitarity of the S matrix and the optical theorem discussed in Section 1.2.3.
Limiting ourselves to scalar amplitudes/integrals, the cut rule tells us that the sum of all cut one-loop or squared scalar
diagrams has to vanish, including the two external cuts which correspond to the untouched amplitude A and its
complex conjugate A∗. This gives us a very useful expression for the imaginary part of the amplitude

−i (A−A∗) = 2 ImA !
= 16π2

∑
cut graphs

A . (1.196)

The factor 16π2 arises from the generic integral measure 1/(16π4) which we replace by d4q/(iπ2) such that the
scalar integrals have a typical prefactor of one. Cutting diagrams means replacing all internal propagators by
1/(q2 −m2)→ 2π θ(q0) δ(q2 −m2). Of the four dimensions of the loop integral d4q the two on–shell conditions
cancel two, leaving us with an simple angular integral. This angular integral does not include any kinematic
information affecting the pole or cut structure of the scalar diagram.
From this imaginary part we compute the complete amplitude or scalar integral. If we know the pole or cut structure
of the amplitude after cutting it, we can make use of the Cauchy integral for a complex analytic function A(z)

A(z) =
1

2πi

∮
counter–clockwise

dz′
A(z′)

z′ − z
, (1.197)
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and compute the unknown real part of A(q2). As an example, let us consider a scalar integral which like a full
propagator has a cut on the real axis above q2 = m2

1 +m2
2. This cut should not lie inside the integration contour of the

Cauchy integral Eq.(1.197), so we deform the circle to instead follow the cut right above and below the real axis. If no
other poles occur in the integral we find

ReA(q2) =
1

2πi

∮
dq′

2 i ImA(q′
2
)

q′2 − q2

=
1

2π

∫ (m2
1+m2

2)

∞
dq′

2 ImA(q′
2 − iε)

q′2 − q2
+

1

2π

∫ ∞
(m2

1+m2
2)

dq′
2 ImA(q′

2
+ iε)

q′2 − q2

=
1

2π

∫ ∞
(m2

1+m2
2)

dq′
2 ImA(q′

2
+ iε)− ImA(q′

2 − iε)
q′2 − q2

≡ 1

2π

∫ ∞
(m2

1+m2
2)

dq′
2 Im+A(q′

2
)

q′2 − q2
. (1.198)

This step assumes a sufficiently fast convergence on the integration contour for large momenta. This method of
computing for example scalar integrals is known to produce the most compact results.

The expression for the finite scalar three point function appearing in our effective coupling Eq.(1.194) has the form

C(0, 0,m2
H ;mt,mt,mt) =

1

m2
H

∫ 1

0

dx

x
log

m2
Hx(1− x)−m2

t

(−m2
t )

=
1

m2
H

∫ 1

0

dx

x
log

(
1− x(1− x)

m2
H

m2
t

)
=

1

2m2
H

log2

(
−

1 +
√

1− 4m2
t/m

2
H

1−
√

1− 4m2
t/m

2
H

)
4m2

t

m2
H

≡ τ < 1 . (1.199)

For general top and Higgs masses it reads

C(0, 0,m2
H ;mt,mt,mt) = −2f(τ)

m2
H

with f(τ) =


(

arcsin

√
1

τ

)2

τ > 1

−1

4

(
log

1 +
√

1− τ
1−
√

1− τ
− iπ

)2

τ < 1

, (1.200)

including imaginary or absorptive terms for τ < 1. The dimensionless variable τ is the appropriate parameter to
describe the behavior of this scalar integral. For example the low energy limit of the scalar integral, i.e. the limit in
which the top loop becomes heavy and cannot be resolved by the external energy of the order of the Higgs mass, will
be given by τ & 1 which means mH < 2mt. In contrast to what many people who use such effective vertices assume,
the expression in Eq.(1.200) is valid for arbitrary Higgs and top masses, not just in the heavy top limit.
Expressing our Dirac trace and loop integral in terms of this function f(τ) we find for our effective coupling in
Eq.(1.194) ∫

d4q

iπ2

PTµνT
µν

[...][...][...]
=

4mt√
2

(
2−

(
4m2

t −m2
H

) 2f(τ)

m2
H

)
=

4mt√
2

(2− 2 (τ − 1) f(τ))

=
8mt√

2
(1 + (1− τ)f(τ)) . (1.201)
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Using this result we can as the third and last step of our calculation collect all factors from the propagators and
couplings in our Feynman diagram and compute the effective ggH coupling now including all pre-factors,

F =− i3 (−igs)2 imt

v
Tr(T aT b)

iπ2

16π4

∫
d4q

iπ2

PTµνT
µν

[...][...][...]

=− i3 (−igs)2 imt

v
Tr(T aT b)

iπ2

16π4

8mt√
2

(1 + (1− τ)f(τ))

=
g2
smt

v

δab

2

i

16π2

8mt√
2

(1 + (1− τ)f(τ))

=
g2
s

v

δab

2

i

16π2

8√
2

m2
Hτ

4
(1 + (1− τ)f(τ))

= ig2
s δ

ab 1

16
√

2π2

m2
H

v
τ (1 + (1− τ)f(τ))

= iαs δ
ab 1

4
√

2π

m2
H

v
τ (1 + (1− τ)f(τ)) . (1.202)

The numerical factors originate from the closed fermion loop, the three top propagators, the two top-gluon couplings,
the top Yukawa coupling, the color trace, the unmatched loop integration measure, and finally the result computed in
Eq.(1.201).

Based on Eq.(1.188) we can write in momentum space as well as in position space

F PµνT A1µA2ν = F
−GµνGµν√

2m2
H

. (1.203)

In this form we can include the form factor F in an effective Lagrangian and finally define the Feynman rule we are
interested in

LggH ⊃
1

v
gggH H GµνGµν with

1

v
gggH = −i αs

8π

1

v
τ [1 + (1− τ)f(τ)] , (1.204)

after dropping δab. It is important to notice that the necessary factor in front of the dimension-5 operator is 1/v and
not 1/mt. This is a particular feature of this coupling, which does not decouple for heavy top quarks because we have
included the top Yukawa coupling in the numerator. Without this Yukawa coupling, the heavy top limit τ →∞ of the
expression would be zero, as we will see in a minute. Unlike one might expect from a general effective theory point of
view, the higher dimensional operator inducing the Higgs–gluon coupling is not suppressed by a large energy scale.
This means that for example a fourth generation of heavy fermions will contribute to the effective Higgs–gluon
coupling as strongly as the top quark, with no additional suppression by the heavy new masses. The breaking of the
usual decoupling by a large Yukawa coupling makes it easy to experimentally rule out such an additional generation of
fermions, based on the Higgs production rate.

Of course, just like we have three-gluon and four-gluon couplings in QCD we can compute the gggH and the ggggH
couplings from the ggH coupling simply using gauge invariance defining the terms we omit in Eq.(1.188). This set of
n-gluon couplings to the Higgs boson is again not an approximate result in the top mass. Gauge invariance completely
fixes the n-gluon coupling to the Higgs via one exact dimension-5 operator in the Lagrangian. These additional gluon
field arise from the commutator of two gluon field in the field strength tensor, so they only exist in non–abelian QCD
and cannot be generalized to the photon-photon-Higgs coupling.

1.5.2 Low–energy theorem

The general expression for gggH is not particularly handy, but for light Higgs bosons we can write it in a more
compact form. We start with a Taylor series for f(τ) in the heavy-top limit τ � 1

f(τ) =

[
arcsin

1

τ1/2

]2

=

[
1

τ1/2
+

1

6τ3/2
+O

(
1

τ5/2

)]2

=
1

τ
+

1

3τ2
+O

(
1

τ3

)
τ→∞−→ 0 , (1.205)
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and combine it with all other τ -dependent terms from Eq.(1.204)

τ [1 + (1− τ)f(τ)] =τ

[
1 + (1− τ)

(
1

τ
+

1

3τ2
+O

(
1

τ3

))]
=τ

[
1 +

1

τ
− 1− 1

3τ
+O

(
1

τ2

)]
=τ

[
2

3τ
+O

(
1

τ2

)]
=

2

3
+O

(
1

τ

)
, implying gggH = −i αs

12π
. (1.206)

In this low energy or heavy top limit we have decoupled the top quark from the set of propagating Standard Model
particles. The ggH coupling does not depend on mt anymore and gives a finite result. Computing this finite result in
Eq.(1.202) we had to include the top Yukawa coupling from the numerator. We emphasize again that while this low
energy approximation is very compact to analytically write down the effective ggH coupling, it is not necessary to
numerically compute processes involving the effective ggH coupling.

In this low energy limit we can easily add more Higgs bosons to the loop. Attaching an external Higgs leg to the gluon
self energy diagram simply means replacing one of the two top propagators with two top propagators and adding a
Yukawa coupling

i

/q −mt
→ i

/q −mt

−i
√

2mt

v

i

/q −mt
(1.207)

We can compare this replacement to a differentiation with respect to mt

∂
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=
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=
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2
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√
2mt

v

1

/q −mt

1

/q −mt
=
−i
√

2mt

v

∂

∂mt

1

/q −mt
. (1.208)

This means that we can replace one propagator by two propagators using a derivative with respect to the heavy
propagator mass. The correct treatment including the gamma matrices in /q = γµq

µ involves carefully adding unit
matrices in this slightly schematic derivation. However, our shorthand notation gives us an idea how we can in the
limit of a heavy top derive the ggHn+1 couplings from the ggHn coupling

gggHn+1 = mn+1
t

∂

∂mt

(
1

mn
t

gggHn

)
. (1.209)

This relation holds for the scattering amplitude before squaring and assuming that the tensor structure is given by the
same transverse tensor in Eq.(1.189). We can for example use this relation to link the two effective couplings with one
or two external Higgs legs, i.e. the triangle form factor gggH = −iαs/(12π) and the box form factor
gggHH = +iαs/(12π). Corrections to this relation appear at the order 1/mt.

The question arises if we can even link this form factor to the gluon self energy without any Higgs coupling. The
relation in Eq.(1.208) suggests that there should not be any problem as long as we keep the momenta of the incoming
and outgoing gluon different. In Section 2.2.2 we will see that the gluon self energy loops have a transverse tensor
structure, so there is no reason not to use the top loop in the gluon self energy to start the series of ggHn couplings in
the heavy top limit. Note that this does not include the entire gluon self energy diagram, but only the top loop
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contribution. The so-called beta function does not appear in this effective coupling. To obtain the correct mass
dimension each external Higgs field appears as H/v. Using log(1 + x) = −

∑
n=1(−x)n/n we can eventually resum

this series of effective couplings in the form

LggH = GµνGµν
αs
π

(
H

12v
− H2

24v2
+ . . .

)
=

αs
12π

GµνGµν log

(
1 +

H

v

)
. (1.210)

In Section 1.2.3 we note that there should be a relative factor between the Lagrangian and the Feynman rule
accounting for more than one way to identify the external legs of the Feynman rule with the fields in the Lagrangian.
For n neutral Higgs fields the effective coupling has to include an additional factor of 1/n which is precisely the
denominator of the logarithm’s Taylor series. Such a closed form of the Lagrangian is very convenient for simple
calculations and gives surprisingly exact results for the gg → H production rate at the LHC, as long as the Higgs mass
does not exceed roughly twice the top mass. However, for example for gg → H+jets production its results only hold
in the limit that all jet momenta are much smaller than mt. It also becomes problematic for example in the pair
production process gg → HH close to threshold, where the momenta of slow–moving Higgs bosons lead to an
additional scale in the process. We will come back to this process later.

If we want to combine the effects of several particles in the gluon self energy or the effective Higgs–gluon Lagrangian
we need to integrate out one state after the other. The appropriate effective theory framework then becomes the
Coleman–Weinberg potential discussed in Section 1.2.7. Even if we assume that we can integrate out the top quark as
well as the new states, the decoupling properties of the effective Higgs–gluon coupling change. As an example we
evaluate the contributions from a decoupled supersymmetric top squark, as already studied in Eq.(1.178). If we
account for the full supersymmetric top doublet in in the absence of D-term gauge couplings the effective
Higgs–gluon coupling becomes

g(SUSY)
ggH

g(SM)
ggH

= 1 +
m2
t

4m2
t̃,1

+
m2
t

4m2
t̃,2

− m2
t (At + µ/ tanβ)2

4m2
t̃,1
m2
t̃,2

. (1.211)

Unlike the Standard Model quarks, this supersymmetric contribution indeed decouples with heavy stop masses unless
we avoid the decoupling theorem through large trilinear Higgs–stop–stop couplings mtAt.

1.5.3 Effective photon-Higgs coupling

The Higgs coupling to two photons can be computed exactly the same way as the effective coupling to gluons.
Specifically, we can compute a form factor in analogy to Eq.(1.202) and Eq.(1.204). The only difference is that there
exist two particles in the Standard Model which have a sizeable Higgs coupling (or mass) and electric charge: heavy
quarks and the W boson. Both contribute to the partial width of a Higgs decaying to two photons.

To allow for some more generality we give the results for the Higgs decay width for a general set of fermions, gauge
bosons, and scalars in the loop:

Γ(H → γγ) =
GFα

2m3
H

256
√

2π3

∣∣∣∣∣∣
∑
f

NcQ
2
f gHffA1/2 + gHWWA1 +

∑
s

NcQ
2
s

gHss
m2
s

A0

∣∣∣∣∣∣
2

. (1.212)

The color factor for fermions without a color charge should be replaced by unity. In the literature, the form factors A
are often defined with an additional factor 2, so the prefactor will only include 1/128. The factor GF describes the
coupling of the loop particles to the Higgs boson, while each factor α = e2/(4π) arises because of the QED coupling
of the loop particles to a photon. In the Standard Model the two leading contributions are

Q2
t gHtt =

(
2

3

)2

× 1 gHWW = 1 gHss = 0 (1.213)

This means that the Standard Model Higgs couplings proportional to the particle masses are absorbed into the form
factors A. From the discussion in Section 1.5.2 we know that the top quark form factor does not decouple for heavy
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quarks because of the Yukawa coupling in the numerator. The same is true for the W boson where the entire W mass
dependence is absorbed into GF .

The form factors A for scalars, fermions, and gauge bosons we can only quote here. They all include f(τ) as defined
in Eq.(1.200), which is the scalar three-point function and can be computed without any further approximations. As
before, we define τ = 4m2/m2

H given the mass m of the particle running in the loop. From Eq.(1.205) we know that
in the limit of heavy loop particles τ →∞ the scalar integral scales like f(τ) ∼ 1/τ + 1/(3τ2) · · · , which allows us
to compute some basic properties of the different loops contributing to the effective Higgs–photon coupling.

A0 = −τ
2

[1− τf(τ)]
τ→∞−→ −τ

2
+
τ

2
+

1

6
=

1

6
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3
=

2

3
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2

[
2 + 3τ + 3(2τ − τ2) f(τ)

]
−→ −1− 3

2
τ − 3 +

3

2
τ +

1

2
= −7

2
. (1.214)

We see that unless a sign appear in the prefactors — and from Eq.(1.212) we know that it does not — the top quark
and W boson loops interfere destructively. This is not an effect of the spin alone, because the scalar form factor has
the same sign as the fermion expression. In addition, we observe that for equal charges the gauge boson will likely
dominate over the fermion, which is correct for the top quark vs W boson in the Standard Model.

1.5.4 Signatures

Different Higgs production and decay processes are not only important for the Higgs discovery, they also allow us to
test many properties of the recently discovered new particle. Many aspects of such measurements go beyond our
knowledge of hadron collider physics and QCD. For example to discuss the Higgs production in gluon fusion we
would normally need to know how to deal with gluons inside the incoming protons, how to parameterize the phase
space of the Higgs decay products, and how to kinematically distinguish interesting events from the rest. All of this
we will piece by piece introduce in Section 2.1. On the other hand, we can try to understand the LHC capabilities in
Higgs physics already at this point. In the following sections on Higgs production at the LHC we will therefore limit
ourselves to some very basic phenomenological features and postpone any discussion on how to compute these
features.

The first quantity we can compute and analyze at colliders is the total number of events expected from a certain
production process in a given time interval. For example for our current Higgs studies the event numbers in different
Higgs production and decay channels are the crucial input. Such a number of events is the product of the
proton–proton LHC luminosity measured in inverse femtobarns, the total production cross section measured in
femtobarns, and the detection efficiency measured in per-cent. In other words, a predicted event rate it is split into a
collider–specific number describing the initial state, a process–specific number describing the physical process, and a
detector–specific efficiency for each particle in the final state.
The latter is the easiest number to deal with: over the sensitive region of the detector, the fiducial volume, the
detection efficiency is a set of numbers depending on the nature of the detected particle and its energy. This number is
very good for muons, somewhere between 90% and 100%, and less than 1/3 for tau leptons. Other particles typically
range somewhere in between.
For theorists luminosity is simply a conversion number between cross sections which we compute for a living and
event numbers. People who build colliders use units involving seconds and square meters, but for us inverse
femtobarns work better. Typical numbers are: a year of LHC running at design luminosity could deliver up to 10
inverse femtobarns per year in the first few years and three to ten times that later. The key numbers and their orders of
magnitude for typical signals are

Nevents = σtot ·L L = 10 · · · 300 fb−1 σtot = 1 · · · 104 fb . (1.215)

Different cross sections for Tevatron and LHC processes are shown in Figure 10.

Finally, talking about cross sections and how to compute them we need to remember that at the LHC there exist two
kinds of processes. The first involves all particles which we know and love, like old-fashioned electrons or slightly
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Figure 10: Production rates for signal and background processes at hadron colliders. The discontinuity is due to the
Tevatron being a proton–antiproton collider while the LHC is a proton–proton collider. The two colliders correspond
to the x–axis values of 2 TeV and something between 7 TeV and 14 TeV. Figure from Ref. [12].

more modern W and Z bosons or most recently top quarks. All of these processes we call backgrounds. They are
described by QCD, which means QCD is the theory of evil. Top quarks have an interesting history, because when I
was a graduate student they still belonged to the second class of processes, the signals. These either involve particles
we have not seen before or particles we want to know something about. By definition, signals are very rare compared
to backgrounds. As an example, Figure 10 shows that at the LHC the production cross section for a pair of bottom
quarks is larger than 105 nb or 1011 fb, the typical production rate for W or Z bosons ranges around 200 nb or
2× 108 fb, the rate for a pair of 500 GeV supersymmetric gluinos would have been 4× 104 fb, and the Higgs rate can
be as big as 2× 105 fb. This really rare Higgs signal was extracted by ATLAS and CMS with a 5σ significance in the
Summer of 2012. If we see such a new particles someone gets a call from Stockholm, while for the rest of the
community the corresponding processes instantly turn into backgrounds.

One last aspect we have to at least mention is the trigger. Because of the sheer mass of data at the LHC, we will not be
able to write every LHC event on tape. As a matter of fact, we could not even write every top pair event on tape.
Instead, we have to decide very fast if an event has the potential of being interesting in the light of the physics
questions we are asking at the LHC. Only these events we keep. Before a mis-understanding occurs: while
experimentalists are reluctant to change triggers these are not carved in stone, so as a functioning high energy physics
community we will not miss great new physics just because we forgot to include it in the trigger menu. For now we
can safely assume that above an energy threshold we will keep all events with leptons or photons, plus as much as we
can events with missing energy, like neutrinos in the Standard Model and dark matter particles in new physics models
and jets with high energy coming from resonance decays. This trigger menu reflects the general attitude that the LHC
is not built to study QCD, and that very soft final states for example from bottom decays are best studied by the LHCb
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Figure 11: Simulated statistical significance for different Higgs production and decay channels for an integrated lumi-
nosity of 30 fb−1 (left: ATLAS [13]; right: CMS [14]). Five standard deviations over the backgrounds are required for
discovery. Given the measured Higgs mass around 125 GeV these figures are of mostly historic interest, except that
they illustrate how lucky we are that the Higgs mass lies right in between the fermion and bosonic decays.

experiment instead of ATLAS and CMS.

With this minimal background of collider phenomenology we can look at Higgs production in gluon fusion, combined
with different Higgs decays. This is the production channels which dominated the Higgs discovery discussed in
Section 1.4, based on LHC runs with a center–of–mass energy of 7 TeV (2011) and 8 TeV (2012). The total 14 TeV
Higgs production cross section through the loop–induced ggH coupling we show in Figure 9. For a reasonably light
Higgs boson the cross section ranges around at least 30 pb, which for relevant luminosities starting around 30 fb−1

means 106 events. The question is: after multiplying with the relevant branching ratio and detection efficiencies,
which of the decays can be distinguished from the Standard Model background statistically? Since gluon fusion really
only produces the Higgs boson the details of the production process do not help much with the background
suppression. The results of experimental simulations, for example by the ATLAS collaboration, are shown in
Figure 11. The complete list of possible Higgs decays, ordered by decreasing branching ratio according to Figure 5, is:

– gg → H → bb̄ is hopeless, because of the sheer size of the QCD continuum background gg → bb̄, which
according to Figure 10 exceeds the signal by roughly eight orders of magnitude. In gluon fusion there is little to
cut on except for the invariant mass of the bb̄ pair with an O(10%) mass resolution. Such a cut will not reduce
the background by more than two or three orders of magnitude, so the signal–to–background ratio will be tiny.
Pile–up, i.e. different scattering events between the proton bunches might in addition produce unwanted
structures in the mbb distribution for the pure QCD background. The final blow might be that this channel will,
as it stands, not be triggered on.

– gg → H → τ+τ− is problematic. If taus decay leptonically we can identify them in the detector, but there will
appear one or two neutrinos in their decay. This means that we cannot reconstruct the tau momentum. We will
discuss this decay and an approximate mass reconstruction in detail in Section 1.6.3. This approximate
reconstruction only works when the neutrinos lead to a measurable two-dimensional missing energy vector. If
the Higgs decays at rest its decay production will be mostly back to back, so its low velocity makes the
reconstruction of mττ ∼ mH hard. It is widely assumed that Higgs production in gluon fusion is too close to
threshold to see many decays to tau leptons, but in combination with other production channels and including
hard jet recoil this channel should have some power.
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– gg → H → γγ is, in spite of the small rate, the main Higgs discovery channel. Because mγγ can be
reconstructed to O(1%) this observable has incredibly precise side bins to the left and the to right of the Higgs
peak. This is what for example the electromagnetic calorimeter of CMS has been designed for. The main
problem is backgrounds for example from pions mistaken for photons, while theory input will play no role in
this analysis. A slight problem is that in gluon fusion there is again little to cut on except for mγγ . The only
additional observables which can reduce the physical two-photon background exploit a slightly boosted Higgs
kinematics, either through the opening angles between the photons or the transverse momentum of the two
photon system. In spite of the small branching ratios to photons the γγ channels is therefore limited by
physical, irreducible backgrounds and our understanding of their mγγ distribution.

The peak in the invariant mass of the photons is great to measure the Higgs mass: once we see a Gaussian peak
we can determine its central value with a precision of Γdetector/

√
S (in a signal dominated sample with S signal

events), which translates into the per-mille level. The only issue in this measurement are systematic effects from
the photon energy calibration. Unlike for electrons and photons there is no Z peak structure in mγγ , so we
would have to calibrate the photon energy from a strongly dropping distribution like dσ/dEγ . An alternative
approach is to use the calibration of another electromagnetic particle, like the electron, and convert the electron
energy scale into a photon energy scale using Monte Carlo detector simulations or to look for `+`−γ decays of
the Z.

– gg → H →W+W− has a large rate, but once one of the W bosons decays leptonically the Higgs mass is hard
to reconstruct. All we can do is reconstruct a transverse mass variable, which we discuss in Section 3.3. On the
other hand, the backgrounds are electroweak and therefore small. A very dangerous background is top pair
production which gives us two W bosons and two relatively hard bottom quarks with typical transverse
momenta pT,b & 40 GeV. We can strongly reduce this background by vetoing jets in additional to the two
leptonically decaying W bosons. As we will learn in Section 2 such a jet veto is a problem once it covers
collinear jet radiation from the incoming hadrons. In that case it breaks collinear factorization, a principle
underlying any precision computation of the Higgs production rate at the LHC.

The H →WW analysis strongly relies on angular correlations — if the two gauge bosons come from a
spin-zero resonance they have to have opposite polarization; because the W coupling to fermions is purely left
handed this implies that the two leptons prefer to move into the same direction as opposed to back–to–back.
This effect can be exploited either by asking for a small opening angle of the two leptons or asking for a small
invariant mass of the two leptons. Note that once we apply this cut we have determined the spin structure of the
extracted signal to be a scalar.

In the original ATLAS and CMS analyses the WW decay looked not very useful for Higgs masses below
150 GeV, i.e. for far off–shell Higgs decays. Because there is not much more to cut on the expected
significance dropped sharply with the decreasing branching ratio. However, in the 7 TeV and 8 TeV run this
effect was countered by lowering the minimum transverse momentum requirements for the leptons, so the
Higgs mass range covered by the WW analysis now extends to the observed mass of 125 GeV.

– gg → H → ZZ works great for ZZ to four leptons, in particular muons, because of the fully reconstructed
m4` ∼ mZZ ∼ mH . Of all Higgs channels it requires the least understanding of the LHC detectors. Therefore
it is referred to as ‘golden channel’. Experimentally at least the four-muon channel is relatively easy. The
electron decays can serve as a useful cross check.

Its limitation are the leptonic Z branching ratio and the sharp drop in the off–shell Higgs branching ratio
towards smaller Higgs masses. Once we include the leptonic Z decays the over–all H → 4` branching ratio for
a 125 GeV Higgs is tiny. The good news is that unlike in the two-photon channel there are essentially no
irreducible backgrounds. The continuum production qq̄ → ZZ is an electroweak (2→ 2) process and as rare as
the Higgs production process. The loop–induced gg → ZZ process is kinematically very similar to the signal,
but even more rare. One useful cut based on the Breit–Wigner propagator shape is the distribution of the two
invariant masses of the lepton pairs m``. For their Higgs discovery ATLAS and CMS asked for one pair of
leptons with m12 ∼ mZ , all four leptons with m4` = 125 GeV, and the second pair of leptons off–shell,
m34 � mZ .
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– gg → H → Zγ has recently been advertized as theoretically interesting once we link it to the observed
loop–induced H → γγ and tree level H → ZZ decays. It behaves a little like γγ, but with a smaller rate and a
further reduced branching ratio of Z → `+`−. Instead of combining the advantages of H → ZZ and H → γγ
this channel combines more of the disadvantages, so it is not likely to be measured soon. Of course, as for any
channel seeing it will give us more information on the Higgs boson, so we should not give up. In addition, for
some theoretical ideas it might be useful to determine an upper limit on the H → Zγ branching ratio.

– gg → H → µ+µ− might be the only hope we will ever have to measure a second-generation Yukawa coupling
at the LHC. Because of its clear signature and its huge qq̄ → Z, γ → µ+µ− background this analysis resembles
the photons channel, but with a much more rare signal. Eventually, other production processes might help with
the Higgs decays to muons, similar to the H → τ+τ− case.

– gg → H → invisible is not predicted in Standard Model; it is obviously hopeless if only the Higgs is produced,
because we would be trying to extract a signal of missing energy and nothing else. ‘Absolutely nothing’ in
addition to some QCD remnant is not a good signature for the trigger.

From the list of above channels we understand that the Higgs discovery is dominated by the ‘golden’ H → 4` and the
‘silver’ H → γγ channels. The off–shell and hardly reconstructable H →WW channel adds only little in terms of a
distinctive signal. If we want to learn more about the Higgs boson, we need additional production mechanisms
opening more decay signatures. Moreover, at this point it is still not clear why ATLAS and CMS in their Higgs
discovery papers separate a Higgs–plus–two–jets signal for example in the photon decay channel.

1.6 Higgs production in weak boson fusion
Going back to Figure 9 we see that while gluon fusion gives the largest Higgs production rate at the LHC, there are
other promising channels to study. In the Standard Model the Higgs has sizeable couplings only to the W and Z
bosons and to the top quark, so instead of via the top Yukawa coupling we can produce Higgs bosons via their gauge
boson couplings. This induces two channels, the larger of which is weak boson fusion qq → qqH: two incoming
quarks each radiate a W or Z boson which merge and form a Higgs. Because the LHC is a pp collider and because the
proton mostly contains the valence quarks (uud) and low-x gluons it is important that this process can proceed as
ud→ duH , where the u radiates a W+ and the d radiates a W−. The Feynman diagram for this process is

If the Higgs were a Z boson, it could also bremsstrahlung off the incoming or outgoing quarks, but for Higgs
production at colliders we safely assume that the first two generation fermions are massless. That is at least unless we
discuss a muon collider as a specific way to produce Higgs bosons.
In a way, weak boson fusion looks like double deep inelastic scattering, one from each of the protons. This is one of
the key observations which in Section 1.6.2 we will use for background suppression via the central jet veto. The
double deep inelastic scattering approximation is also a good way to compute corrections to the weak boson fusion
production rate, at least provided we neglect kinematic distributions. Just a final comment: the LHC experiments refer
to weak boson fusion as vector boson fusion (VBF). However, vector boson fusion includes incoming gluons, which
have very different kinematic properties, so in the following we strictly mean weak boson fusion mediated by massive
W and Z exchange.

1.6.1 Production kinematics

In the Feynman diagrams for weak boson fusion Higgs production we encounter intermediate massive gauge boson
propagators. They induce a particular shape of the kinematic distributions of the final–state jet. First, we need to quote
the exact calculation showing that in the matrix element squared we will usually find one power of pT in the
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numerator. With this information we can look for the maximum in the pT,j = pT,W spectrum as a function of the
momentum in the beam direction, p3, and the absolute value of the two-dimensional transverse momentum pT
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at the maximum and for some number C < 1. This admittedly hand-waving argument shows that in weak boson
fusion Higgs production the transverse momenta of the outgoing jets peak at values below the W mass. In reality, the
peak occurs around pT ∼ 40 GeV. This transverse momentum scale we need to compare to the longitudinal
momentum given by the energy scale of valence quarks at the LHC, i.e. several hundreds of GeV.
These two forward jets are referred to as tagging jets. They offer a very efficient cut against QCD backgrounds:
because of their back–to–back geometry and their very large longitudinal momentum, their invariant mass mjj will
for a 14 TeV collider energy easily exceed a TeV. For any kind of QCD background this will not be the case.
Compared to Higgs production in gluon fusion the tagging jets are an example how features of the production process
which have little or nothing to do with the actual Higgs kinematics can help reduce backgrounds — the largest
production rate does not automatically yield the best signatures. The only problem with the weak boson fusion
channel is that its distinctive mjj distribution requires a large collider energy, so running the LHC at 7 TeV and 8 TeV
for a Higgs discovery was very bad news for this channel.
Moving on to the Higgs kinematics, in contrast to the jets the Higgs and its decay products are expected to hit the
detector centrally. We are looking for two forward jets and for example two τ leptons or two W bosons in the central
detector. Last but not least, the Higgs is produced with finite transverse momentum which is largely determined by the
acceptance cuts on the forward jets and their typical transverse momentum scale pTH ∼ mW .

Compared to Higgs production in gluon fusion we buy this distinctive signature and its efficient extraction from the
background at the expense of the rate. Let us start with the partonic cross sections: the one-loop amplitude for
gg → H is suppressed by αsyt/(4π) ∼ (1/10) (2/3) (1/12) = 1/180. For the production cross section this means a
factor of (1/180)2 ∼ 1/40000. The cross section for weak boson fusion is proportional to g6, but with two additional
jets in the final state. Including the additional phase space for two jets this roughly translates into
g6/(16π)2 ∼ (2/3)6 1/(16π)2 = (64/729) (1/2500) ∼ 1/25000. These two numbers governing the main LHC
production cross sections roughly balance each other.
The difference in rate which we see in Figure 9 instead arises from the quark and gluon luminosities. In weak boson
fusion the two forward jets always combine to a large partonic center–of–mass energy
x1x2s > (pj,1 + pj,2)2 = 2(pj,1pj,2), with the two parton momentum fractions x1,2 and the hadronic center of mass
energy

√
s = 14 TeV. Producing a single Higgs in gluon fusion probes the large gluon parton density at typical parton

momentum fractions x ∼ mH/
√
s ∼ 10−3. This means that each of the two production processes with their specific

incoming partons probes its most favorable parton momentum fraction: low-x for gluon fusion and high-x for valence
quark scattering. Looking at typical LHC energies, the gluon parton density grows very steeply for x . 10−2. This
means that gluon fusion wins: for a 125 GeV Higgs the gluon fusion rate of ∼ 50 pb clearly exceeds the weak boson
fusion rate of ∼ 4.2 pb. On the other hand, these numbers mean little when we battle an 800 pb tt̄ background relying
on kinematic cuts either on forward jets or on Higgs decay products.

In Figure 11 we see that for large Higgs mass the weak boson fusion rate approaches the gluon fusion rate. The two
reasons for this behavior we mentioned already in this section: first of all, for larger x values the rate for gg → H
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decreases steeply with the gluon density, while in weak boson fusion the already huge partonic center of mass energy
due to the tagging jets ensures that an increase in mH makes no difference anymore. Even more importantly, there
appear large logarithms because the low-pT enhancement of the quark–W splitting. If we neglect mW in the weak
boson fusion process the pT,j distributions will diverge for small pT,j like 1/pT,j , as we will see in Section 2.3.3 After
integrating over pT,j this yields a log(pmax

T,j /p
min
T,j) dependence of the total rate. With the W mass cutoff and a typical

hard scale given by mH this logarithm becomes

σWBF ∝

(
log

pmax
T,j

pmin
T,j

)2

∼
(

log
mH

mW

)2

. (1.217)

For mH = O(TeV) this logarithm gives us an enhancement by factors of up to 10, which makes weak boson fusion
the dominant Higgs production process.
Motivated by such logarithms, we will talk about partons inside the proton and their probability distributions for given
momenta in Section 2.3.3. In the effective W approximation we can resum the logarithms appearing in Eq.(1.217) or
compute such a probability for W bosons inside the proton. This number is a function of the partonic momentum
fraction x and can be evaluated as a function of the transverse momentum pT . Because the incoming quark inside the
proton has negligible transverse momentum, the transverse momenta of the W boson and the forward jet are identical.
These transverse momentum distributions in pT,W = pT,j look different for transverse and longitudinal gauge bosons
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The couplings gA,V describe the gauge coupling of the W bosons to the incoming quarks. Looking at large transverse
momenta pT � mW the radiation of longitudinal W bosons falls off sharper than the radiation of transverse W
bosons. This different behavior of transverse and longitudinal W bosons is interesting, because it allows us to gain
information on the centrally produced particle and which modes it couples to just from the transverse momentum
spectrum of the forward jets and without looking at the actual central particle.
However, numerically the effective W approximation does not work well for a 125 GeV Higgs at the LHC. The
simple reason is that the Higgs mass is of the order of the W mass, as are the transverse momenta of the W and the
final–state jets, and none of them are very small. Neglecting for example the transverse momentum of the W bosons
or the final–state jets will not give us useful predictions for the kinematic distributions, neither for the tagging jets nor
for the Higgs. For the SSC, the competing design to the LHC in Texas which unfortunately was never built, this might
have been a different story, but at the LHC we should not describe W bosons (or for that matter top quarks) as
essentially massless partons inside the proton.

1.6.2 Jet ratios and central jet veto

From the Feynman diagram for weak boson fusion we see that the diagram describing a gluon exchange between the
two quark lines multiplied with the Born diagram is proportional to the color factor TrT a TrT bδab = 0. The only
way to avoid this suppression is the interference of two identical final–state quarks, for example in ZZ fusion. First,
this does not involve only valence quarks and second, this assumes a phase space configuration where one of the two
supposedly forward jets turns around and goes backwards, so the interfering diagrams contribute in the same phase
space region. This means that virtual gluon exchange in weak boson fusion is practically absent.
In Section 2 we will see that virtual gluon exchange and real gluon emission are very closely related. Radiating a
gluon off any of the quarks in the weak boson fusion process will lead to a double infrared divergence, one because
the gluon can be radiated at small angles and one because the gluon can be radiated with vanishing energy. The
divergence at small angles is removed by redefining the quark parton densities in the proton. The soft, non–collinear
divergence has to cancel between real gluon emission and virtual gluon exchange. However, if virtual gluon exchange
does not appear, non–collinear soft gluon radiation cannot appear either. This means that additional QCD jet activity
as part of the weak boson fusion process is limited to collinear radiation, i.e. radiation along the beam line or at least
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in the same direction as the far forward tagging jets. Gluon radiation into the central detector is suppressed by the
color structure of the weak boson fusion process.

While it is not immediately clear how to quantify such a statement it is a very useful feature, for example looking at
the top pair backgrounds. The WWbb̄ final state as a background to qqH,H →WW searches includes two bottom
jets which can mimic the signal’s tagging jets. At the end, it turns out that it is much more likely that we will produce
another jet through QCD jet radiation, i.e. pp→ tt̄+jet, so only one of the two bottom jets from the top decays needs
to be forward. In any case, the way to isolate the Higgs signal is to look at additional central jets.
As described above, for the signal additional jet activity is limited to small-angle radiation off the initial–state and
final–state quarks. For a background like top pairs this is not the case, which means we can reduce all kinds of
background by vetoing jets in the central region above pT,j & 30 GeV. This strategy is referred to as central jet veto or
mini-jet veto. Note that it has nothing to do with rapidity gaps at HERA or pomeron exchange, it is a QCD feature
completely accounted for by standard perturbative QCD.

From QCD we then need to compute the probability of not observing additional central jets for different signal and
background processes. Postponing the discussion of QCD parton splitting to Section 2.3.2 we already know that for
small transverse momenta the pT,j spectra for massless states will diverge, as shown in Eq.(1.217). Looking at some
kind of n-particle final state and an additional jet radiation we can implicitly define a reference point pcrit

T at which the
divergent rate for one jet radiation σn+1 starts to exceed the original rate σn, whatever the relevant process might be

σn+1(pcrit
T ) =

∫ ∞
pcrit
T

dpT,j
dσn+1

dpT,j

!
= σn . (1.219)

This condition defines a point in pT below which our perturbation theory in αs, i.e. in counting the number of
external partons, breaks down. For weak boson fusion Higgs production we find pcrit

T ∼ 10 GeV, while for QCD
processes like tt̄ production it becomes pcrit

T = 40 GeV. In other words, jets down to pT =10 GeV are perturbatively
well defined for Higgs signatures, while for the QCD backgrounds jets below 40 GeV are much more frequent than
they should be looking at the perturbative series in αs. This fixes the pT range where a central jet veto will be helpful
to reject backgrounds

pT,j > 30 GeV and η(tag 1)
j < ηj < η(tag 2)

j . (1.220)

The second condition reminds us of the fact that only central jets will be rare in weak boson fusion. The smaller the
pT threshold the more efficient the central jet veto becomes, but at some point experimental problems as well as
non–perturbative QCD effects will force us to stay above 20 or 30 or even 40 GeV.

If we assign a probability pattern to the radiation of jets from the core process we can compute the survival probability
Ppass of such a jet veto. For many years we have been told that higher orders in the perturbative QCD series for the
Higgs production cross section is the key to understanding LHC rates. For multi–jet observables like a jet veto this is
not necessarily true. As an example we assume NNLO or two-loop precision for the Higgs production rate
σ = σ0 + αsσ1 + α2

sσ2 where we omit the over–all factor α2
s in σ0. Consequently, we define the cross section passing

the jet veto σ(pass) = Ppass σ =
∑
j α

j
sσ

(pass)
j . Because the leading order prediction only includes a Higgs in the final

state we know that σ(pass)
0 = σ0. Solving this definition for the veto survival probability we can compute

P (a)
pass =

σ(pass)

σ
=

σ0 + αsσ
(pass)
1 + α2

sσ
(pass)
2

σ0 + αsσ1 + α2
sσ2

, (1.221)

motivated by including the maximum number of terms (NNLO) in the numerator and denominator. The result as a
function of the maximum allowed pT,j is shown as ‘scheme a’ in Figure 12. The shaded region is an estimate of the
theoretical uncertainty of this prediction.
Alternatively, we can argue that the proper perturbative observable is the fraction of vetoed events (1− Ppass). Indeed,
for small values of αs the jet radiation probability vanishes and with it (1− Ppass) ∼ αs → 0. This vetoed event
fraction we can compute as σj − σ(pass)

j for j ≥ 0. However, we need to keep in mind that in the presence of an
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Figure 12: Different predictions for the jet veto survival probability Ppass as a function of the maximum allowed pT,j .
The example process chosen is Higgs production in gluon fusion. The shaded regions indicate the independent variation
of the factorization and renormalization scales within [mH/4,mH ] requiring µR/µF to lie within [0.5, 2]. The figure
and the corresponding physics argument are taken from Ref. [15].

additional jet the NNLO prediction for the inclusive Higgs production rate reduces to NLO accuracy, so we include
the two leading terms in the numerator and denominator,
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This defines ‘scheme b’ in Figure 12. Obviously, in Eq.(1.222) we can move the term −α2
sσ2 into the denominator

and arrive at Eq.(1.221) within the uncertainty defined by the unknown α3
s terms.

Finally, we can consistently Taylor expand the definition of Ppass as the ratio given in Eq.(1.221). The two leading
derivatives of a ratio read(
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In the last steps we assume f = g at the point where we evaluate the Taylor expansion. Applied to the perturbative
QCD series for (1− Ppass) around the zero-coupling limit this gives us
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defining ‘scheme c’ in Figure 12. The numerical results indicate that the three schemes are inconsistent within their
theoretical uncertainties, and that the most consistent Taylor expansion around perfect veto survival probabilities is
doing particularly poorly. Towards small pT,j veto ranges the fixed order perturbative approach clearly fails. The way
to improve the theoretical prediction is a re-organization of the perturbation theory for small jet transverse momenta.



74 1 HIGGS PHYSICS

We introduce this approach with its leading term, the parton shower, in Section 2.5. For now we conclude that our
theoretical approach has to go beyond a fixed number of (hard) jets and include the production of any number of jets
in some kind of modified perturbative series.

One ansatz for the distribution of any number of radiated jets is motivated by soft photon emission off a hard electron.
In Section 2.5.2 we derive the Poisson distribution in the numbers of jet which follows in the soft limit. If we for now
assume a Poisson distribution, the probability of observing exactly n jets given an expected 〈n〉 jets is

P(n; 〈n〉) =
〈n〉ne−〈n〉

n!
⇒ Ppass ≡ P(0; 〈n〉) = e−〈n〉 . (1.225)

Note that this probability links rates for exactly n jets, no at least n jets, i.e. it described the exclusive number of jets.
The Poisson distribution is normalized to unity, once we sum over all possible jet multiplicities n. It defines the
so-called exponentiation model. We consistently fix the expectation value in terms of the inclusive cross sections
producing at least zero or at least one jet,

〈n〉 =
σ1(pmin

T )

σ0
. (1.226)

This ensures that the inclusive jet ratio σ1/σ0 is reproduced by the ratio of the corresponding Poisson distributions.
Including this expectation value 〈n〉 into Eq.(1.225) returns a veto survival probability of exp(−σ1/σ0). This comes
out roughly as 88% for the weak boson fusion signal and as 24% for the tt̄ background. For the signal–to–background
ratio this implies a three-fold increase.

An alternative model starts from a constant probability of radiating a jet, which in terms of the inclusive cross sections
σn, i.e. the production rate for the radiation of at least n jets, reads

σn+1(pmin
T )

σn(pmin
T )

= R(incl)
(n+1)/n(pmin

T ) . (1.227)

We derive this pattern in Section 2.6. The expected number of jets is then given by
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if R(incl)
(n+1)/n is a constant. Assuming the series converges this turns into a requirement on pmin

T . Radiating jets with
such a constant probability has been observed at many experiments, including most recently the LHC, and is in the
context of W+jets referred to as staircase scaling. We will derive both, the Poisson scaling and the staircase scaling
from QCD in Section 2.6.1. Even without saying anything on how to calculate exclusive processes with a fixed
number of jets we can derive a particular property of the constant probability of staircase scaling: the ratios of the
(n+ 1)-jet rate to the n-jet rate for inclusive and exclusive jet rates are identical. We can see this by computing the
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inclusive R(incl)
(n+1)/n in terms of exclusive jet rates
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To show that the exponentiation model and staircase scaling are not the only assumptions we can make to compute jet
rates we show yet another, but similar ansatz which tries to account for an increasing number of legs to radiate jets off.
Based on

σj+1(pmin
T )

σj(pmin
T )

=
j + 1

j
R(incl)

(n+1)/n(pmin
T ) , (1.230)

the expectation for the number of jets radiated gives, again following Eq.(1.228)
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. (1.231)

All of these models are more or less well motivated statistical approximations. The do not incorporate experimental
effects or the non–perturbative underlying event, i.e. additional energy dependent but process independent jet activity
in the detectors from many not entirely understood sources. For many reasons none of them is guaranteed to give us a
final and universal number. However, by the time we get to Section 2.6.2 we will at least be able to more accurately
describe the central jet veto in QCD.

For the Poisson distribution and the staircase distribution we can summarize the main properties of the n-jet rates in
terms of the upper incomplete gamma function Γ(n, 〈n〉):
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1.6.3 Decay kinematics and signatures

For most of the Higgs decays discussed in Section 1.3 it does not matter how the Higgs is produced, as long as we
only care about the signal events. Many aspects discussed in Section 1.5.4 for Higgs production in gluon fusion can be
directly applied to weak boson fusion. Serious differences appear only when we also include backgrounds and the
kinematic cuts required to separate signal and background events.

The only fundamental difference appears in the reconstruction of Higgs decay into τ pairs. The sizeable transverse
momentum of the Higgs in the weak boson fusion process allows us to reconstruct the invariant mass of a ττ system
in the collinear approximation: if we assume that a τ with momentum ~p decays into a lepton with the momentum x~p
and a neutrino, both moving into the same direction as the tau, we can write the two-dimensional transverse
momentum of the two taus from the Higgs decay in two ways

~p1 + ~p2 ≡
~k1

x1
+

~k2

x2

!
= ~k1 + ~k2 + ~/k . (1.232)

The missing transverse momentum ~/k is the measured vector sum of the two neutrino momenta. This equation is useful
because we can measure the missing energy vector at the LHC in the transverse plane, i.e. as two components, which
means Eq.(1.232) is really two equations for the two unknowns x1 and x2. Skipping the calculation of solving these
two equations for x1x2 we quote the result for the invariant ττ mass

m2
ττ = 2 (p1p2) = 2

(k1k2)

x1x2
. (1.233)

For the signal this corresponds to the Higgs mass. From the formula above it is obvious that this approximation does
not only require a sizeable pi � mτ , but also that back–to–back taus will not work — the two vectors contributing to
~/k then largely cancel and the computation fails. This is what happens for the inclusive production channel
gg → H → ττ , where the Higgs boson is essentially produced at rest.

Again, we can make a list of signatures which work more or less well in connection to weak boson fusion production.
These channels are also included in the summary plot by ATLAS, shown in Figure 11.

– qq → qqH,H → bb̄ is problematic because of large QCD backgrounds and because of the trigger in ATLAS.
The signal–to–background ratio is not quite as bad as in the gluon fusion case, but still not encouraging. The
most worrisome background is overlapping events, one producing the two tagging jets and the other one two
bottom jets. This overlapping scattering gives a non–trivial structure to the background events, so a brute force
side-bin analysis will not work.

– qq → qqH,H → τ+τ− had the potential to be a discovery channel for a light Higgs boson with
mH . 130 GeV, at least for an LHC energy of 14 TeV. The 2012 run at 8 TeV gives us the opportunity to at
least see a small Higgs signal. In early analyses we can limit ourselves to only one jet recoiling against the
Higgs, to increase the sensitivity. Eventually, the approximate mass reconstruction might be as good as
∼ 5 GeV, because we can measure the peak position of a Gaussian distribution with a precision of Γdetector/

√
S.

This channel is particularly useful in scenarios beyond the Standard Model, like its minimal supersymmetric
extension. It guaranteed the discovery of one Higgs boson over the entire supersymmetric parameter space
without a dedicated SUSY search.

Like for almost all weak boson fusion analyses there are two irreducible backgrounds: Z + n jets production at
order GFαns and the same final state at order G3

Fα
n−2
s . The latter has a smaller rate, but because it includes

weak boson fusion Z production as one subprocess it is much more similar to Higgs production for example
from a kinematical or a QCD point of view.

– qq → qqH,H → γγ should be almost comparable with gg → H → γγ with its smaller rate but improved
background suppression. For 14 TeV the two-jet topology which is already part of the discovery analysis
presented in Section 1.4 will become more and more important. As a matter of fact, the weak boson fusion
channel is usually included in H → γγ analyses, and for neural net analyses zooming in on large Higgs
transverse momenta it will soon dominate the inclusive analysis.
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– qq → qqH,H →W+W− contributes to the discovery channel for mH & 125 GeV, ideally at 14 TeV collider
energy. In comparison to gg → H →W+W− it works significantly better for off–shell W decays, i.e. for
Higgs masses below 150 GeV. There, the multitude of background rejection cuts and a resulting better
signal–to–background ratio win over the large rate in gluon fusion. Apart from the two tagging jets the analysis
proceeds the same way as the gluon fusion analysis. The key background to get rid of are top pairs.

– qq → qqH,H → ZZ is likely to work in spite of the smaller rate compared to gluon fusion. It might even be
possible with one hadronic Z decay, but there are not many detailed studies available. On the other hand,
already the gluon–fusion H → ZZ search, which is one of the backbones of the Higgs discovery, has
essentially no backgrounds. This takes away the biggest advantage of weak boson fusion as a Higgs production
channel — the improved background reduction.

– qq → qqH,H → Zγ is difficult due to a too small event rate and no apparent experimental advantages
compared to the gluon–fusion Higgs production.

– qq → qqH,H → µ+µ− sounds very hard, but it might be possible to observe at high luminosities. For gluon
fusion the Drell–Yan background Z → µ+µ− is very hard to battle only using the reconstructed mass of the
muon pair. The two tagging jets and the central jet veto very efficiently remove the leading Z+jets backgrounds
and leave us with mostly the G3

F process. However, because there is no single highly efficient background
rejection cut this analysis will require modern analysis techniques.

– qq → qqH,H → invisible is the only discovery channel for an invisible Higgs which really works at the LHC.
It relies on the pure tagging-jet signature, which means it is seriously hard and requires a very good
understanding of the detector and of QCD effects. The irreducible Z → νν̄ background is not negligible and
has to be controlled essentially based on its QCD properties. Jet kinematics as well as jet counting are the key
elements of this analysis.

Just a side remark for younger LHC physicists: weak boson fusion was essentially unknown as a production mode for
light Higgses until around 1998 and started off as a very successful PhD project. This meant that for example the
Higgs chapter in the ATLAS TDR had to be re-written. While it sometimes might appear that way, there is no such
thing as a completely understood field of LHC physics. Every aspect of LHC physics continuously moves around and
your impact only depends on how good your ideas and their technical realizations are.

1.7 Associated Higgs production
In Figure 9 there appears a third class of processes at smaller rates: associated Higgs production with heavy Standard
Model particles, like W or Z bosons or tt̄ pairs. Until the summer of 2008 the Higgs community at the LHC was
convinced that (a) we would not be able to make use of WH and ZH production at the LHC and (b) we would not be
able to see most of the light Higgs bosons produced at the LHC, because H → bb̄ is no promising signature in gluon
fusion or weak boson fusion production.
One key to argument (a) are the two different initial states for signal and background: at the Tevatron the processes
qq̄ → ZH and q′q̄ →WH arise from valence quarks. At the LHC with its proton–proton beam this is not possible,
so the signal rate will suffer when we go from Tevatron to LHC. The QCD background at leading order is
qq̄ → Zg∗ → Zbb̄ production, with an off–shell gluon splitting into a low mass bottom quark pair. At next–to–leading
order, we also have to consider the t-channel process qq̄ → Zb̄bg and its flipped counter part qg → Zb̄bq. This
background becomes more dangerous for larger initial–state gluon densities. Moving from Tevatron to LHC the Higgs
signal will decrease while the background increases — not a very promising starting point.

With Ref. [16] the whole picture changed. We will discuss this search strategy in detail in Section 3.1.2 in the context
of jets and jet algorithms at the LHC. It turns out that searches for boosted Higgs bosons are not only promising in the
V H,H → bb̄ channel, but might also resurrect the tt̄H,H → bb̄ channel. These new channels are not yet included in
the ATLAS list of processes shown in Figure 11 because the simulations are still at an early stage. But we can expect
them to play a role in LHC searches for a light Higgs boson.
This is another example of what is possible and what not in LHC phenomenology: it all really depends only on how
creative you are; that even applies to a field like Standard Model Higgs searches, which is supposedly studied to death.
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1.8 Beyond Higgs discovery
The prime goal of the LHC was to discover a new light scalar particle which we could then experimentally confirm to
be a Higgs boson, either as predicted by the Standard Model or with modifications due to new physics. This has
worked great. The discovery of a new particle which was predicted in 1964 purely on the grounds of quantum field
theory gives us great confidence in field theories as a description of elementary particles. For the description of this
new state we will therefore consistently rely on the Lagrangian as the most basic object of perturbative field theory.

The Standard Model Lagrangian makes many predictions concerning the properties of a Higgs boson; as a matter of
fact, all its properties except for its mass are fixed in the minimal one-doublet Higgs sector of the Standard Model.
The question is, can we test at least some of these predictions?
In this section we will briefly touch on a few interesting questions relevant to the Higgs Lagrangian. This is where we
have seen the most progress in LHC Higgs physics over recent years: not only will we be able to see a light Higgs
boson simultaneously in different production and decay channels, as discussed in Sections 1.5 and 1.6, we can also
study many of its properties. In a way this section ties in with the effective theory picture we use to introduce the
Higgs mechanism: the obvious requirements to include massive gauge bosons in an effective electroweak gauge
theory leads us towards the Standard Model Higgs boson only step by step, and at any of these steps we could have
stopped and postulated some alternative ultraviolet completion of our theory.

1.8.1 Coupling measurement

In Section 1.4 we present the ATLAS Higgs discovery paper in some detail. While it is clear that the observed
ZZ → 4`, γγ, and WW → 2` 2ν signals point towards the discovery of a Higgs boson, the nature of the observed
excess is not at all clear. For the statistical analysis leading to the discovery the interpretation plays no role. Only
some very preliminary information on the observed resonance can be deduced from the fact that it appears in analyses
which are designed to look for the Higgs boson.

As a first step in analyzing the Higgs Lagrangian we can for example assume the operator structure of the Standard
Model and ask the question how well each of the associated couplings agrees with the Standard Model prediction. If
we for a moment forget about the ultraviolet completion of our electroweak theory we observe a scalar particle with a
mass around 125 GeV which couples to W and Z bosons, photons, and probably gluons. To describe the Higgs
discovery in terms of a Lagrangian we need at least these four terms. Because the Higgs mechanism breaks the weak
gauge symmetry the individual operators in terms of the Higgs field do not have to be gauge invariant. Moreover, the
coupling measurement in the Standard Model Lagrangian mixed renormalizable couplings to massive gauge bosons
and fermions with loop–induced couplings to massless gauge bosons. This mix of renormalizable and dimension-6
operators cannot be expected to descent from a proper effective field theory. If we are interested in the ultraviolet
structure of this free couplings model we can for example consider the observed Higgs particle the lightest state in an
extended Higgs sector. This way its couplings are allowed to deviate from the Standard Model predictions while
renormalizability and unitarity are ensured once we include the additional, heavier Higgs states.

Alternatively, we can define an effective field theory based on all possible Higgs operators to a given mass dimension.
In the case of a linear representation this Lagrangian will be based on the Higgs doublet φ and by construction
SU(2)L gauge invariant. Some of the dimension-6 potential operators forming this effective theory we study in
Section 1.2.1. Couplings to W and Z bosons start at mass dimension four, but there exist of course
higher–dimensional operators linking the same particles; the same is true for Yukawa couplings. Higgs couplings to
gluons and photons, as derived in Section 1.5.1 and Section 1.5.3, start at dimension six and could be supplemented by
operators with even higher mass dimension. In an even more general approach we do not even assume that the Higgs
boson has spin zero. Instead, we can define effective theories also for spin-one and spin-two Higgs impostors.
Each operator on this extensive list we can equip with a free coupling factor, and this set of couplings we can fit to the
LHC measurements. Note that we really mean ‘measurements’ and not ‘event rates’, because different operators lead
to different kinematic behavior and hence significantly different efficiencies in the LHC analyses. As an example we
can quote the angle between the two leptons in the H →WW analysis or the structure of the tagging jets, which
work best for a spin-zero Higgs. Of course, adding all kinds of kinematic distributions will add a huge amount of
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additional information to the Lagrangian determination, but it is obvious that at least at this stage such an
measurement is unrealistic.

Because of this complication we return to the original question, comparing the LHC results to the
Standard–Model–like Higgs Lagrangian. The different operators essentially fix all Higgs quantum numbers, the
production and decay kinematics, and the experimental efficiencies. In our first attempt we will assume a CP-even
scalar Higgs boson, where dimension-4 terms in the Lagrangian in general dominate over higher–dimensional terms.
Effective couplings to gluons and photons are included at dimension-6 because tree level dimension-4 couplings do
not exist. Deviations from this assumptions we discuss in Section 1.8.2. Higgs potential terms including the triple and
quartic self-couplings we can ignore for now, because LHC analyses will not be sensitive to them for a while. Again,
we will discuss possible measurements of the Higgs self-coupling in Section 1.8.3. Our basic Lagrangian with
Standard model couplings is a combination of Eq.(1.52), Eq.(1.53), and Eq.(1.204):

L ⊃ 1

2
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µ W

−µ − gmZ

2cw
HZµZ

µ

+ gγγH
H

v
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2
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2
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µνGµν −
∑

fermions

gf Hψfψf . (1.234)

In the second line we have defined each Higgs coupling to a particle x as gx, which is commonly done in Higgs
couplings analyses. Given this ansatz we can measure the Higgs couplings or ratios of them, for example in relation to
their Standard Model values

gx = (1 + ∆x) gSM
x and

gx
gy

=
(
1 + ∆x/y

) (gx
gy

)SM

. (1.235)

For the effective couplings we need to separate the parametric dependence on the Standard Model couplings which
enter the one-loop expression, so we find for example

gγ =
(
1 + ∆SM

γ + ∆γ

)
gSM
γ . (1.236)

The contribution ∆SM
γ is the deviation of the effective couplings based on a possible shift in the values of the top and

W couplings consistent with their tree level counterparts. This term is crucial once we extract all Higgs couplings
from data consistently. Our ansatz in terms of the ∆x is motivated by the fact that at first sight the observed Higgs
signal seems to be in rough agreement with a Standard Model Higgs boson, so the measured values of ∆x should be
small.

A serious complication in the Higgs coupling extraction from event numbers arises through the total Higgs width. At
the LHC, we will mainly measure event rates in the different Higgs channels as shown in Figure 13. Even though it
enters all event rates we will not be able to measure the width of a light Higgs boson as long as it does not exceed
O(1 GeV). For small deviations from the Standard Model couplings this means that we need to construct the total
Higgs width from other observables. The functional dependence of the event count in a production channel p and a
decay channel d is

Nevents = ε× σp × BRd ∼
g2
pg

2
d

Γtot({gj})
. (1.237)

The combined efficiencies and the fiducial detector volume we denote as ε. The couplings entering the production and
decay channels we denote as gp,d. The total width, defined as the sum of all partial widths, depends on all relevant
Higgs couplings. This functional behavior means that any LHC event number will depend on the Higgs couplings gj
in a highly correlated way, highly sensitive to what we assume for the unobservable Higgs width. An interesting
question is if we can scale all Higgs couplings simultaneously without affecting the observables. This means

Nevents = lim
g→0

g4

Γtot
= lim
g→0

g4

g2
Γobs

g2
+ Γunobs

= lim
g→0

g4

g2
Γobs

g2
+ Γunobs

= 0 . (1.238)
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Figure 13: Event rates for the different Higgs signatures relative to the Standard Model expectations as measured by
CMS. Figure from the supplementary material to Ref. [10].

The total width we have generally split into observable and unobservable channels, where the observable channels
scale like g2

d. This means that event numbers are sensitive to more than just the ratio of Higgs couplings. Nevertheless,
we need to make some kind of assumption about the Higgs width.
The above argument suggests a theoretically sound assumption we can make on the total Higgs width, once we
observe a number of Higgs decay channels and measure the underlying Higgs coupling

Γtot >
∑

observed

Γj . (1.239)

Each partial Higgs width is independently computed and corresponds to a positive transition amplitude squared. If we
assume the Higgs Lagrangian Eq.(1.234) we can compute each partial width in terms of its unknown coupling. There
are no interference effects between Higgs decay channels with different final–state particles, so the total width is
strictly bounded from below by the sum of observed channels.
A slightly more tricky assumption gives us an upper limit on at least one Higgs partial width. From our calculation in
Section 1.2.3 we know that the Standard Model Higgs boson unitarizes the WW →WW scattering rate. If we
overshoot for example in the s-channel Higgs exchange we would need an additional particle which compensates for
this effect. However, the amplitude of an such additional particle would be proportional to its Higgs coupling squared,
which means it is not clear where the required minus sign would come from. Taken with a grain of salt this tells us

gW < gSM
W or ΓH→WW < ΓSM

H→WW . (1.240)

Given that correlations between different Higgs couplings will become a problem in the coupling extraction such a
constraint can be very useful.

In the analysis which we present in this section we do not assume an upper limit to any Higgs partial width. Instead,
we promote the constraint in Eq.(1.239) to an exact relation:

Γtot =
∑

observed

Γx(gx) + 2nd generation < 2 GeV . (1.241)

Because at the LHC we will not observe any Higgs couplings to a second generation fermion any time soon we correct
for the charm quark contribution using gc = mc/mt × gSM

t (1 + ∆t). This avoids systematic offsets in the results. The
total upper limit on the Higgs width corresponds to very large individual couplings and is an estimate of visible effects
in the H → γγ analyses.
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experiment H inclusive H+2 jets H+lepton(s) H+top(s)
theory gg → H qq → qqH qq̄ → V H gg/qq̄ → tt̄H
H → ZZ 2011/2012 ≥2015 — —
H → γγ 2011/2012 2011/2012 — ?
H →WW 2011/2012 2011/2012 — ?
H → ττ ? 2012 — ?
H → µµ — ? — —
H → bb̄ — ? ≥2015 ≥2015

Table 1: Higgs signatures with significant impact on the Higgs coupling determination in 2011/2012 and beyond.
Question marks indicates that beyond 2015 these channels might contribute, but no reliable ATLAS or CMS analysis is
currently available. In the top line we indicate the experimental signature while in the second line we show the leading
production mode.

In Table 1 we list the channels which we can rely on in the extraction of the Higgs couplings. The details of the 2011
results in these channels we discuss with the Higgs discovery paper in Section 1.4. Note that in Table 1 we list the
different Higgs production channels which are theoretically well defined but not experimentally observable. For
example, the H → γγ analysis is separated into the jet–inclusive and the two-jet analysis, where the inclusive rate is
dominated by the gluon–fusion production process while the two-jet rate is dominated by weak boson fusion. Once
we can determine the efficiencies for each of the production processes contributing to the different analyses we can
rotate the Higgs rates from the experimental basis to the theoretical basis. In the 2011/2012 data set we then have six
observable rates from which we want to extract as many Higgs couplings as possible. Before we discuss the physics
result of such a coupling extraction let us introduce some of the techniques.

The naive approach to a parameter extraction is a χ2 minimization, experimentally known as ‘running MINUIT’. The
variable χ2 measures the quality of a fit or the quality of the theoretical assumptions compared to the measurements
for the best possible set of theoretical model parameters. Given an nmeas-dimensional vector of measurements ~xmeas
and the corresponding model predictions ~xmod(~m), which in turn depend on an nmod-dimensional vector of model
parameters, we define

χ2(~m) =

nmeas∑
j=1

|~xmeas − ~xmod(~m)|2j
σ2
j

, (1.242)

where σ2
j is the variance of the channel ~xj . The best fit point in model parameter space is the vector ~m for which

χ2(~m) assumes a minimum. In the Gaussian limit, we can not only compute the minimum value of χ2 but compare
the entire χ2 distribution for variable model parameters to our expectation. If the theoretical predictions ~xmod depend
on nmod model parameters we can define the normalized or reduced χ2 distribution

χ2
red(~m) =

χ2(~m)

nmeas − nmod + 1
≡ χ2(~m)

ν
. (1.243)

For this definition of the number of degrees of freedom ν we assume nmeas > nmod + 1, which means that the system
is over–constrained and a measure for the quality of the fit makes sense. If we find minχred ∼ 1 the error estimate of
σj entering Eq.(1.242) is reasonable. The problem with the χ2 test is that it requires us to know not only the variance
σ2
j , but also the form of the actual ~xmeas distributions to apply any test on the final value of χ2. The natural distribution

to assume is a Gaussian, defined in Eq.(1.184) with the covariance σ2. Technically, a common assumption in the
determination of the best fit is that the functional form of χ2 be quadratic. In that case we can compute the confidence
level of a distribution, as defined in Section 1.4 from the minχ2 value.
All this is only true in the Gaussian limit, which means that we cannot use it in our Higgs couplings measurement.
Some of the channels involved have a very small event count in the signal or in the background, many uncertainties
are heavily correlated, and we have very little control over the form of systematic or theoretical uncertainties.
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In Section 3.4 we construct the general form of a χ2 variable including full correlations and without making any
assumptions on the form of uncertainties,

χ2(~m) −→ −2 logL(~m) = ~χTC
−1~χ , (1.244)

with the definition of ~χ and C given in Eq.(3.34). This variable, evaluated at a model parameter point ~m, is the
log-likelihood. The name likelihood implies that it is some kind of probability, but evaluated over model parameter
space and not over experimental outcomes. This means that the normalization of a likelihood is only defined once we
agree on an integration measure in model space. Only in the Bayesian approach we ever do that. Here, we construct a
completely exclusive log-likelihood map over the nmod-dimensional model parameter space and then reduce the
dimensionality one–by–one to show profile likelihoods for individual model parameters or their correlations. We will
give details on this procedure in Section 3.4. Error bars on the individual couplings can be extracted through toy
measurements. These are assumed measurements which we generate to trace the individual uncertainty distribution
for each channel and which define a distribution of best fit values. Typically 103 toy measurements give us a
sufficiently precise distribution around the best–fitting point to construct the model space volume which contains
68.3% of the toy measurement distribution below and above the measured central value.

Technically, the log-likelihood can be extracted as a Markov chain. This is a set of parameter points which represent
their log-likelihood value in their density. The construction of such a Markov chain is simple:

1. start with any model parameter point ~m0 and compute L(~m0).

2. random generate a second model parameter point ~m1 according to some suggestion probability. This
probability cannot have any memory (detailed balance), should be peaked for ~m1 ∼ ~m0, at the same time give a
decent probability to move through the parameter space, and does not have to be symmetric
q(~m0 → ~m1) 6= q(~m1 → ~m0), We often use a Breit–Wigner or Cauchy distribution defined in Section 2.1.2
with a width of 1% of the entire parameter range.

3. accept new point as the next point in the Markov chain if logL(~m1) > logL(~m0). Otherwise, accept with
reduced probability logL(~m1)/ logL(~m0).

4. stop once the chain is sufficiently long to cover at least part of the parameter space. Obviously, we can combine
several different Markov chains

There are ways to improve such a Markov chain. First, for a Markov chain which carries information only about the
log-likelihood itself, i.e. used to estimate the same property we define it through, we can keep the value L(~m) as a
weight to each point. Weighted Markov chains improve the convergence of the final result. Secondly, we can slowly
focus on regions of the relevant parameter regions with larger L values. Following the general idea of simulated
annealing we can use cooled Markov chains which include two stages: in the early stage the Markov chain rapidly
covers large fractions of the model space while in a second stage it zooms in on the regions with the largest
likelihoods. Technically, we change the constant acceptance criterion relative to a linear random number r to a varying

logL(~m1)

logL(~m0)
> r −→

(
logL(~m1)

logL(~m0)

)j/10

> r for j = 1...10 . (1.245)

Because the ratio of log-likelihoods is smaller than unity, for j = 1 the weighted ratio becomes larger and the new
point is more likely to be accepted. For larger values of j the weighted ratio becomes smaller, which means that the
Markov chain will stay more and more localized and mostly move to another point if that one is more likely.
Obviously, cooling Markov chains are only reliable if we run several chains to check if they really cover all interesting
structures in model space. In the case of the Higgs analysis we use O(10) chains with 106 parameter points each.
These 107 likelihood values define our completely exclusive likelihood map.

With this technical background we can continue with our Higgs couplings analysis. From Eq.(1.234) we know that in
our case the model parameters ~m will be the Higgs couplings gx or their deviations from the Standard Model values
∆x as defined in Eq.(1.235). The observables will be the event rates in the Higgs search channels shown in Table 1.
The errors on signal and background rates include statistical, systematic (correlated), and theoretical (correlated)
sources. The SFitter version of the Higgs couplings analysis proceeds in a series of independent steps:
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Figure 14: Correlations of the top and bottom Yukawas extracted from the 2011 data set with a center–of–mass energy
of 7 TeV. The left panel shows the expected likelihood map in the Standard Model, the right panel shows the observed
one. Figure from Ref. [19].

1. construct an exclusive likelihood map over the Higgs couplings model space.

2. deflate the parameter space to profile likelihoods for one-dimensional and two-dimensional distributions of
couplings. This gives us a global picture of the Higgs couplings space.

3. determine the best–fitting parameter point with high resolution. This means starting from the best point in the
Markov chain and using a minimization algorithm on logL(~m).

4. determine the 68% uncertainty band on each extracted couplings from toy measurements, defining a
local picture of the Higgs couplings.

The benefits of this approach as well as the impressive progress in the experimental Higgs analyses can be nicely
illustrated when we look at the coupling determination from 2011 and early 2012 data.

Based on 2011 data the number of measurements published by ATLAS and CMS and shown in Moriond was
relatively small. As listed in Table 1 there should have been measurements including a Higgs coupling to gluons and
photons through effective operators, plus couplings to W , Z, and tau leptons at the tree level. Dealing with relatively
early data we assume that the higher–dimensional couplings are mediated by Standard Model top and W loops, with
at best small corrections due to additional states. Before we determine the individual couplings we can look at the
global picture, to make sure that everything looks roughly like expected. In the left panel of Figure 14 we show the
correlation between the top and bottom Yukawa couplings expected for the 7 TeV run. In the ∆b,t = 0...1 range we
see the Standard Model coupling range.
For large ∆b,t ∼ 5...10 another solution appears. Its main features is the simultaneous increase of both quark
Yukawas. This behavior can be explained by the indirect handles we have on each of them. The top Yukawa is mostly
measured through the effective gluon–Higgs coupling while the bottom Yukawa enters the total width. To keep for
example the inclusive H → ZZ rate constant, both couplings have to increase at roughly the same rate. For a constant
inclusive H → γγ rate the discussion in Section 1.5.3 we also need to increase ∆W at the same rate. However, such
an increase would be visible in the inclusive and weak boson fusion H →WW channels. What we see in Figure 14 is
that starting from Standard Model values we expect all three couplings to increase. At some point ∆W hits the limits
from other channels, so instead of further increasing it switches back to its Standard Model value, ∆b follows into the
same direction, but ∆t takes over the increased effective photon-Higgs coupling with a different sign of this effective
couplings. From that point on ∆b ∼ ∆t can grow again. If we want to avoid the theoretical problem of a hugely
non–perturbative top Yukawa we can limit our couplings extraction to the separable Standard-Model-like solution, as
indicated by the green line.
The problem with the same distribution extracted from 2011 data is that this separations does not exist. This can be
traced back to essentially missing evidence for a Higgs boson decaying to WW or to ττ . If in the argument above we
remove the constraints from visible and constraining WW channels the two Yukawa couplings can increase from
∆b,t = 0 to huge values. The Standard Model and the large couplings solutions are blended together. The global
picture tells us that we should expect any reasonable Yukawa coupling measurements from 2011 data even if we allow
for an indirect determination from the higher–dimensional couplings.



84 1 HIGGS PHYSICS

-1

 0

 1

 2

 3

 4

 5

 6

∆
H

∆
W

∆
Z

∆
t

∆
b

∆
τ

∆
Z/W

∆
τ/b

∆
W

/b

gx = gx
SM

 (1+∆x)

L=4.6-4.9 fb
-1

, 68% CL: ATLAS + CMS

SM exp.

data

W=Z data

Moriond 2012

-1

-0.5

 0

 0.5

 1

 1.5

∆
H

∆
V

∆
f

∆
W

∆
Z

∆
t

∆
b

∆
τ

∆
γ

∆
Z/W

∆
τ/b

∆
b/W

gx = gx
SM

 (1+∆x)

L=4.6-5.1(7 TeV)+5.1-5.9(8 TeV) fb
-1

, 68% CL: ATLAS + CMS

SM exp.

data

data (+∆γ)

ICHEP 2012

Figure 15: Left: Higgs couplings extracted from the 2011 run at 7 TeV. Right: couplings extracted from all data
published in the Higgs discovery papers by ATLAS and CMS. Figures from Refs. [19, 20].

In the left panel of Figure 15 we show the results from the local analysis and see exactly what we expect from the
global picture: a universal Higgs coupling modification

∆x ≡ ∆H ∀x (1.246)

is determined exactly as we expect from a set of measurements in agreement with the Standard Model. In contrast,
∆W ∼ ∆τ ∼ −1, which means that there is no evidence for such a coupling in the 2011 data set. The Higgs gauge
coupling to Z bosons is roughly what one would have expected, while the quark Yukawas are very poorly determined.

In the right panel of Figure 15 we repeat the same analysis with all data from the discovery papers published in the
Summer of 2012. As mentioned in Section 1.4, for ATLAS this includes all results presented in the talks on 4th of
July, plus an improved H →WW analysis.
First, the measurements of a common Higgs form factor for all couplings defined in Eq.(1.246) has improved to a 20%
level, in very good agreement with the Standard Model. If we want to separate this tree level form factor into a
universal bosonic and a universal fermionic coupling modification we see that both of them are determined well. All
these measurements are within our expectations from the Standard Model for the central values as well as for the
uncertainties. The full set of couplings we can determine either limiting the effective Higgs–photon couplings to
Standard Model loops or allowing for an additional contribution ∆γ defined in Eq.(1.236). It turns out that in the
absence of any direct quark Yukawa measurements we have no sensitivity to an additional Higgs–gluon contribution.

The most important result of the 2011/2012 coupling analysis is that the Higgs couplings are typically determined at
the 20% to 50% level. The only coupling measurement still missing entirely is ∆τ . Allowing for a free Higgs–photon
coupling does not affect the other measurements significantly. The central value of ∆W decreases just sightly,
allowing for a barely non-zero central value of ∆γ . The bottom line that there is no anomaly in the Higgs coupling to
photons is in apparent disagreement with other analyses. The difference is that in the SFitter results shown here all
Higgs couplings are allowed to vary in parallel. If the event rate for pp→ H → γγ is slightly high, we do not simply
translate this effect into a positive value of ∆γ . Instead, we allow the top and W couplings to absorb some of this
effect within their uncertainties from other measurements. Only the part of the γγ anomaly which is not compatible
with the other Higgs channels then contributes to the ∆γ measurement shown in Figure 15.

Without showing the numerical outcome we state that the quality of the fit, i.e. the log-likelihood value in the
best–fitting parameter point, at this stage includes no useful information. Essentially any model of Higgs couplings,
with the exception of a chiral 4th generation, fits the data equally well. As indicated in Table 1 we expect significant
improvements of the Higgs coupling measurements from the 2015 LHC run and beyond. This will mostly affect the
highly sensitive weak boson fusion signatures and a direct measurement of the quark Yukawas based on fat jet
techniques described in Section 3.1.2. Any kind of measurement at the per-cent level or better makes a very good case
for a linear collider, running at enough energy to study the e+e− → ZH , tt̄ and tt̄H production channels.
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1.8.2 Higgs quantum numbers

One question for the LHC is: once we see a Higgs boson at the LHC, how do we test its quantum numbers? One such
quantum number is its spin, which in the ideal case we want to determine channel by channel in the Higgs
observation. Three questions people usually ask really mean the same thing:

– what is the spin of the Higgs boson?

– is the new resonance responsible for electroweak symmetry breaking?

– what is the form of the Higgs operators in the Lagrangian?

Given that the discovery of the Higgs boson is an impressive confirmation that fundamental interactions are described
by quantum field theory, specifically by gauge theories, the last version of the question is the most appropriate.
Lagrangians are what describes fields and interactions in such a theory, and what we need to determine experimentally
is the Lagrangian of the observed Higgs boson. In that sense, the coupling measurement described in the last section
assumes the Higgs Lagrangian of the Standard Model and measures the couplings of the corresponding Higgs
interaction terms.

As far as the spin of the new particle is concerned, the spin-one case is easily closed: following the Landau–Yang
theorem a spin-one Higgs boson would not couple to two photons, so in the photon decay channel we only need to
look at angular distributions for example in weak boson fusion to distinguish spin zero from spin two.
Once we know that we are talking about a scalar field there are a few options, linked to the CP properties of the new
particle. The part of the Higgs Lagrangian we are most interested in is the coupling to the massive gauge bosons. In
the Standard Model, the fundamental CP-even Higgs boson couples to the W and Z bosons proportional to gµν . For
general CP-even and CP-odd Higgs bosons there are two more ways to couple to W bosons using gauge invariant
dimension-6 operators. If inside the dimension-6 operators we replace (φ†φ) by the linear Higgs terms we are
interested in, we arrive at the dimension-5 Lagrangian

L ⊃ −gmW HWµW
µ −

g+
D5v

Λ2
HWµνW

µν −
g−D5v

Λ2
AWµνW̃

µν . (1.247)

In this notation H is the scalar Higgs boson, while A is a pseudo-scalar. The coupling to Z bosons is completely
analogous to the W case, where Wµν indicates the field strength tensor and Ṽ µν its dual. This set of gauge–invariant
terms in the Lagrangian can be translated into Feynman rules for the Higgs coupling to massive gauge bosons. Their
tensor structures are

O+
SM = gµν O+

D5 = gµν − pµ1p
ν
2

p1p2
O−D5 = εµνρσ p

ρ
1p
σ
2 . (1.248)

These are the only gauge invariant dimension-5 couplings of two gauge bosons to a (pseudo-) scalar field. The second
one appears in the effective one-loop gluon–gluon–Higgs coupling in Eqs.(1.204) and (1.210). This second tensor is
not orthogonal to gµν , but we can replace it by any linear combination with gµν . However, if we trust our description
in terms of a Lagrangian we obviously prefer the gauge–invariant basis choice.

The traditional observables reflecting the coupling structure of a massive state decaying to two weak gauge bosons are
the Cabibbo–Maksymowicz–Dell’Aquila–Nelson angles. They are about the same age as the Higgs boson. We define
them in the fully reconstructable decay X → ZZ → e+e−µ+µ−. We already know that one of the two Z bosons will
be far off its mass shell, which does not affect the analysis of the decay angles. The four lepton momenta
reconstructing the Higgs–like state X are given by

pX = pZe + pZµ pZe = pe− + pe+ pZµ = pµ− + pµ+ . (1.249)

Each of these momenta as well as the beam direction we can boost into the X rest frame and the two Ze,µ rest frames,
defining the corresponding three-momenta p̂i. The spin and CP angles are then defined as

cos θe = p̂e− · p̂Zµ
∣∣∣
Ze

cos θµ = p̂µ− · p̂Ze
∣∣∣
Zµ

cos θ∗ = p̂Ze · p̂beam

∣∣∣
X

cosφe = (p̂beam × p̂Zµ) · (p̂Zµ × p̂e−)
∣∣∣
Ze

cos ∆φ = (p̂e− × p̂e+) · (p̂µ− × p̂µ+)
∣∣∣
X
. (1.250)
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Figure 16: ∆φ distributions for X → ZZ events (left), weak boson fusion production in the Breit frame (center), and
in the laboratory frame (right). Figures from Refs. [21, 22].

The index indicates the rest frame where the angles are defined. To distinguish the different spin-zero hypotheses the
angular difference ∆φ is most useful. Looking at each of the decaying Z bosons defining a plane opened by the two
lepton momenta it is the angle between these two planes in the Higgs rest frame is ∆φ. Its distribution can be written
as

dσ

d∆φ
∝ 1 + a cos ∆φ+ b cos(2∆φ) . (1.251)

For the CP-odd Higgs coupling to WµνW̃µν we find a = 0 and b = 1/4, while for the CP-even Higgs coupling gµν

we find a > 1/4 depending on mH . Some example distributions for the decay planes angle we show in Figure 16.

This method only works if we observe the decay H → ZZ → 4` with a good signal–to–background ratio S/B. We
can derive an alternative observable from studying its Feynman diagrams: starting from the H → ZZ → 4` decay
topology we can switch two fermion legs from the final state into the initial state

−→

and read the diagram right–to–left. This gives us the Feynman diagram for weak boson fusion Higgs production. The
angle between the decay planes gets linked to the angular correlation of two forward the tagging jets. Its advantage is
that it gives us a production-side correlation, independent of the Higgs decay signature.
Going back to the transverse momentum spectra for the tagging jets shown in Eq.(1.218) we already know one way of
telling apart these couplings: the dimension-3 WWH coupling proportional to gµν comes out of the Higgs potential
as a side product of the W mass term, i.e. it couples the longitudinal Goldstone modes in the W boson to the Higgs.
In contrast, the CP-even dimension-6 operator is proportional to the transverse tensor, which means it couples the
transverse W polarizations to the Higgs and therefore produces a harder pT spectrum of the tagging jets. The problem
with such an observation is that in the absence of a unitarizing Higgs scalar in WW scattering we should expect our
theory to generally include momentum dependent form factors instead. Any observable with units of energy will
become sensitive to these form factors.

Sticking to angular observables, along the lines of Eq.(1.250), we can first translate all decay angles into the weak
boson fusion topology. The problem in this approach are the rest frames: a W boson in the t-channel is space–like,
implying p2

W ≡ t < 0. This means that we cannot boost into its rest frame. What we can do is boost into the so-called
Breit frame. It is defined as the frame in which the momentum of the t-channel particle only has space–like entries
and can be reached through a conventional boost.
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Writing the weak boson fusion momenta as q1q2 → j1j2 (X → dd̄) we can define a modified version of the five
angles in Eq.(1.250), namely

cos θ1 = p̂j1 · p̂V2

∣∣∣
V1Breit

cos θ2 = p̂j2 · p̂V1

∣∣∣
V2Breit

cos θ∗ = p̂V1
· p̂d
∣∣∣
X

cosφ1 = (p̂V2
× p̂d) · (p̂V2

× p̂j1)
∣∣∣
V1Breit

cos ∆φ = (p̂q1 × p̂j1) · (p̂q2 × p̂j2)
∣∣∣
X
. (1.252)

In addition, we define the angle φ+ ≡ 2φ1 + ∆φ which typically shows a modulation for spin-two resonances. In
Figure 16 we see how ∆φ in the Breit frame is closely related to the angle between the Z decay planes.

In general, at hadron colliders we describe events using (pseudo-) rapidities and azimuthal angles, suggesting to use
the differences {∆ηmn,∆φmn} for m,n = j1,2, X, d, d̄ to study properties of a Higgs–like resonance.
A very useful observable is the azimuthal angle between the two tagging jets, i.e. the angle separating the two jets in
the transverse plane. We can again link it to the angle between the two Z decay planes in X → ZZ decays: for weak
boson fusion it is defined as cos ∆φ = (p̂q1 × p̂j1) · (p̂q2 × p̂j2) in the Higgs candidate’s rest frame, as shown in
Eq.(1.252). We can links this rest frame to the laboratory frame through a boost with a modest shift in the transverse
direction. In the laboratory frame each cross product (p̂q × p̂j) then resides in the azimuthal plane. The difference ∆φ
is nothing but the azimuthal angle between two vectors which are each orthogonal to one of the tagging jet direction.
This is the same as the azimuthal angle between the two tagging jets themselves, ∆φjj .
In Figure 16 we finally show this azimuthal angle between the tagging jets, for all three Higgs coupling operators
defined in Eq.(1.248) and a sample spin-two coupling. The Standard Model operator predicts an essentially flat
behavior, while the other two show a distinctly different modulation. The CP-odd εµνρσ coupling vanishes once two
momenta contracted by the Levi–Civita tensor are equal. This explains the zeros at φ = 0, π, where the two transverse
jet momenta are no more linearly independent. To explain the opposite shape of the CP-even Higgs we use the low
transverse momentum limit of the tagging jets. In that case the Higgs production matrix element becomes proportional
to the scalar product (ptag 1

T ptag 2
T ) which vanishes for a relative angle ∆φ = π/2.

In addition to the decay plane angle or the azimuthal angle ∆φ there is a large number of angular observables we can
use to study the quantum numbers. The only thing we have to make sure is that we do not cut on such variables when
extracting the Higgs signal from the backgrounds. Examples of such cuts is the angle between the two leptons in the
H →W+W− decay or the rapidity difference between the two forward tagging jets in weak boson fusion. In those
cases the determination of the Higgs operators in the Lagrangian requires additional information. Also, we would
want to test if a mixture of operators is responsible for the observed Higgs–like resonance. In Eq.(1.248) the
higher–dimensional CP-even operator O+

D5 should exist in the Standard Model, but it is too small to be observed. As
mentioned above, this question about the structure of the Higgs Lagrangian we should really answer before we
measure the Higgs couplings as prefactors to the appropriate operators, following Section 1.8.1.

1.8.3 Higgs self coupling

If we should ever observe a scalar particle at the LHC, the crucial question will be if this is indeed our Higgs boson
arising from electroweak symmetry breaking. In other words, does this observed scalar field have a potential with a
minimum at a non–vanishing vacuum expectation value?
Of course we could argue that a dimension-3 Higgs coupling to massive W bosons really is a Higgs–Goldstone self
coupling, so we see it by finding a Higgs in weak boson fusion. On the other hand, it would be far more convincing to
actually measure the self coupling of the actual Higgs field. This trilinear coupling we can probe at the LHC studying
Higgs pair production, for example in gluon fusion via the usual top quark loop

+
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Figure 17: The (parton–level) sensitivity limits for Higgs pair production and a measurement of the Higgs self coupling.
The analysis is based on the decay HH →WW . Figure from Ref. [24].

Following exactly the same argument as presented in Section 1.5.1 we can derive the two tensor structures
contributing to Higgs pair production for transverse gluons

√
2PµνT = gµν − kν1k

µ
2

(k1k2)
(1.253)

√
2Pµν2 = gµν +

k2
3k
ν
1k

µ
2

k2
T (k1k2)

− 2(k2k3)kν1k
µ
3

k2
T (k1k2)

− 2(k1k3)kµ2 k
ν
3

k2
T (k1k2)

+
kν3k

µ
3

k2
T

with k2
T = 2

(k1k3)(k2k3)

(k1k2)
− k2

3 .

The third momentum is one of the two Higgs momenta, so k2
3 = m2

H . The two tensors are orthonormal, which means
P 2
T = 11, P 2

2 = 11 and PT · P2 = 0. The second tensor structure is missing in single Higgs production, so it only
appears in the continuum (box) diagram and turns out to be numerically sub-leading over most of the relevant phase
space.

From Section 1.5.2 on the effective Higgs–gluon coupling we know that in the low energy limit we can compute the
leading form factors associated with the triangle and box diagrams, both multiplying the transverse tensor
gµν − kµ1 kν2/(k1k2) for the incoming gluons

gggH = −gggHH = −i αs
12π

+O
(
m2
H

4m2
t

)
. (1.254)

Close to the production threshold s ∼ (2mH)2 the leading contribution to the loop–induced production cross section
for gg → HH involving the two Feynman diagrams above and the Higgs self coupling derived in Section 1.2.1 is then
proportional to

[
3m2

H

gggH
s−m2

H

+ gggHH

]2

= g2
ggH

[
3m2

H

1

s−m2
H

− 1

]2

∼ g2
ggH

[
3m2

H

1

3m2
H

− 1

]2

→ 0 , (1.255)

so the triangle diagram and the box diagram cancel.
In this argument we assume that the Higgs self coupling in the Standard Model is proportional to mH . To see
deviations from this self coupling in the first term of Eq.(1.255) we can look at something like the mHH distribution
and measure the threshold behavior. In the absence of any self coupling this threshold cancellation of the self coupling
contribution with the continuum should be absent as well. The threshold contribution to Higgs pair production would
be huge. This way a shape analysis of the threshold behavior will allow us to experimentally exclude the case of
λHHH = 0 which predicts an unobserved large enhancement of the production cross section at threshold. At this
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point it is still under study if such a measurement will work at the LHC and what kind of LHC luminosities would be
required.

As for all Higgs signatures we can go through the different Higgs pair signatures to check which of them might work.
All estimates concerning detector performance have to be taken with a grain of salt, because this measurement will
only be possible after a significant luminosity upgrade of the LHC, with integrated luminosities of several 1000 fb−1

of data. This might affect identification efficiencies as well as the invariant (Higgs) mass reconstruction:

– gg → HH → bb̄ bb̄ is hopeless because of the overwhelming QCD backgrounds.

– gg → HH → bb̄ W+W− has a sizeable rate, but the irreducible background is tt̄ production. In the very
unlikely case that this background can be reduced to an acceptable level, the channel might work.

– gg → HH → bb̄ τ+τ− might or might not work. The key to this analysis is the reconstruction of the invariant
masses of the bottom and tau pairs. Subjet methods along the lines of the Higgs tagger introduced in
Section 3.1.2 might help, if they survive the pile–up at this luminosity.

– gg → HH → bb̄ γγ should benefit from the excellent mγγ reconstruction which ATLAS and CMS have
already shown in the Higgs discovery. The backgrounds are not huge, either.

– gg → HH →W+W− W+W− used to be the best channel for Higgs masses in the 160 GeV range. For lower
masses it will be less promising. The most dangerous background is tt̄+jets, which at least requires a very
careful study.

Other channels should be tested, but at the least they will suffer from small rates once we include the branching ratios.
While there exist quite a number of studies for all of the channels listed above, none of them has yet been shown to
work for a 125 GeV Higgs boson. While Nature’s choice of Higgs mass is excellent when we are interested in
measuring as many Higgs couplings to Standard Model particles as possible, it clearly suggests that we not look for
the Higgs self coupling.

1.9 Alternatives and extensions
The Higgs mechanism as discussed up to here is strictly speaking missing two aspects: a reason why the Higgs field
exists and formal consistency of such a scalar field. In the following two sections we will present two example
models: first, we will show how technicolor avoids introducing a new fundamental scalar field and instead relies on a
dynamic breaking of the electroweak gauge symmetry. The problem is that technicolor does not predict the light
scalar which ATLAS and CMS discovered in the Summer of 2012. In addition, we will briefly introduce the hierarchy
problem, or the question why the Higgs is light after including loop corrections to the Higgs mass. Little Higgs
models are one example for models stabilizing the Higgs mass, supersymmetry is another.

1.9.1 Technicolor

Technicolor is an alternative way to break the electroweak symmetry and create masses for gauge bosons essentially
using a non–linear sigma model, as introduced in Section 1.1.4. There, we give the scalar field φ a vacuum
expectation value v through a potential, which is basically the Higgs mechanism. However, we know another way to
break (chiral) symmetries through condensates — realized in QCD. So let us review very few aspects of QCD which
we will need later.

First, we illustrate why an asymptotically free theory like QCD is a good model to explain electroweak symmetry
breaking. This is what will guide us to technicolor as a mechanism to break the electroweak gauge symmetry. As we
will see in Section 2.2.2 the inherent mass scale of QCD is ΛQCD ∼ 200 MeV. It describes the scale below which the
running QCD coupling constant αs = g2

s/(4π) becomes large, which means that perturbation theory in αs breaks
down and quarks and gluons stop being QCD’s physical degrees of freedom. This reflects the fact that QCD is not
scale invariant. We introduce a renormalization scale in our perturbative expansion. The running of a dimensionless
coupling constant can be translated into an inherent mass scale. This mass scale characterizes the theory in the sense
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that αs(p2 = Λ2
QCD) ∼ 1; for scales below ΛQCD the theory will become strongly interacting and hit its Landau pole.

Note that first of all this scale could not appear if for some reason β ' 0 and that it secondly does not depend on any
mass scale in the theory. This phenomenon of a logarithmically running coupling introducing a mass scale in the
theory is called dimensional transmutation. If at a high scale we start from a strong coupling in the 10−2 · · · 10−1

range the QCD scale will arrive at its known value without any tuning.

The symmetry QCD breaks is the chiral symmetry. Just including the quark doublets and the covariant derivative
describing the qqg interaction the QCD Lagrangian reads

LQCD ⊃ ΨL i /DΨL + ΨR i /DΨR (1.256)

From Eqs.(1.16) and (1.17) we know that the Lagrangian in Eq.(1.256) it is symmetric under a chiral–type
SU(2)L × SU(2)R transformation. Quark masses are not allowed, the chiral symmetry acts as a custodial symmetry
for the tiny quark masses we measure for example for the valence quarks u, d. In Section 2.2.2 we will elaborate more
on the beta function of QCD. It is defined as

dα

d log p2
= βQCD = −α

2
s

4π

(
11

3
Nc −

2

3
nf

)
∝ Nc , (1.257)

where the Nc scaling is only true in the pure Yang–Mills theory, but gives asymmetric freedom due to βQCD < 0.
Towards small energies the running strong coupling develops a Landau poles at ΛQCD. Because QCD is asymptotically
free, at energies below ΛQCD the essentially massless quarks form condensates, which means two-quark operators will
develop a vacuum expectation value

〈
ΨΨ
〉
. This operator spontaneously breaks the SU(2)L × SU(2)R symmetry

into the (diagonal) SU(2) of isospin. This allows us to write down massive constituents which are the different
composite color–singlet mesons and baryons become the relevant physical degrees of freedom. Their masses are of
the order of the nucleon masses mnucleon ∼ 1 GeV. The only remaining massless particles are the Goldstone bosons
from the breaking of SU(2)L × SU(2)R, the pions. Their masses are not strictly zero, because the valence quarks do
have a small mass of a few MeV. Their coupling strength (or decay rate) is governed by fπ . It is defined via〈

0|j5
µ|π
〉

= ifπpµ , (1.258)

and parameterizes the breaking of the chiral symmetry via breaking the axialvector–like U(1)A. The axial current can
be computed as j5

µ = δL /δ(∂µπ) and in the SU(2) basis reads j5
µ = ψγµτψ/2. From the measured decays of the

light color–singlet QCD pion into two leptons we know that fπ ∼ 100 MeV.

To generalize them to technicolor we write the QCD observables in terms of two QCD model parameters: the size of
the gauge group, Nc, and the scale at which the asymptotically free theory becomes strongly interacting, ΛQCD. It is
hard to compute observables like mnucleon or fπ as a function of Nc and ΛQCD. Instead, we derive simple scaling rules.
The ΛQCD dependence simply follows from the mass dimension which for the vacuum expectation value is given by
the mass dimension 3/2 of each fermion field,

fπ ∼ ΛQCD
〈
QQ
〉
∼ Λ3

QCD mfermion ∼ ΛQCD . (1.259)

The Nc dependence of fπ can be guessed from color factors: the pion decay rate is by definition proportional to f2
π .

Leaving aside the strongly interacting complications parameterized by the appearance of fπ , the Feynman diagrams
for this decay are the same as for the Drell–Yan process qq̄ → γ, Z. The color structure of this process leads to an
explicit factor of Nc, to be combined with an averaging factor of 1/Nc for each of the incoming quarks. Together, the
pion decay rate is proportional to f2

π/Nc. We therefore postulate the pion decay constant to scale like fπ ∼
√
Nc. The

vev–operator represents two quarks exchanging a gluon at energy scales small enough for αs to become large. The
color factor without any averaging over initial states) simply sums over all colors states for the color–singlet
condensate, so it is proportional to Nc. The fermion masses have nothing to do with color states and hence should not
depend on the number of colors. For details you should ask a lattice gauge theorist, but we already get the idea how
we can construct our high–scale version of QCD through

fπ ∼
√
Nc ΛQCD

〈
QQ
〉
∼ Nc Λ3

QCD mfermion ∼ ΛQCD . (1.260)
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These scaling laws will allow us to make predictions for technicolor, in spite of the fact that we cannot compute any of
these observables perturbatively.

Let us work out the idea that a mechanism just like QCD condensates could be the underlying theory of the non–linear
σ model. In contrast to QCD we now have a gauged custodial symmetry forbidding weak gauge boson masses. The
longitudinal modes of the massive W and Z bosons come from the Goldstone modes of the condensate’s symmetry
breaking called technipions. The corresponding mass scale would have to be

fT ∼ v = 246 GeV . (1.261)

Fermion masses we postpone to the next section — in the 1970s, when technicolor was developed, the top quark was
not yet known. All known fermions had masses of the order of GeV or much less, so they were to a good
approximation massless compared to the gauge bosons.
To induce W and Z masses we write down the non–linear sigma model in its SU(2) version. In Section 1.1.5 we
re-write the linear sigma model using the Higgs field. Omitting the Goldstone modes Eq.(1.47) and Eq.(1.51) read

Σ =

(
1 +

H

v

)
11 φ =

1√
2

(
0

v +H

)
=

1√
2

(
0
vΣ

)
. (1.262)

In the non–linear sigma model, defined in Eq.(1.43), we replace v by fT and find

φ =
1√
2

(
0
fTΣ

)
=

1√
2
e−i(π·τ)/fT

(
0
fT

)
=

1√
2

(
0

fT − i(π · τ) +O
(

1
fT

)) (1.263)

As basis vectors we use the three Pauli matrices {τa, τb} = 2δab which according to Eq.(1.11) fulfill
(τ · π1) (τ · π2) = (π1 · π2). The SU(2)-covariant derivative in the charge basis of the Pauli matrices defined in
Eq.(1.9) gives, when to simplify the formulas we for a moment forget about the U(1)Y contribution and only keep the
non-zero upper entry in Eq.(1.263):

iDµφ

∣∣∣∣∣
lower

=
[
i∂µ − g

2
(τ ·Wµ)

] 1√
2

[
fT − i(τ · π) +O

(
1

fT

)]
=

1√
2

[
∂µ(τ · π)− gfT

2
(τ ·Wµ) +O(f0

T )

]
(Dµφ)†(Dµφ) = −1

2

[
∂µ(τπ)− gfT

2
(τ ·Wµ) +O(f0

T )

] [
∂µ(τπ)− gfT

2
(τ ·Wµ) +O(f0

T )

]
⊃ −1

2
(∂π)2 +

gfT

2
(Wµ · (∂µπ)) +O(f0

T ) . (1.264)

If we also include the generator of the hypercharge U(1) we find a mixing term between the technipions and the
SU(2) gauge bosons

L ⊃ gfT

2
W+
µ ∂

µπ− +
gfT

2
W−µ ∂

µπ+ + fT

(
g

2
W 3
µ +

g′

2
Bµ

)
∂µπ0 . (1.265)

This is precisely the mixing term from the massive–photon example of Eq.(1.3) which we need to absorb the
Goldstone modes into the massive vector bosons.
We have strictly speaking not shown that the fT appearing in the scalar field φ is really the correctly normalized decay
constant of the technipions and there is a lot of confusion about factors

√
2 in the literature which we will ignore in

this sketchy argument. Nevertheless, if we assume the correct normalization the massive Lagrangian Eq.(1.265) with a
mixing term proportional to gfT/2 generates mW = gfT/2. We know from Eq.(1.39) that mW = gv/2, so
electroweak symmetry breaking might well be a scaled-up version of fπ .

Once we are convinced that we can scale up QCD and break electroweak symmetry we want to check what kind of
predictions for the electroweak observables come out of technicolor. We can study this scaling in the general case,
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where technicolor involves a gauge group SU(NT ) instead of SU(Nc) and we have ND left handed fermion doublets
in the fundamental representation of SU(NT ). To be able to write down Dirac masses for the fermions at the end of
the day we also need (2ND) right handed fermion singlets. From the case of more than one Higgs field contributing to
v we know that if we have ND separate condensates their squares have to add up to g2v2; for equal vacuum
expectation values they scale like v ∼

√
NDfT. The scaling rules of Eq.(1.260) then give

v√
ND

= fT ∼
√
NT
Nc

ΛT

ΛQCD
fπ ⇔ ΛT

ΛQCD
∼ v

fπ

√
Nc

NDNT
∼ 246 GeV

130 MeV

√
Nc

NDNT
. (1.266)

One simple example for this technicolor setup is the Susskind–Weinberg model. Its gauge group is
SU(NT )× SU(3)c × SU(2)L × U(1)Y . As matter fields forming the condensate which in turn breaks the
electroweak symmetry we include one doublet (ND = 1) of charged color–singlet technifermions (uT , dT )L,R. In
some ways this doublet and the two singlets look like a fourth generation of chiral fermions, but with different charges
under all Standard Model gauge groups: for example, their hypercharges Y need to be chosen such that gauge
anomalies do not occur and we do not have to worry about non–perturbatively breaking any symmetries, namely
Y = 0 for the left handed doublet and Y = ±1 for uTR and dTR. The usual formula q = τ3/2 + Y/2 then defines the
electric charges ±1/2 for the heavy fermions uT and dT .
The additional SU(NT ) gauge group gives us a running gauge coupling which becomes large at the scale ΛT. Its beta
function is modelled after the QCD case

βQCD = −α
2
s

4π

(
11

3
Nc −

2

3
nf

)
βT = −α

2
T

4π

(
11

3
NT −

4

3
ND

)
, (1.267)

keeping in mind that ND counts the doublets, while nf counts the number of flavors at the GUT scale. This relation
holds for a simple model, where quarks are only charged under SU(3)c and techniquarks are only charged under
SU(NT ). Of course, both of them can carry weak charges. As a high–scale boundary condition we can for example
choose αs(MGUT) = αT (MGUT). Using Eq.(2.73) for ΛQCD we find

Λ2
T

Λ2
QCD

= exp

[
+
αT (mGUT)

βT

]
exp

[
−αs(mGUT)

βQCD

]
= exp

[
αs(mGUT)

(
1

βT
− 1

βQCD

)]

= exp

− 4π

αs(mGUT)

 1
11

3
NT −

4

3
ND

− 1

11− 4


 . (1.268)

Such a GUT-inspired model based on an SU(4) gauge group with αs(MGUT) ∼ 1/30 and ND = 1 does not
reproduce the scale ratio required by Eq.(1.266). However, for example choosing NT = ND = 4 predicts
ΛT/ΛQCD ∼ 830 and with it exactly the measured ratio of v/fπ .

At this stage, our fermion construction has two global chiral symmetries SU(2)× SU(2) and U(1)×U(1) protecting
the technifermions from getting massive, which we will of course break together with the local weak
SU(2)L × U(1)Y symmetry. Details about fermion masses we postpone to the next sections. Let us instead briefly
look at the particle spectrum of our minimal model:

– techniquarks: from the scaling rules we know that the techniquark masses will be of the order ΛT as give above.
Numerically, the factor ΛT/ΛQCD ∼ 800 pushes the usual quark constituent masses to around 700 GeV for the
minimal model with NT = 4 and ND = 1. Because of the SU(NT ) gauge symmetry there should exist
four–techniquark bound states (technibaryons) which are stable due to the asymptotic freedom of the SU(NT )
symmetry. Those are not preferred by standard cosmology, so we should find ways to let them decay.
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– Goldstone modes: from the breaking of the global chiral SU(2)× SU(2) and the U(1)× U(1) we will have
four Goldstone modes. The three SU(2) Goldstones are massless technipions, following our QCD analogy.
Because we gauge the remaining Standard Model subgroup SU(2)L, they become the longitudinal polarizations
of the W and Z boson, after all this is the entire idea behind this construction. The remaining U(1) Goldstone
mode also has an equivalent in QCD (η′), and its technicolor counter part acquires a mass though
non–perturbative instanton breaking. Its mass can be estimates to ∼ 2 TeV, so we are out of trouble.

– more exotic states: just like in QCD we will have a whole zoo of additional technicolor vector mesons and
heavy resonances, but all we need to know about them is that they are heavy (and therefore not a problem for
example for cosmology).

Before we move on, let us put ourselves into the shoes of the technicolor proponents in the 70s. They knew how QCD
gives masses to protons, and the Higgs mechanism has nothing to do with it. Just copying the appealing idea of
dimensional transmutation without any hierarchy problem they explained the measured W and Z masses. And just
like in QCD, the masses of the four light quarks and the leptons are well below a GeV and could be anything, but not
linked to weak–scale physics. Then, people found the massive bottom quark and the even more massive top quark and
it became clear that at least the top mass was very relevant to the weak scale. In this section we will very briefly
discuss how this challenge to technicolor basically removed it from the list of models people take seriously — until
extra dimensions came and brought it back to the mainstream.

Extended technicolor is a version of the original idea of technicolor which attempts to solve two problems: create
fermion masses for three generations of quarks and leptons and let the heavy techniquarks decay, to avoid stable
technibaryons. From the introduction we in principle know how to obtain a fermion mass from Yukawa couplings, but
to write down the Yukawa coupling to the sigma field or to the TC condensate we need to write down some Standard
Model and technifermion operators. This is what ETC offers a framework for.

First, we need to introduce some kind of multiplets of matter fermions. Just as before, the techniquarks, like all matter
particles have SU(2)L and U(1)Y or even SU(2)R quantum numbers. However, there is no reason for them all to
have a SU(3)c charge, because we would prefer not to change βQCD too much. Similarly, the Standard Model
particles do not have a SU(NT ) charge. This means we can write matter multiplets with explicitly assigned color and
technicolor charges as (

QTa=1..NT , Q
(1)
j=1,...,Nc

, Q
(2)
j=1,...,Nc

, Q
(3)
j=1,...,Nc

, L(1), L(2), L(3)
)
. (1.269)

These multiplets replace the usual SU(2)L and SU(2)R singlets and doublets in the Standard Model. The upper
indices denote the generation, the lower indices count the NT and Nc fundamental representations. In the minimal
model with NT = 4 this multiplet has 4 + 3 + 3 + 3 + 1 + 1 + 1 = 16 entries. In other words, we have embedded
SU(NT ) and SU(Nc) in a local gauge group SU(16). If without further discussion we also extend the Standard
Model group by a SU(2)R gauge group, the complete ETC symmetry group is SU(16)× SU(2)L × SU(2)R, where
we omit the additional U(1)B−L throughout the discussion.
A technicolor condensate will now break SU(2)L × SU(2)R, while leaving SU(3)c untouched. If we think of the
generators of the ETC gauge group as (16× 16) matrices we can put a (4× 4) block of SU(NT ) in the upper left
corner and then three (3× 3) copies of SU(Nc) on the diagonal. The last three rows/columns can be the unit matrix.
Once we break SU(16)ETC to SU(NT ) and the Standard Model gauge groups, the Goldstone modes corresponding to
the broken generators obtain masses of the order of ΛETC. This breaking should on the way produce the correct
fermion masses. The remaining SU(NT )× SU(2)L × U(1)Y will then break the electroweak symmetry through a
SU(NT ) condensate and create the measured W and Z masses as described in the last section.

In this construction we will have ETC gauge bosons which for example in the quark sector form currents of the kind
(QT γµ TETC Q

T ), (QT γµ TETC Q), or (Qγµ TETC Q). Here, TETC stands for the SU(16)ETC generators. The multiplets
QT and Q replace the SU(2)L,R singlet and doublets. Below the the ETC breaking scale ΛETC these currents become
four-fermion interactions, just like a Fermi interaction in the electroweak theory,

(QT γµ T
a
ETC Q

T ) (QT γµ T bETC Q
T )

Λ2
ETC

(QT γµ T
a
ETC Q) (Qγµ T bETC Q

T )

Λ2
ETC

(Qγµ T
a
ETC Q) (Qγµ T bETC Q)

Λ2
ETC

.

(1.270)
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The mass scale in this effective theory can be linked to the mass of the ETC gauge bosons and their gauge coupling
and should be of the order 1/ΛETC ∼ gETC/METC. Let us see what this kind of interaction predicts at energy scales
below ΛETC or around the weak scale. Because currents are hard to interpret, we Fierz–rearrange these operators and
then pick out three relevant classes of scalar operators.

Let us briefly recall this Fierz transformation. The complete set of four-fermion interactions is given by the structures

L ⊃
(
ψAjψ

) (
ψAjψ

)
with Aj = 11, γ5, γµ, γ5γµ, σµν . (1.271)

The multi–index j implies summing over all open indices in the diagonal combination AjAj . These five types of
(4× 4) matrices form a basis of all real (4× 4) matrices which can occur in the Lagrangian. If we now specify the
spinors and cross them in this interaction we should be able to write the new crossed (1,4,3,2) scalar combination (or
any new term, for that matter) as a linear combination of the basis elements ordered as (1,2,3,4):(

ψ1Aiψ4

) (
ψ3Aiψ2

)
=
∑
j

Cij
(
ψ1Ajψ2

) (
ψ3Ajψ4

)
. (1.272)

In this notation we ignore the normal–ordering of the spinors in the Lagrangian. It is easy to show that C ·C = 11. The
coefficients Cij we list for completeness reasons:

11 γ5 γµ γ5γµ σµν
11 −1/4 −1/4 −1/4 1/4 −1/8
γ5 −1/4 −1/4 1/4 −1/4 −1/8
γµ −1 1 1/2 1/2 0
γ5γµ 1 −1 1/2 1/2 0
σµν −3 −3 1/2 0 1/2

(1.273)

Applying a Fierz transformation to the three quark–techniquark four-fermion operators given in Eq.(1.274) we obtain
scalar (A = 11) operators,

(QT T aETC Q
T ) (QT T bETC Q

T )

Λ2
ETC

(QTL T
a
ETC Q

T
R) (QR T

b
ETC QL)

Λ2
ETC

(QL T
a
ETC QR) (QR T

b
ETC QL)

Λ2
ETC

.

(1.274)
In these examples we pick certain chiralities of the Standard Model fields and the technifermions. Let us go through
these operators one by one. While not all of these operators will be our friends we need them to give masses to the
Standard Model fermions, so we have to live with the constraints.

1. Once technicolor forms condensates of the kind 〈QTQT 〉 the first operator in Eq.(1.274) will give masses to
technicolor generators. This happens through loops involving technicolor states. We only quote the result for
example for technipions which receive masses of the order m ∼ NTΛ2

T/ΛETC. For ΛT ∼ v and ΛETC ∼ 3 TeV
this not a large mass value, but nevertheless this first scalar operator clearly is our friend.

2. The scaling rules in Eq.(1.260) require the condensate to be proportional to NTΛ3
T, The scalar dimension-6

operator adds a factor to 1/Λ2
ETC, so dimensional analysis tells us that the resulting Standard Model fermion

masses will be of the order

L ⊃ NTΛ3
T

Λ2
ETC

QLqR ≡ mQ QLqR ⇔ ΛETC ∼

√
NTΛ3

T

mQ
∼
{

3.7 TeV mQ = 1 GeV
300 GeV mQ = 150 GeV (1.275)

for NT = 4 and ΛT = 150 GeV. This operator appears to be our friend for light quarks, but it becomes
problematic for the top quark, where ΛETC ∼ v comes out too small.

The top mass operator can be fierzed into a left handed fermion–technifermion current (QTLγµQL)(QLγ
µQTL).

Because of the custodial SU(2)L × SU(2)R symmetry, which will turn out crucial to avoid electroweak
precision constraints, we can rotate the top quarks into bottom quarks,

g2
ETC

M2
ETC

(
QTLγµbL

) (
QLγ

µQTL
)
. (1.276)
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This operator induces a coupling of a charged ETC gauge boson to TLbL which induces a one-loop contribution
to the decay Z → bb̄. It contributes to the effective bbZ coupling at the order v2/Λ2

ETC ∼ O(1), considerably
too big for the LEP measurement of Rb = ΓZ(bb̄)/ΓZ(hadrons). Note that such a constraint will affect any
theory which induces a top mass through a partner of the top quark and allows for a general set of fierzed
operators corresponding to this mass term, not just extended technicolor.

3. The third operator in Eq.(1.274) does not include any techniquarks, but all combinations of four-quark
couplings. In the Standard Model such operators are very strongly constrained, in particular when they involve
different quark flavors. Flavor–changing neutral currents essentially force operators like

1

Λ2
ETC

(s̄γµd) (s̄γµd)
1

Λ2
ETC

(µ̄γµe) (ēγµµ) (1.277)

to vanish. The currently strongest constraints come from kaon physics, for example the mass splitting between
the K0 and the K

0
. Its limit ∆MK . 3.5 · 10−12 MeV implies METC/(gETCθsd) & 600 TeV in terms of the

Cabibbo angle θsd. We can translate this bound on ΛETC into an upper bound on fermion masses we can
construct in our minimal model. ΛETC > 103 TeV simply translates in a maximum fermion mass which we can
explain in this model: m . 4 MeV for ΛT . 1 TeV. This is obviously not good news, unless we find a flavor
symmetry to protect us from unwanted dimension-6 operators.

Let us collect all the evidence we have against technicolor, in spite of its very appealing numerical analogy to QCD.
First and most importantly, it predicts no light Higgs resonance, but a zoo of heavy techni-particles. Both of these
predictions are in disagreement with current LHC data. In the next section we will use Goldstone’s theorem to break
this degeneracy and generate a single light Higgs scalar. This Goldstone protection of a single light state can be
applied to many models, including technicolor and other strongly interacting Higgs sectors.
In addition, technicolor is strongly constrained by electroweak precision constraints described in Section 1.1.6. If we
introduce new particles with SU(2)L × U(1)Y quantum numbers, all of these particles will contribute to gauge boson
self energies. Contributions from different states largely add, as we can see for example for the S and T parameters in
Eq.(1.68). In technicolor the singlet techniquarks will each contribute as ∆S ∼ NT /(6π) ∼ 4/20, assuming ND = 1.
More realistic models easily get to ∆S ∼ O(1), which is firmly ruled out, no matter what kind of ∆T we manage to
generate. The way out of some technicolor problems is so-called walking technicolor, which still does not predict a
light narrow Higgs resonance. Nevertheless, it is instructive to understand dynamic electroweak symmetry breaking
because we know that this mechanism is realized elsewhere in Nature and might eventually enter our Higgs sector in
some non–trivial way. After all, we did not yet manage to answer the question where the Higgs field and the Higgs
potential come from.

1.9.2 Hierarchy problem and the little Higgs

Before we introduce the little Higgs mechanism of breaking electroweak symmetry we first need to formulate a major
problem with the Higgs boson as a fundamental scalar. Let us start by assuming that the Standard Model is a
renormalizable theory.
At next–to–leading order, the bare leading order Higgs mass gets corrected by loops involving all heavy Standard
Model particles. Even within the Higgs sector alone we can for example compute the four-point Higgs loop
proportional to the coupling given in Eq.(1.86), namely −3im2

H/v
2. Introducing a cutoff scale Λ and sending it to

infinity is certainly a valid physical regularization scheme. We can implement the cutoff using the
Pauli–Villars regularization,

1

q2 −m2
H

−→ 1

q2 −m2
H

− 1

q2 − Λ2
=


1

q2 −m2
q2 � Λ2

1

q2
− 1

q2
= 0 q2 � Λ2 .

(1.278)
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The one-loop integral mediated by the Higgs self coupling then reads, modulo prefactors,

3m2
H

v2

∫ Λ d4q

(2π)4

1

q2 −m2
H

→ 3m2
H

v2

∫
d4q

(2π)4

(
1

q2 −m2
H

− 1

q2 − Λ2

)
=

3m2
H

v2

(
m2
H − Λ2

) ∫ d4q

(2π)4

1

(q2 −m2
H)(q2 − Λ2)

=
3m2

H

v2

(
m2
H − Λ2

) C

16π2
, (1.279)

where C is a numerical constant coming from the computation of the four-dimensional integral. When we separate a
remaining factor 1/(16π2) from the integral measure 1/(2π)4 it comes out of order unity. The problem is that
Eq.(1.279) contributes to the Higgs mass, as we will show in some detail in Section 2.1.2. This means that we observe
a divergent one-loop contribution to the Higgs mass ∆m2

H ∝ Λ2. Including all heavy Standard Model loops we find a
full set of quadratically divergent corrections to the bare Higgs mass mH,0

m2
H = m2

H,0 +
3g2

32π2

Λ2

m2
W

[
m2
H + 2m2

W +m2
Z −

4

3
m2
t

]
. (1.280)

This form of the Higgs mass corrections has one interesting new aspect, when we compare it to the known behavior of
the fermion masses: the loop corrections to the mass and hence the quadratic divergence are not proportional to the
Higgs mass. Unlike fermion masses which are linked to an approximate chiral symmetry, a finite Higgs mass can
appear entirely at loop level. We have already exploited this feature writing down the Coleman–Weinberg mechanism
in Section 1.2.7.
The naive solution m2

H + 2m2
W +m2

Z − 4nfm
2
t/3 = 0, called Veltman’s condition, assumes that fermionic and

bosonic loop corrections are regularized the same way, which is not realistic.

Why is the quadratic divergence in Eq.(1.280) a problem? Dimensional regularization using n = 4− 2ε space–time
dimensions does not distinguish between logarithmic and quadratic divergences. And we know that all masses
develop poles 1/ε which reflects the fact that the bare masses in the Lagrangian have to be renormalized. In that sense
dimensional regularization is not a solution to our problem, but an approach which does not even see the issue.
In an effective theory approach there exist many physical scales at which we need to add new effects to the Standard
Model. This could for example be a see-saw scale to generate right handed neutrinos or some scale where the quark
flavor parameters are generated. In such an effective theory we should be able to use a cutoff and matching scheme
around the high mass scale Λ. Varying this matching scale slightly should not make a big difference. However, the
quadratic divergence of the Higgs mass implies that we have to compensate for a large matching scale dependence of
an observable mass on the ultraviolet side of the matching. In other words, we need to seriously fine-tune the
ultraviolet completion of the effective Standard Model.
Alternatively, we can argue that in the presence of any large energy scale the Higgs mass wants to run to this high
scale. This is only true for a fundamental scalar particle, fermion masses only run logarithmically. This means that
while the Higgs mechanism only works for a light Higgs mass around the electroweak scale, the Higgs naturally
escapes, if we let it. Keeping the Higgs mass stable in the presence of a larger physical energy scale is called the
hierarchy problem.

We can quantify the level of fine tuning, which would be required to remove the huge next–to–leading order
contributions using a counter term,

m2
H,0 +

3g2

32π2

Λ2

m2
W

[
m2
H + 2m2

W +m2
Z −

4

3
m2
t

]
− δm2

H
!
= m2

H,0 . (1.281)

Assuming Λ = 10 TeV the different Standard Model contributions require

δm2
H =


− 3

8π2 λ
2
t Λ2 ∼ −(2 TeV)2 t loop

1
16π2 g

2 Λ2 ∼ (100 TeV)2 W loop

1
16π2 λ

2 Λ2 ∼ (500 TeV)2 H loop.

(1.282)
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Varying the cutoff scale Λ we need to ensure

mH = m2
H,0 − δm2

H +

 (−250 + 50 + 25) (125 GeV)2 for Λ = 10 TeV
(−25000 + 2500 + 1250) (125 GeV)2 for Λ = 100 TeV

...
(1.283)

While we need to emphasize that the hierarchy problem is a mathematical or even esthetic problem of the Higgs
sector, it might guide us to a better understanding of the Higgs sector. The best–known solution to the hierarchy
problem is supersymmetry, with the modified Higgs sector discussed in Section 1.2.6. Alternatively, extra space–time
dimensions, flat or warped, offer a solution. Finally, we will show how little Higgs models protect the Higgs mass
based on concepts related to Goldstone’s theorem.

Trying to solve this hierarchy problem using broken symmetries will lead us to little Higgs models. This mechanism
of stabilizing a small Higgs mass is based on Goldstone’s theorem: we make the Higgs a Goldstone mode of a broken
symmetry at some higher scale. This way the Higgs mass is forbidden by a symmetry and cannot diverge
quadratically at large energy scales. More precisely, the Higgs has to be a pseudo–Goldstone, so that we can write
down a Higgs mass and potential. This idea has been around for a long time, but for decades people did not know how
to construct such a symmetry.
Before we solve this problem via the little Higgs mechanism, let us start by constructing an example symmetry which
protects the Higgs mass from quadratic divergences at one loop. We break a for now global SU(3) symmetry to
SU(2)L. The number of generators which are set free when we break SU(N)→ SU(N − 1) is

(N2 − 1)2 − ((N − 1)2 − 1) = 2N − 1 . (1.284)

The SU(2) generators are the Pauli matrices given in Eq.(1.9). For SU(3) the basis is given by the traceless hermitian
and unitary Gell–Mann matrices,

λ1 =

τ1 0
0

0 0 0

 λ2 =

τ2 0
0

0 0 0

 λ3 =

τ3 0
0

0 0 0

 λ8 =
1√
3

11 0
0

0 0 −2


λ4 =

0 1
0

1 0 0

 λ5 =

0 −i
0

i 0 0

 λ6 =

0 0
1

0 1 0

 λ7 =

0 0
−i

0 i 0

 . (1.285)

We can arrange all generators of SU(3) which are not generators of SU(2), and hence turn into Goldstones, in the
outside column and row of the 3× 3 matrixSU(2) w1

w2

w∗1 w∗2 w0

 ≡ (SU(2) φ
φ† w0

)
. (1.286)

The entry w0 is fixed by the requirement that the matrix has to be traceless when we include 11 as the fourth SU(2)
matrix in the top–left corner. The corresponding field is an SU(2) singlet and can be ignored for now.
We now assume that the SU(2)L doublet φ formed by the broken SU(3) generators is the Standard Model Higgs
doublet. Normalization factors 1/

√
2 we omit in this section. The Higgs can then only acquire a mass at the

electroweak scale, where SU(2)L is broken. Based on Eq.(1.286) we define a sigma field as in Eq.(1.43). The only
difference to Eq.(1.43) is that Σ is now a triplet and includes a symmetry breaking scale f > v

Σ = exp

[
− i
f

(
02×2 φ
φ† 0

)] (
02

f

)
=

[
11− i

f

(
0 φ
φ† 0

)
− 1

2

(
−1

f

)2(
0 φ
φ† 0

) (
0 φ
φ† 0

)
+O

(
1

f3

)] (
0
f

)
=

(
0
f

)
−
(
iφ
0

)
− 1

2f2

(
0

φ†φf

)
+O

(
1

f3

)
=

(
0
f

)
−
(

iφ
φ†φ/(2f)

)
+O

(
1

f3

)
. (1.287)
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Only in the first line we indicate which of the zeros in the 3× 3 matrix is a 2× 2 sub-matrix. This is easy to keep track
of if we remember that the Higgs field φ is a doublet, while φ†φ is a scalar number. The kinetic term for the triplet
field Σ becomes

|∂µΣ|2 = (i∂µφ
∗)i(−i∂µφ)i +

1

4f2
(∂µφ

†φ)(∂µφ†φ)= |∂µφ|2
(

1 +
φ†φ

f2

)
, (1.288)

where we skip the non–trivial intermediate steps. The second term in the brackets includes two Higgs fields which we
can link to a propagator, generating a one-loop correction to the Higgs propagator. We know that our theory is an
effective non–renormalizable field theory, so we can apply a cutoff to the divergent loop diagram. The result we
already know from Eq.(1.279). Ignoring the constant C but keeping the factor 1/(4π)2 from the integral measure we
can write down the condition under which the second term in Eq.(1.288) does not dominate the tree level propagator,

Λ2

(4π)2f2
. 1 ⇔ Λ . 10× f . (1.289)

Once the loop–induced effect exceeds the tree level propagator at high energies we consider the theory strongly
interacting. Our perturbative picture of the little Higgs theory breaks down. Without even writing out a model for a
Higgs mass protected by Goldstone’s theorem we already know that its ultraviolet completion will not be perturbative
and hence not predictive, and that it’s range of validity will be rather limited. Accepting these limitations we now
introduce a coupling to the SU(2) gauge bosons and see what happens to the Higgs mass. Of course, from the
discussion of Goldstone’s theorem in Section 1.1 we already know that we will not be able to generate the Higgs mass
or potential in a straightforward way, but it is constructive to see the problems which will arise.

As a first attempt we simply add g (Wµ · τ) as part of the covariant derivative to the kinetic term. In other words, we
gauge the SU(2) subgroup of the global SU(3) group. This automatically creates a four-point coupling of the kind
g2| ~Wµφ|2. As we did for Eq.(1.288) we combine the two W bosons to a propagator and generate a one–loop Higgs
mass term of the kind

L ⊃ g2Λ2

(4π)2
φ†φ . (1.290)

This term gives the quadratically divergent Higgs mass we know from Eq.(1.280). Our ansatz does not solve or even
alleviate the hierarchy problem, so we discard it. What we learn from it is that we cannot just write down the Standard
Model SU(2)L gauge sector and expect the hierarchy problem to vanish.

In a second attempt we therefore write the same interaction in terms of the triplet field Σ, just leaving the third entry in
the gauge–boson matrix empty,

g2

∣∣∣∣((Wµ · τ) 0
0 0

)
Σ

∣∣∣∣2 . (1.291)

We can again square this interaction term contributing to the Higgs mass and find schematically

g2Σ†
(

11 0
0 0

) (
11 0
0 0

)
Σ ∼ g2Σ†

(
11 0
0 0

)
Σ ∼ g2 φ†φ , (1.292)

so the self energy contribution with the two W fields linked now reads

L ⊃ g2Λ2

(4π)2
Σ†
(

11 0
0 0

)
Σ =

g2Λ2

(4π)2
φ†φ . (1.293)

This is precisely Eq.(1.290) and leads us to also discard this second attempt. This outcome is not surprising because
we really only write the same thing in two different notations, either using Σ†Σ or φ†φ. Embedding the SU(2)L
gauge sector into a SU(3) structure can only improve our situation when the SU(3) gauge group actually extends
beyond SU(2)L.
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Figure 18: Feynman diagrams contributing to the Higgs mass in little Higgs models. Beautiful figure from Ref. [25].

Learning from these two failed attempts we can go for a third attempt, where we add a proper covariant derivative
including all SU(3) degrees of freedom. Closing all of them into loops we obtain in a proper basis

L ⊃ g2Λ2

(4π)2
Σ† 11 Σ =

g2Λ2

(4π)2
f2 . (1.294)

This is no contribution to the Higgs mass because the now massive SU(3) gauge bosons ate the Goldstones altogether.
According to Eq.(1.284) the numbers match for the breaking of SU(N) to SU(N − 1). However, this attempt brings
us closer to solving Higgs–Goldstone problem. We are stuck between either including only the SU(2)L covariant
derivative and finding quadratic divergences or including the SU(3) covariant derivative and turning the Higgs into a
Goldstone mode which gives a mass of scale f to the heavy gauge bosons. What we need is a mix of an extended
SU(3) gauge sector and a global symmetry where the Goldstone modes are not eaten.

In our fourth and correct attempt we find a way our of this dilemma by using two independent sets of SU(3)
generators. We break them to our SU(2)L gauge group through a combination of spontaneous and explicit breaking.
This way will get eaten Goldstones which make the SU(3) gauge bosons heavy and at the same time uneaten
Goldstones which can form our Higgs, provided we only gauge one SU(3) gauge group. Naively, we will be able to
distribute 8 + 8− 3 = 13 Goldstones this way. However, we have have to be careful not to double count three of them
in the case where we identify both SU(2) subgroups of the two original SU(3) groups; in this case we are down to ten
Goldstone modes. The art will be to arrange the spontaneous and hard symmetry breakings into a workable model.

First, we write each of the set of SU(3) generators the same way as shown in Eq.(1.287) and identify those degrees of
freedom which we hope will include the Higgs field

Σj = exp

[
− i
f

(
02×2 φj
φ†j 0

)](
02

f

)
j = 1, 2 . (1.295)

For simplicity we set f1 ≡ f2 ≡ f . Each of the two Σ fields couples to the one set of SU(3) gauge bosons through the
usual covariant derivative

L ⊃ |DµΣ1|2 + |DµΣ2|2 ⊃ g2
1 |WµΣ1|2 + g2

2 |WµΣ2|2 . (1.296)

The gauge boson fields we can linked to form propagators in loop diagrams of the kind shown in the left panel of
Figure 18. From our attempt number three we know that for a universal coupling g1 = g2 = g these diagrams give us

L ⊃ Λ2

(4π)2

(
g2

1 Σ†1Σ1 + g2
2 Σ†2Σ2

)
=

2g2Λ2

(4π)2
f2 . (1.297)

However, these are not the only loop diagrams we can generate with two sets of Goldstones. For example, we can
write diagrams like the one in the right panel of Figure 18, where we couple Σ1 to Σ2 directly through a gauge–boson
loop. Counting powers of momentum we can guess that it will only be logarithmically divergent, so its contribution to
the Lagrangian should be of the kind

L ⊃ g2
1g

2
2

(4π)2
log

Λ2

µ2
|Σ†1Σ2|2 , (1.298)
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including a free renormalization scale µ. The combination Σ†1Σ2 is a scalar. It is indeed gauge–invariant only under
the diagonal subgroup of SU(3)1 × SU(3)2, just like we discuss in case of the custodial SU(2)L × SU(2)R in
Section 1.1.6. The combined gauge interactions g1 and g2 break the large symmetry group SU(3)× SU(3) of
Eq.(1.297) to their diagonal subgroup SU(3)diag. This happens as hard symmetry breaking via a loop–induced term in
the Lagrangian.

Next, we translate Eq.(1.298) into the Higgs fields φj and see if it gives them a mass. This is easier if we re-organize
the φj in a more symmetric manner; if we shift φj → G± φ the Goldstone modes are SU(3) rotations common to Σ1

and Σ2 and lend longitudinal degrees of freedom to the massive gauge bosons of the gauged SU(3) group. For the
supposed Higgs mass term in the Lagrangian we find to leading order and neglecting commutators

Σ†1Σ2 =
(
0 f

)
e
i
f (φ1·λ) e−

i
f (φ2·λ)

(
0
f

)
=
(
0 f

)
e
i
f (φ·λ)e

i
f (G·λ)e−

i
f (G·λ)e

i
f (φ·λ)

(
0
f

)
+ commutator terms

'
(
0 f

)
e

2i
f (φ·λ)

(
0
f

)
=
(
0 f

) [
11 +

2i

f

(
0 φ
φ† 0

)
+

1

2

(
2i

f

)2(
φφ† 0
0 φ†φ

)

+
1

6

(
2i

f

)3(
0 φφ†φ

φ†φφ† 0

)
+

1

24

(
2i

f

)4(
(φφ†)2 0

0 (φ†φ)2

)
+O

(
1

f5

)](
0
f

)
= f2 − 2

f2

(
0 f

)( 0
φ†φf

)
+

2

3f4

(
0 f

)( 0
(φ†φ)2f

)
+O

(
1

f6

)
= f2 − 2φ†φ+

2

3f2
(φ†φ)2 +O

(
1

f4

)
. (1.299)

After squaring this expression we find

|Σ†1Σ2|2
∣∣∣∣∣
gauge

= f4 − 4f2φ†φ+
16

3
(φ†φ)2 +O

(
1

f2

)
. (1.300)

This combination of spontaneous symmetry breaking of the two SU(3) symmetries at the scale f and explicit hard
breaking to the diagonal SU(3) the pseudo–Goldstone field φ develops a mass and a potential as powers of |Σ†1Σ2|.
The mass scales for spontaneous symmetry breaking, f , and the hard breaking scale in Eq.(1.300) are linked by loop
effects. For example, its mass term just combining the two above formulae reads

L ⊃ −g
2
1g

2
2f

2

(2π)2
log

Λ2

µ2
φ†φ ⇔ mH ∼

g2f

2π
&
g2Λ

8π2
∼ Λ

100
. (1.301)

This relation points to a new physics energy scale f ∼ 1 TeV. Following the constraint given by Eq.(1.289) we do not
expect log(Λ/µ) to give a contribution to the Higgs mass beyond a factor of O(1). While this relation of scales
indicates a suppression of g2 instead of g, we do not collect additional factors 1/(4π), because we are still looking at
one–loop diagrams.

The mechanism described above is called collective symmetry breaking. It is a convoluted way of spontaneously and
explicitly breaking a global symmetry SU(3)1 × SU(3)2 to our SU(2)L, the latter by introducing gauge or Yukawa
coupling terms in the Lagrangian. Of the two sets of Goldstones arising in the spontaneous breaking of each
SU(3)1,2 → SU(2)L, denoted as φ1 and φ2, we use (φ1 + φ2)/2 to give the gauge bosons of one of the broken
SU(3) groups a mass around f . The remaining Goldstones φ = (φ1 − φ2)/2 at this stage remain massless. They turn
into pseudo–Goldstones and acquire a mass as well as a potential in the explicit breaking of the global
SU(3)1 × SU(3)2 symmetry into the gauged SU(3)diag.
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The reason why this symmetry breaking is called ‘collective’ is that we need to break two symmetries explicitly to
allow for mass and potential terms for the pseudo–Goldstone. Only breaking one of them leaves the respective other
one as a global symmetry under which the Higgs fields transforms non–linearly. Because the original global symmetry
group is explicitly broken the Higgs will develop mass and potential terms at the scale f , but doubly loop suppressed
either via gauge boson or via fermion loops. This translates into a double Higgs mass suppression g1g2 relative to f .
Equation(1.301) tells us that we can write down a perturbative theory which is valid from v ∼ mH to an ultraviolet
cutoff around 100×mH .

1.9.3 Little Higgs Models

Collective symmetry breaking can be implemented in a wide variety of models. Our first example is based on the
smallest useful extension of SU(2)L, namely SU(3). For decades people tried to implement a Goldstone Higgs in this
symmetry structure and learned that to protect the Higgs mass a single broken SU(3) symmetry is not sufficient. For
the simplest little Higgs model or Schmaltz model we instead postulate a global SU(3)× SU(3) symmetry and break
it down to SU(2)L the way we introduce it in Section 1.9.2. We can then express all mass scales in terms of the
symmetry–breaking scale f . Starting from the ultraviolet the basic structure of our model in terms of its particle
content in the gauge sector is

– for E > 4πf our effective theory in E/f breaks down, so our theory is strongly interacting and/or needs a
ultraviolet completion.

– below that, the effective Lagrangian obeys a global and partly gauged SU(3)1 × SU(3)2 symmetry with two
gauge couplings g1,2. Both couplings are attached to one set of SU(3) gauge bosons, containing three SU(2)
gauge bosons plus complex fields W ′±,W

′
0 with hypercharge 1/2 and a singlet Z ′.

– through loop effects the combined gauge couplings explicitly break SU(3)1 × SU(3)2 → SU(3)diag. The
related Goldstone modes give masses of the order gf to the heavy SU(3) gauge bosons.

– the other five broken generators of SU(3)1 × SU(3)2 become Goldstone modes and the Standard Model Higgs
doublet. Terms like Σ†1Σ2 give rise to a Higgs mass of the order g2f/(2π).

– to introduce hypercharge U(1)Y we have to postulate another U(1)X , which includes a heavy gauge boson
mixing with the SU(3)/SU(2) and the SU(2) gauge bosons, to produce γ, Z, Z ′. This will turn into a problem,
because we lose custodial symmetry. For our discussion we ignore the U(1) gauge bosons.

Until now we have not discussed any fermionic aspects of the little Higgs setup. However, to remove the leading
quadratic divergence in Eq.(1.280) we obviously need to modify the fermion sector as well. For this purpose we
enlarge the SU(2) heavy–quark doublet Q to an SU(3) triplet Ψ = (t, b, T ) ≡ (Q,T ). The Yukawa couplings look
like λΣ†Ψtc, in analogy to the Standard Model, but with two right handed top singlets tcj which will combine to the
Standard–Model and a heavy right handed top. We can compute this in terms of the physical fields,

Σ†jΨ =
(
0 f

)
exp

[
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f

(
0 φ
φ† 0

)](
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+
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=
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− 1

2f2
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φ†φT

)
+O

(
1

f3
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= fT + iφ†Q− 1

2f
φ†φT +O

(
1

f2

)
. (1.302)

Combining the two Yukawas with the simplification λ1 = λ2 = λ gives us the leading terms

L ⊃ λf
(

1− 1

2f2
φ†φ

)
TT c + λ φ†Qtc , (1.303)
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where we define the SM top quark as tc2 − t21 = −i
√

2tc and its orthogonal partner tc1 + tc2 =
√

2T c.

According to Eq.(1.303) both top quarks contribute to the Higgs propagator and Higgs mass corrections, the Standard
Model top through the usual ttH Yukawa coupling and the new heavy top particle through a four-point TTHH
interaction. For the Feynman rule we will need to include an additional factor 2 in the TTHH coupling, stemming
from the two permutations of the Higgs fields. The question becomes how these two diagrams cancel.
The scalar integrals involved we know; generally omitting a factor 1/(4π)2 the two-point function from the Standard
Model top loop has a quadratic pole B(0;m,m) ∼ (Λ/m)2. Adding two fermion propagators with mass mt and two
Yukawa couplings λ gives a combined prefactor i4 λ2 Λ2 = λ2 Λ2. The heavy top diagram gives a one-point function
with the pole A(mT ) ∼ Λ2. Adding one fermion propagator with mass mT and the coupling λ/f yields
i2λ/f mT Λ2 = −λ2Λ2. This hand–waving estimate illustrates how these two top quarks cancel each other’s
quadratic divergence for the Higgs mass. If we do this calculation more carefully, we find that for an SU(3)-invariant
regulator the quadratic divergences cancel, and terms proportional to log(mt/mT ) remain. Instead keeping the two λj
separated we would find

mT =
√
λ2

1f
2
1 + λ2

2f
2
2 ∼ maxj(λjfj) λt= λ1λ2

√
f2

1 + f2
2

mT
. (1.304)

Following the same logic as for the gauge boson loop shown in Figure 18 the combination of λ1 and λ2 breaks
SU(3)1 × SU(3)2 → SU(3)diag explicitly. This turns the Higgs into a pseudo–Goldstone and allows contributions
proportional to λ1λ2 in the Higgs mass and potential.

To arrive at the Standard Model in the infrared limit we need to generate a Higgs potential V = µ2|φ|2 + λ|φ|2. The
two parameters are related via µ2 = −λv2. We already know that gauge boson loops generate such a potential, as
shown in Eq.(1.300). Similarly, fermion loops in the Schmaltz model give

|Σ†1Σ2|2
∣∣∣∣∣
fermion

= f4 − 4f2φ†φ+
14

3
(φ†φ)2 +O

(
1

f2

)
≡ f4 + µ2φ†φ+ λ(φ†φ)2 +O

(
1

f2

)
⇒

∣∣∣∣µ2

λ

∣∣∣∣
fermion

+

∣∣∣∣µ2

λ

∣∣∣∣
gauge
∼ 12f2

14
+

12f2

16
� v2 . (1.305)

The self coupling λ is too small to give us anything like the Standard Model Higgs potential. There is no easy cure to
this, but we can resort to ad–hoc introducing a tree level µ parameter with the proper size.

L ⊃ µ2Σ†1Σ2 = µ2

[
f2 − 2 φ†φ+O

(
1

f2

)]
. (1.306)

Roughly µ ∼ v brings the Higgs potential terms to the correct value. Ironically, this ad-hoc terms gives the model its
alternative name µ model. As a side remark, such a term also breaks the U(1) symmetry linked to the 8th SU(3)
generators and gives the corresponding Goldstone a mass of the order v.
Now we can summarize the particle content of this first little Higgs model. Apart from the Standard Model particles
and a protected light Higgs we find the new particle spectrum, still not including the U(1) structure

SU(3) gauge bosons W ′±,W ′0 with mW ′ = O(gf)

singlet Z ′ with mZ′ = O(gf)

heavy top T with mT = O(λtf) . (1.307)

The Schmaltz model discussed above has a few disadvantages. Among them is the missing U(1) gauge group and the
need for an ad-hoc µ term. From what we know about sigma models and collective symmetry breaking we can
construct a second economic little–Higgs model, the littlest Higgs model. This time, we embed two gauge symmetries
which overlap by the Standard Model Higgs doublet into one sigma field: it includes two copies of SU(2) as part of
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the large global SU(5) symmetry group. This will also have space to the U(1) gauge group. Our enlarged symmetry
group now has (52 − 1) = 24 generators T in the usual adjoint representation SU(5). The Pauli matrices as one set of
SU(2) generators are arranged in the 5× 5 matrix similarly to Eq.(1.286)(

−SU(2)∗ 02×3

03×2 03×3

) (
03×3 02×3

03×2 SU(2)

)
. (1.308)

This SU(2) symmetry will need to stay unbroken when we break SU(5). This double appearance looks like a double
counting, so we will will eventually get rid of half of these generators. Moreover, these unbroken SU(2) generators
only use half of the number of degrees of freedom which SU(5) offers in each of these 2× 2 sub-matrices.

Next, we need to identify those broken Goldstone modes T̂ which form the Higgs field. In the SU(5) generator matrix
the Higgs doublet has to be arranged such that neither set of SU(2) generators includes φ, so when we break SU(5)
into the the SU(2) subgroups the Higgs always stays a (pseudo–) Goldstone. We construct a pattern similar to
Eq.(1.295) in the Schmaltz model when we only consider the upper left or lower right 3× 3 matrices of the full
SU(5) group,

Σ = exp

[
− i
f

(w · T̂
]
〈Σ〉 with (w · T̂ =

 0 φ∗ 0
φT 0 φ†

0 φ 0

 . (1.309)

Again, the four-fold appearance looks like we introduced too many Higgs fields, but the symmetry structure of the
broken SU(5) will ensure that they really all are the same field.

Spontaneously breaking the global SU(5) symmetry by an appropriate vacuum expectation value 〈Σ〉 will eventually
allow the φ doublet to develop a potential, including a mass and a self coupling. The Standard–Model SU(2)L
generators should not be affected. We try

〈Σ〉 =

 0 0 112×2

0 1 0
112×2 0 0

 . (1.310)

This vacuum expectation value obviously breaks our global SU(5) symmetry. What remains in the 〈Σ〉 background is
an SO(5) symmetry, generated by the antisymmetric tensor with (4 + 3 + 2 + 1) = 10 entries. This way 14 of the
original 24 generators are broken and the multiple appearance of some of the Goldstone fields in Eq.(1.308) and
Eq.(1.309) is explained. Using commutation relations we can show that the Standard–Model SU(2)L generators in
Eq.(1.308) are indeed unbroken. The corresponding unbroken U(1) generators are the equally symmetric diagonals
diag(−3,−3, 2, 2, 2)/10 and diag(−2,−2,−2, 3, 3)/10.

To compute the spectrum of the littlest Higgs model based on breaking SU(5)→ SO(5) through the vacuum
expectation value shown in Eq.(1.310) we generalize Eq.(1.309) to include the complete set of Goldstones associated
with the broken generators,

(w · T̂ ) =

χ2×2 φ∗ κ†2×2

φT 0 φ†

κ2×2 φ χT2×2

+
η

2
√

5

11 0 0
0 −4 0
0 0 11

 . (1.311)

The form reflects the commutation property 〈Σ〉 T̂T = T̂ 〈Σ〉, which links opposite corners of w · T̂ . The χ field
differs from the unbroken SU(2) generators in Eq.(1.308) in the relative sign between the two appearances. They can
be shown to also form hermitian traceless 2× 2 matrices, which means that they can be written as a second triplet of
SU(2) fields. The combination of broken generators χ and χT and unbroken SU(2)L generators in Eq.(1.308)
account for all degrees of freedom in those sub-matrices. The 2× 2 matrix κ is not traceless, but complex symmetric,
so instead of another set of SU(2) gauge bosons they form a complex scalar triplet. The complex doublet φ will
become the Standard Model Higgs doublet, and η is the usual real singlet. Together, these field indeed correspond to
3χ + 6κ + 4φ + 1η = 14 broken Goldstones.
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Unless something happens the fields linked to the broken generators T̂ can either turn into gauge boson mass terms of
the order f or stay massless. In particular, χ will make one of the two sets of SU(2) gauge bosons W

′±,W
′0 heavy,

while η gets eaten by the B′ field.

The trick in this littlest Higgs model is to mix the two SU(2) groups in two opposite corners of the sigma field in
Eq.(1.308) and Eq.(1.311). We can for example introduce two gauge couplings g1 and g2, one for each corner. By
construction, the combination with a relative minus sign between the upper–left and lower–right fields stays unbroken
after spontaneously breaking SU(5)→ SO(5), so this linear combination will give the Standard Model gauge
bosons. Its orthogonal combination χ will become a set of heavy W ′ states. Introducing an SU(2) mixing angle
tan θ = g2/g1 we can define a rotation from the SU(2)1 × SU(2)2 interaction basis to the mass basis after
spontaneous symmetry breaking. Exactly the same works for the B fields corresponding to U(1)Y ,(

W
′a

W a

)
=

(
− cos θ sin θ
sin θ cos θ

)(
W a

1

W a
2

) (
B′

B

)
=

(
− cos θ′ sin θ′

sin θ′ cos θ′

)(
Ba1
Ba2

)
. (1.312)

Including all factors the heavy gauge bosons acquire the masses

mW ′ =
gf

sin(2θ)
mB′ =

g′f√
5 sin(2θ′)

. (1.313)

In our discussion of little Higgs models factors of two never really matter. However, in the case of mB′ we see that for
f in the TeV range the heavy U(1) gauge boson is predicted to be very light, making the model experimentally very
vulnerable.

Protecting the Higgs mass from quadratic divergences in the gauge sector of the littlest–Higgs model works similar to
the Schmaltz model. Each of the two sets of SU(2)L generators in Eq.(1.308) corresponds to a 2× 2 sub-matrix in
one of the corners of the SU(5) sigma field. If we break the global SU(5) down to one of the two SU(2) groups the
Higgs doublet will be a broken generator of the global SU(5) and therefore be massless. Unlike in the
SU(3)× SU(3) setup the finite Higgs mass in the littlest Higgs model is not induced by gauge boson or fermion
loops. It appears once we integrate out the heavy field κ in the presence of g1 and g2, communicated to the Higgs field
φ via the Coleman–Weinberg mechanism introduced in Section 1.2.7. The resulting quartic Higgs term, only taking
into account the SU(2) couplings becomes

L ⊃ −c g2
1g

2
2

g2
1 + g2

2

|φ†φ|2 , (1.314)

with an order-one constant c. Unlike in the Schmaltz model this value does not have to be too large; in the
Coleman–Weinberg model we typically find

m2
H

λ
∼
(
mκ

g

)2

, (1.315)

which we need to adjust to stay below the order f2 which Eq.(1.305) gives for the Schmaltz model.

To protect the Higgs mass against the top loop we again extend the SU(2)L quark doublet to the triplet Ψ = (t, b, T )
and add a right handed singlet t′c. Because we expect mixing between the two top singlets which will give us the
Standard–Model and a heavy top quark we write two general Yukawa couplings for the Standard Model doublet and
the additional heavy states. The first is mediated by the Σ field as

L ⊃ λ1 f εijkΨi Σj4Σk5 t
c
1 + λ2 f T t

c
2 . (1.316)

This form uses the 2× 3 triplets from the upper–right corner of the Goldstone matrix in Eq.(1.311)

Σjm =

(
κ†

φ†

)
j = 1, 2, 3 m = 4, 5 . (1.317)
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These triplets represent the SU(3) sub-matrix of the SU(5) generators which requires the Higgs mass to be zero. This
means that if we set λ2 = 0 this Yukawa coupling as an anti–symmetric combination of three triplets is SU(3)
symmetric. The top–induced contributions to the Higgs mass will be proportional to λ2

1λ
2
2 and quadratic divergences

are forbidden at one loop.
The two heavy quarks mix to the SM top quark and an additional heavy top with mass mT =

√
λ2

1 + λ2
2 f where as

before we assume f = f1 = f2. The actual top–Higgs coupling are of the order minλj for the three-point Higgs
coupling to the Standard Model top and λ/f for the four-point Higgs coupling to a pair of heavy tops.

Looking at the complete set of SU(5) generators in Eq.(1.311) we can collect the heavy spectrum of the littlest Higgs
model,

SU(2)L × U(1)Y gauge bosons B′,W ′±, Z ′ with mB′,W ′,Z′ = O(gf)

heavy ‘Higgs’ triplet κ =

(
κ++ κ+

κ+ κ0

)
with mκ = O(gf)

heavy top T with mT = O(λf) . (1.318)

From the B′ and κ fields we expect a serious violation of the custodial SU(2) symmetry. This means that electroweak
precision data forces us to choose f unusually large, in conflict with the requirement in Eq.(1.315). Moreover, the
Higgs triplet should not become too heavy to maintain the correct relative size of the Higgs mass and the Higgs self
coupling. Such a Higgs triplet with a doubly charged Higgs boson has a smoking–gun signature at the LHC, namely
its production in weak boson fusion uu→ ddW+W+ → ddH++.

While the littlest Higgs setup solves some of the issues of the Schmaltz model, it definitely has its problems linked to
the Higgs triplet and the heavy U(1) gauge boson. To not violate the custodial symmetry too badly it would be great
to introduce some kind of Z2 symmetry which allows only two heavy new particles in any vertex. The same symmetry
would give us a stable lightest new particle as a weakly interacting dark matter candidate. All we need to to is define a
quantum number with one value for all weak–scale Standard Model particles and another value for all particles with
masses around f . Such a parity will be called T parity.

For the littlest Higgs, we would like to separate the additional heavy states, including the SU(2) doublet, from our
Standard Model Higgs and gauge bosons. The symmetry we want to introduce should multiply all heavy entries in the
sigma field of Eq.(1.311) by a factor (−1). By multiplying out the matrices we show that there exists a matrix Ω such
that

(w · T̂ )→ Ω−1
(
w · T̂

)
Ω . (1.319)

One matrix Ω for which this works is χ φ∗ κ†

φT 0 φ†

κ φ χT

+
η

2
√

5

11 0 0
0 −4 0
0 0 11


→ i2

11 0 0
0 −1 0
0 0 11

 χ φ∗ κ†

φT 0 φ†

κ φ χT

+
η

2
√

5

11 0 0
0 −4 0
0 0 11

11 0 0
0 −1 0
0 0 11


= −

11 0 0
0 −1 0
0 0 11

 χ −φ∗ κ†

φT 0 φ†

κ −φ χT

+
η

2
√

5

11 0 0
0 4 0
0 0 11


= −

 χ −φ∗ κ†

−φT 0 −φ†
κ −φ χT

− η

2
√

5

11 0 0
0 −4 0
0 0 11


=

−χ φ∗ −κ†
φT 0 φ†

−κ φ −χT

− η

2
√

5

11 0 0
0 −4 0
0 0 11

 . (1.320)



106 1 HIGGS PHYSICS

This symmetry works perfectly for the additional gauge bosons, including the heavy scalars κ. For the massive twins
of the SU(2)L gauge bosons we rely on the fact that in the special case g1 = g2 the Lagrangian involving DµΣ is
symmetric under the exchange of the two SU(2)× U(1) groups. The eigenstates we can choose as
W± = (W1 ±W2)/

√
2 and the same for the B fields. Of these two W+, B+ are Standard Model gauge bosons, while

W−, B− are heavy. Exchanging the indices (1↔2) is an even transformation for W+, while it is odd for W−, again
just as we want.
A problem arises when we assign such a quantum number to the heavy tops which form part of a triplet extending the
usual Standard Model quark doublets. Getting worse, we have to be very careful to then implement T parity
specifically taking care that it is not broken by anomalies. At this point, it turns our that we have to introduce
additional fermions and the model rapidly loses its concise structure as the price for a better agreement with
electroweak precision constraints.

In summary, it is fair to say that collective symmetry breaking is an attractive idea, based on a fundamental property
like Goldstone’s theorem. Already at the very beginning we notice that its ultraviolet completion will be strongly
interacting, which some theorists would consider not attractive. Certainly, it is not clear how the measurement of an
approximate gauge coupling unification would fit into such a picture. The same holds true for the fixed point
arguments which we present in Section 1.2.5. What is more worrisome is that it appears to be hard to implement
collective symmetry breaking in a compact model which is not obviously ruled out or inconsistent. This might well be
a sign that protecting the Higgs mass through a pseudo–Goldstone property is not what is realized in Nature.

1.10 Higgs inflation
Going beyond the weak scale and any energy scale we will probe with the LHC we can ask another question after
discovering the first fundamental scalar particle in the Standard Model: can a Standard–Model–like Higgs boson be
the scalar particle responsible for inflation?

One of the most pressing problems in cosmology is the question, why the cosmic microwave background radiation is
so homogeneous while based on the usual evolution of the Universe different regions cannot be causally connected. A
solution to this problem is to postulate an era of exponentially accelerated expansion of the Universe which would
allow all these regions to actually know about each other.
We can trigger inflation through a scalar field χ in a potential U(χ). In the beginning, this field is located far away
from its stable vacuum state. While moving towards the minimum of its potential it releases energy. Slow roll inflation
can be linked to two physical conditions: on the one hand we require that in the equation of motion for the inflaton
field χ we can neglect the kinetic term, which means

0 =
∂2χ

∂t2
+ 3Ĥ

∂χ

∂t
+
dU

dχ
' 3Ĥ

∂χ

∂t
+
dU

dχ
. (1.321)

The second term is proportional to ∂χ/∂t and therefore a friction term, called Hubble friction. To not confuse it with
the Higgs field we denote the Hubble constant as Ĥ . In the absence of the kinetic term the equation of state for the
inflaton field χ can behave like w ≡ p/ρ < −1/3. Given the pressure p and the energy density ρ this is the condition
for inflation. Negative values for w arise when the potential U dominates the energy of the inflaton and the change of
the field value χ with time it small. Equivalently, we can require two parameters which describe the variation of the
potential U(χ) to be small,

ε =
M2

Planck

2

(
1

U

dU

dχ

)2

� 1 |η| = M2
Planck

∣∣∣∣ 1

U

d2U

dχ2

∣∣∣∣� 1 . (1.322)

The powers of MPlanck give the correct units. The two slow roll conditions in Eq.(1.321) and Eq.(1.322) are equivalent,
which means that for Higgs inflation we need to compute U(χ) with the appropriate inflaton field and test the
conditions given in Eq.(1.322).

The starting point of any field theoretical explanation of inflation is the Einstein–Hilbert action for gravity,

S = −
∫
d4x
√
−g M

2
Planck

2
R , (1.323)
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with the Planck mass MPlanck as the only free parameter, the Ricci scalar with the graviton field, and no interactions
between the gravitational sector and matter. In addition, we neglect the cosmological constant. If we combine the
Higgs and gravitational sectors the minimal coupling of the two sectors is generated through the gravitational coupling
to the energy–momentum tensor including all Standard Model particles. It turns out that for Higgs inflation we need
an additional non–minimal coupling between the two sectors, so we start with the ansatz

SJ(H) =

∫
d4x
√
−g
[
−M

2

2
R− ξ (v +H)2

2
R+

1

2
∂µH∂

µH − λ

4
((v +H)2 − v2)2

]
=

∫
d4x
√
−g
[
−M

2

2
R− ξ (v +H)2

2
R+

1

2
∂µH∂

µH − λ

4
(v +H)4 +

λv2

2
(v +H)2 + const

]
. (1.324)

This form of the Higgs potential in the second line corresponds Eq.(1.78) after inserting µ2 = −λv2 according to
Eq.(1.87). The form of the Einstein–Hilbert action suggests that first of all the fundamental Planck mass M is
replaced by an effective, observed Planck mass MPlanck in a scalar field background,

M2
Planck = M2 + ξ(v +H)2 . (1.325)

First, we assume ξv2 �M2. For the specific case of Higgs inflation we in addition postulate ξ � 1, but with the
original hierarchy still intact. The hierarchy between ξH and M will be discussed later.

The action in the Jordan frame given by Eq.(1.324) with the identification Eq.(1.325) is a little cumbersome to treat
gravity problems. We can decouple the gravitational and Higgs sectors via a field re-definition into the Einstein frame
and quote the result as

SE(χ) =

∫
d4x

√
−ĝ

−M2
Planck

2
R+

1

2
∂µχ∂

µχ− λ

4

M4
Planck

(M2 + ξ(v +H(χ))2)2
((v +H(χ))2 − v2)2︸ ︷︷ ︸

≡U(χ)


ĝµν =

M2 + ξ(v +H)2

M2
Planck

gµν

dχ

dH
=


1 + (ξ + 6ξ2)

(v +H)2

M2
Planck(

1 + ξ
(v +H)2

M2
Planck

)2


1/2

. (1.326)

The original Higgs potential in terms of H is replaced by the inflaton–Higgs scalar χ and its combined potential U(χ).
The question is if this scalar field χ can explain inflation. After studying some basic features of this theory our main
task will be to determine the value of ξ which would make such a model theoretically and experimentally feasible.

If we are interested in the evolution of the early universe the condition ξv2 �M2 simplifies the above equations, but
it does not imply anything for the hierarchy between the Higgs field values H and the fundamental Planck scale M .
First, in the limit ξH2, ξ2H2 �M2

Planck ∼M2 we can solve the relation between the Higgs field H and its re-scaled
counter part χ,

dχ

dH
=

[
1 +O

(
ξH2

M2
Planck

)
+O

(
ξ2H2

M2
Planck

)]1/2

' 1 ⇔ χ ' H . (1.327)

In this derivation we already see that we have to deal with two additional energy scales, MPlanck/
√
ξ and MPlanck/ξ. In

this limit the potential for the re-scaled Higgs field χ in the Einstein frame becomes

U(χ) =
λ

4

M4
Planck

(M2 + ξ(v +H)2)2
((v +H)2 − v2)2 ' λ

4
((v + χ)2 − v2)2 . (1.328)
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Figure 19: Potential U(χ) as a function of the χ. Figure from Ref. [40].

This is exactly the usual Higgs potential at low energies.

The opposite limit is ξH2 �M2
Planck ∼M2 � ξv2. If we avoid Higgs field strength exceeding the Planck scale this

condition implicitly assume ξ � 1 and therefore ξ2H � ξH2. We find

dχ

dH
=

[
6ξ2H2/M2

Planck

ξ2H4/M4
Planck

+O
(
M2

Planck

ξH2

)]1/2

=

[
6M2

Planck

H2
+O

(
M2

Planck

ξH2

)]1/2

'
√

6MPlanck

H

⇔ χ '
√

3

2
MPlanck log

ξH2

M2
Planck

⇔ H2 ' M2
Planck

ξ
e
√

2χ/(
√

3MPlanck) . (1.329)

The integration constants in this result are chosen appropriately. We can use this relation to compute the leading terms
in the scalar potential for χ in the Einstein frame and for large Higgs field values,

U(χ) ' λ

4

M4
Planck

(M2 + ξH2)2
H4 ' λ

4

M4
PlanckH

4

ξ2H4

(
1 +

M2

ξH2

)2 '
λ

4

M4
Planck

ξ2

(
1− 2

M2
Planck

ξH2

)

U(χ) ' λ

4

M4
Planck

ξ2

(
1− 2e

−
√

2χ√
3MPlanck

)
. (1.330)

We show U(χ) in Figure 19. Following Eq.(1.328) and Eq.(1.330) it resembles the usual Higgs potential at small
values of H and χ and becomes flat at large field values. This means that we can indeed use the Higgs scalar as the
inflaton, but we need to see what the slow roll conditions from Eq. (1.322) tell us about the model parameter ξ in the
action introduced in Eq.(1.324). Following the discussion in Section 1.2.7 we can compute additional contributions to
U from all Standard Model fields, but for our purpose the leading behavior is fine.

For this test we need to compute the first derivative of the potential U in the limit of large field values, because this is
where we expect the field χ to act as the inflaton. For the first slow roll parameter ε we find

dU

dχ
= −λ

2

M4
Planck

ξ2

d

dχ
e
−

√
2χ√

3MPlanck =
λ√
6

M3
Planck

ξ2
e
−

√
2χ√

3MPlanck =
λ√
6

M5
Planck

ξ3H2

ε =
M2

Planck

2

(
λ2

6

M10
Planck

ξ6H4

) (
16

λ2

ξ4

M8
Planck

)
=

4

3

M4
Planck

ξ2H4
� 1 ⇔ H � MPlanck√

ξ
. (1.331)
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Similarly, the second parameter η comes out as

d2U

dχ2
=

λ√
6

M3
Planck

ξ2

d

dχ
e
−

√
2χ√

3MPlanck = −λ
3

M2
Planck

ξ2
e
−

√
2χ√

3MPlanck = −λ
3

M4
Planck

ξ3H2

|η| = M2
Planck

(
λ

3

M4
Planck

ξ3H2

) (
4

λ

ξ2

M4
Planck

)
=

4

3

M2
Planck

ξH2
� 1 ⇔ H � MPlanck√

ξ
. (1.332)

Both slow roll conditions are identical and correspond to the original condition we used to compute the potential U(χ)
in the limit of large field values. The potential U(χ) leads to slow roll inflation, and since with time the Higgs field
value becomes smaller inflation ends for H ∼MPlanck/

√
ξ and correspondingly χ ∼MPlanck.

After confirming that Higgs inflation has all the correct theoretical features we can confront it with data, most
specifically with the different measurements of the cosmic microwave background. Without derivation we quote that
during inflation the visible CMB modes crossed the horizon at field values H ' 9MPlanck/

√
ξ, shortly before the

condition H 'MPlanck/
√
ξ for the end of inflation is finally reached. Experimentally, the normalization of these

observed CMB modes requires(
MPlanck

36

)4

' U

ε
=
λ

4

M4
Planck

ξ2

4

3

ξ2H4

M4
Planck

=
λ

3
H4 using Eq.(1.330) and Eq.(1.331)

' λ

3

(
9MPlanck√

ξ

)4

from CMB measurement

⇔ λ =
3

3244
ξ2 ⇔ ξ ' 60000

√
λ . (1.333)

While at the electroweak scale we know that λ ∼ 1/8 it becomes much smaller at high energies, so the actual value of
ξ is tricky to extract with the Higgs data available right now. However, this measurement of ξ is in agreement with our
original assumption. Additional measurements of the cosmic microwave background are in agreement with this setup.
In particular, the Hubble scale

√
λMPlanck/ξ is small enough to avoid non–Gaussianities in the cosmic microwave

background. This short introduction leaves us with a few open questions:

1. Higgs inflation is theoretically and experimentally feasible

2. the coupling strength ξ � 1 needs a good explanation

3. adding the ξH2R coupling leads to unitarity violation in HH → HH scattering, so it requires an unknown
ultraviolet completion

4. the cosmic microwave background decouples around H 'MPlanck/10� v, so slow roll inflation and
electroweak symmetry breaking are really described by separate potentials written as one function U(χ)

5. should the Higgs potential become unstable at high energies, the finite life time of the Universe can be used to
save the Standard Model, but Higgs inflation will break down in the presence of an alternative global minimum.

6. in the standard setup of Higgs inflation the tensor–to–scalar ratio in the cosmos microwave background is
predicted to be r ∼ 10ε ∼ 0.003, which seems to be in strong disagreement with the BICEP2 measurement of
r ∼ 0.2.

1.11 Further reading
At this point we are done with our brief review of the Higgs sector in the Standard Model and of contemporary Higgs
phenomenology. From the discussions it should be clear that we have to move on to QCD, to understand the strengths
and weaknesses of these searches and what distinguishes a good from a bad search channel.
Before moving on we mention a few papers where you can learn more about Higgs phenomenology at the LHC.
Luckily, for Higgs searches there are several very complete and useful reviews available:
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– You can look at the original articles by Higgs [26, 27] or Brout and Englert [28], but they are rather short and
not really on top of the phenomenological aspects of the topic. Other papers for example by Guralnik, Hagen,
Kibble [29] tend to be harder to read for phenomenologically interested students.

– Wolfgang Kilian’s book [30] on the effective field theory approach to the Higgs mechanism is what the
corresponding sections in these lecture notes are largely based on it. The underlying symmetry structure,
including the custodial symmetry is nicely described in Scott Willenbrock’s TASI lectures [31].

– If you are interested in a comprehensive overview of Higgs physics as an effective field theory with a special
focus on higher–dimensional operators in linear and non–linear sigma models there is a really useful paper from
Spain [32].

– Abdelhak Djouadi’s compilation on ‘absolutely everything we know about Higgs phenomenology’ is indeed
exhaustive. It has two volumes, one on the Standard Model [8] and another one on its minimal supersymmetric
extension [11]

– For more experimental details you might want to have a look at Karl Jakobs’ and Volker Büscher’s review of
LHC Higgs physics [33].

– As a theory view on LHC Higgs physics, mostly focused on gluon fusion production and its QCD aspects, there
is Michael Spira’s classic [7]. This is where you can find more information on the low energy theorem. Michael
and his collaborators also published a set of lecture notes on Higgs physics [34].

– As always, there is a TASI lecture on the topic. TASI lecture notes are generally what you should look for when
you are interested in an area of high energy physics. Dave Rainwater did not only write his thesis on Higgs
searches in weak boson fusion [35], he also left us all he knows about Higgs phenomenology at the LHC in his
TASI notes [36].

– Tao Han wrote a very comprehensible set of TASI lecture notes on basic LHC phenomenology, in case you need
to catch up on this [37].

– For some information on electroweak precision data and the ρ parameter, there are James Wells’ TASI
lectures [38].

– If you are interested in Higgs production in association with a W or Z boson and the way to observe boosted
H → bb̄ decays you need to read the original paper [16]. The same is true for the tt̄H analysis.

– For cut rules and scalar integrals the best writeup I know is Wim Beenakker’s PhD thesis. Unfortunately, I am
not sure where to get it from except from the author by request.

– If you are getting interested in fixed points in RGE analyses you can look at Christoph Wetterich’s original
paper [3] or a nice introductory review by Barbara Schrempp and Michael Wimmer [17].

– My discussion on technicolor largely follows the extensive review by Chris Hill and Elisabeth Simmons [18].

– A really nice writeup which my little Higgs discussion is based on is Martin Schmaltz’ and David
Tucker–Smith’s review article [25].

– For more information on Higgs inflation you can start with a nice set of TASI lectures on inflation [39] and then
dive into a specific review of Higgs inflation by one of its inventors [40].
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2 QCD
Just as Section 1 is not meant to be a complete introduction to electroweak symmetry breaking but is aimed at
introducing the aspects of Higgs physics most relevant to the LHC this section cannot cover the entire field of QCD.
Instead, we will focus on QCD as it impacts LHC physics, like for example the Higgs searches discussed in the first
part of the lecture.
In Section 2.1 we will introduce the most important process at the LHC, the Drell–Yan process or lepton pair
production. This process will lead us through all of the introduction into QCD. Ultraviolet divergences and
renormalization we will only mention in passing, to get an idea how much of the treatment of ultraviolet and infrared
divergences works the same way. After discussing in detail infrared divergences in Sections 2.3 to 2.5 we will spend
some time on modern approaches on combining QCD matrix element calculations at leading order and
next–to–leading order in perturbative QCD with parton showers. This last part is fairly close to current research with
the technical details changing rapidly. Therefore, we will rely on toy models to illustrate the different approaches.

2.1 Drell–Yan process
Most text books on QCD start from a very simple class of QCD processes, called deep inelastic scattering. These are
processes with the HERA initial state e±p. The problem with this approach is that in the LHC era we would like to
instead understand processes of the kind pp→W+jets, pp→ H+jets, pp→ tt̄+jets, or the production of new
particles with or without jets. These kind of signal and background processes and their relevance in an LHC analysis
we already mentioned in Section 1.5.4.

From a QCD perspective such processes are very complex, so we need to step back a little and start with a simple
question: we know how to compute the production rate and distributions for photon or Z production for example at
LEP, e+e− → γ, Z → `+`−. What is then the production rate for the same final state at the LHC, how do we account
for quarks inside the protons, and what are the best–suited kinematic variables to use at a hadron collider?

2.1.1 Gauge boson production

The simplest question we can ask at the LHC is: how do we compute the production of a single weak gauge boson?
This process we refer to as the Drell–Yan production process, in spite of producing neither Drell nor Yan at the LHC.
In our first attempts we will explicitly not care about additional jets, so if we assume the proton to consist of quarks
and gluons and simply compute the process qq̄ → γ, Z under the assumption that the quarks are partons inside
protons. Gluons do not couple to electroweak gauge bosons, so we only have to consider valence quark vs sea
antiquark scattering in the initial state. Modulo the SU(2)L and U(1)Y charges which describe the Zff̄ and γf̄f
couplings in the Feynman rules

−iγµ (`PL + rPR) with ` =
e

swcw

(
T3 − 2Qs2

w

)
r = `

∣∣∣
T3=0

(Zff̄)

` = r = Qe (γff̄) , (2.1)

with T3 = ±1/2, the matrix element and the squared matrix element for the partonic process

qq̄ → γ, Z (2.2)

will be the same as the corresponding matrix element squared for e+e− → γ, Z, with an additional color factor. The
general amplitude for massless fermions is

M = −iv̄(k2)γµ (`PL + rPR)u(k1)εµ . (2.3)

At the LHC massless fermions are a good approximation for all particles except for the top quark. For the bottom
quark we need to be careful with some aspects of this approximation, but the first two generations of quarks and all
leptons are usually assumed to be massless in LHC simulations. Once we will arrive at infrared divergences in LHC
cross sections we will specifically discuss ways of regulating them without introducing masses.
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Squaring the matrix element in Eq.(2.3) means adding the same structure once again, just walking through the
Feynman diagram in the opposite direction. Luckily, we do not have to care about factors of (−i) since we are only
interested in the absolute value squared. Because the chiral projectors PL,R = (11∓ γ5)/2 defined in Eq.(1.15) are
real and γT5 = γ5 is symmetric, the left and right handed gauge boson vertices described by the Feynman rules in
Eq.(2.1) do not change under transposition. For the production of a massive Z boson on or off its mass shell we obtain

|M|2 =
∑

spin,pol,color

ū(k1)γν (`PL + rPR) v(k2) v̄(k2)γµ (`PL + rPR)u(k1) εµε
∗
ν incoming (anti-) quark k1,2

= Nc Tr [ /k1γ
ν (`PL + rPR) /k2γ

µ (`PL + rPR)]

(
−gµν +

qµqν
m2
Z

)
unitary gauge with q = −k1 − k2

= Nc Tr [ /k1γ
ν (`PL + rPR) (`PL + rPR) /k2γ

µ]

(
−gµν +

qµqν
m2
Z

)
with {γµ, γ5} = 0

= Nc Tr

[
/k1γ

ν

(
`2

11
2

+ r2 11
2

)
/k2γ

µ

] (
−gµν +

qµqν
m2
Z

)
symmetric polarization sum

=
Nc
2

(
`2 + r2

)
Tr [ /k1γ

ν /k2γ
µ]

(
−gµν +

qµqν
m2
Z

)
= 2Nc

(
`2 + r2

)
[kµ1 k

ν
2 + kν1k

µ
2 − (k1k2)gµν ]

(
−gµν +

qµqν
m2
Z

)
= 2Nc

(
`2 + r2

) [
−2(k1k2) + 4(k1k2) + 2

(−k1k2)2

m2
Z

− (k1k2)q2

m2
Z

]
with (qk1) = −(k1k2)

= 2Nc
(
`2 + r2

) [
2(k1k2) +

q4

2m2
Z

− q4

2m2
Z

]
with q2 = (k1 + k2)2

= 2Nc
(
`2 + r2

)
q2 (2.4)

The color factor Nc accounts for the number of SU(3) states which can be combined to form a color singlet like the Z.
An interesting aspect coming out of our calculation is that the 1/mZ-dependent terms in the polarization sum do not
contribute — as far as the matrix element squared is concerned the Z boson could as well be transverse. This reflects
the fact that the Goldstone modes do not couple to massless fermions, just like the Higgs boson. This means that not
only the matrix element squared for the on–shell Z case corresponds to q2 = m2

Z but also that the on–shell photon
case is given by q2 → 0. The apparently vanishing matrix element in this limit has to be combined with the phase
space definition to give a finite result.

What is still missing is an averaging factor for initial–state spins and colors, only the sum is included in Eq.(2.4). For
incoming electrons as well as incoming quarks this factor Kij includes 1/4 for the spins. Since we do not observe
color in the initial state, and the color structure of the incoming qq̄ pair has no impact on the Z–production matrix
element, we also average over the color. This gives us another factor 1/N2

c for the averaged matrix element, which
altogether becomes

Kij =
1

4N2
c

. (2.5)

In spite of our specific case in Eq.(2.4) looking that way, matrix elements we compute from our Feynman rules are not
automatically numbers with mass unit zero.

If for the partonic invariant mass of the two quarks we introduce the Mandelstam variable s = (k1 + k2)2 = 2(k1k2),
so momentum conservation for on–shell Z production implies s = q2 = m2

Z . In four space–time dimensions (this
detail will become important later) we can compute a total cross section from the matrix element squared, for example
as given in Eq.(2.4), as

s
dσ

dy

∣∣∣∣∣
2→1

=
π

(4π)2
Kij (1− τ) |M|2 τ =

m2
Z

s
y =

1− cos θ

2
. (2.6)
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The scattering angle θ enters through the definition of y = 0...1. The mass of the final state appears in τ , with τ = 0
for a massless photon. It would be replaced to include mW or the Higgs mass or the mass of a Kaluza–Klein graviton
if needed. At the production threshold of an on–shell particle the phase space opens in the limit τ → 1, slowly
increasing the cross section above threshold τ < 1.

We know that such a heavy gauge boson we do not actually observe at colliders. What we should really calculate is
the production for example of a pair of fermions through an s-channel Z and γ, where the Z might or might not be on
its mass shell. The matrix element for this process we can derive from the same Feynman rules in Eq.(2.1), now for an
incoming fermion k1, incoming anti–fermion k2, outgoing fermion p1 and outgoing anti–fermion p2. To make it easy
to switch particles between initial and final states, we can define all momenta as incoming, so momentum
conservation means k1 + k2 + p1 + p2 = 0. The additional Mandelstam variables we need to describe this (2→ 2)
process are t = (k1 + p1)2 < 0 and u = (k1 + p2)2 < 0, as usually with s+ t+ u = 0 for massless final–state
particles. The (2→ 2) matrix element for the two sets of incoming and outgoing fermions becomes

M = (−i)2 ū(p1)γν (`′PL + r′PR) v(p2) v̄(k2)γµ (`PL + rPR)u(k1)
i

q2 −m2
Z

(
−gµν +

qµqν
m2
Z

)
. (2.7)

The coupling to the gauge bosons are ` and r for the incoming quarks and `′ and r′ for the outgoing leptons. The
chiral projectors are defined in Eq.(1.15). When we combine the four different spinors and their momenta correctly
the matrix element squared factorizes into twice the trace we have computed before. The corresponding picture is two
fermion currents interacting with each other through a gauge boson. All we have to do is combine the traces properly.
If the incoming trace in the matrix element and its conjugate includes the indices µ and ρ and the outgoing trace the
indices ν and σ, the Z bosons link µ and ν as well as ρ and σ.
To make the results a little more compact we compute this process for a massless photon instead of the Z boson, i.e.
for the physical scenario where the initial–state fermions do not have enough energy to excite the intermediate Z
boson. The specific features of an intermediate massive Z boson we postpone to Section 2.1.2. The assumption of a
massless photon simplifies the couplings to (`2 + r2) = 2Q2e2 and the polarization sums to −gµν and −gρσ:

|M|2 = 4Nc (2Q2e2) (2Q′
2
e2)

1

q4
[kµ1 k

ρ
2 + kρ1k

µ
2 − (k1k2)gµρ] (−gµν) [pν1p

σ
2 + pσ1p

ν
2 − (p1p2)gνσ] (−gρσ)

= 16Nc Q
2Q′

2
e4 1

q4
[kµ1 k2σ + k1σk

µ
2 − (k1k2)gµσ ]

[
p1µp

σ
2 + pσ1p2µ − (p1p2)gσµ

]
= 16Nc Q

2Q′
2
e4 1

q4
[2(k1p1)(k2p2) + 2(k1p2)(k2p1)− 2(k1k2)(p1p2)− 2(k1k2)(p1p2) + 4(k1k2)(p1p2)]

= 32Nc Q
2Q′

2
e4 1

q4
[(k1p1)(k2p2) + (k1p2)(k2p1)]

= 32Nc Q
2Q′

2
e4 1

s2

[
t2

4
+
u2

4

]
= 8Nc Q

2Q′
2
e4 1

s2

[
s2 + 2st+ 2t2

]
= 8Nc Q

2Q′
2
e4

[
1 + 2

t

s
+ 2

t2

s2

]
. (2.8)

We can briefly check if this number is indeed positive, using the definition of the Mandelstam variable t for massless
external particles in terms of the polar angle t = s(−1 + cos θ)/2 = −s · · · 0: the upper phase space boundary t = 0
inserted into the brackets in Eq.(2.8) gives [· · · ] = 1, just as the lower boundary t = −s with [· · · ] = 1− 2 + 2 = 1.
For the central value t = −s/2 the minimum value of the brackets is [· · · ] = 1− 1 + 0.5 = 0.5.
The azimuthal angle φ plays no role at colliders, unless you want to compute gravitational effects on Higgs production
at ATLAS and CMS. Any LHC Monte Carlo will either random-generate a reference angle φ for the partonic process
or pick one and keep it fixed.
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The two-particle phase space integration for massless particles then gives us

s2 dσ

dt

∣∣∣∣∣
2→2

=
π

(4π)2
Kij |M|2 t =

s

2
(−1 + cos θ) . (2.9)

For our Drell–Yan process we then find the differential cross section in four space–time dimensions, using
α = e2/(4π)

dσ

dt
=

1

s2

π

(4π)2

1

4Nc
8 Q2Q′

2
(4πα)2

(
1 + 2

t

s
+ 2

t2

s2

)
=

1

s2

2πα2

Nc
Q2Q′

2
(

1 + 2
t

s
+ 2

t2

s2

)
, (2.10)

which we can integrate over the polar angle or the Mandelstam variable t to compute the total cross section

σ =
1

s2

2πα2

Nc
Q2Q′

2
∫ 0

−s
dt

(
1 + 2

t

s
+ 2

t2

s2

)
=

1

s2

2πα2

Nc
Q2Q′

2
[
t+

t2

s
+

2t3

3s2

]0

−s

=
1

s2

2πα2

Nc
Q2Q′

2
(
s− s2

s
+

2s3

3s2

)

=
1

s

2πα2

Nc
Q2Q′

2 2

3
⇒ σ(qq̄ → `+`−)

∣∣∣∣∣
QED

=
4πα2

3Ncs
Q2
`Q

2
q (2.11)

As a side remark — in the history of QCD, the same process but read right–to–left played a crucial role, namely the
production rate of quarks in e+e− scattering. For small enough energies we can neglect the Z exchange contribution.
At leading order we can then compute the corresponding production cross sections for muon pairs and for quark pairs
in e+e− collisions. Moving the quarks into the final state means that we do not average of the color in the initial state,
but sum over all possible color combinations, which in Eq.(2.9) gives us an averaging factor Kij = 1/4. Everything
else stays the same as for the Drell–Yan process

R ≡ σ(e+e− → hadrons)
σ(e+e− → `+`−)

=

∑
quarks

4πα2Nc
3s

Q2
eQ

2
q

4πα2

3s
Q2
eQ

2
`

= Nc

(
3

1

9
+ 2

4

9

)
=

11Nc
9

, (2.12)

for example for five quark flavors where the top quark is too heavy to be produced at the given e+e− collider energy.
For those interested in the details we did take one short cut: hadrons are also produced in the hadronic decays of
e+e− → τ+τ− which we strictly speaking need to subtract. This way, R as a function of the collider energy is a
beautiful measurement of the weak and color charges of the quarks in QCD.

2.1.2 Massive intermediate states

At hadron colliders we cannot tune the energies of the incoming partons. This means that for any particle we will
always observe a mix of on–shell and off–shell production, depending on the structure of the matrix element and the
distribution of partons inside the proton. For hadron collider analyses this has profound consequences: unlike at an
e+e− collider we have to base all measurements on reconstructed final–state particles. For studies of particles
decaying to jets this generally limits the possible precision at hadron colliders to energy scales above ΛQCD.
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Therefore, before we move on to describing incoming quarks inside protons we should briefly consider the second
Feynman diagram contributing to the Drell–Yan production rate in Eq.(2.11), the on–shell or off–shell Z boson

|M|2 = |Mγ +MZ |2 = |Mγ |2 + |MZ |2 + 2 ReMZMγ . (2.13)

Interference occurs in phase space regions where for both intermediate states the invariant masses of the muon pair are
the same.
For the photon the on–shell pole is not a problem. It has zero mass, which means that we hit the pole 1/q2 in the
matrix element squared only in the limit of zero incoming energy. Strictly speaking we never hit it, because the energy
of the incoming particles has to be large enough to produce the final–state particles with their tiny but finite masses
and with some kind of momentum driving them through the detector.
A problem arises when we consider the intermediate Z boson. In that case, the propagator contributes as
|M|2 ∝ 1/(s−m2

Z)2 which diverges on the mass shell. Before we can ask what such a pole means for LHC
simulations we have to recall how we deal with it in field theory. There, we encounter the same issue when we solve
for example the Klein–Gordon equation. The Green function for a field obeying this equation is the inverse of the
Klein–Gordon operator (

�+m2
)
G(x− x′) = δ4(x− x′) . (2.14)

Fourier transforming G(x− x′) into momentum space we find

G(x− x′) =

∫
d4q

(2π)4
e−iq·(x−x

′)G̃(q)

(
�+m2

)
G(x− x′) =

∫
d4q

(2π)4

(
�+m2

)
e−iq·(x−x

′) G̃(q)

=

∫
d4q

(2π)4

(
(iq)2 +m2

)
e−iq·(x−x

′) G̃(q)

=

∫
d4q

(2π)4
e−iq·(x−x

′)
(
−q2 +m2

)
G̃(q)

!
= δ4(x− x′) =

∫
d4q

(2π)4
e−iq·(x−x

′)

⇔ (−q2 +m2) G̃(q) = 1 ⇔ G̃(q) = − 1

q2 −m2
. (2.15)

The problem with the Green function in momentum space is that as an inverse it is not defined for q2 = m2. We
usually avoid this problem by slightly shifting this pole following the Feynman iε prescription to m2 → m2 − iε, or
equivalently deforming our integration contours appropriately. The sign of this infinitesimal shift we need to
understand because it will become relevant for phenomenology when we introduce an actual finite decay width of
intermediate states.
In the Feynman iε prescription the sign is crucial to correctly complete the q0 integration of the Fourier transform in
the complex plane∫ ∞

−∞
dq0

e−iq0x0

q2 −m2 + iε
= (θ(x0) + θ(−x0))

∫ ∞
−∞

dq0
e−iq0x0

q2
0 − (ω2 − iε)

with ω2 = ~q2 +m2 (2.16)

= (θ(x0) + θ(−x0))

∫ ∞
−∞

dq0
e−iq0x0

(q0 −
√
ω2 − iε)(q0 +

√
ω2 − iε)

=

(
θ(x0)

∮
C2

+θ(−x0)

∮
C1

)
dq0

e−iq0x0

(q0 − ω(1− iε′))(q0 + ω(1− iε′))
with ε′ =

ε

2ω2

In the last step we have closed the integration contour along the real q0 axis in the complex q0 plane. Because the
integrand has to vanish for large q0, we have to make sure the exponent −ix0 iIm q0 = x0Im q0 is negative. For
x0 > 0 this means Imq0 < 0 and vice versa. This argument forces C1 to close for positive and C2 for negative
imaginary parts in the complex q0 plane.
The contour integrals we can solve using Cauchy’s formula, keeping in mind that the integrand has two poles at
q0 = ±ω(1− iε′). They lie in the upper (lower) half plane for negative (positive) real parts of q0. The contour C1
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through the upper half plane includes the pole at q0 ∼ −ω while the contour C2 includes the pole at q0 ∼ ω, all
assuming ω > 0:∫ ∞

−∞
dq0

e−iq0x0

q2 −m2 + iε
= 2πi

[
θ(x0)

(−1)e−iωx0

ω + ω(1− iε′)
+ θ(−x0)

eiωx0

−ω − ω(1− iε′)

]
ε′→0
= −i π

ω

[
θ(x0)e−iωx0 + θ(−x0)eiωx0

]
. (2.17)

The factor (−1) in the C2 integration arises because Cauchy’s integration formula requires us to integrate
counter–clockwise, while going from negative to positive Req0 the contour C2 is defined clockwise. Using this result
we can complete the four-dimensional Fourier transform from Eq.(2.15)

G(x) =

∫
d4q e−i(q·x)G̃(q)

=

∫
d4q

e−i(q·x)

q2 −m2 + iε

= −iπ
∫
d3~q ei~q~x

1

ω

[
θ(x0)e−iωx0 + θ(−x0)eiωx0

]
= −iπ

∫
d4q ei~q~x

1

ω

[
θ(x0)e−iq0x0δ(q0 − ω) + θ(−x0)e−iq0x0δ(qo + ω)

]
= −iπ

∫
d4q e−i(q·x) 1

ω
[θ(x0)δ(ω − q0) + θ(−x0)δ(ω + q0)] with δ(x) = δ(−x)

= −iπ
∫
d4q e−i(q·x) 1

ω
2ω

[
θ(x0)δ(ω2 − q2

0) + θ(−x0)δ(ω2 − q2
0)
]

= −2πi

∫
d4q e−i(q·x) [θ(x0) + θ(−x0)] δ(q2

0 − ω2)

= −2πi

∫
d4q e−i(q·x) [θ(x0) + θ(−x0)] δ(q2 −m2) with q2

0 − ω2 = q2 −m2 . (2.18)

This is exactly the usual decomposition of the propagator function ∆F (x) = θ(x0)∆+(x) + θ(−x0)∆−(x) into
positive and negative energy contributions.

Let us briefly recapitulate what would have happened if we instead had chosen the Feynman parameter ε < 0. We
summarize all steps leading to the propagator function in Eq.(2.18) in Table 2. For the wrong sign of iε the two poles
in the complex q0 plane would be mirrored by the real axis. The solution with Re q0 > 0 would sit in the quadrant
with Im q0 > 0 and the second pole at a negative real and imaginary part. To be able to close the integration path in
the upper half plane in the mathematically positive direction the real pole would have to be matched up with θ(−x0).
The residue in the Cauchy integral would now include a factor +1/(2ω). At the end, the two poles would give the
same result as for the correct sign of iε, except with a wrong over–all sign.

When we are interested in the kinematic distributions of on–shell massive states the situation is a little different.
Measurements of differential distributions for example at LEP include information on the physical width of the
decaying particle, which means we cannot simply apply the Feynman iε prescription as if we were dealing with an
asymptotic stable state. From the same couplings governing the Z decay, the Z propagator receives corrections, for
example including fermion loops:

Such one-particle irreducible diagrams can occur in the same propagator repeatedly. Schematically written as a scalar
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1

q2 −m2 + iε

1

q2 −m2 − iε
pole q0 = ω(1− iε) q0 = −ω(1− iε) q0 = ω(1 + iε) q0 = −ω(1 + iε)

complex quadrant (+,−) (−,+) (+,+) (−,−)

convergence: x0Imq0 < 0 x0 > 0 x0 < 0 x0 < 0 x0 > 0

part of real axis θ(x0) θ(−x0) θ(−x0) θ(x0)

closed contour Im q0 < 0 Im q0 > 0 Im q0 > 0 Im q0 < 0

direction of contour −1 +1 +1 −1

residue +
1

2ω
− 1

2ω
+

1

2ω
− 1

2ω
Fourier exponent e−iωx0 e+iωx0 e+iωx0 e−iωx0

all combined −e
−iωx0

2ω
θ(x0) −e

+iωx0

2ω
θ(−x0) +

e+iωx0

2ω
θ(−x0) +

e−iωx0

2ω
θ(x0)

Table 2: Contributions to the propagator function Eq.(2.18) for both signs of iε.

they are of the form

i

q2 −m2
0 + iε

+
i

q2 −m2
0 + iε

(−iM2)
i

q2 −m2
0 + iε

+
i

q2 −m2
0 + iε

(−iM2)
i

q2 −m2
0 + iε

(−iM2)
i

q2 −m2
0 + iε

+ · · ·

=
i

q2 −m2
0 + iε

∑
n=0

(
M2

q2 −m2
0 + iε

)n
=

i

q2 −m2
0 + iε

1

1− M2

q2 −m2
0 + iε

summing the geometric series

=
i

q2 −m2
0 + iε−M2

. (2.19)

We denote the loop as M2 for reasons which will become obvious later. Requiring that the residue of the propagator
be unity at the pole we renormalize the wave function and the mass in the corresponding process. For example for a
massive scalar or gauge boson with a real correction M2(q2) this reads

i

q2 −m2
0 −M2(q2)

=
iZ

q2 −m2
for q2 ∼ m2 , (2.20)

including a renormalized mass m and a wave function renormalization constant Z.

The important step in our argument is that in analogy to the effective ggH coupling discussed in Section 1.5.1 the
one-loop correction M2 depends on the momentum flowing through the propagator. Above a certain threshold it can
develop an imaginary part because the momentum flowing through the diagram is large enough to produce on–shell
states in the loop. Just as for the ggH coupling such absorptive parts appear when a real decay like Z → `+`−

becomes kinematically allowed. After splitting M2(q2) into its real and imaginary parts we know what to do with the
real part: the solution to q2 −m2

0 − ReM2(q2)
!
= 0 defines the renormalized particle mass q2 = m2 and the wave
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function renormalization Z. The imaginary part looks like the Feynman iε term discussed before

i

q2 −m2
0 + iε− ReM2(q2)− iImM2

=
iZ

q2 −m2 + iε− iZImM2

≡ iZ

q2 −m2 + imΓ
⇔ Γ = −Z

m
ImM2(q2 = m2) , (2.21)

for ε→ 0 and finite Γ 6= 0. We can illustrate the link between the element squared M2 of a self energy and the partial
width by remembering one way to compute scalar integrals or one-loop amplitudes by gluing them together using tree
level amplitudes. Schematically written, the Cutkosky cutting rule discussed in Section 1.5.1 tells us
Im M2 ∼M2|cut ≡ Γ. Cutting the one-loop bubble diagram at the one possible place is nothing but squaring the two
tree level matrix element for the decay Z → `+`−. One thing that we need to keep track of, apart from the additional
factor m due to dimensional analysis, is the sign of the imΓ term which just like the iε prescription is fixed by
causality.

Going back to the Drell–Yan process qq̄ → `+`− we now know that for massive unstable particles the Feynman
epsilon which we need to define the Green function for internal states acquires a finite value, proportional to the total
width of the unstable particle. This definition of a propagator of an unstable particle in the s-channel is what we need
for the second Feynman diagram contributing to the Drell–Yan process: qq̄ → Z∗ → `+`−. The resulting shape of the
propagator squared is a Breit–Wigner propagator

σ(qq̄ → Z → `+`−) ∝
∣∣∣∣ 1

s−m2
Z + imZΓZ

∣∣∣∣2 =
1

(s−m2
Z)2 +m2

ZΓ2
Z

. (2.22)

When taking everything into account, the (2→ 2) production cross section also includes the squared matrix element
for the decay Z → `+`− in the numerator. In the narrow width approximation, the (2→ 2) matrix element factorizes
into the production process times the branching ratio for Z → `+`−, simply by definition of the Breit–Wigner or
Lorentz or Cauchy distribution

lim
Γ→0

ΓZ,``
(s−m2

Z)2 +m2
ZΓ2

Z,tot
= ΓZ,``

π

ΓZ,tot
δ(s−m2

Z) ≡ π BR(Z → ``) δ(s−m2
Z) . (2.23)

The additional factor π will be absorbed in the different one-particle and two-particle phase space definitions. We
immediately see that this narrow width approximation is only exact for scalar particles. It does not keep information
about the structure of the matrix element, e.g. when a non–trivial structure of the numerator gives us the spin and
angular correlations between the production and decay processes.
Because of the γ-Z interference we will always simulate lepton pair production using the full on–shell and off–shell
(2→ 2) process. For example for top pair production with three-body decays this is less clear. Sometimes, we will
simulate the production and the decay independently and rely on the limit Γ→ 0. In that case it makes sense to
nevertheless require a Breit–Wigner shape for the momenta of the supposedly on–shell top quarks. For top mass
measurements we do, however, have to take into account off–shell effects and QCD effects linking the decay and
production sides of the full Feynman diagrams.

Equation (2.23) uses a mathematical relation we might want to remember for life, and that is the definition of the
one-dimensional Dirac delta distribution in three ways and including all factors of 2 and π

δ(x) =

∫
dq

2π
e−ixq = lim

σ→0

1

σ
√
π
e−x

2/σ2

= lim
Γ→0

1

π

Γ

x2 + Γ2
. (2.24)

The second distribution is a Gaussian and the third one we would refer to as a Breit–Wigner shape while most other
people call it a Cauchy distribution.

Now, we know everything necessary to compute all Feynman diagrams contributing to muon pair production at a
hadron collider. Strictly speaking, the two amplitudes interfere, so we end up with three distinct contributions: γ
exchange, Z exchange and the γ − Z interference terms. They have the properties
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– for small energies the γ contribution dominates and can be linked to the R parameter.

– on the Z pole the rate is regularized by the Z width and Z contribution dominates over the photon.

– in the tails of the Breit–Wigner distribution we expect Z − γ interference. For m`` > 120 GeV the γ and Z
contributions at the LHC are roughly equal in size.

– for large energies we are again dominated by the photon channel.

– quantum effects allow unstable particles like the Z to decay off–shell, defining a Breit–Wigner propagator.

– in the limit of vanishing width the Z contribution factorizes into σ · BR.

2.1.3 Parton densities

At the end of Section 2.1.1 the discussion of different energy regimes for R experimentally makes sense — at an
e+e− collider we can tune the energy of the initial state. At hadron colliders the situation is very different. The energy
distribution of incoming quarks as parts of the colliding protons has to be taken into account. We first assume that
quarks move collinearly with the surrounding proton such that at the LHC incoming partons have zero pT . Under that
condition we can define a probability distribution for finding a parton just depending on the respective fraction of the
proton’s momentum. For this momentum fraction x = 0 · · · 1 the parton density function (pdf) is written as fi(x),
where i denotes the different partons in the proton, for our purposes u, d, c, s, g and, depending on the details, b. All
incoming partons we assume to be massless.
In contrast to so-called structure functions a pdf is not an observable. It is a distribution in the mathematical sense,
which means it has to produce reasonable results when we integrate it together with a test function. Different parton
densities have very different behavior — for the valence quarks (uud) they peak somewhere around x . 1/3, while
the gluon pdf is small at x ∼ 1 and grows very rapidly towards small x. For some typical part of the relevant
parameter space (x = 10−3 · · · 10−1) the gluon density roughly scales like fg(x) ∝ x−2. Towards smaller x values it
becomes even steeper. This steep gluon distribution was initially not expected and means that for small enough x LHC
processes will dominantly be gluon fusion processes.

While we cannot actually compute parton distribution functions fi(x) as a function of the momentum fraction x there
are a few predictions we can make based on symmetries and properties of the hadrons. Such arguments for example
lead to sum rules:

The parton distributions inside an antiproton are linked to those inside a proton through the CP symmetry, which is an
exact symmetry of QCD. Therefore, we know that

f p̄q (x) = fq̄(x) f p̄q̄ (x) = fq(x) f p̄g (x) = fg(x) (2.25)

for all values of x.
If the proton consists of three valence quarks uud, plus quantum fluctuations from the vacuum which can either
involve gluons or quark–antiquark pairs, the contribution from the sea quarks has to be symmetric in quarks and
antiquarks. The expectation values for the signed numbers of up and down quarks inside a proton have to fulfill

〈Nu〉 =

∫ 1

0

dx (fu(x)− fū(x)) = 2 〈Nd〉 =

∫ 1

0

dx (fd(x)− fd̄(x)) = 1 . (2.26)

Similarly, the total momentum of the proton has to consist of the sum of all parton momenta. We can write this as the
expectation value of

∑
xi

〈
∑

xi〉 =

∫ 1

0

dx x

(∑
q

fq(x) +
∑
q̄

fq̄(x) + fg(x)

)
= 1 (2.27)

What makes this prediction interesting is that we can compute the same sum only taking into account the measured
quark and antiquark parton densities. We find that the momentum sum rule only comes to 1/2. Half of the proton
momentum is then carried by gluons.
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Given the correct definition and normalization of the pdf we can now compute the hadronic cross section from its
partonic counterpart, like the QED result in Eq.(2.11), as

σtot =

∫ 1

0

dx1

∫ 1

0

dx2

∑
ij

fi(x1) fj(x2) σ̂ij(x1x2S) , (2.28)

where i, j are the incoming partons with the momentum factions xi,j . The partonic energy of the scattering process is
s = x1x2S with the LHC proton energy of eventually

√
S = 14 TeV. The partonic cross section σ̂ corresponds to the

cross sections σ computed for example in Eq.(2.11). It has to include all the necessary θ and δ functions for
energy–momentum conservation. When we express a general n–particle cross section σ̂ including the phase space
integration, the xi integrations and the phase space integrations can of course be interchanged, but Jacobians will
make life hard. In Section 2.1.5 we will discuss an easier way to compute kinematic distributions instead of from the
fully integrated total rate in Eq.(2.28).

2.1.4 Hadron collider kinematics

Hadron colliders have a particular kinematic feature in that event by event we do not know the longitudinal velocity of
the initial state, i.e. the relative longitudinal boost from the laboratory frame to the partonic center of mass. This
sensitivity to longitudinal boosts is reflected in the choice of kinematic variables. The first thing we consider is the
projection of all momenta onto the transverse plane. These transverse components are trivially invariant under
longitudinal boosts because the two are orthogonal to each other.
In addition, for the production of a single electroweak gauge boson we remember that the produced particle does not
have any momentum transverse to the beam direction. This reflects the fact that the incoming quarks are collinear with
the protons and hence have zero transverse momentum. Such a gauge boson not recoiling against anything else cannot
develop a finite transverse momentum. Of course, once we decay this gauge boson for example into a pair of muons,
each muon will have transverse momentum, only their vector sum will be zero:∑

final state

~pT,j = ~0 . (2.29)

This is a relation between two-dimensional, not three dimensional vectors. For more than one particle in the final state
we define an azimuthal angle in the transverse plane transverse. While differences of azimuthal angles are
observables, the over–all angle is a symmetry of the detector as well as of our physics.

In addition to the transverse plane we need to parameterize the longitudinal momenta in a way which makes it easy to
implement longitudinal boosts. In Eq.(2.28) we integrate over the two momentum fractions x1,2 and can at best
determine their product x1x2 = s/S from the final–state kinematics. Our task is to replace both, x1 and x2 with a
more physical variable which should be well behaved under longitudinal boosts.
A longitudinal boost for example from the rest frame of a massive particle reads(

E
pL

)
= exp

[
y

(
0 1
1 0

)](
m
0

)
=

[
11 + y

(
0 1
1 0

)
+
y2

2
11 +

y3

6

(
0 1
1 0

)
· · ·
](

m
0

)

=

11
∑
j even

yj

j!
+

(
0 1
1 0

) ∑
j odd

yj

j!

(m
0

)

=

[
11 cosh y +

(
0 1
1 0

)
sinh y

](
m
0

)
= m

(
cosh y
sinh y

)
. (2.30)

We can re-write the rapidity y defined above in a way which allows us to compute it from the four-momentum for
example in the LHC lab frame

1

2
log

E + pL
E − pL

=
1

2
log

cosh y + sinh y

cosh y − sinh y
=

1

2
log

ey

e−y
= y . (2.31)
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We can explicitly check that the rapidity is indeed additive by applying a second longitudinal boost to (E, pL) in
Eq.(2.30) (

E′

p′L

)
= exp

[
y′
(

0 1
1 0

)](
E
pL

)
=

[
11 cosh y′ +

(
0 1
1 0

)
sinh y′

](
E
pL

)
=

(
E cosh y′ + pL sinh y′

pL cosh y′ + E sinh y′

)
, (2.32)

which gives for the combined rapidity, following its extraction in Eq.(2.31)

1

2
log

E′ + p′L
E′ − p′L

=
1

2
log

(E + pL)(cosh y′ + sinh y′)

(E − pL)(cosh y′ − sinh y′)
=

1

2
log

E + pL
E − pL

+ y′ = y + y′ . (2.33)

Two successive boosts with rapidities y and y′ can be combined into a single boost by y + y′. This combination of
several longitudinal boosts is important in the case of massless particles. They do not have a rest frame, which means
we can only boost them from one finite-momentum frame to the other. For such massless particles we can simplify the
formula for the rapidity Eq.(2.31), in terms of the polar angle θ. We use that for massless particles E = |~p|, giving us

y =
1

2
log

E + pL
E − pL

=
1

2
log
|~p|+ pL
|~p| − pL

=
1

2
log

1 + cos θ

1− cos θ
=

1

2
log

1

tan2 θ

2

= − log tan
θ

2
≡ η (2.34)

This pseudo-rapidity η is more handy, but coincides with the actual rapidity only for massless particles. To get an idea
about the experimental setup at the LHC — in CMS and ATLAS we can observe different particles to polar angles of
between 10 and 1.3 degrees, corresponding to maximum pseudo-rapidities of 2.5 to 4.5. Because this is numerically
about the same range as the range of the azimuthal angle [0, π] we define a distance measure inside the detector

(∆R)2 = (∆y)2 + (∆φ)2

= (∆η)2 + (∆φ)2 massless particles

=

log
tan

θ + ∆θ

2
θ

2


2

+ (∆φ)2

=
(∆θ)2

sin2 θ
+ (∆φ)2 +O((∆θ)3) (2.35)

The angle θ is the polar angle of one of the two particles considered and in our leading approximation can be chosen
as each of them without changing Eq.(2.35).

Still for the case of single gauge boson production we can express the final–state kinematics in terms of two
parameters, the invariant mass of the final–state particle q2 and its rapidity. We already know that the transverse
momentum of a single particle in the final state is zero. The two incoming and approximately massless protons have
the momenta

p1 = (E, 0, 0, E) p2 = (E, 0, 0,−E) S = (2E)2 . (2.36)

For the momentum of the final–state gauge boson in terms of the parton momentum fractions this means in
combination with Eq.(2.30)

q = x1p1 + x2p2 = E


x1 + x2

0
0

x1 − x2

 !
=
√
q2


cosh y

0
0

sinh y

 = 2E
√
x1x2


cosh y

0
0

sinh y


⇔ cosh y =

x1 + x2

2
√
x1x2

=
1

2

(√
x1

x2
+

√
x2

x1

)
⇔ ey =

√
x1

x2
. (2.37)
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This result can be combined with x1x2 = q2/S to obtain

x1 =

√
q2

S
ey x2 =

√
q2

S
e−y . (2.38)

These relations allow us to for example compute the hadronic total cross section for lepton pair production in QED

σ(pp→ `+`−)

∣∣∣∣∣
QED

=
4πα2Q2

`

3Nc

∫ 1

0

dx1dx2

∑
j

Q2
j fj(x1) fj̄(x2)

1

q2
, (2.39)

instead in terms of the hadronic phase space variables x1,2 in terms of the kinematic final–state observables q2 and y.
Remember that the partonic or quark–antiquark cross section σ̂ is already integrated over the (symmetric) azimuthal
angle φ and the polar angle Mandelstam variable t. The transverse momentum of the two leptons is therefore fixed by
momentum conservation.
The Jacobian for this change of variables reads

∂(q2, y)

∂(x1, x2)
=

∣∣∣∣ x2S x1S
1/(2x1) −1/(2x2)

∣∣∣∣ = S =
q2

x1x2
, (2.40)

which inserted into Eq.(2.39) gives us

σ(pp→ `+`−)

∣∣∣∣∣
QED

=
4πα2Q2

`

3Nc

∫
dq2dy

x1x2

q2

1

q2

∑
j

Q2
j fj(x1) fj̄(x2)

=
4πα2Q2

`

3Nc

∫
dq2dy

1

q4

∑
j

Q2
j x1fj(x1)x2fj̄(x2) . (2.41)

In contrast to the original form of the integration over the hadronic phase space this form reflects the kinematic
observables. For the Drell–Yan process at leading order the q2 distribution is the same as m2

``, one of the most
interesting distributions to study because of different contributions from the photon, the Z boson, or extra dimensional
gravitons. On the other hand, the rapidity integral still suffers from the fact that at hadron colliders we do not know the
longitudinal kinematics of the initial state and therefore have to integrate over it.

2.1.5 Phase space integration

In the previous example we have computed the simple two-dimensional distribution, by leaving out the double
integration in Eq.(2.41)

dσ(pp→ `+`−)

dq2dy

∣∣∣∣∣
QED

=
4πα2Q2

`

3Ncq4

∑
j

Q2
j x1fj(x1)x2fj̄(x2) . (2.42)

We can numerically evaluate this expression and compare it to experiment. However, the rapidity y and the
momentum transfer q2 of the `+`− pair are by no means the only distribution we would like to look at. Moreover, we
have to integrate numerically over the parton densities f(x), so we will have to rely on numerical integration tools no
matter what we are doing. Looking at a simple (2→ 2) process we can write the total cross section as

σtot =

∫
dφ

∫
d cos θ

∫
dx1

∫
dx2 FPS |M|2 =

∫ 1

0

dy1 · · · dy4 JPS(~y) |M|2 , (2.43)

with an appropriate function FPS. In the second step we have re-written the phase space integral as an integral over the
four-dimensional unit cube, implicitly defining the appropriate Jacobian. Like any integral we can numerically
evaluate this phase space integral by binning the variable we integrate over∫ 1

0

dy f(y) −→
∑
j

(∆y)jf(yj) ∼ ∆y
∑
j

f(yj) . (2.44)
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Without any loss of generality we assume that the integration boundaries are 0 · · · 1. We can divide the integration
variable y into a discrete set of points yj , for example equidistant in y or as a chain of random numbers yjε[0, 1]. In
the latter case we need to keep track of the bin widths (∆y)j . When we extend the integral to d dimensions we can in
principle divide each axis into bins and compute the functional values for this grid. For not equidistant bins generated
by random numbers we again keep track of the associated phase space volume for each random number vector. Once
we know these phase space weights for each phase space point there is no reason to consider the set of random
numbers as in any way linked to the d axes. All we need is a chain of random points with an associated phase space
weight and their transition matrix element, to integrate over the phase space in complete analogy to Eq.(2.44).

The obvious question is how such random numbers can be chosen in a smart way. However, before we discuss how to
best evaluate such an integral numerically, let us first illustrate how this integral is much more useful than just to
provide the total cross section. If we are interested in the distribution of an observable, like for example the
distribution of the transverse momentum of a muon in the Drell–Yan process, we need to compute dσ/dpT as a
function of pT . In terms of Eq.(2.43) any physical y1 distribution is given by

σ =

∫
dy1 · · · dyd f(~y) =

∫
dy1

dσ

dy1

dσ

dy1

∣∣∣∣∣
y0

1

=

∫
dy2 · · · dyd f(y0

1) =

∫
dy1 · · · dyd f(~y) δ(y1 − y0

1) . (2.45)

We can compute this distribution numerically in two ways: one way corresponds to the first line in Eq.(2.45) and
means evaluating the y2 · · · yd integrations and leaving out the y1 integration. The result will be a function of y1 which
we then evaluate at different points y0

1 .
The second and much more efficient option corresponds to the second line of Eq.(2.45), with the delta distribution
defined for discretized y1. First, we define an array with the size given by the number of bins in the y1 integration.
Then, for each y1 value of the complete y1 · · · yd integration we decide where the value y1 goes in this array and add
f(~y) to the corresponding column. Finally, we print these columns as a function of y1 to see the distribution. This set
of columns is referred to as a histogram and can be produced using publicly available software. This histogram
approach does not sound like much, but imagine we want to compute a distribution dσ/dpT , where pT (~y) is a
complicated function of the integration variables and kinematic phase space cuts. We then simply evaluate

dσ

dpT
=

∫
dy1 · · · dyd f(~y) δ

(
pT (~y − p0

T )
)

(2.46)

numerically and read off the pT distribution as a side product of the calculation of the total rate. Histograms mean that
computing a total cross section numerically we can trivially extract all distributions in the same process.

The procedure outlined above has an interesting interpretation. Imagine we do the entire phase space integration
numerically. Just like computing the interesting observables we can compute the momenta of all external particles.
These momenta are not all independent, because of energy–momentum conservation, but this can be taken care of.
The tool which translates the vector of integration variables ~y into the external momenta is called a
phase space generator. Because the phase space is not uniquely defined in terms of the integration variables, the phase
space generator also returns the Jacobian JPS, called the phase space weight. If we think of the integration as an
integration over the unit cube, this weight needs to be combined with the matrix element squared |M|2. Once we
compute the unique phase space configuration (k1, k2, p1 · · · )j corresponding to the vector ~yj , the combined weight
W = JPS |M|2 is the probability that this configuration will appear at the LHC. This means we do not only integrate
over the phase space, we really simulate LHC events. The only complication is that the probability of a given
configuration is not only given by the frequency with which it appears, but also by the explicit weight. So when we
run our numerical integration through the phase space generator and histogram all the distributions we are interested
in we generate weighted events. These events, which consist of the momenta of all external particles and the weight
W , we can for example store in a big file.

This simulation is not yet what experimentalists want — they want to represent the probability of a certain
configuration appearing only by its frequency and not by an additional event weight. Experimentally measured events
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do not come with a variable weight, either they are recorded or they are not. This means we have to unweight the
events by translating the event weight into frequency.
There are two ways to do that. On the one hand, we can look at the minimum event weight and express all other events
in relative probability to this event. Translating this relative event weight into a frequency means replacing an event
with the relative weight Wj/Wmin by Wj/Wmin unit–weight events in the same phase space point. The problem with
this method is that we are really dealing with a binned phase space, so we would not know how to distribute these
events in and around the given bin.
Alternatively, we can translate the weight of each event into a probability to keep it or drop it. Because such a
probability has to be limited from above we start from to the maximum weight Wmax and compute the ratio
Wj/Wmaxε[0, 1] for each event. We then generate a flat random number rε[0, 1] and only keep an event if
r < Wj/Wmax. This way, we keep an event with a large weight Wj/Wmax ∼ 1 for almost all values of r, while events
with small weights are more likely to drop out. The challenge in this translation is that we always lose events. If it was
not for the experimentalists we would hardly use such unweighted events , but they have good reasons to want such
unweighted events which feed best through detector simulations.
The last comment is that if the phase space configuration (k1, k2, p1 · · · )j can be measured, its weight Wj better be
positive. This is not trivial once we go beyond leading order. There, we need to add several contributions to produce a
physical event, like for example different n–particle final states. There is no guarantee for each of them to be positive.
Instead, we ensure that after adding up all contributions and after integrating over any kind of unphysical degrees of
freedom we might have introduced, the probability of a physics configuration is positive. From this point of view
negative values for parton densities f(x) < 0 are in principle not problematic, as long as we always keep a positive
hadronic rate dσpp→X > 0.

Going back to the numerical phase space integration for many particles, it faces two problems. First, the partonic
phase space for n on–shell particles in the final state has 3(n+ 2)− 3 dimensions. If we divide each of these
directions in 100 bins, the number of phase space points we need to evaluate for a (2→ 4) process is 10015 = 1030,
which is not realistic.
To integrate over a large number of dimensions we use Monte Carlo integration. In this approach we first replace the
binned directions in phase space by a chain of random numbers Yj , which can be organized in any number of
dimensions. In one dimension it replaces the equidistant bins in the direction y. Because the distance between these
new random numbers is not constant, each random number will come with yet another weight. The probability of
finding Yjε[y, y + dy] is given by a smartly chosen function pY (y). Integrating a function g(y) now returns an
expectation value of g evaluated over the chain Yj ,

〈g(Y )〉 =

∫ 1

0

dy pY (y) g(y) −→ 1

NY

NY∑
j=1

g(Yj) . (2.47)

First of all, we can immediately generalize this approach to any number of d dimensions, just by organizing the
random numbers Yj in one large chain instead of a d-dimensional array. Second, in Eq.(2.43) we are interested in an
integral over g, which means that we should rewrite the integration as∫ 1

0

ddy f(y) =

∫ 1

0

ddy
f(y)

pY (y)
pY (y) =

〈
f(Y )

pY (Y )

〉
→ 1

NY

∑
j

f(Yj)

pY (Yj)
. (2.48)

To compute the integral we now average over all values of f/pY along the random number chain Yj . In the ideal case
where we exactly know the form of the integrand and can map it into our random numbers, the error of the numerical
integration will be zero. So what we have to find is a way to encode f(Yj) into pY (Yj). This task is called
importance sampling and you can find some documentation for example on the standard implementation VEGAS to
look at the details.
Technically, VEGAS will call the function which computes the weight W = JPS |M|2 for a number of phase space
points and average over these points, but including another weight factor WMC representing the importance sampling.
If we want to extract distributions via histograms we have to add the total weight W = WMCJPS |M|2 to the columns.

The second numerical challenge is that the matrix elements for interesting processes are by no means flat. We would
therefore like to help our adaptive or importance sampling Monte Carlo by defining the integration variables such that
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the integrand becomes as flat as possible. For example for the integration over the partonic momentum fraction we
know that the integrand usual falls off as 1/x. In that situation we can substitute∫

δ

dx
C

x
=

∫
log δ

d log x

(
d log x

dx

)−1
C

x
=

∫
log δ

d log x C , (2.49)

to obtain a flat integrand. There exists an even more impressive and relevant example: intermediate particles with
Breit–Wigner propagators squared are particularly painful to integrate over the momentum s = p2 flowing through it

P (s,m) =
1

(s−m2)2 +m2Γ2
. (2.50)

For example, a Standard Model Higgs boson with a mass of 126 GeV has a width around 0.005 GeV, which means
that the integration over the invariant mass of the Higgs decay products

√
s requires a relative resolution of 10−5.

Since this is unlikely to be achievable what we should really do is find a substitution which produces the inverse
Breit–Wigner as a Jacobian and leads to a flat integrand — et voilá∫

ds
C

(s−m2)2 +m2Γ2
=

∫
dz

(
dz

ds

)−1
C

(s−m2)2 +m2Γ2

=

∫
dz

(s−m2)2 +m2Γ2

mΓ

C

(s−m2)2 +m2Γ2

=
1

mΓ

∫
dz C with tan z =

s−m2

mΓ
. (2.51)

This is the most useful phase space mapping in LHC physics. Of course, any adaptive Monte Carlo will eventually
converge on such an integrand, but a well–chosen set of integration parameters will speed up simulations very
significantly.

2.2 Ultraviolet divergences

From general field theory we know that when we are interested for example in cross section prediction with higher
precision we need to compute further terms in its perturbative series in αs. This computation will lead to ultraviolet
divergences which can be absorbed into counter terms for any parameter in the Lagrangian. The crucial feature is that
for a renormalizable theory like our Standard Model the number of counter terms is finite, which means once we know
all parameters including their counter terms our theory becomes predictive.
In Section 2.3 we will see that in QCD processes we also encounter another kind of divergences. They arise from the
infrared momentum regime. Infrared divergences is what this lecture is really going to be about, but before dealing
with them it is very instructive to see what happens to the much better understood ultraviolet divergences. In
Section 2.2.1 we will review how such ultraviolet divergences arise and how they are removed. In Section 2.2.2 we
will review how running parameters appear in this procedure, i.e. how scale dependence is linked to the appearance of
divergences. Finally, in Section 2.2.3 we will interpret the use of running parameters physically and see that in
perturbation theory they resum classes of logarithms to all orders in perturbation theory. Later in Section 2.3 we will
follow exactly the same steps for infrared divergences and develop some crucial features of hadron collider physics.

2.2.1 Counter terms

Renormalization as the proper treatment of ultraviolet divergences is one of the most important things to understand
about field theories; you can find more detailed discussions in any book on advanced field theory. The particular
aspect of renormalization which will guide us through this section is the appearance of the renormalization scale.
In perturbation theory, scales automatically arise from the regularization of infrared or ultraviolet divergences. We can
see this by writing down a simple scalar loop integral, with two virtual scalar propagators with masses m1,2 and an
external momentum p flowing through a diagram, similar to those summed in Section 2.1.2
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B(p2;m1,m2) ≡
∫

d4q

16π2

1

q2 −m2
1

1

(q + p)2 −m2
2

. (2.52)

Such two-point functions appear for example in the gluon self energy with virtual gluons, with massless ghost scalars,
with a Dirac trace in the numerator for quarks, and with massive scalars for supersymmetric scalar quarks. In those
cases the two masses are identical m1 = m2. The integration measure 1/(16π2) is dictated by the Feynman rule for
the integration over loop momenta. Counting powers of q in Eq.(2.52) we see that the integrand is not suppressed by
powers of 1/q in the ultraviolet, so it is logarithmically divergent and we have to regularize it. Regularizing means
expressing the divergence in a well–defined manner or scheme, allowing us to get rid of it by renormalization.

One regularization scheme is to introduce a cutoff into the momentum integral Λ, for example through the so-called
Pauli—Villars regularization. Because the ultraviolet behavior of the integrand or integral cannot depend on any
parameter living at a small energy scales, the parameterization of the ultraviolet divergence in Eq.(2.52) cannot
involve the mass m or the external momentum p2. The scalar two-point function has mass dimension zero, so its
divergence has to be proportional to log(Λ/µR) with a dimensionless prefactor and some scale µ2

R which is an artifact
of the regularization of such a Feynman diagram.

A more elegant regularization scheme is dimensional regularization. It is designed not to break gauge invariance and
naively seems to not introduce a mass scale µR. When we shift the momentum integration from 4 to 4− 2ε
dimensions and use analytic continuation in the number of space–time dimensions to renormalize the theory, a
renormalization scale µR nevertheless appears once we ensure the two-point function and with it observables like
cross sections keep their correct mass dimension∫

d4q

16π2
· · · −→ µ2ε

R

∫
d4−2εq

16π2
· · · = iµ2ε

R

(4π)2

[
C−1

ε
+ C0 + C1 ε+O(ε2)

]
. (2.53)

At the end, the scale µR might become irrelevant and drop out after renormalization and analytic continuation, but to
be on the safe side we keep it. The constants Ci in the series in 1/ε depend on the loop integral we are considering. To
regularize the ultraviolet divergence we assume ε > 0 and find mathematically well defined poles 1/ε. Defining scalar
integrals with the integration measure 1/(iπ2) will make for example C−1 come out as of the order O(1). This is the
reason we usually find factors 1/(4π)2 = π2/(2π)4 in front of the loop integrals.
The poles in 1/ε will cancel with the universal counter terms once we renormalize the theory. Counter terms we
include by shifting parameters in the Lagrangian and the leading order matrix element. They cancel the poles in the
combined leading order and virtual one-loop prediction

|MLO(g) +Mvirt|2 = |MLO(g)|2 + 2 ReMLO(g)Mvirt + · · ·

→ |MLO(g + δg)|2 + 2 ReMLO(g)Mvirt + · · ·
with g → gbare = g + δg and δg ∝ αs/ε . (2.54)

The dots indicate higher orders in αs, for example absorbing the δg corrections in the leading order and virtual
interference. As we can see in Eq.(2.54) the counter terms do not come with a factor µ2ε

R in front. Therefore, while the
poles 1/ε cancel just fine, the scale factor µ2ε

R will not be matched between the actual ultraviolet divergence and the
counter term.
We can keep track of the renormalization scale best by expanding the prefactor of the regularized but not yet
renormalized integral in Eq.(2.53) in a Taylor series in ε, no question asked about convergence radii

µ2ε
R

[
C−1

ε
+ C0 +O(ε)

]
= e2ε log µR

[
C−1

ε
+ C0 +O(ε)

]
=
[
1 + 2ε logµR +O(ε2)

] [C−1

ε
+ C0 +O(ε)

]
=
C−1

ε
+ C0 + C−1 logµ2

R +O(ε)

→ C−1

ε
+ C0 + C−1 log

µ2
R

M2
+O(ε) . (2.55)
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In the last step we correct by hand for the fact that logµ2
R with a mass dimension inside the logarithm cannot appear in

our calculations. From somewhere else in our calculation the logarithm will be matched with a logM2 where M2 is
the typical mass or energy scale in our process. This little argument shows that also in dimensional regularization we
introduce a mass scale µR which appears as log(µ2

R/M
2) in the renormalized expression for our observables. There is

no way of removing ultraviolet divergences without introducing some kind of renormalization scale.
In Eq.(2.55) there appear two contributions to a given observable, the expected C0 and the renormalization–induced
C−1. Because the factors C−1 are linked to the counter terms in the theory we can often guess them without actually
computing the loop integral, which is very useful in cases where they numerically dominate.

Counter terms as they schematically appear in Eq.(2.54) are not uniquely defined. They need to include a given
divergence to return finite observables, but we are free to add any finite contribution we want. This opens many ways
to define a counter term for example based on physical processes where counter terms do not only cancel the pole but
also finite contributions at a given order in perturbation theory. Needless to say, such schemes do not automatically
work universally. An example for such a physical renormalization scheme is the on–shell scheme for masses, where
we define a counter term such that external on–shell particles do not receive any corrections to their masses. For the
top mass this means that we replace the leading order mass with the bare mass, for which we then insert the
expression in terms of the renormalized mass and the counter term

mbare
t = mt + δmt

= mt +mt
αsCF

4π

(
3

(
−1

ε
+ γE − log(4π)− log

µ2
R

M2

)
− 4 + 3 log

m2
t

M2

)
≡ mt +mt

αsCF
4π

(
−3

ε̃
− 4 + 3 log

m2
t

M2

)
⇔ 1

ε̃

(
µ2
R

M2

) ≡ 1

ε
− γE + log

4πµ2
R

M2
, (2.56)

with the color factor CF = (N2 − 1)/(2N). The convenient scale dependent pole 1/ε̃ includes the universal
additional terms like the Euler gamma function and the scaling logarithm. This logarithm is the big problem in this
universality argument, since we need to introduce the at this stage arbitrary energy scale M to separate the universal
logarithm of the renormalization scale and the parameter-dependent logarithm of the physical process.
A theoretical problem with this on–shell renormalization scheme is that it is not gauge invariant. On the other hand, it
describes for example the kinematic features of top pair production at hadron colliders in a stable perturbation series.
This means that once we define a more appropriate scheme for heavy particle masses in collider production
mechanisms it better be numerically close to the pole mass. For the computation of total cross sections at hadron
colliders or the production thresholds at e+e− colliders the pole mass is not well suited at all, but as we will see in
Section 3 this is not where we expect to measure particle masses at the LHC, so we should do fine with something
very similar to the pole mass.

Another example for a process dependent renormalization scheme is the mixing of γ and Z propagators. There we
choose the counter term of the weak mixing angle such that an on–shell Z boson cannot oscillate into a photon, and
vice versa. We can generalize this scheme for mixing scalars as they for example appear in supersymmetry, but it is
not gauge invariant with respect to the weak gauge symmetries of the Standard Model either. For QCD corrections, on
the other hand, it is the most convenient scheme keeping all exchange symmetries of the two scalars.

To finalize this discussion of process dependent mass renormalization we quote the result for a scalar supersymmetric
quark, a squark, where in the on–shell scheme we find

mbare
q̃ = mq̃ + δmq̃

= mq̃ +mq̃
αsCF

4π

(
−2r

ε̃
− 1− 3r − (1− 2r) log r − (1− r)2

log

∣∣∣∣1r − 1

∣∣∣∣− 2r log
m2
q̃

M2

)
. (2.57)

with r = m2
g̃/m

2
q̃ . The interesting aspect of this squark mass counter term is that it also depends on the gluino mass,

not just the squark mass itself. The reason why QCD counter terms tend to depend only on the renormalized quantity
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itself is that the gluon is massless. In the limit of vanishing gluino contribution the squark mass counter term is again
only proportional to the squark mass itself

mbare
q̃

∣∣∣∣∣
mg̃=0

= mq̃ + δmq̃ = mq̃ +mq̃
αsCF

4π

(
−1

ε̃
− 3 + log

m2
q̃

M2

)
. (2.58)

Taking the limit of Eq.(2.57) to derive Eq.(2.58) is computationally not trivial, though.

One common feature of all mass counter terms listed above is δm ∝ m, which means that we actually encounter a
multiplicative renormalization

mbare = Zmm = (1 + δZm)m =

(
1 +

δm

m

)
m = m+ δm , (2.59)

with δZm = δm/m linking the two ways of writing the mass counter term. This form implies that particles with zero
mass will not obtain a finite mass through renormalization. If we remember that chiral symmetry protects a
Lagrangian from acquiring fermion masses this means that on–shell renormalization does not break this symmetry. A
massless theory cannot become massive by mass renormalization. Regularization and renormalization schemes which
do not break symmetries of the Lagrangian are ideal.

When we introduce counter terms in general field theory we usually choose a slightly more model independent
scheme — we define a renormalization point. This is the energy scale at which the counter terms cancels all higher
order contributions, divergent as well as finite. The best known example is the electric charge which we renormalize in
the Thomson limit of zero momentum transfer through the photon propagator

e→ ebare = e+ δe . (2.60)

Looking back at δmt as defined in Eq.(2.56) we also see a way to define a completely general counter term: if
dimensional regularization, i.e. the introduction of 4− 2ε dimensions does not break any of the symmetries of our
Lagrangian, like Lorentz symmetry or gauge symmetries, we can simply subtract the ultraviolet pole and nothing else.
The only question is: do we subtract 1/ε in the MS scheme or do we subtract 1/ε̃ in the MS scheme. In the MS
scheme the counter term is then scale dependent.
Carefully counting, there are three scales present in such a scheme. First, there is the physical scale in the process. In
our case of a top self energy this is for example the top mass mt appearing in the matrix element for the process
pp→ tt̄. Next, there is the renormalization scale µR, a reference scale which is part of the definition of any counter
term. And last but not least, there is the scale M separating the counter term from the process dependent result, which
we can choose however we want, but which as we will see implies a running of the counter term. The role of this scale
M will become clear when we go through the example of the running strong coupling αs. Of course, we would prefer
to choose all three scales the same, but in a complex physical process this might not always be possible. For example,
any massive (2→ 3) production process naturally involves several external physical scales.

Just a side remark for completeness: a one loop integral which has no intrinsic mass scale is the two-point function
with zero mass in the loop and zero momentum flowing through the integral: B(p2 = 0; 0, 0). It appears for example
in the self energy corrections of external quarks and gluons. Based on dimensional arguments this integral has to
vanish altogether. On the other hand, we know that like any massive two-point function it has to be ultraviolet
divergent B ∼ 1/εUV because setting all internal and external mass scales to zero is nothing special from an
ultraviolet point of view. This can only work if the scalar integral also has an infrared divergence appearing in
dimensional regularization. We can then write the entire massless two-point function as

B(p2 = 0; 0, 0) =

∫
d4q

16π2

1

q2

1

(q + p)2
=

iπ2

16π2

(
1

εUV
− 1

εIR

)
, (2.61)

keeping track of the divergent contributions from the infrared and the ultraviolet regimes. For this particular integral
they precisely cancel, so the result for B(0; 0, 0) is zero, but setting it to zero too early will spoil any ultraviolet and
infrared finiteness test. Treating the two divergences strictly separately and dealing with them one after the other also
ensures that for ultraviolet divergences we can choose ε > 0 while for infrared divergences we require ε < 0.
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2.2.2 Running strong coupling

To get an idea what these different scales which appear in the process of renormalization mean let us compute such a
scale dependent parameter, namely the running strong coupling αs(µ2

R). The Drell–Yan process is one of the very few
relevant processes at hadron colliders where the strong coupling does not appear at tree level, so we cannot use it as
our toy process this time. Another simple process where we can study this coupling is bottom pair production at the
LHC, where at some energy range we will be dominated by valence quarks: qq̄ → bb̄. The only Feynman diagram is
an s-channel off–shell gluon with a momentum flow p2 ≡ s.

At next–to–leading order this gluon propagator will be corrected by self energy loops, where the gluon splits into two
quarks or gluons and re-combines before it produces the two final–state bottoms. Let us for now assume that all
quarks are massless. The Feynman diagrams for the gluon self energy include a quark look, a gluon loop, and the
ghost loop which removes the unphysical degrees of freedom of the gluon inside the loop.

+ +

The gluon self energy correction or vacuum polarization, as propagator corrections to gauge bosons are usually
labelled, will be a scalar. This way, all fermion lines close in the Feynman diagram and the Dirac trace is computed
inside the loop. In color space the self energy will (hopefully) be diagonal, just like the gluon propagator itself, so we
can ignore the color indices for now. In unitary gauge the gluon propagator is proportional to the transverse tensor
Tµν = gµν − pνpµ/p2. As mentioned in the context of the effective gluon–Higgs coupling, the same should be true
for the gluon self energy, which we therefore write as Πµν ≡ ΠTµν . Unlike for two different external momenta
k1 6= k2 shown in Eq.(1.189) the case with only one external momentum gives us the useful simple relations

Tµνgρν =

(
gµν − pµpν

p2

)
gρν = Tµρ

TµνT ρν =

(
gµν − pµpν

p2

) (
gρν −

pνp
ρ

p2

)
= gµρ − 2

pµpρ

p2
+ p2 p

µpρ

p4
= Tµρ . (2.62)

Including the gluon, quark, and ghost loops the regularized gluon self energy with a momentum flow p2 through the
propagator reads

− 1

p2
Π

(
µ2
R

p2

)
=
αs
4π

(
− 1

ε̃(µ2
R/M

2)
+ log

p2

M2

) (
13

6
Nc −

2

3
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)
+O(logm2

t )

≡ αs
(
− 1

ε̃(µ2
R/M

2)
+ log

p2

M2

)
b0 +O(logm2

t )

with b0 =
1

4π

(
11

3
Nc −

2

3
nf

)
SM
> 0 . (2.63)

The minus sign arises from the factors i in the propagators, as shown in Eq.(2.19). The number of fermions coupling
to the gluons is nf . From the comments on B(p2; 0, 0) we could guess that the loop integrals will only give a
logarithm log p2 which is then matched by the logarithm logM2 implicitly included in the definition of ε̃.
The factor b0 arises from one-loop corrections, i.e. from diagrams which include one additional power of αs. Strictly
speaking, it gives the first term in a perturbative series in the strong coupling αs = g2

s/(4π). Later on, we will indicate
where additional higher order corrections would enter.
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In the second step of Eq.(2.63) we have sneaked in additional contributions to the renormalization of the strong
coupling from the other one-loop diagrams in the process, replacing the factor 13/6 by a factor 11/3. This is related to
the fact that there are actually three types of divergent virtual gluon diagrams in the physical process qq̄ → bb̄: the
external quark self energies with renormalization factors Z1/2

f , the internal gluon self energy ZA, and the vertex
corrections ZAff . The only physical parameters we can renormalize in this process are the strong coupling and, if
finite, the bottom mass. Wave function renormalization constants are not physical, but vertex renormalization terms
are. The entire divergence in our qq̄ → bb̄ process which needs to be absorbed in the strong coupling through Zg is
given by the combination

ZAff = ZgZ
1/2
A Zf ⇔ ZAff

Z
1/2
A Zf

≡ Zg . (2.64)

We can check this definition of Zg by comparing all vertices in which the strong coupling gs appears, namely the
gluon coupling to quarks, ghosts as well as the triple and quartic gluon vertex. All of them need to have the same
divergence structure

ZAff

Z
1/2
A Zf

!
=

ZAηη

Z
1/2
A Zη

!
=

Z3A

Z
3/2
A

!
=

√
Z4A

Z2
A

. (2.65)

If we had done the same calculation in QED and looked for a running electric charge, we would have found that the
vacuum polarization diagrams for the photon do account for the entire counter term of the electric charge. The other
two renormalization constants ZAff and Zf cancel because of gauge invariance.

In contrast to QED, the strong coupling diverges in the Thomson limit because QCD is confined towards large
distances and weakly coupled at small distances. Lacking a well enough motivated reference point we are lead to
renormalize αs in the MS scheme. From Eq.(2.63) we know that the ultraviolet pole which needs to be cancelled by
the counter term is proportional to the function b0. We translate our known counter term for gs into an MS counter
term for αs via

gbare
s = Zggs = (1 + δZg) gs =

(
1 +

δgs
gs

)
gs

⇒ (g2
s)bare = (Zggs)

2 =

(
1 +

δgs
gs

)2

g2
s =

(
1 + 2

δgs
gs

)
g2
s =

(
1 +

δg2
s

g2
s

)
g2
s

⇒ αbare
s =

(
1 +

δαs
αs

)
αs

!
=

1− Π

p2

∣∣∣∣∣
pole

αs(M
2)

Eq.(2.63)
=

1− αs

ε̃
(µR
M

) b0
αs(M

2) . (2.66)

In the last step we have explicitly included the scale dependence of the counter term. Because the bare coupling does
not depend on any scales, this means that αs depends on the artificial external scale M . Similar to the top mass
renormalization scheme we can switch to a more physical scheme for the strong coupling as well: we can absorb also
the finite contributions of Π(µ2

R/p
2) into the strong coupling by simply identifying M2 = p2. Based again on

Eq.(2.63) this implies

αbare
s = αs(p

2)

(
1− αs(p

2)b0
ε̃(µ2

R/M
2)

+ αs(p
2)b0 log

p2

M2

)
. (2.67)

On the right hand side αs is consistently evaluated as a function of the physical scale p2. The logarithm just shifts the
argument of ε̃ between M2 and p2. This formula defines a running coupling αs(p2), because the definition of the
coupling now has to account for a possible shift between the original argument p2 and the scale M2 coming out of the
MS scheme. Since according to Eqs.(2.66) and (2.67) the bare strong coupling can be expressed in terms of αs(M2)
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as well as in terms of αs(p2) we can link the two scales through

αs(M
2) = αs(p

2) + α2
s(p

2)b0 log
p2

M2
= αs(p

2)

(
1 + αs(p

2)b0 log
p2

M2

)
⇔ αs(p

2) =
αs(M

2)

1 + αs(p2)b0 log
p2

M2

⇔ dαs(p
2)

d log p2
= −α2

s(p
2)b0 +O(α3

s) . (2.68)

To the given loop order the argument of the strong coupling squared in this formula can be neglected — its effect is of
higher order. We nevertheless keep the argument as a higher order effect and remember the additional terms neglected
above to later distinguish different approaches to the running coupling. From Eq.(2.63) we know that b0 > 0, which
means that towards larger scales the strong coupling has a negative slope. The ultraviolet limit of the strong coupling
is zero. This makes QCD an asymptotically free theory. We can compute the function b0 in general models by simply
adding all contributions of strongly interacting particles in this loop

b0 = − 1

12π

∑
colored states

Dj TR,j , (2.69)

where we need to know some kind of counting factor Dj which is -11 for a vector boson (gluon), +4 for a Dirac
fermion (quark), +2 for a Majorana fermion (gluino), +1 for a complex scalar (squark) and +1/2 for a real scalar. Note
that this sign is not given by the fermionic or bosonic nature of the particle in the loop. The color charges are
TR = 1/2 for the fundamental representation of SU(3) and CA = Nc for the adjoint representation. The masses of
the loop particles are not relevant in this approximation because we are only interested in the ultraviolet regime of
QCD where all particles can be regarded massless. This is a fundamental problem when we work with a running
strong coupling constant: it is not an observable, which means that it does not have to ensure the decoupling of heavy
states. On the other hand, if we treat it like an observable we need to modify it by hand, so it does not ruin the
automatic decoupling of heavy particles. When we really model the running of αs we need to take into account
threshold effects of heavy particles at their respective masses. This is why the R ratio computed in Eq.(2.12) is so
interesting once we vary the energy of the incoming electron–positron pair.

We can do even better than this fixed order in perturbation theory: while the correction to αs in Eq.(2.67) is
perturbatively suppressed by the usual factor αs/(4π) it includes a logarithm of a ratio of scales which does not need
to be small. Instead of simply including these gluon self energy corrections at a given order in perturbation theory we
can instead include chains of one-loop diagrams with Π appearing many times in the off–shell gluon propagator. This
series of Feynman diagrams is identical to the one we sum for the mass renormalization in Eq.(2.19). It means we
replace the off–shell gluon propagator by

Tµν

p2
→Tµν

p2
+

(
T

p2
· (−T Π) · T

p2

)µν
+

(
T

p2
· (−T Π) · T

p2
· (−T Π) · T
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)µν
+ · · ·

=
Tµν

p2

∞∑
j=0

(
−Π

p2

)j
=
Tµν

p2

1

1 + Π/p2
, (2.70)

schematically written without the factors i. To avoid indices we abbreviate TµνT ρν = T · T which make sense because
of (T · T · T )µν = TµρTσρ T

ν
σ = Tµν . This resummation of the logarithm which appears in the next–to–leading order

corrections to αs moves the finite shift in αs shown in Eqs.(2.63) and (2.67) into the denominator, while we assume
that the pole will be properly taken care off in any of the schemes we discuss

αbare
s = αs(M

2)− α2
sb0

ε̃(µ2
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2)
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2)

1− αs(p2) b0 log
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sb0

ε̃(µ2
R/M

2)
. (2.71)
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Just as in the case without resummation, we can use this complete formula to relate the values of αs at two reference
points, i.e. we consider it a renormalization group equation (RGE) which evolves physical parameters from one scale
to another in analogy to the fixed order version in Eq.(2.68)

1

αs(M2)
=

1

αs(p2)

(
1− αs(p2) b0 log

p2

M2

)
=

1

αs(p2)
− b0 log

p2

M2
. (2.72)

The factor αs inside the parentheses we can again evaluate at either of the two scales, the difference is a higher order
effect. If we keep it at p2 we see that the expression in Eq.(2.72) is different from the un-resummed version in
Eq.(2.67). If we ignore this higher order effect the two formulas become equivalent after switching p2 and M2.
Resumming the vacuum expectation bubbles only differs from the un-resummed result once we include some
next–to–leading order contribution. When we differentiate αs(p2) with respect to the momentum transfer p2 we find,
using the relation d/dx(1/αs) = −1/α2

s dαs/dx

1

αs(p2)

dαs(p
2)

d log p2
= −αs(p2)

d

d log p2

1
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= β = −α2
s

∑
n=0

bnα
n
s .

(2.73)

In the second form we replace the one-loop running b0 by its full perturbative series. This is the famous running of the
strong coupling constant including all higher order terms bn.

In the running of the strong coupling constant we relate the different values of αs through multiplicative factors of the
kind (

1± αs(p2)b0 log
p2

M2

)
. (2.74)

Such factors appear in the un-resummed computation of Eq.(2.68) as well as in Eq.(2.71) after resummation. Because
they are multiplicative, these factors can move into the denominator, where we need to ensure that they do not vanish.
Dependent on the sign of b0 this becomes a problem for large scale ratios |αs log p2/M2| > 1, where it leads to the
Landau pole. We discuss it in detail for the Higgs self coupling in Section 1.2.4. For the strong coupling with b0 > 0
and large coupling values at small scales p2 �M2 the combination (1 + αsb0 log p2/M2) can indeed vanish and
become a problem.
It is customary to replace the renormalization point of αs in Eq.(2.71) with a reference scale defined by the Landau
pole. At one loop order this reads

1 + αs b0 log
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QCD
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!
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Λ2
QCD

M2
= − 1

αs(M2)b0
⇔ log

p2

M2
= log

p2

Λ2
QCD
− 1

αs(M2)b0

1

αs(p2)

Eq.(2.72)
=

1

αs(M2)
+ b0 log

p2

M2
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=
1

αs(M2)
+ b0 log

p2

Λ2
QCD
− 1

αs(M2)
= b0 log
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⇔ αs(p
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b0 log
p2
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QCD

.

This scheme can be generalized to any order in perturbative QCD and is not that different from the Thomson limit
renormalization scheme of QED, except that with the introduction of ΛQCD we are choosing a reference point which is
particularly hard to compute perturbatively. One thing that is interesting in the way we introduce ΛQCD is the fact that
we introduce a scale into our theory without ever setting it. All we did was renormalize a coupling which becomes
strong at small energies and search for the mass scale of this strong interaction. This trick is called
dimensional transmutation.

In terms of language, there is a little bit of confusion between field theorists and phenomenologists: up to now we
have introduced the renormalization scale µR as the renormalization point, for example of the strong coupling
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constant. In the MS scheme, the subtraction of 1/ε̃ shifts the scale dependence of the strong coupling to M2 and
moves the logarithm log(M2/Λ2

QCD) into the definition of the renormalized parameter. This is what we will from now
on call the renormalization scale in the phenomenological sense, i.e. the argument we evaluate αs at. Throughout this
section we will keep the symbol M for this renormalization scale in the MS scheme, but from Section 2.3 on we will
shift back to µR instead of M as the argument of the running coupling, to be consistent with the literature.

2.2.3 Resumming scaling logarithms

In the last Section 2.2.2 we have introduced the running strong coupling in a fairly abstract manner. For example, we
did not link the resummation of diagrams and the running of αs in Eqs.(2.68) and (2.73) to physics. In what way does
the resummation of the one-loop diagrams for the s-channel gluon improve our prediction of the bottom pair
production rate at the LHC?

To illustrate those effects we best look at a simple observable which depends on just one energy scale p2. The first
observable coming to mind is again the Drell–Yan cross section σ(qq̄ → µ+µ−), but since we are not really sure what
to do with the parton densities which are included in the actual hadronic observable, we better use an observable at an
e+e− collider. Something that will work and includes αs at least in the one-loop corrections is the R parameter
defined in Eq.(2.12)

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc
∑

quarks

Q2
q =

11Nc
9

. (2.76)

The numerical value at leading order assumes five quarks. Including higher order corrections we can express the result
in a power series in the renormalized strong coupling αs. In the MS scheme we subtract 1/ε̃(µ2

R/M
2) and in general

include a scale dependence on M in the individual prefactors rn

R

(
p2

M2
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)
=
∑
n=0
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)
αns (M2) r0 =

11Nc
9

. (2.77)

The rn we can assume to be dimensionless — if they are not, we can scale R appropriately using p2. This implies that
the rn only depend on ratios of two scales, the externally fixed p2 on the one hand and the artificial M2 on the other.

At the same time we know that R is an observable, which means that including all orders in perturbation theory it
cannot depend on any artificial scale choice M . Writing this dependence as a total derivative and setting it to zero we
find an equation which would be called a Callan–Symanzik equation if instead of the running coupling we had
included a running mass
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In the second line we have to remember that the M dependence of αs is already included in the appearance of β, so
αs should be considered a variable by itself. This perturbative series in αs has to vanish in each order of perturbation
theory. The non–trivial structure, namely the mix of rn derivatives and the perturbative terms in the β function we can
read off the α3

s term in Eq.(2.78): first, we have the appropriate NNNLO corrections r3. Next, we have one loop in the
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gluon propagator b0 and two loops for example in the vertex r2. And finally, we need the two-loop diagram for the
gluon propagator b1 and a one-loop vertex correction r1. The kind–of–Callan–Symanzik equation Eq.(2.78) requires

∂r1

∂ logM2/p2
= 0

∂r2

∂ logM2/p2
= r1b0

∂r3

∂ logM2/p2
= r1b1 + 2r2(M2)b0

· · · (2.79)

The dependence on the argument M2 vanishes for r0 and r1. Keeping in mind that there will be integration constants
cn and that another, in our case, unique momentum scale p2 has to cancel the mass units inside logM2 we find

r0 = c0 =
11Nc

9
r1 = c1

r2 = c2 + r1b0 log
M2

p2
= c2 + c1b0 log

M2

p2

r3 =

∫
d log

M ′
2

p2

(
c1b1 + 2

(
c2 + c1b0 log

M ′
2

p2

)
b0

)

= c3 + (c1b1 + 2c2b0) log
M2

p2
+ c1b

2
0 log2 M

2

p2

· · · (2.80)

This chain of rn values looks like we should interpret the apparent fixed-order perturbative series for R in Eq.(2.77) as
a series which implicitly includes terms of the order logn−1(M2/p2) in each rn. They can become problematic if this
logarithm becomes large enough to spoil the fast convergence in terms of αs ∼ 0.1, evaluating the observable R at
scales far away from the scale choice for the strong coupling constant M .

Instead of the series in rn we can use the conditions in Eq.(2.80) to express R in terms of the cn and collect the
logarithms appearing with each cn. The geometric series we then resum to

R =
∑
n

rn

(
p2

M2

)
αns (M2) = c0 + c1

(
1 + αs(M

2)b0 log
M2

p2
+ α2

s(M
2)b20 log2 M

2

p2
+ · · ·

)
αs(M

2)

+ c2

(
1 + 2αs(M

2)b0 log
M2

p2
+ · · ·

)
α2
s(M

2) + · · ·

= c0 + c1
αs(M

2)

1− αs(M2)b0 log
M2

p2

+ c2

 αs(M
2)

1− αs(M2)b0 log
M2

p2


2

+ · · ·

≡
∑

cn α
n
s (p2) . (2.81)

In the original ansatz αs is always evaluated at the scale M2. In the last step we use Eq.(2.72) with flipped arguments
p2 and M2, derived from the resummation of the vacuum polarization bubbles. In contrast to the rn integration
constants the cn are by definition independent of p2/M2 and therefore more suitable as a perturbative series in the
presence of potentially large logarithms. Note that the un-resummed version of the running coupling in Eq.(2.67)
would not give the correct result, so Eq.(2.81) only holds for resummed vacuum polarization bubbles.

This re-organization of the perturbation series for R can be interpreted as resumming all logarithms of the kind
log(M2/p2) in the new organization of the perturbative series and absorbing them into the running strong coupling
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evaluated at the scale p2. All scale dependence in the perturbative series for the dimensionless observable R is moved
into αs, so possibly large logarithms log(M2/p2) have disappeared. In Eq.(2.81) we also see that this series in cn will
never lead to a scale-invariant result when we include a finite order in perturbation theory. Some higher–order factors
cn are known, for example inserting Nc = 3 and five quark flavors just as we assume in Eq.(2.76)

R =
11

3

(
1 +

αs(p
2)

π
+ 1.4

(
αs(p

2)

π

)2

− 12

(
αs(p

2)

π

)3

+O
(
αs(p

2)

π

)4
)
. (2.82)

This alternating series with increasing perturbative prefactors seems to indicate the asymptotic instead of convergent
behavior of perturbative QCD. At the bottom mass scale the relevant coupling factor is only αs(m2

b)/π ∼ 1/14, so a
further increase of the cn would become dangerous. However, a detailed look into the calculation shows that the
dominant contributions to cn arise from the analytic continuation of logarithms, which are large finite terms for
example from Re(log2(−E2)) = log2E2 + π2. In the literature such π2 terms arising from the analytic continuation
of loop integrals are often phrased in terms of ζ2 = π2/6.

Before moving on we collect the logic of the argument given in this section: when we regularize an ultraviolet
divergence we automatically introduce a reference scale µR. Naively, this could be an ultraviolet cutoff scale, but even
the seemingly scale invariant dimensional regularization in the conformal limit of our field theory cannot avoid the
introduction of a scale. There are several ways of dealing with such a scale: first, we can renormalize our parameter at
a reference point. Secondly, we can define a running parameter and this way absorb the scale logarithm into the MS
counter term. In that case introducing ΛQCD leaves us with a compact form of the running coupling αs(M2; ΛQCD).
Strictly speaking, at each order in perturbation theory the scale dependence should vanish together with the ultraviolet
poles, as long as there is only one scale affecting a given observable. However, defining the running strong coupling
we sum one-loop vacuum polarization graphs. Even when we compute an observable at a given loop order, we
implicitly include higher order contributions. They lead to a dependence of our perturbative result on the artificial
scale M2, which phenomenologists refer to as renormalization scale dependence.
Using the R ratio we see what our definition of the running coupling means in terms of resumming logarithms:
reorganizing our perturbative series to get rid of the ultraviolet divergence αs(p2) resums the scale logarithms
log(p2/M2) to all orders in perturbation theory. We will need this picture once we introduce infrared divergences in
the following section.

2.3 Infrared divergences
After this brief excursion into ultraviolet divergences and renormalization we can return to the original example, the
Drell–Yan process. Last, we wrote down the hadronic cross sections in terms of parton distributions at leading order in
Eq.(2.39). At this stage parton distributions (pdfs) in the proton are only functions of the collinear momentum fraction
of the partons inside the proton about which from a theory point of view we only know a set of sum rules.
The perturbative question we need to ask for µ+µ− production at the LHC is: what happens if together with the two
leptons we produce additional jets which for one reason or another we do not observe in the detector. Such jets could
for example come from the radiation of a gluon from the initial–state quarks. In Section 2.3.1 we will study the
kinematics of radiating such jets and specify the infrared divergences this leads to. In Sections 2.3.2 and 2.3.3 we will
show that these divergences have a generic structure and can be absorbed into a re-definition of the parton densities,
similar to an ultraviolet renormalization of a Lagrangian parameter. In Sections 2.3.4 and 2.3.5 we will again follow
the example of the ultraviolet divergences and specify what absorbing these divergences means in terms logarithms
appearing in QCD calculations.
Throughout this writeup we will use the terms jets and final state partons synonymously. This is not really correct
once we include jet algorithms and hadronization. On the other hand, in Section 3.1.2 we will see that the purpose of a
jet algorithm is to take us from some kind of energy deposition in the calorimeter to the parton radiated in the hard
process. The two should therefore be closely related.

2.3.1 Single jet radiation

Let us get back to the radiation of additional partons in the Drell–Yan process. We can start for example by computing
the cross section for the partonic process qq̄ → Zg. However, this partonic process involves renormalization of
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ultraviolet divergences as well as loop diagrams which we have to include before we can say anything reasonable, i.e.
ultraviolet and infrared finite.
To make life easier and still learn about the structure of collinear infrared divergences we instead look at the crossed
process

q

g

Z

It should behave similar to any other (2→ 2) jet radiation, except that it has a different incoming state than the
leading order Drell–Yan process and hence does not involve virtual corrections. This means we do not have to deal
with ultraviolet divergences and renormalization, and can concentrate on parton or jet radiation from the initial state.
Moreover, let us go back to Z production instead of a photon, to avoid confusion with additional massless particles in
the final state.

The amplitude for this (2→ 2) process is — modulo charges and averaging factors, but including all Mandelstam
variables

|M|2 ∼ − t
s
− s2 − 2m2

Z(s+ t−m2
Z)

st
. (2.83)

As discussed in Section 2.1.1, the Mandelstam variable t for one massless final–state particle can be expressed as
t = −s(1− τ)y in terms of the rescaled gluon emission angle y = (1− cos θ)/2 and τ = m2

Z/s. Similarly, we obtain
u = −s(1− τ)(1− y), so as a first check we can confirm that t+ u = −s(1− τ) = −s+m2

Z . The collinear limit
when the gluon is radiated in the beam direction is given by y → 0, corresponding to negative t→ 0 with finite
u = −s+m2

Z . In this limit the matrix element can also be written as

|M|2 ∼ s2 − 2sm2
Z + 2m4

Z

s(s−m2
Z)

1

y
+O(y0) . (2.84)

This expression is divergent for collinear gluon radiation or gluon splitting, i.e. for small angles y. We can translate
this 1/y divergence for example into the transverse momentum of the gluon or Z

sp2
T = tu = s2(1− τ)2 y(1− y) = (s−m2

Z)2y +O(y2) (2.85)

In the collinear limit our matrix element squared in Eq.(2.84) becomes

|M|2 ∼ s2 − 2sm2
Z + 2m4

Z

s2

s−m2
Z

p2
T

+O(p0
T ) . (2.86)

The matrix element for the tree level process qg → Zq has a leading divergence proportional to 1/p2
T . To compute the

total cross section for this process we need to integrate the matrix element over the entire two-particle phase space.
Starting from Eq.(2.41) and using the appropriate Jacobian this integration can be written in terms of the reduced
angle y. Approximating the matrix element as C ′/y or C/p2

T , we then integrate∫ ymax

ymin
dy
C ′

y
=

∫ pmax
T

pmin
T

dp2
T

C

p2
T

= 2

∫ pmax
T

pmin
T

dpT pT
C

p2
T

' 2C

∫ pmax
T

pmin
T

dpT
1

pT
= 2C log

pmax
T

pmin
T

(2.87)

The form C/p2
T for the matrix element is of course only valid in the collinear limit; in the non–collinear phase space C

is not a constant. However, Eq.(2.87) describes well the collinear divergence arising from quark radiation at the LHC.

Next, we follow the same strategy as for the ultraviolet divergence. First, we regularize the divergence for example
using dimensional regularization. Then, we find a well–defined way to get rid of it. Dimensional regularization means
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Figure 20: Splitting of one gluon into two gluons. Figure from Ref. [41].

writing the two-particle phase space in n = 4− 2ε dimensions. Just for reference, the complete formula in terms of
the angular variable y reads

s
dσ

dy
=
π(4π)−2+ε

Γ(1− ε)

(
µ2
F

m2
Z

)ε
τ ε(1− τ)1−2ε

yε(1− y)ε
|M|2 ∼

(
µ2
F

m2
Z

)ε |M|2

yε(1− y)ε
. (2.88)

In the second step we only keep the factors we are interested in. The additional factor 1/yε regularizes the integral at
y → 0, as long as ε < 0 by slightly increasing the suppression of the integrand in the infrared regime. This means that
for infrared divergences we can as well choose n = 4 + 2ε space–time dimensions with ε > 0. After integrating the
leading collinear divergence 1/y1+ε we are left with a pole 1/(−ε). This regularization procedure is symmetric in
y ↔ (1− y). What is important to notice is again the appearance of a scale µ2ε

F with the n-dimensional integral. This
scale arises from the infrared regularization of the phase space integral and is referred to as factorization scale. The
actual removal of the infrared pole — corresponding to the renormalization in the ultraviolet case — is called
mass factorization and works exactly the same way as renormalizing a parameter: in a well–defined scheme we
simply subtract the pole from the fixed-order matrix element squared.

2.3.2 Parton splitting

From the discussion of the process qg → Zq we can at least hope that after taking care of all other infrared and
ultraviolet divergences the collinear structure of the process qq̄ → Zg will be similar. In this section we will show that
we can indeed write all collinear divergences in a universal form, independent of the hard process which we choose as
the Drell–Yan process. In the collinear limit, the radiation of additional partons or the splitting into additional partons
will be described by universal splitting functions.

Infrared divergences occur for massless particles in the initial or final state, so we need to go through all ways
incoming or outgoing gluons and quark can split into each other. The description of the factorized phase space, with
which we will start, is common to all these different channels. The first and at the LHC most important case is the
splitting of one gluon into two, shown in Figure 20. The two daughter gluons are close to mass shell while the mother
has to have a finite positive invariant mass p2

a � p2
b , p

2
c . We again assign the direction of the momenta as

pa = −pb − pc, which means we have to take care of minus signs in the particle energies. The kinematics of this
approximately collinear process we can describe in terms of the energy fractions z and 1− z defined as

z =
|Eb|
|Ea|

= 1− |Ec|
|Ea|

p2
a = (−pb − pc)2 = 2(pbpc) = 2z(1− z)(1− cos θ)E2

a = z(1− z)E2
aθ

2 +O(θ4)

⇔ θ ≡ θb + θc '
1

|Ea|

√
p2
a

z(1− z)
, (2.89)

in the collinear limit and in terms of the opening angle θ between ~pb and ~pc. Because p2
a > 0 we call this final–state

splitting configuration time–like branching. For this configuration we can write down the so-called
Sudakov decomposition of the four-momenta

−pa = pb + pc = (−zpa + βn+ pT ) + (−(1− z)pa − βn− pT ) . (2.90)
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It defines an arbitrary unit four-vector n, a pT component orthogonal to the mother momentum and to n and pa,
(papT ) = 0 = (npT ), and a free factor β. This way, we can specify n such that it defines the direction of the pb–pc
decay plane. In this decomposition we can set only one invariant mass to zero, for example that of a radiated gluon
p2
c = 0. The second final state will have a finite invariant mass p2

b 6= 0.

As specific choice for the three reference four-vectors is

pa =


|Ea|

0
0
pa,3

 = |Ea|


1
0
0

1 +O(θ)

 n =


1
0
0
−1

 pT =


0
pT,1
pT,2

0

 . (2.91)

Relative to ~pa we can split the opening angle θ for massless partons according to Figure 20

θ = θb + θc and
θb
θc

=
pT
|Eb|

(
pT
|Ec|

)−1

=
1− z
z

⇔ θ =
θb

1− z
=
θc
z
. (2.92)

The momentum choice in Eq.(2.91) has the additional feature that n2 = 0, which allows us to extract β from the
momentum parameterization shown in Eq.(2.90) and the additional condition that p2

c = 0

p2
c = (−(1− z)pa − βn− pT )

2

= (1− z)2p2
a + p2

T + 2β(1− z)(npa)

= (1− z)2p2
a + p2

T + 4β(1− z)|Ea|(1 +O(θ))
!
= 0 ⇔ β' −p

2
T + (1− z)2p2

a

4(1− z)|Ea|
. (2.93)

Using this specific phase space parameterization we can divide an (n+ 1)-particle process into an n-particle process
and a splitting process of quarks and gluons. First, this requires us to split the (n+ 1)-particle phase space alone into
an n-particle phase space and the collinear splitting. The general (n+ 1)-particle phase space separating off the
n-particle contribution

dΦn+1 = · · · d3~pb
2(2π)3|Eb|

d3~pc
2(2π)3|Ec|

= · · · d3~pa
2(2π)3|Ea|

d3~pc
2(2π)3|Ec|

|Ea|
|Eb|

at fixed pa

= dΦn
dpc,3dpT pT dφ

2(2π)3|Ec|
1

z

= dΦn
dpc,3dp

2
T dφ

4(2π)3|Ec|
1

z
(2.94)

is best expressed in terms of the energy fraction z and the azimuthal angle φ. In other words, separating the
(n+ 1)-particle space into an n-particle phase space and a (1→ 2) splitting phase space is possible without any
approximation, and all we have to take care of is the correct prefactors in the new parameterization.

Our next task is to translate the phase space parameters pc,3 and p2
T appearing in Eq.(2.94) into z and p2

a. Starting from
Eq.(2.90) for pc,3 with the third components of pa and pT given by Eq.(2.91) we insert β from Eq.(2.93) and obtain

dpc,3
dz

=
d

dz
[−(1− z)|Ea|(1 +O(θ)) + β] =

d

dz

[
−(1− z)|Ea|(1 +O(θ))− p2

T + (1− z)2p2
a

4(1− z)|Ea|

]
= |Ea|(1 +O(θ))− p2

T

4(1− z)2Ea
+

p2
a

4|Ea|

=
|Ec|
1− z

(1 +O(θ))− θ2z2E2
c

4(1− z)2Ea
+
z(1− z)E2

aθ
2 +O(θ4)

4|Ea|
using Eq.(2.89) and Eq.(2.92)

=
|Ec|
1− z

+O(θ) ⇔ dpc,3
|Ec|

' dz

1− z
. (2.95)
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In addition to substituting dpc,3 by dz in Eq.(2.94) we also replace dp2
T with dp2

a according to

p2
T

p2
a

=
E2
b θ

2
b

z(1− z)E2
aθ

2
=
z2E2

a(1− z)2θ2

z(1− z)E2
aθ

2
= z(1− z) ⇔ dp2

T = z(1− z)dp2
a . (2.96)

This gives us the final result for the separated collinear phase space

dΦn+1 = dΦn
dz dp2

a dφ

4(2π)3
= dΦn

dz dp2
a

4(2π)2
, (2.97)

where in the second step we assume an azimuthal symmetry.

Adding the transition matrix elements to this factorization of the phase space and ignoring the initial–state flux factor
which is common to both processes we can now postulate a full factorization for one collinear emission and in the
collinear approximation

dσn+1 = |Mn+1|2 dΦn+1

= |Mn+1|2 dΦn
dp2
a dz

4(2π)2
(1 +O(θ))

' 2g2
s

p2
a

P̂ (z) |Mn|2 dΦn
dp2
a dz

16π2
assuming |Mn+1|2 '

2g2
s

p2
a

P̂ (z) |Mn|2 . (2.98)

This last step is an assumption. We will proceed to show it step by step by constructing the appropriate
splitting kernels P̂ (z) for all different quark and gluon configurations. If Eq.(2.98) holds true this means that we can
compute the (n+ 1) particle amplitude squared from the n-particle case convoluted with the appropriate splitting
kernel. Using dσn ∼ |Mn|2 dΦn and g2

s = 4παs we can write this relation in its most common form

σn+1 '
∫
σn

dp2
a

p2
a

dz
αs
2π

P̂ (z) . (2.99)

Reminding ourselves that relations of the kind |Mn+1|2 = p|Mn|2 can typically be summed, for example for the case
of successive soft photon radiation in QED, we see that Eq.(2.99) is not the final answer. It does not include the
necessary phase space factor 1/n! from identical bosons in the final state which leads to the simple exponentiation.

As the first parton splitting in QCD we study a gluon splitting into two gluons, shown in Figure 20. To compute its
transition amplitude we write down all gluon momenta and polarizations in a specific frame. With respect to the
scattering plane opened by ~pb and ~pc all three gluons have two transverse polarizations, one in the plane, ε‖, and one
perpendicular to it, ε⊥. In the limit of small scattering angles, the three parallel as well as the three perpendicular
polarization vectors are aligned. The perpendicular polarizations are also orthogonal to all three gluon momenta. The
physical transverse polarizations in the plane are orthogonal to their corresponding momenta and only approximately
orthogonal to the other momenta. Altogether, this means for the three-vectors ε‖ and ε⊥

(ε
‖
i ε
‖
j ) = −1 +O(θ) (ε⊥i ε

⊥
j ) = −1 (ε⊥i ε

‖
j ) = 0 (ε⊥i pj) = 0 (ε

‖
jpj) = 0 , (2.100)

with general i 6= j. For i = j we find exactly one and zero. Using these kinematic relations we can tackle the splitting
amplitude g → gg. It is proportional to the vertex Vggg which in terms of all incoming momenta reads

Vggg = igsf
abc εαa ε

β
b ε
γ
c [gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β ]

= igsf
abc εαa ε

β
b ε
γ
c [gαβ(−pc − 2pb)γ + gβγ(pb − pc)α + gγα(2pc + pb)β ] with pa = −pb − pc

= igsf
abc [−2(εaεb)(εcpb) + (εbεc)(εapb)− (εbεc)(εapc) + 2(εcεa)(εbpc)] with (εjpj) = 0

= −2igsf
abc [(εaεb)(εcpb)− (εbεc)(εapb)− (εcεa)(εbpc)] with (εapc) = −(εapb)

= −2igsf
abc

[
(εaεb)(ε

‖
cpb)− (εbεc)(ε

‖
apb)− (εcεa)(ε

‖
bpc)

]
with (ε⊥i pj) = 0 . (2.101)
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Squaring the splitting matrix element to compute the (n+ 1) and n particle matrix elements squared for the
unpolarized case gives us

|Mn+1|2 =
1

2

(
1

p2
a

)2

4g2
s

1

N2
c − 1

1

Na

∑
color,pols

[ ∑
3 terms

±fabc (ε · ε)(ε · p)

]2

|Mn|2

=
2g2
s

p4
a

1

2(N2
c − 1)

∑
color,pols

[ ∑
3 terms

±fabc (ε · ε)(ε · p)

]2

|Mn|2 , (2.102)

where the sums runs over all color and polarizations and over the three terms in the brackets of Eq.(2.101). The factor
1/2 in the first line takes into account that for two final–state gluons the (n+ 1)-particle phase space is only half its
usual size. Because we compute the color factor and spin sum for the decay of gluon a the formula includes averaging
factors for the color (N2

c − 1) and the polarization Na = 2 of the mother particle.

Inside the color and polarization sum each term (ε · ε)(ε · p) is symmetric in two indices but gets multiplied with the
anti–symmetric color factor. This means that the final result will only be finite if we square each term individually as a
product of two symmetric and two anti–symmetric terms. In other words, the sum over the external gluons becomes
an incoherent polarization sum,

|Mn+1|2 =
2g2
s

p2
a

Nc
2

∑
pols

[ ∑
3 terms

(ε · ε)2(ε · p)2

p2
a

]
|Mn|2 , (2.103)

using fabcfabdδcd = Ncδ
cdδcd = Nc(N

2
c − 1).

Going through all possible combinations we know what can contribute inside the brackets of Eq.(2.101): (ε
‖
aε
‖
b) as

well as (ε⊥a ε
⊥
b ) can be combined with (ε

‖
cpb); (ε

‖
bε
‖
c) or (ε⊥b ε

⊥
c ) with (ε

‖
apb); and last but not least we can combine

(ε
‖
aε
‖
c) and (ε⊥a ε

⊥
c ) with (ε

‖
bpc). The finite combinations between polarization vectors and momenta which we appear

in Eq.(2.103) are, in terms of z, Ea, and θ

(ε‖cpb) = −Eb cos∠(~ε‖c , ~pb) = −Eb cos
(π

2
− θ
)

= −Eb sin θ ' −Ebθ = −zEaθ

(ε‖apb) = −Eb cos∠(~ε‖a, ~pb) = −Eb cos
(π

2
− θb

)
= −Eb sin θb ' −Ebθb = −z(1− z)Eaθ

(ε
‖
bpc) = −Ec cos∠(~ε

‖
b , ~pc) = −Ec cos

(π
2
− θ
)

= −Ec sin θ ' −Ecθ = −(1− z)Eaθ . (2.104)

For the four non–zero combinations of gluon polarizations, the splitting matrix elements ordered still the same way are

εa εb εc ±(ε · ε)(ε · p) (ε · ε)2(ε · p)2

p2
a

=
(ε · ε)2(ε · p)2

z(1− z)E2
aθ

2

‖ ‖ ‖

⊥ ⊥ ‖ (−1)(−z)Eaθ
z

1− z
‖ ‖ ‖
‖ ⊥ ⊥ −(−1)(−z)(1− z)Eaθ z(1− z)

‖ ‖ ‖

⊥ ‖ ⊥ −(−1)(−1)(1− z)Eaθ
1− z
z
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For the incoherent sum in Eq.(2.103) we find

|Mn+1|2 =
2g2
s

p2
a

Nc
2

2

[
z

1− z
+ z(1− z) +

1− z
z

]
|Mn|2

≡ 2g2
s

p2
a

P̂g←g(z) |Mn|2

⇔ P̂g←g(z) = CA

[
z

1− z
+

1− z
z

+ z(1− z)
]
, (2.105)

using CA = Nc. The form of the splitting kernel is symmetric when we exchange the two gluons z and (1− z). It
diverges if either of the gluons become soft. The notation P̂i←j ∼ P̂ij is inspired by a matrix notation which we can
use to multiply the splitting matrix from the right with the incoming parton vector to get the final parton vector.
Following the logic described above, with this calculation we prove that the factorized form of the (n+ 1)-particle
matrix element squared in Eq.(2.98) holds for gluons only.

The same kind of splitting kernel we can compute for the splitting of a gluon into two quarks and the splitting of a
quark into a quark and a gluon

g(pa)→ q(pb) + q̄(pc) and q(pa)→ q(pb) + g(pc) . (2.106)

Both splittings include the quark–quark–gluon vertex, coupling the gluon current to the quark and antiquark spinors.
For small angle scattering we can write the spinors of the massless quark u(pb) and the massless antiquark v(pc) in
terms of two-component spinors

u(p) =
√
E

(
χ±
±χ±

)
with χ+ =

(
1
θ/2

)
(spin up)

χ− =

(
−θ/2

1

)
(spin down) . (2.107)

For the massless antiquark we need to replace θ → −θ and take into account the different relative spin-momentum
directions (σp̂, leading to the additional sign in the lower two spinor entries. The antiquark spinors then become

v(p) = −i
√
E

(
∓εχ±
εχ±

)
with χ+ =

(
1
−θ/2

)
εχ+ =

(
−θ/2
−1

)
(spin up)

χ− =

(
θ/2
1

)
εχ− =

(
1
−θ/2

)
(spin down) . (2.108)

We again limit our calculations to the leading terms in the small scattering angle θ. In addition to the fermion spinors,
for the coupling to a gluonic current we need the Dirac matrices which in the Dirac representation are conveniently
expressed in terms of the Pauli matrices defined in Eq.(1.9)

γ0 =

(
11 0
0 −11

)
γj =

(
0 τ j

−τ j 0

)
⇒ γ0γ0 = 11 γ0γj =

(
0 τ j

τ j 0

)
(2.109)

We are particularly interested in the combination γ0γj because of the definition of the conjugated spinor ū = uT γ0.

In the notation introduced in Eq.(2.105) we first compute the splitting kernel P̂q←g , sandwiching the qqg vertex
between an outgoing quark ū±(pb) and an outgoing antiquark v±(pa) for all possible spin combinations. We start
with all four gluon polarizations, i.e. all four gamma matrices, between two spin-up quarks and their spinors written
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out in Eqs.(2.107) and (2.108)

ū+(pb)γ
0v−(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
1

1
1

1




1
−θc/2

1
−θc/2

 =

(
1,
θb
2
, 1,

θb
2

)
1

−θc/2
1

−θc/2

 = 2

ū+(pb)γ
1v−(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
1

1
1

1




1
−θc/2

1
−θc/2

 =

(
1,
θb
2
, 1,

θb
2

)
−θc/2

1
−θc/2

1

 = θb − θc

ū+(pb)γ
2v−(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
−i

i
−i

i




1
−θc/2

1
−θc/2

 =i

(
1,
θb
2
, 1,

θb
2

)
θc/2

1
θc/2

1

 = i(θb + θc)

ū+(pb)γ
3v−(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
1
−1

1
−1




1
−θc/2

1
−θc/2

=

(
1,
θb
2
, 1,

θb
2

)
1

θc/2
1

θc/2

 = 2 . (2.110)

Somewhat surprisingly the unphysical scalar and longitudinal gluon polarizations seem to contribute to this vertex.
However, after adding the two unphysical degrees of freedom they cancel because of the form of our metric.
Assuming transverse gluons we compute this vertex factor also for the other diagonal spin combination

ū−(pb)γ
1v+(pc)

−i
√
Eb
√
Ec

=

(
−θb

2
, 1,

θb
2
,−1

)
1

1
1

1



θc/2

1
−θc/2
−1

 =

(
−θb

2
, 1,

θb
2
,−1

)
−1
−θc/2

1
θc/2

 = θb − θc

ū−(pb)γ
2v+(pc)

−i
√
Eb
√
Ec

=

(
−θb

2
, 1,

θb
2
,−1

)
−i

i
−i

i



θc/2

1
−θc/2
−1

=i

(
−θb

2
, 1,

θb
2
,−1

)
1

−θc/2
−1
θc/2

 = −i(θb + θc) .

(2.111)

Before collecting the prefactors for this gluon–quark splitting, we also need the same–spin case

ū+(pb)γ
1v+(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
1

1
1

1



θc/2

1
−θc/2
−1

 =

(
1,
θb
2
, 1,

θb
2

)
−1
−θc/2

1
θc/2

 = 0

ū+(pb)γ
2v+(pc)

−i
√
Eb
√
Ec

=

(
1,
θb
2
, 1,

θb
2

)
−i

i
−i

i



θc/2

1
−θc/2
−1

=i

(
1,
θb
2
, 1,

θb
2

)
1

−θc/2
−1
θc/2

 = 0 , (2.112)

which vanishes. The gluon current can only couple to two fermions via a spin flip. For massless fermions this means
that the gluon splitting into two quarks involves two quark spin cases, each of them coupling to two transverse gluon
polarizations. Keeping track of all the relevant factors our vertex function for the splitting g → qq̄ becomes for each of
the two quark spins

Vqqg = −igsT a ū±(pb)γµε
µ
av∓(pc) ≡ −igsT a εja F

(j)
± for j = 1, 2

|F (1)
+ |2

p2
a

=
|F (1)
− |2

p2
a

=
EbEc(θb − θc)2

p2
a

=
E2
az(1− z)(1− z − z)2θ2

E2
az(1− z)θ2

= (1− 2z)2

|F (2)
+ |2

p2
a

=
|F (2)
− |2

p2
a

=
EbEc(θb + θc)

2

p2
a

=
E2
az(1− z)(1− z + z)2θ2

E2
az(1− z)θ2

= 1 . (2.113)
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We omit irrelevant factors i and (−1) which drop out once we compute the absolute value squared. In complete
analogy to the gluon splitting case we can factorize the (n+ 1)-particle matrix element into

|Mn+1|2 =

(
1

p2
a

)2

g2
s

TrT aT a

N2
c − 1

1

Na

[
|F (1)

+ |2 + |F (1)
− |2 + |F (2)

+ |2 + |F (2)
− |2

]
|Mn|2

=
g2
s

p2
a

TR
N2
c − 1

N2
c − 1

[
(1− 2z)2 + 1

]
|Mn|2 with TrT aT b = TRδ

ab and Na = 2

=
2g2
s

p2
a

TR
[
z2 + (1− z)2

]
|Mn|2

≡ 2g2
s

p2
a

P̂q←g(z) |Mn|2

⇔ P̂q←g(z) = TR
[
z2 + (1− z)2

]
, (2.114)

with TR = 1/2. In the first line we implicitly assume that the internal quark propagator can be written as something
like uū/p2

a and we only need to consider the denominator. This splitting kernel is again symmetric in z and (1− z)
because QCD does not distinguish between the outgoing quark and the outgoing antiquark.

The third splitting we compute is gluon radiation off a quark, i.e. q(pa)→ q(pb) + g(pc), sandwiching the qqg vertex
between an outgoing quark ū±(pb) and an incoming quark u±(pa). From the splitting of a gluon into a
quark–antiquark pair we already know that we can limit our analysis to the physical gluon polarizations and a spin flip
in the quarks. Inserting the spinors from Eq.(2.107) and the two relevant gamma matrices gives us

ū+(pb)γ
1u+(pa)

E
=

(
1,
θ∗b
2
, 1,

θ∗b
2

)
1

1
1

1




1
θ∗a/2

1
θ∗a/2

 =

(
1,
θ∗b
2
, 1,

θ∗b
2

)
θ∗a/2

1
θ∗a/2

1

 = θ∗a + θ∗b

ū+(pb)γ
2u+(pa)

E
=

(
1,
θ∗b
2
, 1,

θ∗b
2

)
−i

i
−i

i




1
θ∗a/2

1
θ∗a/2

=i

(
1,
θ∗b
2
, 1,

θ∗b
2

)
−θ∗a/2

1
−θ∗a/2

1

 = i(θ∗b − θ∗a) ,

(2.115)

with the angles θ∗b and θ∗a relative to the final state gluon direction ~pc. Comparing to the situation shown in Figure 20
for the angle relative to the scattered gluon we now find θ∗b = θ while for the incoming quark θ∗a = −θc = −zθ. The
spin–down case gives the same result, modulo a complex conjugation

ū−(pb)γ
1u−(pa)√

Eb
√
Ea

=

(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
1

1
1

1



−θ∗a/2

1
θ∗a/2
−1

 =

(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
−1
θ∗a/2

1
−θ∗a/2

 = θ∗a + θ∗b

ū−(pb)γ
2u−(pa)√

Eb
√
Ea

=

(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
−i

i
−i

i



−θ∗a/2

1
θ∗a/2
−1

=i

(
−θ
∗
b

2
, 1,

θ∗b
2
,−1

)
1

θ∗a/2
−1
−θ∗a/2

 = i(θ∗a − θ∗b ) .

(2.116)

In terms of θ the two combinations of angles become θ∗a + θ∗b = θ(1− z) and θ∗a − θ∗b = θ(−z − 1). The vertex



144 2 QCD

function for gluon radiation off a quark then reads

Vqqg = −igsT a ū±(pb)γµε
µ
au±(pc) ≡ −igsT a εja F

(j)
± for j = 1, 2

|F (1)
+ |2

p2
a

=
|F (1)
− |2

p2
a

=
EaEb(θ

∗
a + θ∗b )2

p2
a

=
E2
az(z − 1)2θ2

E2
az(1− z)θ2

= (1− z)

|F (2)|2+
p2
a

=
|F (2)|2−
p2
a

=
EaEb(θ

∗
b − θ∗a)2

p2
a

=
E2
az(1 + z)2θ2

E2
az(1− z)θ2

=
(1 + z)2

1− z
, (2.117)

again dropping irrelevant prefactors. The factorized matrix element for this channel has the same form as Eq.(2.114),
except for the color averaging factor of the now incoming quark,

|Mn+1|2 =

(
1

p2
a

)2

g2
s

TrT aT a

Nc

1

Na

[
|F (1)

+ |2 + |F (1)
− |2 + |F (2)

+ |2 + |F (2)
− |2

]
|Mn|2

=
g2
s

p2
a

N2
c − 1

2Nc

(1 + z)2 + (1− z)2

1− z
|Mn|2

=
2g2
s

p2
a

CF
1 + z2

1− z
|Mn|2

≡ 2g2
s

p2
a

P̂q←g(z) |Mn|2

⇔ P̂q←q(z) = CF
1 + z2

1− z
. (2.118)

The color factor for gluon radiation off a quark is CF = (N2 − 1)/(2N). The averaging factor 1/Na = 2 now is the
number of quark spins in the intermediate state. Just switching z ↔ (1− z) we can read off the kernel for a quark
splitting written in terms of the final–state gluon

P̂g←q(z) = CF
1 + (1− z)2

z
. (2.119)

This result finalizes our calculation of all QCD splitting kernels P̂i←j(z) between quarks and gluons . As alluded to
earlier, similar to ultraviolet divergences which get removed by counter terms these splitting kernels are universal.
They do not depend on the hard n-particle matrix element which is part of the original (n+ 1)-particle process. We
show all four results in Eqs.(2.105), (2.114), (2.118), and (2.119). This means that by construction of the kernels P̂ we
have shown that the collinear factorization Eq.(2.99) holds at this level in perturbation theory.

Before using this splitting property to describe QCD effects at the LHC we need to look at the splitting of partons in
the initial state, meaning |p2

a|, p2
c � |p2

b | where pb is the momentum entering the hard interaction. The difference to
the final–state splitting is that now we can consider the split parton momentum pb = pa − pc as a t-channel diagram,
so we already know p2

b = t < 0 from our usual Mandelstam variables argument. This space–like splitting version of
Eq.(2.90) for p2

b gives us

t ≡ p2
b = (−zpa + βn+ pT )2

= p2
T − 2zβ(pan) with p2

a = n2 = (papT ) = (npT ) = 0

= p2
T +

p2
T z

1− z
using Eq.(2.93)

=
p2
T

1− z
= −

p2
T,1 + p2

T,2

1− z
< 0 . (2.120)

The calculation of the splitting kernels and matrix elements is the same as for the time–like case, with the one
exception that for splitting in the initial state the flow factor has to be evaluated at the reduced partonic energy
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Eb = zEa and that the energy fraction entering the parton density needs to be replaced by xb → zxb. The factorized
matrix element for initial–state splitting then reads just like Eq.(2.99)

σn+1 =

∫
σn

dt

t
dz

αs
2π

P̂ (z) . (2.121)

How to use this property to make statements about the quark and gluon content in the proton will be the focus of the
next section.

2.3.3 DGLAP equation

We can use everything we now know about collinear parton splitting to describe incoming partons at hadron colliders.
For example in pp→ Z production incoming partons inside the protons transform into each other via collinear
splitting until they enter the Z production process as quarks. Taking Eq.(2.121) seriously, the parton density we insert
into Eq.(2.28) depends on two parameters, the final energy fraction and the virtuality f(xn,−tn). The second
parameter t is new compared to the purely probabilistic picture in Eq.(2.28). However, it cannot be neglected unless
we convince ourselves that it is unphysical. As we will see later it corresponds exactly to the artificial renormalization
scale which appears when we resum the scaling logarithms which appear in counter terms.

More quantitatively, we start with a quark inside the proton with an energy fraction x0, as it enters the hadronic phase
space integral shown in Section 2.1.4. Since this quark is confined inside the proton it can only have small transverse
momentum, which means its four-momentum squared t0 is negative and its absolute value |t0| is small. The variable t
we call virtuality. For the incoming partons which if on–shell have p2 = 0 it gives the distance to the mass shell. Let
us simplify our kinematic argument by assuming that there exists only one splitting, namely successive gluon
radiation off an incoming quark, where the outgoing gluons are not relevant

(x0, t0) (x1, t1)
(xn, tn)

In that case each collinear gluon radiation will decrease the quark energy xj+1 < xj and increase its virtuality
|tj+1| = −tj+1 > −tj = |tj | through its recoil.

From the last section we know what the successive splitting means in terms of splitting probabilities. We can describe
how the parton density f(x,−t) evolves in the (x− t) plane as depicted in Figure 21. The starting point (x0, t0) is at
least probabilistically given by the energy and kind of the hadron, for example the proton. For a given small virtuality
|t0| we start at some kind of fixed x0 distribution. We then interpret each branching as a step strictly downward in
xj → xj+1 where the t value we assign to this step is the ever increasing virtuality |tj+1| after the branching. Each
splitting means a synchronous shift in x and t, so the actual path in the (x− t) plane really consists of discrete points.
The probability of such a splitting to occur is given by P̂q←q(z) ≡ P̂ (z) as it appears in Eq.(2.121)

αs
2π

P̂ (z)
dt

t
dz . (2.122)

In this picture we consider this probability a smooth function in t and z. At the end of the path we will probe this
evolved parton density, where xn and tn enter the hard scattering process and its energy–momentum conservation.

When we convert a partonic into a hadronic cross section numerically we need to specify the probability of the parton
density f(x,−t) residing in an infinitesimal square [xj , xj + δx] and, if this second parameter has anything to do with
physics, [|tj |, |tj |+ δt]. Using our (x, t) plane we compute the flows into this square and out of this square, which
together define the net shift in f in the sense of a differential equation, similar to the derivation of Gauss’ theorem for
vector fields inside a surface

δfin − δfout = δf(x,−t) . (2.123)



146 2 QCD

0

1

x0

δx

|t0| δt |t|

Figure 21: Path of an incoming parton in the (x− t) plane. Because we define t as a negative number its axis is labelled
|t|.

We compute the incoming and outgoing flows from the history of the (x, t) evolution. At this stage our picture
becomes a little subtle; the way we define the path between two splittings in Figure 21 it can enter and leave the
square either vertically or horizontally. Because we do not consider the movement in the (x, t) plane continuous we
can choose this direction as vertical or horizontal. Because we want to arrive at a differential equation in t we choose
the vertical drop, such that the area the incoming and outgoing flows see is given by δt. If we define a splitting as such
a vertical drop in x at the target value tj+1 an incoming path hitting the square at some value t can come from any x
value above the square. Using this convention and following the fat solid lines in Figure 21 the vertical flow into (and
out of) the square (x, t) square is proportional to δt

δfin(−t) = δt

(
αsP̂

2πt
⊗ f

)
(x,−t) =

δt

t

∫ 1

x

dz

z

αs
2π

P̂ (z)f
(x
z
,−t
)

=
δt

t

∫ 1

0

dz

z

αs
2π

P̂ (z)f
(x
z
,−t
)

assuming f(x′,−t) = 0 for x′ > 1 , (2.124)

where δt is the size of the interval covered by the virtuality value t. We use the definition of a convolution

(f ⊗ g)(x) =

∫ 1

0

dx1dx2f(x1)g(x2) δ(x− x1x2) =

∫ 1

0

dx1

x1
f(x1)g

(
x

x1

)
=

∫ 1

0

dx2

x2
f

(
x

x2

)
g(x2) . (2.125)

The outgoing flow we define in complete analogy, again leaving the infinitesimal square vertically. Following the fat
solid line in Figure 21 it is also proportional to δt

δfout(−t) = δt

∫ 1

0

dy
αsP̂ (y)

2πt
f(x,−t) =

δt

t
f(x,−t)

∫ 1

0

dy
αs
2π

P̂ (y) . (2.126)

The y integration, unlike the z integration for the incoming flow is not a convolution. This integration appears because
we do not know the normalization of P̂ (z) distribution which we interpret as a probability. The reason why it is not a
convolution is that for the outgoing flow we know the starting condition and integrate over the final configurations;
this aspect will become important later. Combining Eq.(2.124) and Eq.(2.126) we can compute the change in the
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parton density of the quarks as

δf(x,−t) =
δt

t

[∫ 1

0

dz

z

αs
2π

P̂ (z) f
(x
z
,−t
)
−
∫ 1

0

dy
αs
2π

P̂ (y) f(x,−t)
]

=
δt

t

∫ 1

0

dz

z

αs
2π

[
P̂ (z)− δ(1− z)

∫ 1

0

dyP̂ (y)

]
f
(x
z
,−t
)

≡ δt

t

∫ 1

x

dz

z

αs
2π

P̂ (z)+ f
(x
z
,−t
)

⇔ δf(x,−t)
δ(−t)

=
1

(−t)

∫ 1

x

dz

z

αs
2π

P̂ (z)+ f
(x
z
,−t
)
, (2.127)

again assuming f(x) = 0 for x > 1, strictly speaking requiring αs to only depend on t but not on z, and using the
specifically defined plus subtraction scheme

F (z)+ ≡ F (z)− δ(1− z)
∫ 1

0

dy F (y) or
∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz

(
f(z)

1− z
− f(1)

1− z

)
. (2.128)

For the second term we choose F (z) = 1/(1− z), multiply it with an arbitrary test function f(z) and integrate over z.
In contrast to the original z integral the plus–subtracted integral is by definition finite in the limit z → 1, where some
of the splitting kernels diverge. For example, the quark splitting kernel including the plus prescription becomes
CF ((1 + z2)/(1− z))+. At this stage the plus prescription is simply a convenient way of writing a complicated
combination of splitting kernels, but we will see that it also has a physics meaning.

Next, we check that the plus prescription indeed acts as a regularization technique for the parton densities. Obviously,
the integral over f(z)/(1− z) is divergent at the boundary z → 1, which we know we can cure using
dimensional regularization. The special case f(z) = 1 illustrates how dimensional regularization of infrared
divergences in the phase space integration Eq.(2.88) works

∫ 1

0

dz
1

(1− z)1−ε =

∫ 1

0

dz
1

z1−ε =
zε

ε

∣∣∣∣∣
1

0

=
1

ε
with ε > 0 , (2.129)

for 4 + 2ε dimensions. This change in sign avoids the analytic continuation of the usual value n = 4− 2ε to ε < 0.
The dimensionally regularized integral we can write as∫ 1

0

dz
f(z)

(1− z)1−ε =

∫ 1

0

dz
f(z)− f(1)

(1− z)1−ε + f(1)

∫ 1

0

dz
1

(1− z)1−ε

=

∫ 1

0

dz
f(z)− f(1)

1− z
(1 +O(ε)) +

f(1)

ε

=

∫ 1

0

dz
f(z)

(1− z)+
(1 +O(ε)) +

f(1)

ε
by definition

⇔
∫ 1

0

dz
f(z)

(1− z)1−ε −
f(1)

ε
=

∫ 1

0

dz
f(z)

(1− z)+
(1 +O(ε)) . (2.130)

The dimensionally regularized integral minus the pole, i.e. the finite part of the dimensionally regularized integral, is
the same as the plus–subtracted integral modulo terms of the order ε. The third line in Eq.(2.130) shows that the
difference between a dimensionally regularized splitting kernel and a plus–subtracted splitting kernel manifests itself
as terms proportional to δ(1− z). Physically, they represent contributions to a soft–radiation phase space integral.

Before we move on introducing a gluon density we can slightly reformulate the splitting kernel P̂q←q in Eq.(2.118). If
the plus prescription regularizes the pole at z → 1, what happens when we include the numerator of the regularized
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function, e.g. the quark splitting kernel? The finite difference between these results is(
1 + z2

1− z

)
+

− (1 + z2)

(
1

1− z

)
+

=
1 + z2

1− z
− δ(1− z)

∫ 1

0

dy
1 + y2

1− y
− 1 + z2

1− z
+ δ(1− z)

∫ 1

0

dy
1 + z2

1− y

= −δ(1− z)
∫ 1

0

dy

(
1 + y2

1− y
− 2

1− y

)
= δ(1− z)

∫ 1

0

dy
y2 − 1

y − 1
= δ(1− z)

∫ 1

0

dy (y + 1) =
3

2
δ(1− z) . (2.131)

We can therefore write the quark’s splitting kernel in two equivalent ways

Pq←q(z) = CF

(
1 + z2

1− z

)
+

= CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
. (2.132)

The infinitesimal version of Eq.(2.127) is the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi or DGLAP
integro-differential equation which describes the scale dependence of the quark parton density. As we already know
quarks do not only appear in q → q splitting, but also in gluon splitting. Therefore, we generalize Eq.(2.127) to
include the full set of QCD partons, i.e. quarks and gluons. This generalization involves a sum over all allowed
splittings and the plus–subtracted splitting kernels. For the quark density on the left hand side it is

dfq(x,−t)
d log(−t)

= −t dfq(x,−t)
d(−t)

=
∑
j=q,g

∫ 1

x

dz

z

αs
2π

Pq←j(z) fj

(x
z
,−t
)

with Pq←j(z) ≡ P̂q←j(z)+ .

(2.133)

Going back to Eq.(2.127) we add all relevant parton indices and splittings and arrive at

δfq(x,−t) =
δt

t

[∫ 1

0

dz

z

αs
2π

P̂q←q(z) fq

(x
z
,−t
)

+

∫ 1

0

dz

z

αs
2π

P̂q←g(z) fg

(x
z
,−t
)

−
∫ 1

0

dy
αs
2π

P̂q←q(y) fq(x,−t)
]
. (2.134)

Of the three terms on the right hand side the first and the third together define the plus–subtracted splitting kernel
Pq←q(z), just following the argument above. The second term is a proper convolution and the only term proportional
to the gluon parton density. Quarks can be produced in gluon splitting but cannot vanish into it. Therefore, we have to
identify the last term in Eq.(2.134) with Pq←g , without adding a plus–regulator

Pq←g(z) ≡ P̂q←g(z) = TR
[
z2 + (1− z)2

]
. (2.135)

In principle, the splitting kernel P̂g←q also generates a quark, in addition to the final–state gluon. However,
comparing this to the terms proportional to P̂q←q they both arise from the same splitting, namely a quark density
leaving the infinitesimal square in the (x− t) plane via the splitting q → qg. Including the additional P̂g←q(y) would
be double counting and should not appear, as the notation g ← q already suggests.

The second QCD parton density we have to study is the gluon density. The incoming contribution to the infinitesimal
square is given by the sum of four splitting scenarios each leading to a gluon with virtuality −tj+1

δfin(−t) =
δt

t

∫ 1

0

dz

z

αs
2π

[
P̂g←g(z)

(
fg

(x
z
,−t
)

+ fg

(
x

1− z
,−t
))

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t
))]

=
δt

t

∫ 1

0

dz

z

αs
2π

[
2P̂g←g(z)fg

(x
z
,−t
)

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t
))]

, (2.136)
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using Pg←q̄ = Pg←q in the first line and Pg←g(1− z) = Pg←g(z) in the second. To leave the volume element in the
(x, t) space a gluon can either split into two gluons or radiate one of nf light-quark flavors. Combining the incoming
and outgoing flows we find

δfg(x,−t) =
δt

t

∫ 1

0

dz

z

αs
2π

[
2P̂g←g(z)fg

(x
z
,−t
)

+ P̂g←q(z)
(
fq

(x
z
,−t
)

+ fq̄

(x
z
,−t
))]

−δt
t

∫ 1

0

dy
αs
2π

[
P̂g←g(y) + nf P̂q←g(y)

]
fg(x,−t) (2.137)

We have to evaluate the four terms in this expression one after the other. Unlike in the quark case they do not
immediately correspond to regularizing the diagonal splitting kernel using the plus prescription.
First, there exists a contribution to δfin proportional to fq or fq̄ which is not matched by the outgoing flow. From the
quark case we already know how to deal with it. For the corresponding splitting kernel there is no regularization
through the plus prescription needed, so we define

Pg←q(z) ≡ P̂g←q(z) = CF
1 + (1− z)2

z
. (2.138)

This ensures that the off-diagonal contribution to the gluon density is taken into account when we extend Eq.(2.133) to
a combined quark/antiquark and gluon form. Hence, the structure of the DGLAP equation implies that the two
off-diagonal splitting kernels do not include any plus prescription P̂i←j = Pi←j . We could have expected this because
off-diagonal kernels are finite in the soft limit, z → 1. Applying a plus prescription would only have modified the
splitting kernels at the isolated (zero-measure) point y = 1 which for a finite value of the integrand does not affect the
integral on the right hand side of the DGLAP equation.
Second, the y integral describing the gluon splitting into a quark pair we can compute directly,

−
∫ 1

0

dy
αs
2π

nf P̂q←g(y) = −αs
2π

nf TR

∫ 1

0

dy
[
1− 2y + 2y2

]
using Eq.(2.135)

= −αs
2π

nf TR

[
y − y2 +

2y3

3

]1

0

= −2

3

αs
2π

nf TR . (2.139)

Finally, the terms proportional to the purely gluonic splitting Pg←g appearing in Eq.(2.137) require some more work.
The y integral coming from the outgoing flow has to consist of a finite term and a term we can use to define the plus
prescription for P̂g←g . We can compute the integral as

−
∫ 1

0

dy
αs
2π

P̂g←g(y) =− αs
2π

CA

∫ 1

0

dy

[
y

1− y
+

1− y
y

+ y(1− y)

]
using Eq.(2.105)

=− αs
2π

CA

∫ 1

0

dy

[
2y

1− y
+ y(1− y)

]
=− αs

2π
CA

∫ 1

0

dy

[
2(y − 1)

1− y
+ y(1− y)

]
− αs

2π
CA

∫ 1

0

dy
2

1− y

=− αs
2π

CA

∫ 1

0

dy
[
−2 + y − y2

]
− αs

2π
2CA

∫ 1

0

dz
1

1− z

=− αs
2π

CA

[
−2 +

1

2
− 1

3

]
− αs

2π
2CA

∫ 1

0

dz
1

1− z

=
αs
2π

11

6
CA −

αs
2π

2CA

∫ 1

0

dz
1

1− z
. (2.140)

The second term in this result is what we need to replace the first term in the splitting kernel of Eq.(2.105)
proportional to 1/(1− z) by 1/(1− z)+. We can see this using f(z) = z and correspondingly f(1) = 1 in
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Eq.(2.128). The two finite terms in Eq.(2.139) and Eq.(2.140) we have to include in the definition of P̂g←g ad hoc.
Because the regularized splitting kernel appear inside a convolution the two finite terms require an additional term
δ(1− z). Collecting all of them we arrive at

Pg←g(z) = 2CA

(
z

(1− z)+
+

1− z
z

+ z(1− z)
)

+
11

6
CA δ(1− z)−

2

3
nf TR δ(1− z) . (2.141)

This result concludes our computation of all four regularized splitting functions which appear in the DGLAP equation
Eq.(2.133).

Before discussing and solving the DGLAP equation, let us briefly recapitulate: for the full quark and gluon particle
content of QCD we have derived the DGLAP equation which describes a factorization scale dependence of the quark
and gluon parton densities. The universality of the splitting kernels is obvious from the way we derive them — no
information on the n-particle process ever enters the derivation.
The DGLAP equation is formulated in terms of four splitting kernels of gluons and quarks which are linked to the
splitting probabilities, but which for the DGLAP equation have to be regularized. With the help of a plus–subtraction
all kernels Pi←j(z) become finite, including in the soft limit z → 1. However, splitting kernels are only regularized
when needed, so the finite off-diagonal quark–gluon and gluon–quark splittings are unchanged. This means the plus
prescription really acts as an infrared renormalization, moving universal infrared divergences into the definition of the
parton densities. The original collinear divergence has vanished as well.
The only approximation we make in the computation of the splitting kernels is that in the y integrals we implicitly
assume that the running coupling αs does not depend on the momentum fraction. In its standard form and in terms of
the factorization scale µ2

F ≡ −t the DGLAP equation reads

dfi(x, µF )

d logµ2
F

=
∑
j

∫ 1

x

dz

z

αs
2π

Pi←j(z) fj

(x
z
, µF

)
=
αs
2π

∑
j

(Pi←j ⊗ fj) (x, µF ) . (2.142)

2.3.4 Parton densities

Solving the integro-differential DGLAP equation Eq.(2.142) for the parton densities is clearly beyond the scope of
this writeup. Nevertheless, we will sketch how we would approach this. This will give us some information on the
structure of its solutions which we need to understand the physics of the DGLAP equation.
One simplification we can make in this illustration is to postulate eigenvalues in parton space and solve the equation
for them. This gets rid of the sum over partons on the right hand side. One such parton density is the
non–singlet parton density, defined as the difference of two parton densities fNS

q = (fu − fū). Since gluons cannot
distinguish between quarks and antiquarks, the gluon contribution to their evolution cancels, at least in the massless
limit. This will be true at arbitrary loop order, since flavor SU(3) commutes with the QCD gauge group. The
corresponding DGLAP equation with leading order splitting kernels now reads

dfNS
q (x, µF )

d logµ2
F

=

∫ 1

x

dz

z

αs
2π

Pq←q(z) f
NS
q

(x
z
, µF

)
=
αs
2π

(
Pq←q ⊗ fNS

q

)
(x, µF ) . (2.143)

To solve it we need a transformation which simplifies a convolution, leading us to the Mellin transform. Starting from
a function f(x) of a real variable x we define the Mellin transform into moment space m

M[f ](m) ≡
∫ 1

0

dxxm−1f(x) f(x) =
1

2πi

∫ c−i∞

c−i∞
dm
M[f ](m)

xm
, (2.144)

where for the back transformation we choose an arbitrary appropriate constant c > 0, such that the integration contour
for the inverse transformation lies to the right of all singularities of the analytic continuation ofM[f ](m). The Mellin
transform of a convolution is the product of the two Mellin transforms, which gives us the transformed DGLAP
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equation

M[Pq←q ⊗ fNS
q ](m) =M

[∫ 1

0

dz

z
Pq←q

(x
z

)
fNS
q (z)

]
(m) =M[Pq←q](m)M[fNS

q ](m,µF )

dM[fNS
q ](m,µF )

d logµ2
F

=
αs
2π
M[Pq←q](m)M[fNS

q ](m,µF ) , (2.145)

and its solution

M[fNS
q ](m,µF ) =M[fNS

q ](m,µF,0) exp

(
αs
2π
M[Pq←q](m) log

µ2
F

µ2
F,0

)

=M[fNS
q ](m,µF,0)

(
µ2
F

µ2
F,0

)αs
2πM[Pq←q ](m)

≡M[fNS
q ](m,µF,0)

(
µ2
F

µ2
F,0

)αs
2π γ(m)

, (2.146)

defining γ(m) =M[P ](m).

The solution given by Eq.(2.146) still has the complication that it includes µF and αs as two free parameters. To
simplify this form we can include αs(µ2

R) in the running of the DGLAP equation and identify the renormalization
scale µR of the strong coupling with the factorization scale µF = µR ≡ µ. This allows us to replace logµ2 in the
DGLAP equation by αs, including the leading order Jacobian. This is clearly correct for all one-scale problems where
we have no freedom to choose either of the two scales. We find

d

d logµ2
=
d logαs
d logµ2

d

d logαs
=

1

αs

dαs
d logµ2

d

d logαs
= −αsb0

d

d logαs
. (2.147)

This additional factor of αs on the left hand side will cancel the factor αs on the right hand side of the DGLAP
equation Eq.(2.145)

dM[fNS
q ](m,µ)

d logαs
= − 1

2πb0
γ(m)M[fNS

q ](m,µ)

M[fNS
q ](m,µ) =M[fNS

q ](m,µ0) exp

(
− 1

2πb0
γ(m) log

αs(µ
2)

αs(µ2
0)

)

=M[fNS
q ](m,µF,0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (2.148)

Among other things, in this derivation we neglect that some splitting functions have singularities and therefore the
Mellin transform is not obviously well defined. Our convolution is not really a convolution either, because we cut it
off at Q2

0 etc; but the final structure in Eq.(2.148) really holds.
Because we will need it in the next section we emphasize that the same kind of solution appears in pure Yang–Mills
theory, i.e. in QCD without quarks. Looking at the different color factors in QCD this limit can also be derived as the
leading terms in Nc. In that case there also exists only one splitting kernel defining an anomalous dimension γ. We
find in complete analogy to Eq.(2.148)

M[fg](m,µ) =M[fg](m,µ0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (2.149)

To remind ourselves that in this derivation we unify the renormalization and factorization scales we denote them just
as µ. This solution to the DGLAP equation is not completely determined: as a solution to a differential equation it
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also includes an integration constant which we express in terms of µ0. The DGLAP equation therefore does not
determine parton densities, it only describes their evolution from one scale µF to another, just like a renormalization
group equation in the ultraviolet.

The structure of Eq.(2.149) already shows something we will in more detail discuss in the following Section 2.3.5: the
splitting probability we find in the exponent. To make sense of such a structure we remind ourselves that such ratios of
αs values to some power can appear as a result of a resummed series. Such a series would need to include powers of
(M[P̂ ])n summed over n which corresponds to a sum over splittings with a varying number of partons in the final
state. Parton densities cannot be formulated in terms of a fixed final state because they include effects from any
number of collinearly radiated partons summed over the number of such partons. For the processes we can evaluate
using parton densities fulfilling the DGLAP equation this means that they always have the form

pp→ µ+µ− +X where X includes any number of collinear jets. (2.150)

Why is γ referred to as the anomalous dimension of the parton density? This is best illustrated using a running
coupling with a finite mass dimension, like the gravitational coupling GPlanck ∼ 1/M2

Planck. When we attach a
renormalization constant Z to this coupling we first define a dimensionless running bare coupling g. In n dimensions
this gives us

gbare = Mn−2 GPlanck → Zg(M2) . (2.151)

For the dimensionless gravitational coupling we can compute the running

dg(M2)

d logM
=

d

d logM

(
1

Z
Mn−2 GPlanck

)
= GPlanck

(
1

Z
M
dMn−2

dM
− 1

Z2

dZ

d logM
Mn−2

)
= g(M) (n− 2 + η) with η = − 1

Z

dZ

d logM
(2.152)

Hence, there are two sources of running for the renormalized coupling g(M2): first, there is the mass dimension of the
bare coupling n− 2, and secondly there is η, a quantum effect from the coupling renormalization. For obvious reasons
we call η the anomalous dimension of GPlanck.
This is similar to the running of the parton densities in Mellin space, as shown in Eq.(2.145), and with γ(m) defined in
Eq.(2.146), so we refer to γ as an anomalous dimension as well. The entire running of the transformed parton density
arises from collinear splitting, parameterized by a finite γ. There is only a slight stumbling step in this analogy:
usually, an anomalous dimension arises through renormalization involving a ultraviolet divergence and the
renormalization scale. In our case we are discussing an infrared divergence and the factorization scale dependence.

2.3.5 Resumming collinear logarithms

Remembering how we arrive at the DGLAP equation we notice an analogy to the case of ultraviolet divergences and
the running coupling. We start from universal infrared divergences. We describe them in terms of splitting functions
which we regularize using the plus prescription. The DGLAP equation plays the role of a renormalization group
equation for example for the running coupling. It links parton densities evaluated at different scales µF .
In analogy to the scaling logarithms considered in Section 2.2.3 we now test if we can point to a type of logarithm the
DGLAP equation resums by reorganizing our perturbative series of parton splitting. To identify these resummed
logarithms we build a physical model based on collinear splitting, but without using the DGLAP equation. We then
solve it to see the resulting structure of the solutions and compare it to the structure of the DGLAP solutions in
Eq.(2.149).



2.3 Infrared divergences 153

We start from the basic equation defining the physical picture of parton splitting in Eq.(2.99). Only taking into
account gluons in pure Yang–Mills theory it precisely corresponds to the starting point of our discussion leading to the
DGLAP equation, schematically written as

σn+1 =

∫
σn

dt

t
dz

αs
2π

P̂g←g(z) . (2.153)

This form of collinear factorization does not include parton densities and only applies to final state splittings. To
include initial state splittings we need a definition of the virtuality variable t. If we remember that t = p2

b < 0 we can
follow Eq.(2.120) and introduce a positive transverse momentum variable ~p2

T in the usual Sudakov decomposition,
such that

−t = − p2
T

1− z
=

~p2
T

1− z
> 0 ⇒ dt

t
=
dp2
T

p2
T

=
d~p2
T

~p2
T

. (2.154)

From the definition of pT in Eq.(2.90) we see that ~p2
T is really the transverse three-momentum of of the parton pair

after splitting.

Beyond the single parton radiation discussed in Section 2.3.1 we consider a ladder of successive splittings of one
gluon into two. For a moment, we forget about the actual parton densities and assume that they are part of the
hadronic cross section σn. In the collinear limit the appropriate convolution gives us

σn+1(x, µF ) =

∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
σn(xn, µ0)

∫ µ2
F

µ2
0

d~p2
T,n

~p2
T,n

αs(µ
2
R)

2π
. (2.155)

The dz in Eq.(2.153) we replace by the proper convolution P̂ ⊗ σn, evaluated at the momentum fraction x. Because
the splitting kernel is infrared divergent we cut off the convolution integral at x0. Similarly, the transverse momentum
integral is bounded by an infrared cutoff µ0 and the physical external scale µF . This is the range in which an
additional collinear radiation is included in σn+1.
For splitting the two integrals in Eq.(2.155) it is crucial that µ0 is the only scale the matrix element σn depends on.
The other integration variable, the transverse momentum, does not feature in σn because collinear factorization is
defined in the limit ~p2

T → 0. For αs we will see in the next step how µR can depend on the transverse momentum. All
through the argument of this subsection we should keep in mind that we are looking for assumptions which allow us to
solve Eq.(2.155) and compare the result to the solution of the DGLAP equation. In other words, these assumptions we
will turn into a physics picture of the DGLAP equation and its solutions.

Making µF the global upper boundary of the transverse momentum integration for collinear splitting is our first
assumption. We can then apply the recursion formula in Eq.(2.155) iteratively

σn+1(x, µF ) ∼
∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, µ0)

×
∫ µF

µ0

d~p2
T,n

~p2
T,n

αs(µ
2
R)

2π
· · ·

∫
µ0

d~p2
T,1

~p2
T,1

αs(µ
2
R)

2π
. (2.156)

The two sets of integrals in this equation we will solve one by one, starting with the ~pT integrals.

To be able to make sense of the ~p2
T integration in Eq.(2.156) and solve it we have to make two more assumptions in

our multiple-splitting model. First, we identify the scale of the strong coupling αs with the transverse momentum
scale of the splitting µ2

R = ~p2
T . This way we can fully integrate the integrand αs/(2π) and link the final result to the

global boundary µF .
In addition, we assume strongly ordered splittings in terms of the transverse momentum. If the ordering of the
splitting is fixed externally by the chain of momentum fractions xj , the first splitting, integrated over ~p2

T,1, is now
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bounded from above by the next external scale ~p2
T,2, which is then bounded by ~p2

T,3, etc. For the n-fold ~p2
T integration

this means

µ2
0 < ~p2

T,1 < ~p2
T,2 < · · · < µ2

F (2.157)

We will study motivations for this ad hoc assumptions in Section 2.5.4.

Under these three assumptions the transverse momentum integrals in Eq.(2.156) become∫ µF

µ0

d~p2
T,n

~p2
T,n

αs(~p
2
T,n)

2π
· · ·

∫ pT,3

µ0

d~p2
T,2

~p2
T,2

αs(~p
2
T,2)

2π

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

αs(~p
2
T,1)

2π
· · ·

=

∫ µF

µ0

d~p2
T,n

~p2
T,n

1

2πb0 log
~p2
T,n

Λ2
QCD

· · ·
∫ pT,3

µ0

d~p2
T,2

~p2
T,2

1

2πb0 log
~p2
T,2

Λ2
QCD

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

2πb0 log
~p2
T,1

Λ2
QCD

· · ·

=
1

(2πb0)n

∫ µF

µ0

d~p2
T,n

~p2
T,n

1

log
~p2
T,n

Λ2
QCD

· · ·
∫ pT,3

µ0

d~p2
T,2

~p2
T,2

1

log
~p2
T,2

Λ2
QCD

∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

log
~p2
T,1

Λ2
QCD

· · · . (2.158)

We can solve the individual integrals by switching variables, for example in the last integral∫ pT,2

µ0

d~p2
T,1

~p2
T,1

1

log
~p2
T,1

Λ2
QCD

=

∫ log log p2
T,2/Λ

2

log log µ2
0/Λ

2

d log log
~p2
T,1

Λ2
QCD

with
d(ax)

(ax) log x
= d log log x

=

∫ log log p2
T,2/Λ

2−log log µ2
0/Λ

2

0

d

(
log log

~p2
T,1

Λ2
QCD
− log log

µ2
0

Λ2
QCD

)

= log
log ~p2

T,1/Λ
2
QCD

logµ2
0/Λ

2
QCD

∣∣∣∣∣
~p2
T,1≡~p

2
T,2

0

= log
log ~p2

T,2/Λ
2
QCD

logµ2
0/Λ

2
QCD

. (2.159)

This gives us for the chain of transverse momentum integrals∫ pT,n≡µF

0

d log
log ~p2

T,n/Λ
2
QCD

logµ2
0/Λ

2
QCD

· · ·
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=

∫ pT,n≡µF
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This is the final result for the chain of transverse momentum integrals in Eq.(2.156). By assumption, the strong
coupling is evaluated at the factorization scale µF , which means we identify µR ≡ µF .

To compute the convolution integrals over the momentum fractions in Eq.(2.156),

σn+1(x, µ) ∼ 1

n!

(
1

2πb0
log

αs(µ
2
0)

αs(µ2)

)n ∫ 1

x0

dxn
xn

P̂g←g

(
x

xn

)
· · ·

∫ 1

x0

dx1

x1
P̂g←g

(
x2

x1

)
σ1(x1, µ0) , (2.161)
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we again Mellin transform the equation into moment space

M[σn+1](m,µ) ∼ 1

n!

(
1

2πb0
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2
0)
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)n
M
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)
σ1(x1, µ0)
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=
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M[σ1](m,µ0) . (2.162)

We can now sum the production cross sections for n collinear jets and obtain

∞∑
n=0

M[σn+1](m,µ) =M[σ1](m,µ0)
∑
n

1

n!

(
1

2πb0
log
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2
0)

αs(µ2)
γ(m)

)n
=M[σ1](m,µ0) exp

(
γ(m)

2πb0
log

αs(µ
2
0)

αs(µ2)

)
. (2.163)

This way we can write the Mellin transform of the (n+ 1) particle production rate as the product of the n-particle rate
times a ratio of the strong coupling at two scales

∞∑
n=0

M[σn+1](m,µ) =M[σ1](m,µ0)

(
αs(µ

2
0)

αs(µ2)

) γ(m)
2πb0

. (2.164)

This is the same structure as the DGLAP equation’s solution in Eq.(2.149). It means that we should be able to
understand the physics of the DGLAP equation using our model calculation of a gluon ladder emission, including the
generically variable number of collinear jets in the form of pp→ µ+µ− +X , as shown in Eq.(2.150).
We should remind ourselves of the three assumptions we need to make to arrive at this form. There are two
assumptions which concern the transverse momenta of the successive radiation: first, the global upper limit on all
transverse momenta should be the factorization scale µF , with a strong ordering in the transverse momenta. This gives
us a physical picture of the successive splittings as well as a physical interpretation of the factorization scale. Second,
the strong coupling should be evaluated at the transverse momentum or factorization scale, so all scales are unified, in
accordance with the derivation of the DGLAP equation.

Bending the rules of pure Yang–Mills QCD we can come back to the hard process σ1 as the Drell–Yan process
qq̄ → Z. Each step in n means an additional parton in the final state, so σn+1 is Z production with n collinear partons
On the left hand side of Eq.(2.164) we have the sum over any number of additional collinear partons; on the right hand
side we see fixed order Drell–Yan production without any additional partons, but with an exponentiated correction
factor. Comparing this to the running parton densities we can draw the analogy that any process computed with a scale
dependent parton density where the scale dependence is governed by the DGLAP equation includes any number of
collinear partons.
We can also identify the logarithms which are resummed by scale dependent parton densities. Going back to Eq.(2.87)
reminds us that we start from the divergent collinear logarithms log(pmax

T /pmin
T ) arising from the collinear phase space

integration. In our model for successive splitting we replace the upper boundary by µF . The collinear logarithm of
successive initial–state parton splitting diverges for µ0 → 0, but it gets absorbed into the parton densities and
determines the structure of the DGLAP equation and its solutions. The upper boundary µF tells us to what extent we
assume incoming quarks and gluons to be a coupled system of splitting partons and what the maximum momentum
scale of these splittings is. Transverse momenta pT > µF generated by hard parton splitting are not covered by the
DGLAP equation and hence not a feature of the incoming partons anymore. They belong to the hard process and have
to be consistently simulated, as we will see in Sections 2.6.2 and 2.7. While this scale can be chosen freely we have to
make sure that it does not become too large, because at some point the collinear approximation C ' constant in
Eq.(2.87) ceases to hold and with it our entire argument. Only if we do everything correctly, the DGLAP equation
resums logarithms of the maximal transverse momentum size of the incoming gluon. They are universal and arise
from simple kinematics.
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renormalization scale µR factorization scale µF

source ultraviolet divergence collinear (infrared) divergence

poles cancelled counter terms parton densities
(renormalization) (mass factorization)

summation resum self energy bubbles resum parton splittings
parameter running coupling αs(µ

2
R) running parton density fj(x, µF )

evolution RGE for αs DGLAP equation

large scales decrease of σtot increase of σtot for gluons/sea quarks

theory background renormalizability factorization
proven for gauge theories proven all orders for DIS

proven order-by-order DY...

Table 3: Comparison of renormalization and factorization scales appearing in LHC cross sections.

The ordering of the splittings we have to assume is not relevant unless we simulate this splitting, as we will see in the
next section. For the details of this we have to remember that our argument follows from the leading collinear
approximation introduced in Section 2.3.1. Therefore, the strong pT -ordering can in practice mean angular ordering or
rapidity ordering, just applying a linear transformation.

2.4 Scales in LHC processes
Looking back at Sections 2.2 and 2.3 we introduce the factorization and renormalization scales step by step
completely in parallel: first, computing perturbative higher order contributions to scattering amplitudes we encounter
ultraviolet and infrared divergences. We regularize both of them using dimensional regularization with
n = 4− 2ε < 4 for ultraviolet and n > 4 for infrared divergences, linked by analytic continuation. Both kinds of
divergences are universal, which means that they are not process or observable dependent. This allows us to absorb
ultraviolet and infrared divergences into a re-definition of the strong coupling and the parton density. This nominally
infinite shift of parameters we refer to as renormalization for example of the strong coupling or as mass factorization
absorbing infrared divergences into the parton distributions.
After renormalization as well as after mass factorization we are left with a scale artifact. Scales arise as part of a the
pole subtraction: together with the pole 1/ε we have a choice of finite contributions which we subtract with this pole.
Logarithms of the renormalization and factorization scales will always be part of these finite terms. Moreover, in both
cases the re-definition of parameters is not based on fixed order perturbation theory. Instead, it involves summing
logarithms which otherwise can become large and spoil the convergence of our perturbative series in αs. The only
special feature of infrared divergences as compared to ultraviolet divergences is that to identify the resummed
logarithms we have to unify both scales to one.
The hadronic production cross section for the Drell–Yan process or other LHC production channels, now including
both scales, reads

σtot(µF , µR) =

∫ 1

0

dx1

∫ 1

0

dx2

∑
ij

fi(x1, µF ) fj(x2, µF ) σ̂ij(x1x2S, αs(µ
2
R), µF , µR) . (2.165)

The Drell–Yan process has the particular feature that at leading order σ̂qq̄ only involves weak couplings, it does not
include αs with its implicit renormalization scale dependence at leading order. Strictly speaking, in Eq.(2.165) the
parton densities also depend on the renormalization scale because in their extraction we identify both scales. Carefully
following their extraction we can separate the two scales if we need to. Lepton pair production and Higgs production
in weak boson fusion are the two prominent electroweak production processes at the LHC.

The evolution of all running parameters from one renormalization/factorization scale to another is described either by
renormalization group equation in terms of a beta function in the case of renormalization or by the DGLAP equation
in the case of mass factorization. Our renormalization group equation for αs is a single equation, but in general they
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are sets of coupled differential equations for all relevant parameters, which again makes them more similar to the
DGLAP equation.
There is one formal difference between these two otherwise very similar approaches. The fact that we can absorb
ultraviolet divergences into process–independent, universal counter terms is called renormalizability and has been
proven to all orders for the kind of gauge theories we are dealing with. The universality of infrared splitting kernels
has not (yet) in general been proven, but on the other hand we have never seen an example where is fails for
sufficiently inclusive observables like production rates. For a while we thought there might be a problem with
factorization in supersymmetric theories using the MS scheme, but this issue has been resolved. A summary of the
properties of the two relevant scales for LHC physics we show in Table 3.

The way we introduce factorization and renormalization scales clearly labels them as an artifact of perturbation
theories with divergences. What actually happens if we include all orders in perturbation theory? For example, the
resummation of the self energy bubbles simply deals with one class of diagrams which have to be included, either
order-by-order or rearranged into a resummation. Once we include all orders in perturbation theory it does not matter
according to which combination of couplings and logarithms we order it. An LHC production rate will then not
depend on arbitrarily chosen renormalization or factorization scales µ.
Practically, in Eq.(2.165) we evaluate the renormalized parameters and the parton densities at some scale. This scale
dependence will only cancel once we include all implicit and explicit appearances of the scales at all orders. Whatever
scale we choose for the strong coupling or parton densities will eventually be compensated by explicit scale
logarithms. In the ideal case, these logarithms are small and do not spoil perturbation theory. In a process with one
distinct external scale, like the Z mass, we know that all scale logarithms should have the form log(µ/mZ). This
logarithm vanishes if we evaluate everything at the ‘correct’ external energy scale, namely mZ . In that sense we can
think of the running coupling as a proper running observable which depends on the external energy of the process.
This dependence on the external energy is not a perturbative artifact, because a cross section even to all orders does
depend on the energy. The problem in particular for LHC analyses is that after analysis cuts every process will have
more than one external energy scale.

We can turn around the argument of vanishing scale dependence to all orders in perturbation theory. This gives us an
estimate of the minimum theoretical error on a rate prediction set by the scale dependence. The appropriate interval of
what we consider reasonable scale choices depends on the process and the taste of the people doing this analysis. This
error estimate is not at all conservative; for example the renormalization scale dependence of the Drell–Yan
production rate or Higgs production in weak boson fusion is zero because αs only enters at next–to–leading order. At
the same time we know that the next–to–leading order correction to the Drell–Yan cross section is of the order of 30%,
which far exceeds the factorization scale dependence. Moreover, the different scaling behavior of a hadronic cross
section shown in Table 3 implies that for example gluon–induced processes at typical x values around 10−2 show a
cancellation of the factorization and renormalization scale variation. Estimating theoretical uncertainties from scale
dependence therefore requires a good understanding of the individual process and the way it is affected by the two
scales.

Guessing the right scale choice for a process is hard, often impossible. For example in Drell–Yan production at
leading order there exists only one scale, mZ . If we set µ = mZ all scale logarithms vanish. In reality, LHC
observables include several different scales. Some of them appear in the hard process, for example in the production
of two or three particles with different masses. Others enter through the QCD environment where at the LHC we only
consider final–state jets above a certain minimal transverse momentum. Even others appear though background
rejection cuts in a specific analysis, for example when we only consider the Drell–Yan background for mµµ > 1 TeV
to Kaluza–Klein graviton production. Using likelihood methods does not improve the situation because the phase
space regions dominated by the signal will introduce specific energy scales which affect the perturbative prediction of
the backgrounds. This is one of the reasons why an automatic comparison of LHC events with signal or background
predictions is bound to fail once it requires an estimate of the theoretical uncertainty on the background simulation.
All that means that in practice there is no way to define a ‘correct’ scale. On the other hand, there are definitely
poor scale choices. For example, using 1000×mZ as a typical scale in the Drell–Yan process will if nothing else lead
to logarithms of the size log 1000 whenever a scale logarithm appears. These logarithms eventually have to be
cancelled to all orders in perturbation theory, inducing unreasonably large higher order corrections.



158 2 QCD

When describing jet radiation, we usually introduce a phase space dependent renormalization scale, evaluating the
strong coupling at the transverse momentum of the radiated jet αs(~p2

T,j). This choice gives the best kinematic
distributions for the additional partons because in Section 2.3.5 we have shown that it resums large collinear
logarithms.
The transverse momentum of a final–state particle is one of scale choices allowed by factorization; in addition to poor
scale choices there also exist wrong scale choices, i.e. scale choices violating physical properties we need.
Factorization or the Kinoshita–Lee–Nauenberg theorem which ensures that soft divergences cancel between real and
virtual emission diagrams are such properties we should not violate — in QED the same property is called the
Bloch–Nordsieck cancellation. Imagine picking a factorization scale defined by the partonic initial state, for example
the partonic center–of–mass energy s = x1x2S. We know that this definition is not unique: for any final state it
corresponds to the well defined sum of all momenta squared. However, virtual and real gluon emission generate
different multiplicities in the final state, which means that the two sources of soft divergences only cancel until we
multiply each of them with numerically different parton densities. Only scales which are uniquely defined in the final
state can serve as factorization scales. For the Drell–Yan process such a scale could be mZ , or the mass of heavy
new-physics states in their production process. So while there is no such thing as a correct scale choice, there are more
or less smart choices, and there are definitely very poor choices, which usually lead to an unstable perturbative
behavior.

2.5 Parton shower

In LHC phenomenology we are usually less interested in fixed-order perturbation theory than in logarithmically
enhanced QCD effects. Therefore, we will not deepen our discussion of hadronic rates as shown in Eq.(2.165) based
on fixed-order partonic cross sections convoluted with parton densities obeying the DGLAP equation. In Section 2.3.5
we have already seen that there exist more functions with the same structure as solutions to the DGLAP equation. In
Section 2.5.1 we will derive one such object which we can use to describe jet radiation of incoming and outgoing
partons in hard processes. These Sudakov factors will immediately lead us to a parton shower. They are based on
universal patterns in jet radiation which we will in detail study in Section 2.5.2 and 2.5.3. In Section 2.5.4 we will
introduce a key property of the parton shower, the ordered splitting of partons in several approximation.

2.5.1 Sudakov factor

After introducing the kernels P̂i←j(z) as something like splitting probabilities we never applied a probabilistic
approach to parton splitting. The basis of such an interpretation are Sudakov factors describing the splitting of a
parton i into any of the partons j based on the factorized form Eq.(2.99)

∆i(t) ≡ ∆i(t, t0) = exp

−∑
j

∫ t

t0

dt′

t′

∫ 1

0

dy
αs
2π
P̂j←i(y)

 . (2.166)

Sudakov factors are an excellent example for technical terms hiding very simple concepts. If we instead referred to
them as simple non–splitting probabilities everyone would immediately understand what we are talking about, taking
away some of the mythical powers of theoretical physicists. The only parton splitting affecting a hard quark leg is
Pq←q , while a gluon leg can either radiate a gluon via Pg←g or via Pq←g . The fourth allowed splitting Pg←q also
splits a quark into a quark–gluon pair, so we can decide to follow the quark direction instead of switching over to the
gluon. We derive the form of the Sudakov factors for ∆q ,

∆q(t) = exp

(
−
∫ t

t0

dt′

t′

∫ 1

0

dy
αs
2π
P̂q←q(y)

)
. (2.167)
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Because we evaluate the strong coupling at a scale related to t′ we need to introduce a global cutoff t0 to avoid the
Landau Pole. The unregularized splitting kernel is given by Eq.(2.118), so we can compute∫ 1

0

dy
αs
2π

P̂q←q(y) =
CF
2π

∫ 1

0

dy αs
1 + y2

1− y

=
CF
2π

∫ 1

0

dy αs
−(1− y)(1 + y) + 2

1− y

=
CF
2π

∫ 1

0

dy αs

(
2

1− y
− 1− y

)
. (2.168)

To compute the divergent first term we shift the y integration to t′′ = (1− y)2t, which gives us

dt′′

dy
=

d

dy
(1− y)2t = 2(1− y)(−1)t = −2

t′′

1− y
⇔ dy

1− y
= −1

2

dt′′

t′′
. (2.169)

The boundary conditions of the t′′ integration are a little harder to compute. Without derivation we quote that the t′′

integration, which naively only has the global lower boundary at t0 is cut off at t′. This correspond to an ordering in
the apparent symmetric integration over t′ and t′′. In addition, we approximate y → 1 wherever possible and find for
the leading logarithmic contributions to the splitting integral∫ 1

0

dy
αs
2π

P̂q←q(y) =
CF
2π

(∫ t

t′
dt′′

αs
t′′
−
∫ 1

0

dy αs (1 + y)

)
=
CF
2π

αs

(∫ t

t′
dt′′

1

t′′
−
∫ 1

0

dy (1 + y)

)
leading power dependence on y and t′′

=
CF
2π

αs

(
log

t

t′
− 3

2

)
≡ t′ Γq←q(t, t

′) . (2.170)

Because the strong coupling only runs logarithmically we can move it out of the integral as αs. assuming an
appropriate typical scale choice. Originally, its scale s is y2(1− y)2t′, which for example in the limit y → 1 turns into
αs = αs(t

′). This way we can express all Sudakov factors in terms of splitting functions Γj ,

∆q(t) = exp

(
−
∫ t

t0

dt′ Γq←q(t, t
′)

)
∆g(t) = exp

(
−
∫ t

t0

dt′ [Γg←g(t, t
′) + Γq←g(t

′)]

)
, (2.171)

which to leading logarithm in log(t/t′) read

Γq←q(t, t
′) =

CF
2π

αs(t
′)

t′

(
log

t

t′
− 3

2

)
Γg←g(t, t

′) =
CA
2π

αs(t
′)

t′

(
log

t

t′
− 11

6

)
Γq←g(t

′) =
nf
6π

αs(t
′)

t′
. (2.172)

These formulas have a slight problem: terms arising from next–to–leading logarithms spoil the limit t′ → t, where a
splitting probability should vanish. Technically, we can deal with the finite terms in the Sudakov factors by requiring
them to be positive semi–definite, i.e. by replacing Γ(t, t′) < 0 with zero. For the general argument this problem with
the analytic expressions for the splitting functions is irrelevant. In practice, many modern parton showers do not use
these approximate formulas and instead integrate the full splitting kernels.

Before we check that the Sudakov factors obey the DGLAP equation we confirm that such exponentials appear in
probabilistic arguments, similar to our discussion of the central jet veto in Section 1.6.2. Using Poisson statistics for
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something expected to occur 〈n〉 times, the probability of observing it n times is given by

P(n; 〈n〉) =
〈n〉n e−〈n〉

n!
P(0; 〈n〉) = e−〈n〉 . (2.173)

If the exponent in the Sudakov factor in Eq.(2.166) describes the integrated splitting probability of a parton i this
means that the Sudakov itself describes a non–splitting probability of the parton i into any final state j.
Based on such probabilistic Sudakov factors we can use a Monte Carlo, which is a Markov process without a memory
of individual past steps, to compute a chain of parton splittings as depicted in Figure 21. This will describe a quark or
a gluon propagating forward in time. Starting from a point (x1, t1) in momentum–virtuality space we step by step
move to the next splitting point (xj , tj). Following the original discussion t2 is the target virtuality at x2, and for
time–like final–state branching the virtuality is positive tj > 0 in all points j. The Sudakov factor is a function of t, so
it gives us the probability of not seeing any branching between t1 and t2 as ∆(t1)/∆(t2) < 1. The appropriate cutoff
scale t0 drops out of this ratio. Using a flat random number rt the t2 distribution is implicitly given by the solution to

∆(t1)

∆(t2)
= rt ε [0, 1] with t1 > t2 > t0 > 0 . (2.174)

Beyond the absolute cutoff scale t0 we assume that no resolvable branching occurs.

In a second step we need to compute the matching energy fraction x2 or the ratio x2/x1 describing the momentum
fraction which is kept in the splitting at x2. The y integral in the Sudakov factor in Eq.(2.166) gives us this probability
distribution which we can again implicitly solve for x2 using a flat random number rx∫ x2/x1

0
dy
αs
2π
P̂ (y)∫ 1

0
dy
αs
2π
P̂ (y)

= rx ε [0, 1] with x1 > x2 > 0 . (2.175)

For splitting kernels with soft divergences at y = 0 or y = 1 we should include a numerical cutoff in the integration
because the probabilistic Sudakov factor and the parton shower do not involve the regularized splitting kernels.
Of the four momentum entries of the radiated parton the two equations Eqs.(2.174) and (2.175) give us two. The
on–shell mass constraint fixes a third, so all we are left is the azimuthal angle distribution. We know from symmetry
arguments that QCD splitting is insensitive to this angle, so we can generate it randomly between zero and 2π. For
final–state radiation this describes probabilistic branching in a Monte Carlo program, just based on Sudakov factors.

The same statement for initial–state radiation including parton densities we will put on a more solid or mathematical
footing. The derivative of the Sudakov factor given in Eq.(2.166),

1

∆i(t)

d∆i(t)

dt
= −

∑
j

1

t

∫ 1

0

dy
αs
2π
P̂j←i(y) (2.176)

is precisely the second term in df(x, t)/dt for diagonal splitting, as shown in Eq.(2.127)

dfi(x, t)

dt
=

1

t

∑
j

[∫ 1

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t
)
−
∫ 1

0

dy
αs
2π

P̂j←i(y) fi (x, t)

]

=
1

t

∑
j

∫ 1

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t
)

+
fi(x, t)

∆i(t)

d∆i(t)

dt
. (2.177)

This relation suggests to consider the derivative of the fi/∆i instead of the Sudakov factor alone to obtain something
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like the DGLAP equation

d

dt

fi(x, t)

∆i(t)
=

1

∆i(t)

dfi(x, t)

dt
− fi(x, t)

∆i(t)2

d∆i(t)

dt

=
1

∆i(t)

1

t

∑
j

∫ 1

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t
)

+
fi(x, t)

∆i(t)

d∆i(t)

dt

− fi(x, t)

∆i(t)2

d∆i(t)

dt

=
1

∆i(t)

1

t

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t
)
. (2.178)

In the last step we cancel what corresponds to the plus prescription for diagonal splitting, which means we remove the
regularization of the splitting kernel at z → 1. Therefore, we need to modify the upper integration boundary by a
small parameter ε which can in principle depend on t. The resulting equation is the diagonal DGLAP equation with
unsubtracted splitting kernels, solved by the ratio of parton densities and Sudakov factors

t
d

dt

fi(x, t)

∆i(t)
=

d

d log t

fi(x, t)

∆i(t)
=
∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z)
fj

(x
z
, t
)

∆i(t)
. (2.179)

We can study the structure of these solutions of the unsubtracted DGLAP equation by integrating f/∆ between
appropriate points in t

fi(x, t)

∆i(t)
− fi(x, t0)

∆i(t0)
=

∫ t

t0

dt′

t′

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z)
fj

(x
z
, t′
)

∆i(t′)

fi(x, t) =
∆i(t)

∆i(t0)
fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t)

∆i(t′)

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t′
)

= ∆i(t)fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t)

∆i(t′)

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t′
)

≡ ∆i(t, t0)fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t, t

′)
∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t′
)
, (2.180)

where we choose t0 such that ∆(t0) = 1 and introduce the notation ∆(t1, t2) = ∆(t1, t0)/∆(t2, t0) for the ratio of
two Sudakov factors in the last line. This equation is a Bethe–Salpeter equation describing the dependence of the
parton density fi(x, t) on x and t.It has a suggestive interpretation: corresponding to Eq.(2.173) the first term can be
interpreted as ‘nothing happening to f between t0 and t’ because it is weighted by the Sudakov no-branching
probability ∆i(t, t0). The second term includes the ratio of Sudakov factors which just like in Eq.(2.174) means no
branching between t′ and t. Integrating this factor times the splitting probability over t′ε[t0, t] implies at least one
branching between t0 and t.

The key to using this probabilistic interpretation of the Sudakov factor in conjunction with the parton densities is its
numerical usability in a probabilistic approach: starting from a parton density somewhere in (x− t) space we need to
evolve it to a fixed point (xn, tn) given by the hard subprocess, e.g. qq̄ → Z with mZ giving the scale and energy
fraction of the two quarks. Numerically it would be much easier to simulate backwards evolution where we start from
the known kinematics of the hard process and the corresponding point in the (x− t) plane and evolve towards the
partons in the proton, ideally to a point where the probabilistic picture of collinear, stable, non–radiating quarks and
gluons in the proton holds. This means we need to define a probability that a parton evolved backwards from a
space–like t2 < 0 to t1 < 0 with |t2| > |t1| does not radiate or split.
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For this final step we define a probability measure for the backwards evolution of partons Π(t1, t2;x). Just like the
two terms in Eq.(2.180) it links the splitting probability to a probability of an undisturbed evolution. For example, we
can write the probability that a parton is generated by a splitting in the interval [t, t+ δt], evaluated at (t2, x), as
dF (t; t2). The measure corresponding to a Sudakov survival probability is then

Π(t1, t2;x) = 1−
∫ t2

t1

dF (t; t2) . (2.181)

Comparing the definition of dF to the relevant terms in Eq.(2.180) and replacing t→ t2 and t′ → t we know what
happens for the combination

fi(x, t2)dF (t; t2) =
dt

t

∆i(t2)

∆i(t)

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t
)

= dt ∆i(t2)
1

t

∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z)
fj

(x
z
, t
)

∆i(t)

= dt ∆i(t2)
d

dt

fi(x, t)

∆i(t)
using Eq.(2.179) . (2.182)

This means

Π(t1, t2;x) = 1− fi(x, t)∆i(t2)

fi(x, t2)∆i(t)

∣∣∣∣∣
t2

t1

=
fi(x, t1)∆i(t2)

fi(x, t2)∆i(t1)
, (2.183)

and gives us a probability measure for backwards evolution: the probability of evolving back from t2 to t1 is described
by a Markov process with a flat random number as

fi(x, t1)∆i(t2)

fi(x, t2)∆i(t1)
= r ε [0, 1] with |t2| > |t1| . (2.184)

While we cannot write down this procedure in a closed form, it shows how we can algorithmically generate initial state
as well as final state parton radiation patterns based on the unregularized DGLAP equation and the Sudakov factors
solving this equation. One remaining issue is that in our derivation of the collinear resummation interpretation of the
parton shower we assume some a strong ordering of the radiated partons which we will discuss in the next section.

2.5.2 Multiple gluon radiation

Following Eqs.(2.174) and (2.184) the parton shower is fundamentally a statistical approach. Sudakov factors are
nothing by no-emission probabilities. If we limit ourselves only to abelian splitting, i.e. radiating gluons off hard
quark legs, the parton shower generates a statistical distribution of the number of radiated gluons. This guarantees
finite results even in the presence of different infrared divergences. To understand the picture of parton splitting in
terms of a Poisson process it is most instructive to consider soft gluon emission of a quark, ignoring the gluon self
coupling. In other words, we study soft photon emission off an electron leg simply adding color factors CF .

To this point we have built our parton shower on collinear parton splitting or radiation and its universal properties
indicated by Eq.(2.99). Deriving the diagonal splitting kernels in Eqs.(2.105) and (2.118) we encounter an additional
source of infrared divergences, namely soft gluon emission corresponding to energy fractions z → 0, 1. Its radiation
pattern is also universal, just like the collinear case. One way to study this soft divergence without an overlapping
collinear pole is gluon radiation off a massless or massive hard quark leg

p+ k
p

k
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The original massive quark leg with momentum p+ k and mass m could be attached to some hard process as a
splitting final state. It splits into a hard quark p and a soft gluon k. The general matrix element without any
approximation reads

Mn+1 = gsT
a ε∗µ(k) ū(p)γµ

/p+ /k +m

(p+ k)2 −m2
Mn

= gsT
a ε∗µ(k) ū(p) [− /pγµ + 2pµ +mγµ + γµ /k]

1

2(pk) + k2
Mn

= gsT
a ε∗µ(k) ū(p)

2pµ + γµ /k
2(pk) + k2

Mn , (2.185)

using the Dirac equation ū(p)( /p−m) = 0. At this level, a further simplification requires for example the soft gluon
limit. In the presence of only hard momenta, except for the gluon, we can define it for example as kµ = λpµ, where
pµ is an arbitrary four-vector combination of the surrounding hard momenta. The small parameter λ then
characterizes the soft limit. For the invariant mass of the gluon we assume k2 = O(λ2), allowing for a slightly
off–shell gluon. We find

Mn+1 = gsT
a ε∗µ(k) ū(p)

pµ +O(λ)

(pk) +O(λ2)
Mn

∼ gsT a ε∗µ(k)
pµ

(pk)
ū(p)Mn

→ gs ε
∗
µ(k)

∑
j

T̂ aj
pµj

(pjk)

 ū(p)Mn (2.186)

The conventions are similar to Eq.(2.105), soMn includes all additional terms except for the spinor of the outgoing
quark with momentum p+ k. Neglecting the gluon momentum altogether defines the leading term of the
eikonal approximation.
In the last step of Eq.(2.186) we simply add all possible sources j of gluon radiation. This defines a color operator
which we insert into the matrix element and which assumes values of +T aij for radiation off a quark, −T aji for
radiation off an antiquark and −ifabc for radiation off a gluon. For a color neutral process like our favorite Drell–Yan
process adding an additional soft gluon qq̄ → Zg it returns

∑
j T̂j = 0. For a full QCD calculation, we would need to

add single gluon radiation with a subsequent gluon splitting via the self interaction. This diagram does not appear in
the QED case, it spoils our argument below, and it is not suppressed by any good arguments. In the following, we
nevertheless strictly limit ourselves to the abelian part of QCD, i.e. gluon radiation off quarks and fabc → 0. This also
means that all color factors are real. For the argument below we can think of gluon radiation off the process
e+e− → qq̄:

e−

e+

q

q̄

The sum over the gluon radiation dipoles in Eq.(2.186) covers the two quarks in the final state. Next, we need to
square this matrix element. It includes a polarization sum and will therefore depend on the gauge. We choose the
general axial gauge for massless gauge bosons

∑
pol

ε∗µ(k)εν(k) = −gµν +
kµnν + nµkν

(nk)
− n2 kµkν

(nk)2
= −gµν +

kµnν + nµkν
(nk)

, (2.187)
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with a light-like reference vector n obeying n2 = 0. The matrix element squared then reads

|Mn+1|2 = g2
s

(
−gµν +

kµnν + nµkν
(nk)

) ∑
j

T̂ aj
pµj

(pjk)

† ∑
j

T̂ aj
pνj

(pjk)

 |Mn|2

= g2
s

−
∑

j

T̂ aj
pµj

(pjk)

† ∑
j

T̂ aj
pjµ

(pjk)

 +
2

(nk)

∑
j

T̂ aj

† ∑
j

T̂ aj
(pjn)

(pjk)


 |Mn|2

= −g2
s

∑
j

T̂ aj
pµj

(pjk)

† ∑
j

T̂ aj
pjµ

(pjk)

 |Mn|2 . (2.188)

The insertion operator in the matrix element has the form of an insertion current multiplied by its hermitian conjugate.
This current describes the universal form of soft gluon radiation off an n-particle process

|Mn+1|2 ≡ −g2
s (J† · J) |Mn|2 with Jaµ(k, {pj} =

∑
j

T̂ aj
pµj

(pjk)
. (2.189)

We can further simplify the squared current appearing in Eq.(2.188) to

(J† · J) =
∑
j

T̂ aj T̂
a
j

p2
j

(pjk)2
+ 2

∑
i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

=
∑
j

T̂ aj

−∑
i 6=j

T̂ ai

 p2
j

(pjk)2
+ 2

∑
i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

= −

∑
i<j

+
∑
i>j

 T̂ ai T̂
a
j

p2
j

(pjk)2
+ 2

∑
i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)

= 2
∑
i<j

T̂ ai T̂
a
j

(
(pipj)

(pik)(pjk)
− p2

i

2(pik)2
−

p2
j

2(pjk)2

)
in the general massive case

= 2
∑
i<j

T̂ ai T̂
a
j

(pipj)

(pik)(pjk)
for massless partons

= 2
∑
i<j

T̂ ai T̂
a
j

(pipj)

(pik) + (pjk)

(
1

(pik)
+

1

(pjk)

)
. (2.190)

In the last step we only bring the eikonal factor into a different form which sometimes comes in handy because it
separates the two divergences associated with pi and with pj

At this point we return to massless QCD partons, keeping in mind that the ansatz Eq.(2.186) ensures that the insertion
currents only model soft, not collinear radiation. Just as a side remark at this stage — our definition of the insertion
current Jaµ in Eq.(2.189) can be generalized to colored processes, where the current becomes dependent on the gauge
vector n to cancel the n dependence of the polarization sum

Jaµ(k, {pj} =
∑
j

T̂ aj

(
pj

(pjk)
− n

(nk)

)
(2.191)

We will study this dipole radiation term in Eqs.(2.189) and (2.191) in detail. Calling them dipoles is a little bit of a
stretch if we compare it to a multipole series. To see the actual dipole structure we would need to look at the color
structure.
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Based on Eq.(2.188) for the eikonal limit we can write out the infinitesimal cross sections for soft gluon emission off a
massless quark. The difference between the usual QED calculation and our QCD version of it are the color factors. If
we take for example the Feynman diagram for the Drell–Yan process we see that the color factor for gluon ration off
the outgoing quark diagram squared is T̂ aT̂ a = −Tr(T aT a) = −(N2

c − 1)/2. Similarly to the derivation of the
splitting kernels we need to include a factor 1/(2Nc) to account for the averaging over the states of the intermediate
quark. The phase space factor for any number of final state gluons we postpone at this stage. In terms of the momenta
p1 and p2 of the outgoing quark and antiquark Eq.(2.190) gives us for the fully massive case

dσn+1 = g2
s Tr(T aT a)

1

2Nc
dσn

∫
d3k

(2π)32k0

(
(p1p2)

(p1k)(p2k)
− p2

1

2(p1k)2
− p2

2

2(p2k)2

)
= g2

sdσn
N2
c − 1

4Nc

∫
d3k

(2π)32k0

(
(p1p2)

(p1k)(p2k)
− m2

2(p1k)2
− m2

2(p2k)2

)
. (2.192)

Because we are interested in the dependence on the gluon energy it is not convenient to stick to kinematic invariants.
Instead, we compute the phase space integral over the additional gluon momentum in a specific reference frame. We
choose both, the quark and the antiquark energy to be the same E1 = E2 ≡ Eq , with the corresponding
three-momenta Eq~vj . The three-momentum of the gluon has the direction k̂. In this frame we find

(p1p2)

(p1k)(p2k)
− m2

2(p1k)2
− m2

2(p2k)2
=

E2
q (1− ~v1~v2)

E2
qk

2
0(1− ~v1k̂)(1− ~v2k̂)

− m2

2E2
qk

2
0(1− ~v1k̂)2

− m2

2E2
qk

2
0(1− ~v2k̂)2

=
1

k2
0

(
(1− ~v1~v2)

(1− ~v1k̂)(1− ~v2k̂)
− m2

2E2
q (1− ~v1k̂)2

− m2

2E2
q (1− ~v2k̂)2

)
. (2.193)

The numerical most relevant axes in the angular integral over the gluon momentum direction k̂ appear when the scalar
products in three dimensions give ~vj k̂ = 1. We first deal with the second and third integrals in Eq.(2.193), using
massless polar coordinates d3k = k2

0dk0d cos θkdφk = 2πk2
0dk0d cos θk,

∫
d3k

(2π)32k0

1

k2
0

m2

2E2
q (1− ~vk̂)2

=
1

8π2

m2

E2
q

∫
dk0

2k0

∫ 1

−1

d cos θk
1

(1− |~v| cos θk)2

=
1

8π2

m2

E2
q

∫
dk0

2k0

[
(−1)

|~v|
1

|~v| cos θk − 1

]1

−1

= − 1

8π2

m2

E2
q

∫
dk0

2k0

1

|~v|

(
1

|~v| − 1
+

1

|~v|+ 1

)
= − 1

8π2

m2

E2
q

∫
dk0

2k0

1

|~v|
2|~v|
|~v|2 − 1

= −m
2

8π2

∫
dk0

k0

1

|~pq|2 − E2
q

=
1

4π2

∫
dk0

k0
=

1

4π2
log

kmax
0

kmin
0

. (2.194)

This result is logarithmically divergent in the limit of soft gluon radiation, but there are not issues with the angular
integration over the gluon phase space and collinear configurations.

The first term in Eq.(2.193) has a more complex divergence structure. We can separate the two poles in the integrand
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and approximate the integrand by the respective residues,∫
d3k

(2π)32k0

1

k2
0

(1− ~v1~v2)

(1− ~v1k̂)(1− ~v2k̂)
'
∫

d3k

(2π)32k0

1

k2
0

(
(1− ~v1~v2)

(1− ~v1k̂pole)(1− ~v2~v1)
+

(1− ~v1~v2)

(1− ~v1~v2)(1− ~v2k̂pole)

)

=

∫
d3k

(2π)32k0

1

k2
0

(
1

1− ~v1k̂
+

1

1− ~v2k̂

)
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=
1

8π2

∫
dk0

k0

∫
d cos θk

(
1

1− ~v1k̂
+

1

1− ~v2k̂

)
pole

=
1

4π2

∫
dk0

k0

∫
d cos θk

1

1− cos θk
with appropriate reference axes

=
1

4π2
log

kmax
0

kmin
0

log
1− cos θmax

k

1− cos θmin
k

. (2.195)

In this calculation we neglect effects of order m2/E2
q when identifying ~vk̂ = cos θk. We see that in the double integral

of Eq.(2.195) both parts diverge logarithmically, usually referred to as the Sudakov double logarithm. The first
integral develops an infrared divergence in the gluon energy k0 when the gluon becomes soft, kmin

0 → 0. The second
integral diverges when the gluon is radiated collinearly with the hard quark or antiquark, cos θmax

k → 1. The integrals
in Eq.(2.194) are less divergent, so we can neglect them in the corresponding differential cross sections of Eq.(2.192)

dσn+1 = dσn
g2
sCF
2

1

4π2
log

kmax
0

kmin
0

log
1− cos θmax

k

1− cos θmin
k

= dσn
αsCF

2π
log

kmax
0

kmin
0

log
1− cos θmax

k

1− cos θmin
k

. (2.196)

To be able to continue with our calculation we resort to an obvious regularization scheme — the detector. Arbitrarily
soft photons leave no trace in a calorimeter, so they are not observable. The detector threshold acts as a finite cutoff
kmin

0 > 0. Similarly, a tracker cannot separate two tracks which are arbitrarily close to each other, which means that its
resolution limits the cos θk range.

From the general principles of field theory we know that soft divergences cancel once we combine virtual gluon
exchange diagrams and real gluon emission at the same order in perturbation theory. The soft cutoff in the k0

integration we assume to be linked between real and virtual diagrams using a Wick rotation. For QCD this is called
the Kinoshita–Lee–Nauenberg theorem. The relevant Feynman diagrams are propagator corrections for the m2 terms
in Eq.(2.192) and vertex corrections for the double divergences. Certainly, the leading overlapping soft and collinear
divergences in Eq.(2.195) should vanish after we combine real and virtual QCD corrections for the Drell–Yan process.
This means that after adding virtual corrections we can assume kmin

0 to be an experimental constraint without any
issues in the limit kmin

0 → 0. If everything is well defined we can exponentiate the successive dependence of
Eq.(2.196). The only complication is that now we have to include the correction for the phase space integration of the
many gluons in the final state. If we declare n the number of gluons radiated this factor is 1/n!. The observable we are
interested in is the cross section for any number of radiated gluons, for which we find

dσn+1 = dσ0
1

(n+ 1)!

(
−αsCF

2π
log

kmax
0

kmin
0

log
1− cos θmin

k

1− cos θmax
k

)n+1

⇒ σtot = σ0

∑
n

1

n!

(
−αsCF

2π
log

kmax
0

kmin
0

log
1− cos θmin

k

1− cos θmax
k

)n

σtot = σ0 exp

(
−αsCF

2π
log

kmax
0

kmin
0

log
1− cos θmin

k

1− cos θmax
k

)
. (2.197)

This pattern implies that the number of radiated gluons in the Drell–Yan process, neglecting the triple gluon vertex
and only taking into account the leading logarithms, follows a Poisson pattern. The total cross section as well as the
distribution of the radiated gluons are both well defined even in the limit of kmin

0 → 0.
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2.5.3 Catani–Seymour dipoles

From the previous discussions we know that parton or jet radiation is dominated by the collinear and soft limits and
the double enhancement shown in Eq.(2.197). The universal collinear limit of the different parton splittings is
described by the unregularized splitting kernels P̂i←j(z). They are the basis of the parton shower description of jet
radiation. The problem with the unregularized splittings is that part of them are divergent in the soft limit z → 0. The
question is if we can find an approximate description of parton splitting including the soft divergence in addition to the
collinear enhancement. Such a description is given by the Catani–Seymour dipoles and serves as the basis of the
shower in the SHERPA event generator.

Radiating a soft gluon off a hard quark leg is kinematically easy: the eikonal limit shown in Eq.(2.186) leaves the
quark momentum untouched, for example allowing us to define all three particles involved in the splitting to remain
on their mass shells. For the collinear splitting the situation is less simple. To describe the splitting of a quark into a
quark and a gluon (kµ) we use the Sudakov decomposition of Eq.(2.90). During our computation of the splitting
kernels it becomes obvious that this parameterization of the momenta has its shortcomings. The missing on–shell
conditions for the partons involved in the splitting are a serious problem for the implementation of the splitting
processes in a parton shower and its comparison to data. The question is if we can define the momenta involved in a
parton splitting more appropriately.

Clearly, just moving around momentum definitions for example starting from the Sudakov decomposition will not be
helpful. We are missing the necessary degrees of freedom to allow for all on–shell conditions. The trick is to include a
third parton in the picture: let us assume an emitter parton splitting p̃1k ∼ p1 + k together with another,
spectator parton p̃s, where the splitting process and the spectator can exchange momentum

p̃1k

p̃s

p1 + k

re-shuffle p1

k

ps

The momentum exchange between emitter and spectator respects momentum conservation,

p̃µ1k + p̃µs = pµ1 + kµ + pµs . (2.198)

In this picture the splitting process p̃1k → p1 + k does not conserve momentum. Instead, we prefer to require that also
the emitter is on its mass shell, forgetting phase space factors in the splitting process for a moment. This means for
massless partons that we simultaneously postulate

p̃2
1k = p̃2

s = p2
1 = k2 = p2

s = 0 . (2.199)

The last three conditions we assume can be fulfilled. The second condition we can realize defining an appropriate
momentum exchange with p̃2

s ∝ p2
s,

pµs = (1− y) p̃µs ⇒ p̃µ1k = pµ1 + kµ + pµs − p̃µs
= pµ1 + kµ − yp̃µs (2.200)

The exchanged momentum fraction y we can compute using the one remaining on–shell condition

0
!
= p̃2

1k =

(
p1 + k + ps −

ps
1− y

)2

=

(
p1 + k − y

1− y
ps

)2

=

(
p1 + k − 1

y−1 − 1
ps

)2

⇔ 0 =
(
(y−1 − 1)p1 + (y−1 − 1)k − ps

)2
= 2(y−1 − 1)

[
(y−1 − 1)(p1k)− (p1ps)− (psk)

]
⇔ (p1k)

y
= (p1k) + (p1ps) + (psk)

⇔ y =
(p1k)

(p1k) + (p1ps) + (psk)
. (2.201)
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Next, we need to define the momentum fraction z̃ which the final–state particle p1 carries away from the emitter. We
define it in terms of the projection onto p̃s instead of the four-momentum itself,

(p1p̃s) = z̃1 (p̃1kp̃s) ⇔ z̃1 =
(p1p̃s)

(p̃1kp̃s)
=

(p1p̃s)

(p1p̃s) + (kp̃s)− yp̃2
s

=
(p1ps)

(p1ps) + (psk)
. (2.202)

The second momentum fraction then fulfills

(kp̃s) = z̃k (p̃1kp̃s) ⇔ z̃1 + z̃k =
(p1ps)

(p1ps) + (psk)
+

(psk)

(p1ps) + (psk)
= 1 . (2.203)

In this parameterization we can look at the soft and collinear limits. According to Eq.(2.190) the relevant kinematic
variable is (p1k) + (psk), which we want to express in terms of z̃1,k and y. We find for the leading pole

1− y =
(p1ps) + (psk)

(p1k) + (p1ps) + (psk)

z̃1(1− y) =
(p1ps)

(p1k) + (p1ps) + (psk)

1

1− z̃1(1− y)
=

(p1k) + (p1ps) + (psk)

(p1k) + (psk)
, (2.204)

so the divergence of the intermediate propagator is described by the combination 1/(1− z̃1(1− y)). At this point we
have convinced ourselves that the kinematic description including a spectator quark solves the problems with the
on–shell partons consistently. The only prize we have to pay is the slightly more complicated form of the divergent
kinematic variable in Eq.(2.204). The second question is if anything unexpected happens in the soft and collinear
limits. As in many instances, we limit ourselves to final state gluon radiation, because the combination of initial–state
and final–state partons leads to many different cases which are technically more involved.

In the soft limit the structure of the radiation matrix element is given by Eq.(2.189). In the presence of only hard
momenta of the kind pµ, except for the gluon, we can define the soft limit as kµ = λpµ. The small parameter λ then
characterizes the soft limit. From Eq.(2.203) we know that in this limit z̃k → 0 while z̃1 → 1. The parameter y
computed in Eq.(2.201) scales like

y =
(p1k)

(p1k) + (p1ps) + (psk)
= λ

(pp1)

(psk) +O(λ)
→ 0

⇔ p̃µs = pµs +O(λ)

⇔ p̃µ1k = pµ1 +O(λ) . (2.205)

This is precisely the leading term in the eikonal approximation, assuming that the radiation of a soft gluon does not
change the hard radiating quark leg. We can compute the form of the divergence following Eq.(2.204), namely

1

1− z̃1(1− y)
=

(p1k) + (p1ps) + (psk)

(p1k) + (psk)
=

1

λ

(p1ps) +O(λ)

(p1p) + (psp)
, (2.206)

with an appropriate choice of a hard reference momentum p. This expression we can use to compute the soft splitting
kernel for example for quark splitting into a hard quark and a soft gluon.

In the collinear limit we define a transverse momentum component, similar to Eq.(2.90). The only difference is that
now we can require all participating partons to be on–shell, as seen in Eq.(2.199). We write the two momenta in the
final state as

p1 = zp+ pT −
p2
T

z

n

2(pn)
k = (1− z)p− pT −

p2
T

1− z
n

2(pn)
, (2.207)

where we postulate p2 = 0, n2 = 0, and (ppT ) = 0 = (npT ). The momentum p is defined as the sum of p1 and k,
modulo contributions of order pT . Aside from the on–shell conditions, this corresponds to the original Sudakov



2.5 Parton shower 169

decomposition. We can confirm that the condition p2 = O(p2
T ) in addition to the exact relations p2

1 = 0 = k2 is
allowed,

(p1 + k)2 = 2(p1k) = 2

(
zp+ pT −

p2
T

z

n

2(pn)

) (
(1− z)p− pT −

p2
T

1− z
n

2(pn)

)
= −2p2

T −
2p2
T

z

(1− z)(pn)

2(pn)
− 2p2

T

1− z
z(pn)

2(pn)

= −p2
T

(
2 +

1− z
z

+
z

1− z

)
= −p2

T

2z − 2z2 + (1− 2z + z2) + z2

z(1− z)
= − 1

2z(1− z)
. (2.208)

This is also the relevant small Mandelstam variable for the collinear splitting. The simple result also motivates the
choice of pre-factors of n in the ansatz of Eq.(2.207). The additional factor 1/(z(1− z)) is needed once we compute
the proper divergence defined in Eq.(2.204). Again, we now describe the splitting kinematics in the collinear limit as

y =
(p1k)

(p1k) + (p1ps) + (psk)
= − p2

T

2z(1− z)
1

(ps(p1 + k)) +O(p2
T )
→ 0

p̃µs = pµs +O(p2
T )

p̃µ1k = pµ1 + kµ +O(p2
T )

z̃1 = z +O(p2
T ) . (2.209)

As for the soft case, the momentum re-shuffling does not affect the leading terms in the collinear limit. Our divergent
Mandelstam variable becomes

1

1− z̃1(1− y)
=

1

1− z
(
1 +O(p2

T )
)
, (2.210)

which is exactly the z behavior of the unregularized spitting kernel P̂q←q in Eq.(2.118). We see that the
Catani–Seymour description of parton splitting with its spectator parton not only allows us to keep all participating
particles on their mass shell, it also correctly describes the soft as well as the collinear splitting point–by–point in
phase space. Without going into the reasons we should mention that this soft–collinear description of jet matrix
elements turns out to be much more successful than one would expect. The momentum regime in which the
Catani–Seymour dipoles describe LHC results extends far beyond pT . mZ .

We will see in Section 2.7.1 that the correct modelling of parton splittings in the soft and collinear limits is a key
ingredient to higher order calculations of LHC cross sections. These calculations are the main application of
Catani–Seymour dipoles. However, for this calculation we need to also integrate the expressions for soft and collinear
splitting amplitudes over phase space. The specific parameterization which allows us to assume that all particles in the
splitting process are on their mass shells. When we include the mother and the spectator momenta p̃1k and p̃s in the
factorized form of the n-particle and (n+ 1)-particle phase space the re-mapping in Eq.(2.198) leads to an additional
Jacobian (1− y)/(1− z̃1).

2.5.4 Ordered emission

From the derivation of the Catani–Seymour dipoles we know that for example the emission of a gluon off a hard quark
line is governed by distinctive soft and collinear phase space regimes. In our argument for the exponentiation of gluon
radiation matrix elements in Eq.(2.197) there is one piece missing: multiple gluon emission has to be ordered by some
parameter, such that in squaring the multiple emission matrix element we can neglect interference terms. These
interference diagrams contributing to the full amplitude squared are called non–planar diagrams. The question is if we
can justify to neglect them from first principles field theory and QCD. There are three reasons to do this, even though
none of them gives exactly zero for soft and collinear splittings. On the other hand, in combination they make for a
very good reason.



170 2 QCD

First, an arguments for a strongly ordered gluon emission comes from the divergence structure of soft and collinear
gluon emission. Two successively radiated gluons look like

p+ k1 + k2 p+ k2

k1

p

k2

p+ k1 + k2 p+ k1

k2

p

k1

According to Eq.(2.186) single gluon radiation with momentum k off a hard quark with momentum p is described by
a kinematic term (ε∗p)(pk). For successive radiation the two Feynman diagrams give us the combined kinetic terms

(ε1p)

(p+ k1 + k2)2 −m2

(ε2p)

(p+ k2)2 −m2
+

(ε2p)

(p+ k1 + k2)2 −m2

(ε1p)

(p+ k1)2 −m2

=
(ε1p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε2p)

2(pk2)
+

(ε2p)

2(pk1) + 2(pk2) + (k1 + k2)2

(ε1p)

2(pk1)
k2

1 = 0 = k2
2

' (ε1p)

2 maxj(pkj)

(ε2p)

2(pk2)
+

(ε2p)

2 maxj(pkj)

(ε1p)

2(pk1)
(pkj) strongly ordered

'


(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk2)
(pk2)� (pk1) k2 softer

(ε1p)(ε2p)

2 maxj(pkj)

1

2(pk1)
(pk1)� (pk2) k1 softer .

(2.211)

Going back to the two Feynman diagrams this means that once one of the gluons is significantly softer than the other
the Feynman diagrams with the later soft emission dominates. After squaring the amplitude there will be no phase
space regime where interference terms between the two diagrams are numerically relevant. The coherent sum over
gluon radiation channels reduces to a incoherent sum, ordered by the softness of the gluon.
This argument can be generalized to multiple gluon emission by recognizing that the kinematics will always be
dominated by the more divergent propagators towards the final state quark with momentum p. Note, however, that it is
based on an ordering of the scalar products (pkj) interpreted as the softness of the gluons. We already know that a
small value of (pkj) can as well point to a collinear divergence; every step in the argument of Eq.(2.211) still applies.

Second, we can derive ordered multiple gluon emission from the phase space integration in the
soft or eikonal approximation. There, gluon radiation is governed by the so-called radiation dipoles given in
Eq.(2.190). Because each dipole includes a sum over all radiating legs in the amplitude, the square includes a double
sum over the hard legs. Diagonal terms vanish at least for over–all color–neutral processes. Because the following
argument is purely based on kinematics we will ignore all color charges and other factors.
For successive gluon radiation off a quark leg the question we are interested in is where the soft gluon k is radiated,
for example in relation to the hard quark p1 and the harder gluon p2. The kinematics of this process is the same as soft
gluon radiation of a quark–antiquark pair produced in an electroweak process. For the dipoles we let the indices i, j
run over the harder quark, antiquark, and possibly gluon legs. A well–defined process with all momenta defined as
outgoing is

p+ k1
p1

k

p2

p1

p2 + k

k

p2

in the approximation of abelian QCD, i.e. no triple gluon vertices. We start by symmetrizing the leading soft radiation
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dipole with respect to the two hard momenta in a particular way,

(J† · J)12 =
(p1p2)

(p1k)(p2k)

=
1

k2
0

1− cos θ12

(1− cos θ1k)(1− cos θ2k)
in terms of opening angles θ

=
1

2k2
0

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
+ (1↔ 2)

≡ W
[1]
12 +W

[2]
12

k2
0

. (2.212)

The last term is an implicit definition of the two terms W [1]
12 . The pre-factor 1/k2

0 is given by the leading soft
divergence. The original form of (J†J) is symmetric in the two indices, which means that both hard partons can take
the role of the hard parton and the interference partner. In the new form the symmetry in each of the two terms is
broken. Each of the two terms we need to integrate over the gluon’s phase space, including the azimuthal angle φ1k.
Note, however, that this splitting into two contributions is not the standard separation into the two diagrams. It is a
specific ansatz to show the ordering patterns we will see below.

To compute the actual integral we express the three parton vectors in polar coordinates where the initial parton p1

propagates into the x direction, the interference partner p2 in the (x− y) plane, and the soft gluon in the full
three-dimensional space described by polar coordinates,

p̂1 = (1, 0, 0) hard parton
p̂2 = (cos θ12, sin θ12, 0) interference partner

k̂ = (cos θ1k, sin θ1k cosφ1k, sin θ1k sinφ1k) soft gluon

⇒ cos θ2k ≡ (p̂2k̂) = cos θ12 cos θ1k + sin θ12 sin θ1k cosφ1k . (2.213)

From the scalar product between these four-vectors we see that of the terms appearing in Eq.(2.212) only the opening
angle θ2k includes φ1k, which for the azimuthal angle integration means∫ 2π

0

dφ1k W
[1]
12 =

1

2

∫ 2π

0

dφ1k

(
1− cos θ12

(1− cos θ1k)(1− cos θ2k)
+

1

1− cos θ1k
− 1

1− cos θ2k

)
.

=
1

2

1

1− cos θ1k

∫ 2π

0

dφ1k

(
1− cos θ12

1− cos θ2k
+ 1− 1− cos θ1k

1− cos θ2k

)
=

1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

∫ 2π

0

dφ1k
1

1− cos θ2k

)
. (2.214)

The azimuthal angle integral in this expression for W [i]
12 we can solve∫ 2π

0

dφ1k
1

1− cos θ2k
=

∫ 2π

0

dφ1k
1

1− cos θ12 cos θ1k − sin θ12 sin θ1k cosφ1k

=

∫ 2π

0

dφ1k
1

a− b cosφ1k

=

∮
unit circle

dz
1

iz

1

a− bz + 1/z

2

with z = eiφ1k , cosφ1k =
z + 1/z

2

=
2

i

∮
dz

1

2az − b− bz2

=
2i

b

∮
dz

(z − z−)(z − z+)
with z± =

a

b
±
√
a2

b2
− 1 .

(2.215)
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This integral is related to the sum of all residues of poles inside the closed integration contour. Of the two poles z− is
the one which typically lies within the unit circle, so we find∫ 2π

0

dφ1k
1

1− cos θ2k
=

2i

b
2πi

1

z− − z+
=

2π√
a2 − b2

=
2π√

(cos θ1k − cos θ12)2
=

2π

| cos θ1k − cos θ12|
. (2.216)

The entire integral in Eq.(2.214) then becomes∫ 2π

0

dφ1k W
[1]
12 =

1

2

1

1− cos θ1k

(
2π + (cos θ1k − cos θ12)

2π

| cos θ1k − cos θ12|

)
=

π

1− cos θ1k
(1 + sign(cos θ1k − cos θ12))

=


2π

1− cos θ1k
if θ1k < θ12

0 else .
(2.217)

The soft gluon is only radiated at angles between zero and the opening angle of the initial parton p1 and its hard
interference partner or spectator p2. The same integral over W [2]

12 gives the same result, with switched roles of p1 and
p2. Combining the two permutations this means that the soft gluon is always radiated within a cone centered around
one of the hard partons and with a radius given by the distance between the two hard partons. Again, the coherent sum
of diagrams reduces to an incoherent sum. This derivation angular ordering is exact in the soft limit.
There is a simple physical argument for this suppressed radiation outside a cone defined by the radiating legs. Part of
the deviation is that the over–all process is color–neutral. This means that once the gluon is far enough from the two
quark legs it will not resolve their individual charges but only feel the combined charge. This screening leads to an
additional suppression factor of the kind θ2

12/θ
2
1k. This effect is called coherence.

The third argument for ordered emission comes from color factors. Crossed successive splittings or interference terms
between different orderings are color suppressed. For example in the squared diagram for three jet production in e+e−

collisions the additional gluon contributes a color factor

Tr(T aT a) =
N2
c − 1

2
= NcCF (2.218)

When we consider the successive radiation of two gluons the ordering matters. As long as the gluon legs do not cross
each other we find the color factor

Tr(T aT aT bT b) = (T aT a)il(T
bT b)li

=
1

4

(
δilδjj −

δijδjl
Nc

)(
δilδjj −

δijδjl
Nc

)
using T aijT

a
kl =

1

2

(
δilδjk −

δijδkl
Nc

)
=

1

4

(
δilNc −

δil
Nc

)(
δilNc −

δil
Nc

)
= Nc

(
N2
c − 1

2Nc

)2

= NcC
2
F =

16

3
(2.219)

Similarly, we can compute the color factor when the two gluon lines cross. We find

Tr(T aT bT aT b) = −N
2
c − 1

4Nc
= −CF

2
= −2

3
. (2.220)

Numerically, this color factor is suppressed compared to 16/3. This kind of behavior is usually quoted in powers of
Nc where we assume Nc to be large. In those terms non–planar diagrams are suppressed by a factor 1/N2

c compared
to the planar diagrams.
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Once we also include the triple gluon vertex we can radiate two gluons off a quark leg with the color factor

Tr(T aT b) facdf bcd =
δab

2
Ncδ

ab =
Nc(N

2
c − 1)

2
= N2

cCF =
36

3
. (2.221)

This is not suppressed compared to successive planar gluon emission, neither in actual numbers not in the large-Nc
limit.

We can try the same argument for a purely gluonic theory, i.e. radiating gluons off two hard gluons in the final state.
The color factor for single gluon emission after squaring is

fabcfabc = Ncδ
aa = Nc(N

2
c − 1) ∼ N3

c , (2.222)

using the large-Nc limit in the last step. For planar double gluon emission with the exchanged gluon indices b and f
we find

fabdfabefdfgfefg = Ncδ
de Ncδ

de ∼ N4
c . (2.223)

Splitting one radiated gluon into two gives

fabc f ceffdef fabd = Ncδ
cd Ncδ

cd ∼ N4
c . (2.224)

This means that planar emission of two gluons and successive splitting of one into two gluons cannot be separated
based on the color factor. We can use the color factor argument only for abelian splittings to justify ordered gluon
emission.

2.6 Multi–jet events

Up to now we have derived and established the parton shower as a probabilistic tool to simulate the successive
emission of jets in hard processes. This includes a careful look at the collinear and soft structure of parton splitting as
well as the crucial assumption of ordered emission. The starting point of this whole argument was that the Sudakov
factors obey the DGLAP equation, as shown in Eq.(2.179).
In the following we will introduce an alternative object which allows us to the compute rates and patterns of jet
radiation. In Section 2.6.1 we will introduce generating functionals and their evolution equations. Their underlying
approximations are related to the parton shower, but their main results hold more generally. We have already used
some of the key features which will derive here in Higgs physics applications in Section 1.6.2 Per se it is not clear how
jet radiation described by the parton shower and jet radiation described by fixed-order QCD processes are linked. In
Section 2.6.2 we will discuss ways to combine the two approaches in realistic LHC simulations, bringing us very
close to contemporary research topics.

2.6.1 Jet radiation patterns

From Section 2.5.2 we know that unlike other observables related to multi–jet events the number of radiated jets is
well defined after a simple resummation. Generating functionals for the jet multiplicity allow us to calculate
resummed jet quantities from first principles in QCD. We construct a generating functional in an arbitrary parameter u
by demanding that repeated differentiation at u = 0 gives exclusive multiplicity distributions Pn ≡ σn/σtot,

Φ =

∞∑
n=1

unPn−1 with Pn−1 =
σn−1

σtot
=

1

n!

dn

dun
Φ

∣∣∣∣
u=0

. (2.225)

For the generating functional Φ we will suppress the argument u. In the application to gluon emission the explicit
factor 1/n! corresponds to the phase space factor for identical bosons. Because in Pn we only count radiated jets, our
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definition uses Pn−1 where other conventions use Pn. A second observable we can extract from Φ is the
average jet multiplicity,

dΦ

du

∣∣∣∣
u=1

=

∞∑
n=1

n un−1 σn−1

σtot

∣∣∣∣∣
u=1

= 1 +
1

σtot

∞∑
n=1

(n− 1) σn−1 . (2.226)

Note again that Pn−1 describes n− 1 radiated jets, in the simplest case corresponding to n observed jets in the final
state.

The question is what we can say about such generating functionals. In analogy to the DGLAP equation we can derive
an evolution equation for Φ. We start by reminding ourselves that for the parton densities and the Sudakov factors the
integrated version of the evolution equation given in Eq.(2.180) reads

fi(x, t) = ∆i(t, t0)fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t, t

′)
∑
j

∫ 1−ε

0

dz

z

αs
2π

P̂i←j(z) fj

(x
z
, t′
)
. (2.227)

The sum over the splittings is organized by initial states j which turn into the relevant parton i in the collinear
approximation. The third particle involved in the splitting j → i follows automatically.
Instead of deriving the corresponding equation for the generating functional Φ we motivate it by analogy. In the
Sudakov picture we can apply our probabilistic picture to parton splittings i→ jk in the final state. This should
correspond to an evolution equation for the generating functionals for the number of jets. All three external particles
are then described by generating functionals Φ instead of parton densities, giving us

Φi(t) = ∆i(t, t0)Φi(t0) +

∫ t

t0

dt′

t′
∆i(t, t

′)
∑
i→j,k

∫ 1

0

dz
αs
2π

P̂i→jk(z) Φj(z
2t′)Φk((1− z)2t′) . (2.228)

This evolution equation for general functionals is the same DGLAP equation we use for parton densities in the initial
state. The difference is that the generating functionals count jets in the final state. This means that unlike for the
parton densities the evolution equation does not include a convolution, but instead two generating functionals under
the integral. The precise link between the generating functionals Φ and a parton–density–inspired partition function
we skip at this stage. Similarly, we introduce the argument of the strong coupling without any further motivation as
αs(z

2(1− z)2t′). It will become clear during our computation that this scale choice is appropriate.

The argument in this section will go two ways: first, we write down a proper differential evolution equation for Φq(t).
Then, we solve this equation for quarks, only including the abelian splitting q → qg. This solution will give us the
known jet scaling patterns. To start with, we insert the unregularized splitting kernel from Eq.(2.118) into the
evolution equation,

Φq(t) = ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)

∫ 1

0

dz
αs
2π

CF
1 + z2

1− z
Φq(z

2t′)Φg((1− z)2t′)

= ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)

∫ 1

0

dz
αsCF

2π

−(1− z)(1 + z) + 2

1− z
Φq(z

2t′)Φg((1− z)2t′)

= ∆q(t, t0)Φq(t0) +

∫ t

t0

dt′

t′
∆q(t, t

′)

∫ 1

0

dz
αsCF

2π

(
2

1− z
− 1− z

)
Φq(z

2t′)Φg((1− z)2t′) . (2.229)

We can simplify the divergent part of Eq.(2.229) using the new integration parameter t′′ = (1− z)2t′. This gives us
the same Jacobian as in Eq.(2.169),

dt′′

dz
=

d

dz
(1− z)2t′ = 2(1− z)(−1)t′ = −2

t′′

1− z
⇔ dz

1− z
= −1

2

dt′′

t′′
. (2.230)
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In addition, we approximate z → 1 wherever possible in the divergent term and cut off all t integrations at the infrared
resolution scale t0. This will give us the leading logarithm in t space,

∫ 1

0

dz
αs(z

2(1− z)2t′)CF
2π

2

1− z
Φq(z

2t′)Φg((1− z)2t′) = Φq(t
′)

∫ t′

t0

dt′′
αs(t

′′)CF
2π

1

t′′
Φg(t

′′) . (2.231)

For the finite part in Eq.(2.229) we neglect the logarithmic z dependence of all functions and integrate the leading
power dependence 1 + z to 3/2,

−
∫ 1

0

dz
αs(z

2(1− z)2t′)CF
2π

(1 + z) Φq(z
2t′)Φg((1− z)2t′) ' −αs(t

′)CF
2π

3

2
Φq(t

′)Φg(t
′) . (2.232)

Strictly speaking, the strong coupling as well as the two generating functionals could be evaluated at any typical scale
covered by the z integral, considering that the prefactor 1 + z grows towards z → 1; we assume that their change with
varying z is small compared to the leading logarithm. After these two simplifying steps Eq.(2.229) reads

Φq(t) = ∆q(t, t0)Φq(t0) +
CF
2π

∫ t

t0

dt′

t′
∆q(t, t

′)

(∫ t′

t0

dt′′
αs(t

′′)

t′′
Φq(t

′)Φg(t
′′)− 3

2
αs(t

′)Φq(t
′)Φg(t

′)

)
(2.233)

= ∆q(t, t0)Φq(t0) +
CF
2π

∆q(t, t0)

∫ t

t0

dt′

t′
1

∆q(t′, t0)
Φq(t
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(∫ t′

t0

dt′′
αs(t

′′)

t′′
Φg(t

′′)− 3

2
αs(t

′)Φg(t
′)

)
.

The original Sudakov factor ∆q(t, t
′) is split into a ratio of two Sudakov factors. This allows us to differentiate both

sides with respect to t,

d

dt
Φq(t) =

d∆q(t, t0)

dt
Φq(t0) +

CF
2π
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2
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1

t

1
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. (2.234)

In the last step we use the definition in Eq.(2.233). This simplified equation has a solution which we can write in a
closed form, namely

Φq(t) = Φq(t0) ∆q(t, t0) exp

[
CF
2π

∫ t

t0

dt′
αs(t

′)

t′

(
log

t

t′
− 3

2

)
Φg(t
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]
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[
−
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dt′ Γq←q(t, t
′)

]
exp
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′)Φg(t

′)

]
= Φq(t0) exp

[∫ t

t0

dt′ Γq←q(t, t
′) (Φg(t

′)− 1)

]
. (2.235)
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We can prove this by straightforward differentiation of the first line in Eq.(2.235),
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)
. (2.236)

The expression given in Eq.(2.235) indeed solves the evolution equation in Eq.(2.234). The corresponding
computation for Φg(t) follows the same path.

By definition, the generating functional evaluated at the resolution scale t0 describes an ensemble of jets which have
had no opportunity to split. This means Φq,g(t0) = u. The quark and gluon generating functionals to next–to–leading
logarithmic accuracy are

Φq(t) = u exp

[∫ t

t0

dt′ Γq←q(t, t
′) (Φg(t

′)− 1)

]
Φg(t) = u exp

[∫ t

t0

dt′

(
Γg←g(t, t

′) (Φg(t
′)− 1) + Γq←g(t

′)

(
Φ2
q(t
′)

Φg(t′)
− 1

))]
. (2.237)

The splitting kernels are defined in Eq.(2.172); gluon splitting to quarks described by Γq←g is suppressed by a power
of the logarithm log(t/t′).

The logarithm log(t/t′) combined with the coupling constant αs included in the splitting kernels is the small
parameter which we will use for the following argument. If this logarithmically enhanced term dominates the physics,
the evolution equations for quark and gluons are structurally identical. In both cases, the Φ dependence of the
exponent spoils an effective solution of Eq.(2.237). However, the logarithmic form of Γ(t, t′) ensures that the main
contribution to the t′ integral comes from the region where t′ ∼ t0. Unless something drastic happens with the
integrands in Eq.(2.237) this means that under the integral we can approximate Φq,g(t0) = u and, if necessary,
iteratively insert the solution for Φ(t) into the differential equation. The leading terms for both, quark and gluon
evolution equations turn into the closed form

Φq,g(t) = u exp

[∫ t

t0

dt′ Γq,g(t, t
′) (u− 1)

]
= u exp

[
−(1− u)

∫ t

t0

dt′ Γq,g(t, t
′)

]
. (2.238)

Using the Sudakov factor defined in Eq.(2.166) the generating functional in the approximation of large logarithmically
enhanced parton splitting is

Φq,g(t) = u ∆q,g(t)
1−u . (2.239)

Its first derivative for general values of u is

d

du
Φq,g(t) = ∆q,g

d

du
ue−u log ∆q,g

= ∆q,g

[
e−u log ∆q,g + u (− log ∆q,g) e

−u log ∆q,g
]

= ∆q,g (1− u log ∆q,g) e
−u log ∆q,g . (2.240)
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The n-th derivative has the form

1

n!

dn

dun
Φq,g(t) =

(− log ∆q,g)
n−1

n!
∆q,g (n− u log ∆q,g) e

−u log ∆q,g . (2.241)

We can show this by induction, starting from the first derivative in Eq.(2.240),

1
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dn

dun
Φq,g(t) =

1

n

d

du

(
1

(n− 1)!

dn−1

dun−1
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)
=

1

n

d

du

[
(− log ∆q,g)

n−2

(n− 1)!
∆q,g (n− 1− u log ∆q,g) e

−u log ∆q,g

]
using Eq.(2.241)

=
(− log ∆q,g)

n−2

n!
∆q,g

[
(− log ∆q,g) e

−u log ∆q,g + (n− 1− u log ∆q,g) (− log ∆q,g)e
−u log ∆q,g

]
=

(− log ∆q,g)
n−1

n!
∆q,g [1 + n− 1− u log ∆q,g] e

−u log ∆q,g . (2.242)

By definition, Eq.(2.241) gives the Poisson scaling pattern in the number of jets, namely

Pn−1 = ∆q,g(t)
| log ∆q,g(t)|n−1

(n− 1)!
or R(n+1)/n =

| log ∆q,g(t)|
n+ 1

. (2.243)

In addition to the logarithmically enhanced Poisson case we can find a second, recursive solution for the generating
functionals. It holds in the limit of small emission probabilities. The emission probability is governed by Γi←j(t, t

′),
as defined in Eq.(2.172). We can make it small by avoiding a logarithmic enhancement, corresponding to no large
scale ratios t/t0. In addition, we would like to get rid of Γq←g while keeping Γg←g . Purely theoretically this means
removing the gluon splitting into two quarks and limiting ourselves to pure Yang-Mills theory. In that case the scale
derivative of Eq.(2.237) reads

dΦg(t)

dt
= Φg(t0)

d

dt
exp

[∫ t

t0

dt′ Γg←g(t, t
′) (Φg(t
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]
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αs(t) (Φg(t)− 1) +
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t′
(Φg(t

′)− 1)

]
. (2.244)

This form is already greatly simplified, but in the combination of the integral and the running strong coupling it is not
clear what the limit of small but finite log(t/t0) would be. Integrating by parts we find a form which we can estimate
systematically,

dΦg(t)

dt
= Φg(t)

CA
2πt

[
−11

6
αs(t) (Φg(t)− 1)−
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6
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dt′ log
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d
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]
. (2.245)

We can evaluate this expression in the limit of t = t0 + δ or t0/t = 1− δ/t. The two leading terms, ignoring all terms
of the order δ2, read

dΦg(t)
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= Φg(t)

CA
2πt

[
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(
δ
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6
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δ

t0

d

dt
(αs(t) (Φg(t)− 1))
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αs(t)

t

(
δ
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6
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(Φg(t)− 1) +O

(
δ2
)
. (2.246)
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To leading order in δ/t the equation for the generating functional becomes

dΦg(t)

dt
= Φg(t) Γ̃g←g(t, t0) (Φg(t)− 1) with Γ̃g←g(t, t0) =

CA
2π

αs(t)

t

(
log

t

t0
− 11

6

)
. (2.247)

With Γ̃ we define a slightly modified splitting kernel, where the prefactor αs/t is evaluated at the first argument t
instead of the second argument t0. Including the boundary condition Φg(t0) = u we can solve this equation for the
generating functional, again using the method of the known solution,

Φg(t) =
1

1 +
1− u
u∆̃g(t)

with ∆̃g(t) = exp

(
−
∫ t

t0

dt′Γ̃g←g(t
′, t0)

)
. (2.248)

The derivative of this solution is

dΦg(t)

t
=

d

dt

(
1 +
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u∆̃g(t)

)−1

= −Φg(t)
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dt
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′, t0) = Φg(t) (Φg(t)− 1) Γ̃g←g(t, t0) , (2.249)

which is precisely the evolution equation in Eq.(2.247).

While we have suggestively defined a modified splitting kernel Γ̃ in Eq.(2.247) and even extended this analogy to a
Sudakov-like factor in Eq.(2.248) it is not entirely clear what this object represents. In the limit of large log(t/t0)� 1
or t� t0, which is not the limit we rely on for the pure Yang–Mills case, we find∫ t
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dt′ Γ̃g←g(t
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∫ t

t0

dt′ Γg←g(t
′, t0) =
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(2.250)

In the staircase limit t ∼ t0 and consistently neglecting log(t/t0) the two kernels Γg←g and Γ̃g←g become identical.
In the same limit we find ∆g ∼ ∆̃g ∼ 1. Again using t′ = t0 + δ and only keeping the leading terms in δ we can
compute the leading difference

Γ̃g←g(t
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using Eq.(2.73)
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In the pure Yang–Mills theory the running of the strong coupling is described by b0 = 1/(4π)11Nc/3. In both limits
the true and the modified splitting kernels differ by the respective small parameter.

The closed form for the generating functional in Eq.(2.248) allows us to compute the number of jets in purely gluonic
events. The first derivative is

d

du
Φg(t) =

d

du
u

(
u+

1− u
∆̃g(t)

)−1

=

(
u+
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)−1

+ u(−1)

(
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)−2(
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∆̃g

)
. (2.252)

The form of the n-th derivative we can again prove by induction. Clearly, for n = 1 the above result is identical with
the general solution
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dun
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) . (2.253)

The induction step from n− 1 to n is
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) . (2.254)

Evaluating the solution given by Eq.(2.253) for u = 0 gives us the jet rates

Pn−1 =
1

n!

dn

dun
Φg(t)

∣∣∣∣∣
u=0

=

(
1

∆̃g

− 1

)n−1

∆̃n
g = ∆̃g

(
1− ∆̃g

)n−1

, (2.255)

which predicts constant ratios

R(n+1)/n = 1− ∆̃g(t) . (2.256)

Such constant ratios define a staircase pattern. The name describes the form of the n-distribution on a logarithmic
scale. This pattern was first seen in W+jets production at UA1 in 1985. It has for a long time been considered an
accidental sweet spot where many QCD effects cancel each other to produce constant ratios of successive exclusive
n-jet rates. Our derivation from the generating functionals suggest that staircase scaling is one of two
pure jet scaling patterns:

1. in the presence of large scale differences abelian splittings generate a Poisson pattern with
R(n+1)/n ∝ 1/(n+ 1), as seen in Eq.(2.243).
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2. for democratic scales non–abelian splittings generate a staircase pattern with constant R(n+1)/n shown in
Eq.(2.256).

We have shown them for final state radiation only, so they should be observable in e+e− → jets events. Our derivation
of the scaling patterns is exclusively based on the parton shower. However, it turns out that corrections from hard
matrix element corrections, described in the next section, do not change the staircase scaling patterns.

To generalize the final–state jet scaling patterns to initial state radiation we need to include parton densities. For
simplicity, we again resort to the Drell–Yan process. We can approximate the parton densities based on two
assumptions: threshold kinematics and x1 ≈ x2. In the absence of additional jets the hadronic and partonic energy
scales in on–shell Z production are linked by x(0) ≈ mZ/

√
s. For other jet configurations we denote the threshold

value as x(n). Putting everything together we find for the generating function

ΦDrell–Yan =
∑
i,j

fi

(
x(n)

2

)
Φ̃i × fj

(
x(n)

2

)
Φ̃j . (2.257)

This means we can use the jet rates from the e+e− case multiplied by a parton density factor. The structural new
feature in ΦDrell–Yan is the n-dependence from the parton densities. This is different from the resummed and
n-independent definition in Eq.(2.225). However, the generating function is not a physical object. Using our usual
formalism and notation we find
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1

n!

dn

dun
ΦDrell–Yan

∣∣∣∣
u=0

=
1

n!

∑
i,j

fi

(
x(n)

2

)
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2

)
× dn

dun
Φ̃iΦ̃j

∣∣∣∣∣∣
u=0

. (2.258)

2.6.2 CKKW and MLM schemes

The main problem with QCD at the LHC is the range of energy scales of the jets we encounter. Collinear jets with
their small transverse momenta are well described by a parton shower. From Section 2.3.5 we know that strictly
speaking the parton shower only fills the phase space region up to a maximum transverse momentum pT < µF . In
contrast, hard jets with large transverse momentum are described by matrix elements which we compute using the
QCD Feynman rules. They fill the non–collinear part of phase space which is not covered by the parton shower.
Because of the collinear logarithmic enhancement we discussed in Section 2.3.5 we expect many more collinear and
soft jets than hard jets at the LHC.
The natural question then becomes: what is the range of ‘soft’ or ‘collinear’ and what is ‘hard’? Applying a
consistency condition we can define collinear jet radiation by the validity of the collinear approximation in Eq.(2.87).
The maximum pT of a collinear jet is the upper end of the region for which the jet radiation cross section behaves like
1/pT , or the point where the distribution pT dσ/dpT leaves its plateau. For harder and harder jets we will at some
point become limited by the partonic energy available at the LHC, which means the pT distribution of additional jets
will start dropping faster than 1/pT . Collinear logarithms will become numerically irrelevant and jets will be
described by the regular matrix element squared without any resummation.

Quarks and gluons produced in association with gauge bosons at the Tevatron behave like collinear jets for
pT . 20 GeV, because quarks at the Tevatron are limited in energy. At the LHC, jets produced in association with
tops behave like collinear jets to pT ∼ 150 GeV, jets produced with new particles of mass 500 GeV behave like
collinear jets to pT scales larger than 300 GeV. This is not good news, because collinear jets means many jets, and
many jets produce combinatorial backgrounds and ruin the missing momentum resolution of the detector: if we are
looking for example for two jets to reconstruct an invariant mass you can simply plot all events as a function of this
invariant mass and remove the backgrounds by requiring all event to sit around a peak in mjj . If we have for example
three jets in the event we have to decide which of the three jet–jet combinations should go into this distribution. If this
is not possible we have to consider two of the three combinations as uncorrelated ‘background’ events. In other words,
we make three histogram entries out of each signal or background event and consider all three background events plus
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two of the three signal combinations as background. This way the signal–to–background ratio decreases from NS/NB
to NS/(3NB + 2NS). A famous victim of such combinatorics is the (former) Higgs discovery channel pp→ tt̄H
with H → bb̄.

For theorists this means that at the LHC we have to reliably model collinear and hard jets. For simplicity, in this
section we will first limit our discussion to final–state radiation, for example off the R-ratio process e+e− → qq̄ from
Section 2.1.1. Combining collinear and hard jets in the final state has to proceed in two steps. The first of them has
nothing to do with the actual jet simulation. If we categorize the generated events by counting the number of jets in
the final state we can refer to an exclusive rate, which requires a process to have exactly a given number of jets, or an
inclusive rate, where we for example identify n jets and ignore everything else appearing in the event. Additional
collinear jets which we usually denote as ‘+X’ will be included. We already know that a total rate for any hard
process we compute as e+e− → qq̄ +X , with any additional number of collinear jets in the final state. Predictions
involving parton densities and the DGLAP equation are jet–inclusive. Any scheme combining the parton shower and
hard matrix elements for events with arbitrary jet multiplicity has to follow the path

1. define jet–exclusive events from the hard matrix elements and the parton shower

2. combine final states with different numbers of final–state particles

3. reproduce matrix element results in high-pT and well separated phase space region

4. reproduce parton shower results for collinear and soft radiation

5. interpolate smoothly and avoid double counting of events

For specific processes at the Tevatron the third and fourth point on this list have actually been tackled by so-called
matrix element corrections in the parton shower Monte Carlos PYTHIA and HERWIG. At the LHC this structure of
event generation has become standard.

The final state of the process e+e− → qq̄ +X often involves more than two jets due to final state splitting. Even for
the first step of defining jet–exclusive predictions from the matrix element we have to briefly consider the geometry of
different jets. To separate jet–inclusive event samples into jet–exclusive event samples we have to define some kind of
jet separation parameter. If we radiate a gluon off one of the quark legs, it gives us a qq̄g final state. This additional
gluon can be collinear with and hence geometrically close to one of the quarks or not. Jet algorithms which decide if
we count such a splitting as one or two jets we describe in detail in Section 3.1.1. They are based on a choice of
collinearity measure yij which we can for example construct as a function of the distance in R space, introduced in
Eq.(2.35), and the transverse momenta. We define two jets as collinear and hence as one jet if yij < yresol where yresol
is a free parameter in the algorithm. As a result, the number of jets in an event will depend on this
resolution parameter yresol.

For the second step of combining hard and collinear jet simulation the same resolution parameter appears in a form
where it becomes a collinear vs hard matching parameter ymatch. It allows us to clearly assign each hadron collider
event a number of collinear jets and a number of hard jets. Such an event with its given number of more or less hard
jets we can then describe either using matrix elements or using a parton shower, where ‘describe’ means computing the
relative probability of different phase space configurations. The parton shower will do well for jets with yij < ymatch.
In contrast, if for our closest jets we find yij > ymatch, we know that collinear logarithms did not play a major role, so
we should use the hard matrix element. If we assign the hard process a typical energy or virtuality scale thard we can
translate the matching parameter ymatch into a virtuality scale tmatch = y2

matchthard, below which we do not trust the hard
matrix element. For example for the Drell–Yan process the hard scale would be something like the Z mass.

The CKKW jet combination scheme first tackles the problem of defining and combining jet–exclusive final states with
different numbers of jets. The main ingredient to translating one into the other are non–splitting probabilities called
Sudakov factors. They can transform inclusive n-particle rates into exact n-particle rates, with no additional
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Figure 22: Vetoed showers on two-jet and three-jet contributions. The scale at the gauge boson vertex is thard. The
two-jet (three-jet) diagram implies exactly two (three) jets at the resolution scale tmatch, below which we rely on the
parton shower. Figure from Ref. [42].

final–state jet outside a given resolution scale. We can compute integrated splitting probabilities Γj(thard, t) which for
quarks and gluons are implicitly defined through the Sudakov factors introduced in Eq.(2.166)

∆q(thard, tmatch) = exp

(
−
∫ thard

tmatch

dt Γq←q(thard, t)

)
∆g(thard, tmatch) = exp

(
−
∫ thard

tmatch

dt [Γg←g(thard, t) + Γq←g(t)]

)
. (2.259)

For final–state radiation t corresponds to the original
√
p2
a. Moving forward in time it is ordered according to

thard > t > tmatch. The resolution of individual jets we identify with the matrix element–shower matching scale tmatch.
To leading logarithm the explicit form of the splitting kernels is given in Eq.(2.172). The virtualities thard > t
correspond to the incoming (mother) and outgoing (daughter) parton. Note that the wrong limit for Γj(thard, thard) 6= 0
can be circumvented technically. To avoid unnecessary approximations in the y integration more recent CKKW
implementations integrate the splitting kernels numerically.

To get a first idea how to transform inclusive into exact n-jet rates we compute the probability of seeing exactly
two jets in the process e+e− → qq̄. Looking at Figure 22 this means that none of the two quarks in the final state
radiate a resolved gluon between the virtualities thard (given by the qqZ vertex) and tmatch < thard. As will become
important later, we specify that this no-radiation statement assumes a jet resolution as given by end point of the
external quark and gluon legs. The probability we have to multiply the inclusive two-jet rate with is then

[∆q(thard, tmatch)]
2
, (2.260)

once for each quark. Whatever happens at virtualities below tmatch will be governed by the parton shower and does not
matter anymore. Technically, this requires us to define a so-called vetoed parton shower which we will describe in
Section 2.7.3.

What is the probability that the initially two-jet final state evolves exactly into three jets, again following Figure 22?
We know that it contains a factor ∆q(thard, tmatch) for one untouched quark.
After splitting at tq with the probability Γq←q(tq, thard the second quark survives to tmatch, giving us a factor
∆q(tq, tmatch). If we assign the virtuality tg to the radiated gluon at the splitting point we find the gluon’s survival
probability as ∆g(tg, tmatch). Together with the quark Sudakovs this gives us

∆q(thard, tmatch) Γq←q(thard, tq) ∆q(tq, tmatch) ∆g(tg, tmatch) · · · (2.261)

That’s all there is, with the exception of the intermediate quark. There has to appear another factor describing that the
quark, starting from thard, gets to the splitting point tq untouched. Naively we would guess that this probability is
given by ∆q(thard, tq). However, this Sudakov factor describes no splittings resolved at the lower scale tq . What we
really mean is no splitting between thard and tq resolved at a third scale tmatch < tq given by the quark leg hitting the
parton shower regime. We get this information by computing the probability of no splitting between thard and tq ,
namely ∆q(thard, tmatch), but under the condition that splittings from tq down to tmatch are explicitly allowed.
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If zero splittings give us a probability factor ∆q(thard, tmatch), to describe exactly one splitting from tq on, we add a
factor Γ(tq, t) with an unknown splitting point t. This point t we integrate over between the resolution point tmatch and
the endpoint of the no-splitting range, tq . This is the same argument as in our physical interpretation of the Sudakov
factors solving the DGLAP equation Eq.(2.180). For an arbitrary number of possible splittings between tq and tmatch
we find the sum

∆q(thard, tmatch)

[
1 +

∫ tq

tmatch

dt Γq←q(tq, t) + more splittings
]

=

= ∆q(thard, tmatch) exp

[∫ tq

tmatch

dt Γq←q(tq, t)

]
=

∆q(thard, tmatch)

∆q(tq, tmatch)
. (2.262)

The factors 1/n! in the Taylor series appear because for example radiating two ordered jets in the same t interval can
proceed two ways, both of which lead to the same final state. Once again: we compute the probability of nothing
happening between thard and tq from the probability of nothing happening between thard and tmatch times any number
of possible splittings between tq and tmatch.

Collecting all factors from Eq.(2.261) and Eq.(2.262) gives us the probability to find exactly three partons resolved at
tmatch as part of the inclusive sample

∆q(thard, tmatch) Γq←q(thard, tq) ∆q(tq, tmatch) ∆g(tg, tmatch)
∆q(thard, tmatch)

∆q(tq, tmatch)

= Γq←q(thard, tq) [∆q(thard, tmatch)]2 ∆g(tg, tmatch) . (2.263)

This result is what we expect: both quarks go through untouched, just like in the two-parton case. In addition, we need
exactly one splitting producing a gluon, and this gluon cannot split further. This example illustrates how we can
compute these probabilities using Sudakov factors: adding a gluon corresponds to adding a splitting probability times
the survival probability for this gluon, everything else magically drops out. At the end, we integrate over the splitting
point tq .

This discussion allows us to write down the first step of the CKKW algorithm, combining different hard n-jet
channels into one consistent set of events. One by one we turn inclusive n-jet events into exact n-jet events. We can
write down the slightly simplified algorithm for final–state radiation. As a starting point, we generate events and
compute leading order cross sections for all n-jet processes. A universal lower jet radiation cutoff tmatch ensures that
all jets are hard and that all corresponding cross sections σn,i are finite. The second index i describes different
non–interfering parton configurations for a given number of final–state jets, like qq̄gg and qq̄qq̄ for n = 4. The
purpose of the algorithm is to assign a weight (probability, matrix element squared,...) to a given phase space point,
statistically picking the correct process and combining them properly. It proceeds event by event:

1. for each jet final state (n, i) compute the relative probability Pn,i = σn,i/
∑
k,j σk,j

and select a final state (n, i) with this probability Pn,i

2. assign the momenta from the phase space generator to, assumed, hard external particles
and compute the transition matrix element |M|2 including parton shower below tmatch

3. use a jet algorithm to compute the shower history, i.e. all splitting points tj in each event
and check that this history corresponds to possible Feynman diagrams and does not violate any symmetries

4. for each internal and external line compute the Sudakov non–splitting probability down to tmatch

5. re-weight the αs values of each splitting using the kT scale from the shower history

6. combine matrix element, Sudakovs, and αs into a final weight

We can use this final event weight to compute distributions from weighted events or to decide if to keep or discard an
event when producing unweighted events. The construction ensures that the relative weight of the different n–jet rates
is identical to the probabilities we initially computed. In step 2 the CKKW event generation first chooses the
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appropriate hard scale in the event; in step 3 we compute the individual starting scale for the parton shower applied to
each of the legs. Following our example, this might be thard for partons leaving the hard process itself or tg for a
parton appearing via later splitting.

In a second step of the CKKW scheme we match this combined hard matrix element with the parton shower, given the
matching point tmatch. From the final experimental resolution scale tresol up to a matching scale tmatch we rely on the
parton shower to describe jet radiation while above the matching scale jet radiation is explicitly forbidden by the
Sudakov non–splitting probabilities. Individually, both regimes consistently combine different n–jet processes. All we
need to make sure is that there is no double counting.
From the discussion of Eq.(2.262) we know that Sudakovs describing the evolution between two scales and using a
third scale as the resolution are going to be the problem. Carefully distinguishing the scale of the actual splitting from
the scale of jet resolution is the key. The CKKW scheme starts each parton shower at the point where the parton first
appears, and it turns out that we can use this argument to keep the regimes y > ymatch and y < ymatch separate. There is
a simple way to check this, namely if the ymatch dependence drops out of the final combined probabilities. The answer
for final–state radiation is yes, as proven in the original paper, including a hypothetical next–to–leading logarithm
parton shower. A modified CKKW scheme is implemented in the publicly available SHERPA event generator.

An alternative to the CKKW scheme which has been developed independently but incorporates essentially the same
physics is the MLM scheme, for example implemented in ALPGEN or Madgraph. Its main difference to the CKKW
scheme is that it avoids computing the survival properties using Sudakov factors. Instead, it vetos those events which
CKKW removes by applying the Sudakov non–splitting probabilities. This way MLM avoids problems with splitting
probabilities beyond the leading logarithms, for example the finite terms appearing in Eq.(2.172), which can otherwise
lead to a mismatch between the actual shower evolution and the analytic expressions of the Sudakov factors. In
addition, the veto approach allows the MLM scheme to combine a set of independently generated n–parton events,
which can be convenient.
In the MLM scheme we again start by independently simulating n-jet events including hard jet radiation as well as the
parton shower. In this set of complete events we then veto events which are simulated the wrong way. This avoids
double counting of events which on the one hand are generated with n hard jets from the matrix element and on the
other hand appear for example as (n− 1) hard jets with an additional jet from the parton shower.
After applying a jet algorithm, which in the case of ALPGEN is a cone algorithm and in case of Madgraph is a kT
algorithm, we compare the showered event with the un-showered hard event by identifying each reconstructed
showered jet with the partons we started from. If all jet–parton combinations match and there exist no additional
resolved jets we know that the showering has not altered the hard structure of the event. If there is a significant change
between the original hard parton event and the showered event this event has to go. This choice corresponds to an
event weight including the Sudakov non–splitting probabilities in the CKKW scheme. The only exception to this rule
is the set of events with the highest jet multiplicity for which additional jets can only come from the parton shower.
After defining the proper exclusive n-jet event sets we can again use the parton shower to describe more collinear jet
radiation between tmatch and tresol.
After combining the samples we still need a backwards evolution of a generated event to know the virtuality scales
which fix αs(Q2). As a side effect, if we also know the Feynman diagrams describing an event we can check that a
certain splitting with its color structure is actually possible. For the parton shower or splitting simulation we need to
know the interval of virtualities over which for example the additional gluon in the previous two-jet example can split.
The lower end of this interval is universally given by tmatch, but the upper end we cannot extract from the record event
by event. Therefore, to compute the αs values at each splitting point we start the parton shower at an universal hard
scale, chosen as the hard(est) scale of the process.

Aside from such technical details all merging schemes are conceptually similar enough that we should expect them to
reproduce each others’ results, and they largely do. But the devil is in the details, so experiment tells us which scheme
as part of which event generator produces the most usable results for a given LHC measurement.

To summarize, we can use the CKKW and MLM schemes to first combine n-jet events with variable n and then
consistently add the parton shower. In other words, we can for example simulate Z + n jets production at the LHC to
arbitrarily large numbers of jets, limited only by computational resources and the physical argument that at some point
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Figure 23: Number of additional jets with a transverse momentum of at least 30, 50 or 100 GeV radiated off top pair
production and the production of heavy states at the LHC. An example for such heavy states are scalar gluons with a
mass of 300 or 600 GeV, pair-produced in gluon fusion. Figures from Ref. [43].

any additional jet radiation will be described by the parton shower. This combination will describe all jets correctly
over the entire collinear and hard phase space. In Figure 23 we show the number of jets expected to be produced in
association with a pair of top quarks and a pair of heavy new states at the LHC. The details of these heavy scalar
gluons are secondary for the basic features of these distributions. The only parameter which matters is their mass
serving as the hard scale of the process, setting the factorization scale, and defining the upper limit of collinearly
enhanced initial–state radiation. We see that heavy states come with many jets radiated at pT . 30 GeV, where most
of these jets vanish once we require transverse momenta of at least 100 GeV. This figure tells us that an analysis which
asks for a reconstruction of two W -decay jets may well be swamped by combinatorics.
Looking at the individual columns in Figure 23 there is one thing we have to keep in mind: each of the merged matrix
elements combined into this sample is computed at leading order. The emission of real particles is included, virtual
corrections are not. In other words, the CKKW and MLM schemes give us all jet distributions, but only to leading
order in the strong coupling. When we combine the different jet multiplicities to evaluate total rates, jet merging
improves the rate prediction because it includes contributions from all orders in αs, provided they come with a
potentially large logarithm from jet emission. From all we know, these leading logarithms dominate the higher order
QCD corrections for most LHC processes, but it is not obvious how general this feature is and how we can quantify it.
This is certainly true for all cases where higher order effects appear unexpectedly large and can be traced back to new
partonic processes or phase space configurations opening up at higher jet multiplicities. Systematically curing some of
this shortcoming (but at a prize) will be the topic of the next section.

Before moving on to an alternative scheme we will illustrate why Higgs or exotics searches at the LHC really care
about progress in QCD simulations: one way to look for heavy particles decaying into jets, leptons and missing energy
is the variable

meff = /ET +
∑
j

ET,j +
∑
`

ET,`

= /pT +
∑
j

pT,j +
∑
`

pT,` (for massless quarks, leptons) (2.264)

This variable and its relatives we will discuss in detail in Section 3.3.2. For gluon–induced QCD processes the
effective mass should be small while the new physics signal’s effective mass scale will be determined by the heavy
masses.
For QCD jets as well as for W and Z plus jets backgrounds we can study the production of many jets using the
CKKW scheme. Figure 24 shows the two critical distributions. First, in the number of hard jets we see the so-called
staircase scaling behavior, namely constant ratios of exclusive (n+ 1)-jet and n-jet rates σn+1/σn. Such a scaling is
closely related to the pattern we discuss in Eq.(1.228), in the context of the central jet veto of Section 1.6.2. The
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Figure 24: Exclusive number of jets and effective mass distributions for pure QCD jet events at the LHC with a center–
of–mass energy of 7 TeV and pT,j > 50 GeV. The curves including the αs uncertainty and a scale variation (tuning
parameter) are computed with SHERPA and a fully merged sample including up to six hard jets. These distributions
describe typical backgrounds for searches for jets plus missing energy with fake missing energy, which could originate
from supersymmetric squark and gluino production. Figures from Ref. [44].

particularly interesting aspect of staircase scaling is that the constant ratio is the same for jet–inclusive and
jet–exclusive cross sections Rincl

(n+1)/n = R(n+1)/n, as shown in Eq.(1.229).
The consistent variation of αs gives a small parametric uncertainty on these rates. A common scaling factor µ/µ0 for
all factorization, renormalization and shower scales in the process following our argument of Section 2.4 is strictly
speaking not fixed by our physical interpretation in terms of resummation; such a factor as part of the leading
logarithm can be factored out as a subleading finite term, so it should really be considered a tuning parameters for
each simulation tool. Using the same simulation we also show the effective mass and observe a drop towards large
values of meff. However, this drop is nowhere as pronounced as in some parton shower predictions. This analysis
shows that the naive parton shower is not a good description of QCD background processes to the production of heavy
particles. Using a very pragmatic approach and tune the parton shower to correctly describe LHC data even in this
parameter region will most likely violate basic concepts like factorization, so we would be well advised to use
merging schemes like CKKW or MLM for such predictions.

2.7 Next–to–leading orders and parton shower

As we know for example for the R ratio from Section 2.1.1 the precision of a leading order QCD calculation in terms
of the strong coupling constant αs is not always sufficient to match the experimental accuracy. In such a case we need
to compute observables to higher order in QCD. On the other hand, in Section 2.3.5 we have seen that the parton
shower does not fit into fixed order perturbation theory. With its collinear logarithm it sums particular terms to all
orders in αs. So how can we on the one hand compute higher order corrections to for example the Drell–Yan cross
section and distributions and in addition consistently combine them with the parton shower?

Such a combination would remove one of the historic shortcomings of parton shower Monte Carlos. Apart from the
collinear approximation for jet radiation they were always limited by the fact that in the words of one of the authors
they ‘only do shapes’. In other words, the normalization of the simulated event sample will always be leading order in
perturbative QCD and hence subject to large theoretical uncertainties. The reason for this shortcoming is that collinear
jet radiation relies on a hard process and the corresponding production cross section and works with splitting
probabilities, but never touches the total cross section it started from.
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As a solution we compute higher order cross sections to normalize the total cross section entering the respective
Monte Carlo simulation. This is what we call a K factor: K = σimproved/σMC = σimproved/σLO. It is crucial to
remember that higher order cross sections integrate over unobserved additional jets in the final state. So when we
normalize the Monte Carlo we assume that we can first integrate over additional jets and obtain σimproved and then just
normalize the Monte Carlo which puts back these jets in the collinear approximation. Obviously, we should try to do
better than that, and there are two ways to improve this traditional Monte Carlo approach, the MC@NLO scheme and
the POWHEG scheme.

2.7.1 Next–to–leading order in QCD

When we compute the next–to–leading order correction to a cross section, for example to Drell–Yan production, we
consider all contributions of the order G2

Fαs. There are three obvious sets of Feynman diagrams we have to add and
then square: the Born contribution qq̄ → Z, the virtual gluon exchange for example between the incoming quarks, and
the real gluon emission qq̄ → Zg. An additional set of diagrams we should not forget are the crossed channels
qg → Zq and q̄g → Zq̄. Only amplitudes with the same external particles can be squared, so we find the
matrix-element-squared contributions

|MB |2 ∝ G2
F

2ReM∗VMB ∝ G2
Fαs |MZg|2∝ G2

Fαs |MZq|2, |MZq̄|2 ∝ G2
Fαs . (2.265)

Strictly speaking, we have to include counter terms, which following Eq.(2.54) are a modification of |MB |2. We add
these counter terms to the interference of Born and virtual gluon diagrams to remove the ultraviolet divergences.
However, this is not the issue we want to discuss.

Infrared poles arise from two sources, soft and collinear divergences. To avoid the complication of overlapping
collinear and soft divergences we will follow a toy model by Bryan Webber. It describes simplified particle radiation
off a hard process: the energy of the system before radiation is xs and the energy of the outgoing particle, call it
photon or gluon, is x, so x < xs < 1. When we compute next–to–leading order corrections to a hard process, the
different contributions, neglecting crossed channels, are

dσ

dx

∣∣∣
B

= B δ(x)
dσ

dx

∣∣∣
V

= αs

(
−B

2ε
+ V

)
δ(x)

dσ

dx

∣∣∣
R

= αs
R(x)

x
. (2.266)

The constant B describes the Born process and the factorizing poles in the virtual contribution. The coupling constant
αs ignores factors 2 and π or color factors. We immediately see that the integral over x in the real emission rate is
logarithmically divergent in the soft limit, similar to the collinear divergences we know. Because we are interested in
infrared divergences we choose n = 4 + 2ε dimensions with ε > 0, just like in Section 2.3.1, which will regularize the
real emission and compensate the resulting pole 1/ε with the virtual corrections. This means that the
Kinoshita–Lee–Nauenberg theorem is built into our toy model.
From factorization which we have illustrated based on the universality of the leading splitting kernels we know that in
the collinear and soft limits the real emission has to follow the Born matrix element

lim
x→0

R(x) = B . (2.267)

An observable computed beyond leading order includes contributions from real gluon emission and virtual gluon
exchange. If the observable is infrared safe it will have a smooth limit towards vanishing gluon energy O(x)→ O(0).
The virtual corrections alone diverge, but the expectation value including virtual and real gluon contributions after
dimensional regularization is finite. In dimensional regularization this cancellation schematically reads

〈O〉 ∼
∫ 1

0

dx
O(x)

x1−2ε
− O(0)

2ε
. (2.268)

This kind of combination has a finite limit for ε→ 0. However, for numerical applications and event simulation we
need to implement this cancellation differently.
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The expectation value of any infrared safe observable over the entire phase space, including Born terms, virtual
corrections and real emission, is given by

〈O〉 ≡ 〈O〉B + 〈O〉V + 〈O〉R =

∫ 1

0

dx O(x)

[
dσ

dx

∣∣∣
B

+
dσ

dx

∣∣∣
V

+
1

x−2ε

dσ

dx

∣∣∣
R

]
. (2.269)

The same way in which the renormalization and factorization scales appear, dimensional regularization now yields an
additional factor 1/x−2ε. Because we know its structure, we will omit the factorization scale factor in the following.

When we compute for example a distribution of the energy of one of the heavy particles in the process, we can extract
a histogram from of the integral for 〈O〉 in Eq.(2.269) and obtain a normalized distribution. The problem is that we
have to numerically integrate over x, and the individual parts of the integrand in Eq.(2.269) are not integrable.
There exist two methods to combine the virtual and real contributions to an observable and produce a finite physics
result. The first way historically introduced by the Dutch loop school for example to compute QCD corrections to top
pair production is phase space slicing: we divide the divergent phase space integral into a finite part and a pole, by
introducing a small parameter ∆, which acts like

〈O〉R + 〈O〉V =

∫ 1

0

dx
O(x)

x−2ε

dσ

dx

∣∣∣
R

+ 〈O〉V

=

(∫ ∆

0

+

∫ 1

∆

)
dx αs

R(x)O(x)

x1−2ε
+ 〈O〉V

=αsR(0) O(0)

∫ ∆

0

dx
1

x1−2ε
+ αs

∫ 1

∆

dx
R(x)O(x)

x
+ 〈O〉V with ∆� 1

=αsB O(0)
∆2ε

2ε
+ αs

∫ 1

∆

dx
R(x)O(x)

x
+ 〈O〉V using Eq.(2.267)

=αs
B O(0)

2

2ε log ∆ +O(ε2)

ε
+ αs

∫ 1

∆

dx
R(x)O(x)

x
+ αsV O(0) using Eq.(2.266)

=αsBO(0) log ∆ + αs

∫ 1

∆

dx
R(x)O(x)

x
+ αsV O(0) +O(ε) . (2.270)

The two sources of log ∆ dependence have to cancel in the final expression, so we can evaluate the integral at finite
but small values of ∆. An amusing numerical trick is to re-write the explicit log ∆ contribution into a
real–emission–type phase space integral. If the eikonal approximation is given in terms of a Mandelstam variable
δ(s4) and the cutoff has mass dimension two we can write

log
∆

µ2
=

∫ smax
4

0

ds4 log
∆

µ2
δ(s4) =

∫ smax
4

∆

ds4

 log
smax

4

µ2

smax
4 −∆

− 1

s4

 (2.271)

and similarly for log2 ∆. We can conveniently integrate this representation along with the real emission phase space.
The result will be a finite value for the next–to–leading order rate in the limit ∆→ 0 and exactly ε = 0. This means
that using phase space slicing we have exchanged dimensional regularization for an energy cutoff. The advantage is
that we can compute cross section more easily, the disadvantage is that numerically the large cancellation between the
real and virtual correction appears in the single x = 0 bin.

To avoid such cancellations between integrals and replace them by cancellations among integrands we use a
subtraction method to define integrable functions under the x integral in Eq.(2.269). While our toy model appears
more similar to the Frixione–Kunszt–Signer subtraction scheme than to the Catani–Seymour scheme, both of them
really are equivalent at the level of the soft–collinear toy model. The special features of the Catani–Seymour dipoles
only feature when we include the full modelling of the soft and collinear divergences described in Section 2.5.3.
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Starting from the individually divergent virtual and real contributions we first subtract and then add again a smartly
chosen term, in this toy model identical to a plus–subtraction following Eq.(2.128)

〈O〉R + 〈O〉V =

∫ 1

0

dx αs
R(x)O(x)

x1−2ε
+ 〈O〉V

=

∫ 1

0

dx

(
αsR(x)O(x)

x1−2ε
− αsR(0)O(0)

x1−2ε

)
+ αs B O(0)

∫ 1

0

dx
1

x1−2ε
+ 〈O〉V

=αs

∫ 1

0

dx
R(x)O(x)−BO(0)

x
+ αs

B O(0)

2ε
+ 〈O〉V

=αs

∫ 1

0

dx
R(x)O(x)−BO(0)

x
+ αsV O(0) using Eq.(2.266) . (2.272)

In the subtracted real emission integral we take the limit ε→ 0 because the asymptotic behavior of R(x→ 0)
regularizes this integral without any dimensional regularization required. In our toy model we omit finite contributions
from the integrated subtraction term which will have to be added to the finite virtual corrections. In proper QCD
exactly the same happens with the Catani–Seymour dipoles and their integrated form. We end up with a perfectly
finite x integral for the sum of all three contributions, so even in the limit ε = 0 there is no numerically small
parameter in the expression

〈O〉 = 〈O〉B + 〈O〉V + 〈O〉R = B O(0) + αsV O(0) + αs

∫ 1

0

dx
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x

=
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0
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[
O(0)

(
B + αsV − αs

B

x

)
+O(x) αs

R(x)

x

]
. (2.273)

This subtraction procedure is a standard method to compute next–to–leading order corrections involving one-loop
virtual contributions and the emission of one additional parton.

As a side remark, we can numerically improve this expression using a distribution relation∫ 1

0

dx
f(x)

x1−2ε
=
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0
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, (2.274)

where the last line is a relation between appropriately defined distributions. This c-subtraction first introduced as part
of the Frixione–Kunszt–Signer subtraction scheme is defined as∫ 1

0

dx f(x) g(x)c =

∫ 1

0

dx [f(x)g(x)− f(0)g(x)θ(xc − x)] . (2.275)

It is a generalization of the plus subtraction defined in Eq.(2.128) which we reproduce for xc = 1. Linking the delta
distribution to the divergent integral over 1/x it is also reminiscent of the principal value integration, but for an
endpoint singularity and a dimensionally regularized phase space. Effectively combining phase space subtraction
Eq.(2.272) and phase space slicing Eq.(2.270), we include a cutoff in the integrals holding the subtraction terms

〈O〉R =αs

∫ 1

0

dx
R(x)O(x)

x1−2ε

=αs

∫ 1

0

dx
R(x)O(x)− θ(xc − x)BO(0)

x
(1 + 2ε log x) + αsBO(0)

x2ε
c

2ε
+O(ε2) . (2.276)
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The dependence on the cutoff parameter xc drops out of the final result. The numerical behavior, however, should be
improved if we subtract the infrared divergence only close to the actual pole where following Eq.(2.267) we
understand the behavior of the real emission amplitude.

The formula Eq.(2.273) is, in fact, a little tricky: usually, the Born–type kinematics would come with an explicit factor
δ(x), which in this special case we can omit because of the integration boundaries. We can re-write the same formula
in a more appropriate way to compute distributions, possibly including experimental cuts

dσ

dO
=

∫ 1

0

dx

[
I(O)LO

(
B + αsV − αs

B

x

)
+ I(O)NLO αs

R(x)

x

]
. (2.277)

The transfer function I(O) is defined in a way that formally does precisely what we require: at leading order we
evaluate I(O) using the Born kinematics x = 0 while for the real emission kinematics it allows for general x = 0 · · · 1.

2.7.2 MC@NLO method

For example in Eq.(2.269) we integrate over the entire phase space of the additional parton. For a hard additional
parton or jet the cross section looks well defined and finite, provided we fully combine real and virtual corrections. An
infrared divergence appears after integrating over small but finite x→ 0 from real emission, and we cancel it with an
infrared divergence in the virtual corrections proportional to a Born–type momentum configuration δ(x). In terms of a
histogram in x we encounter the real emission divergence at small x, and this divergence is cancelled by a negative
delta distribution at x = 0. Obviously, this will only give a well behaved distribution after integrating over at least a
range of x values just above zero.
This soft and collinear subtraction scheme for next–to–leading order calculations leads us to the first method of
combining or matching next–to–leading order calculations with a parton shower. Instead of the contribution from the
virtual corrections contributing at δ(x) what we would rather want is a smeared virtual corrections pole which
coincides with the justified collinear approximation and cancels the real emission over the entire low-x range. We can
view this contribution as events with a negative weight or counter–events. Negative events trigger negative reactions
with experimentalists, because they cause problems in a chain of probabilistic statements like a detector simulation.
Fundamentally, there is no problem with them as long as any physical prediction we make after adding all leading
order and next–to–leading order contributions gives a positive cross section.
Because we know they describe collinear jet radiation correctly such a modification will make use of Sudakov factors.
We can write them as a function of the energy fraction z and define the associated probability as dP = αsP (z)/z dz.
Note that we avoid the complicated proper two-dimensional description of Eq.(2.166) in favor of the simpler picture
just in terms of particle energy fractions as introduced in the last section.

Once we integrate over the entire phase space this modified subtraction scheme has to give the same result as the
next–to–leading order rate. Smearing the integrated soft–collinear subtraction term using the splitting probabilities
entering the parton shower means that the MC@NLO subtraction scheme has to be adjusted to the parton shower we
use.

Let us consider the perturbatively critical but otherwise perfectly fine observable, the radiated photon spectrum as a
function of the external energy scale z. We know what this spectrum looks like for the collinear and hard kinematic
configurations

dσ

dz

∣∣∣
LO

= αs
BP (z)

z

dσ

dz

∣∣∣
NLO

= αs
R(z)

z
. (2.278)

The first term describes parton shower radiation from the Born diagram at order αs, while the second term is the hard
real emission defined in Eq.(2.266). According to Eq.(2.277) the transfer functions read

I(z, 1)
∣∣∣
LO

= αs
P (z)

z

I(z, xM )
∣∣∣
NLO

= δ(z − x) + αs
P (z)

z
θ(xM (x)− z) . (2.279)
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The second term in the real radiation transfer function arises because at the next order in perturbation theory the
parton shower also acts on the real emission process. It requires that enough energy to radiate a photon with an energy
z be available, where xM is the energy available at the respective stage of showering, i.e. z < xM .
We can include these transfer functions in Eq.(2.277) and obtain

dσ
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=
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0

dx

[
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B
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)
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=
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B
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∫ 1

0
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BP (z)

z
+ αs

R(z)

z

]
+O(α2

s)

= αs
BP (z) +R(z)

z
+O(α2

s) . (2.280)

All Born terms proportional to δ(z) vanish because their contributions would be unphysical. This already fulfills the
first requirement for our scheme, without having done anything except for including a transfer function. Now, we can
integrate over z and calculate the total cross section σtot with a cutoff zmin for consistency. However, Eq.(2.280)
includes an additional term which spoils the result: the same kind of jet radiation is included twice, once through the
matrix element and once through the shower. This is precisely the double counting which we avoid in the CKKW
scheme. So we are still missing something.

We also knew we would fall short, because our strategy includes a smeared virtual subtraction term which for finite x
should cancel the real emission. This subtraction is not yet included. Factorization tells us how to write such a
subtraction term using the splitting function P as defined in Eq.(2.278), to turn the real emission term into a finite
contribution

R(x)

x
−→ R(x)−BP (x)

x
. (2.281)

This ad hoc subtraction term we have to add again to the Born–type contribution. This leads us to a modified version
of Eq.(2.277), now written for general observables

dσ

dO
=

∫ 1

0

dx

[
I(O, 1)

(
B + αsV −

αsB

x
+
αsBP (x)

x

)
+ I(O, xM ) αs

R(x)−BP (x)

x

]
. (2.282)

Looking back at different methods of removing ultraviolet divergences this modification from the minimal soft and
collinear subtraction in Eq.(2.277) to a physical subtraction term corresponding to the known radiation pattern
reminds us of different renormalization schemes. The minimal MS scheme will always guarantee finite results, but for
example the on–shell scheme with its additional finite terms has at least to a certain degree beneficial properties when
it comes to understanding its physical meaning. This is the same for the MC@NLO method: we replace the minimal
subtraction terms by physically motivated non–minimal subtraction terms such that the radiation pattern of the
additional parton is described correctly.
When we use this form to compute the z spectrum to order αs it will in addition to Eq.(2.280) include an integrated
subtraction term contributing to the Born–type kinematics

dσ

dz
−→

∫ 1

0

dx

[
αs

BP (z)

z
+ αs δ(x− z)

(
R(x)

x
− BP (x)
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)]
+O(α2

s)

=

∫ 1

0

dx αs
BP (z) +R(z)−BP (z)

z
+O(α2

s)

= αs
R(z)

z
+O(α2

s) . (2.283)

This is exactly the distribution we expect.
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Following the above argument the subtraction scheme implemented in the MC@NLO Monte Carlo describes hard
emission just like a next–to–leading order calculation. This includes the next–to–leading order normalization of the
rate as well as the next–to–leading order distributions for those particles produced in the original hard process. For
example for W+jets production such corrections to the W and leading jet distributions matter, while for the
production of heavy new particles their distributions hardly change at next–to–leading order. The distribution of the
first radiated parton is included at leading order, as we see in Eq.(2.283). Finally, additional collinear particle
emissions is simulated using Sudakov factors, precisely like a parton shower.
Most importantly, this scheme avoids double counting between the first hard emission and the collinear jets, which
means it describes the entire pT range of jet emission for the first and hardest radiated jet consistently. Those
additional jets, which do not feature in the next–to–leading order calculation, are added through the parton shower, i.e.
in the collinear approximation. As usually, what looked fairly easy in our toy example is much harder in QCD reality,
but the setup is the same.

2.7.3 POWHEG method

As described in Section 2.7.2 the MC@NLO matching scheme for a next–to–leading order correction and the parton
shower is based on an extended subtraction scheme. It starts from a given parton shower and avoids double counting
by modifying the next–to–leading corrections. An interesting question is: can we also combine a next–to–leading
order calculation by keeping the next–to–leading order structure and apply a modified parton shower? The main
ingredient to this structure are Sudakov factors introduced in Section 2.5.1 and used for the CKKW merging scheme
in Section 2.6.2.
In contrast to the MC@NLO scheme the POWHEG (Positive Weight Hardest Emission Generator) scheme does not
introduce counter–events or subtraction terms. It considers the next–to–leading order calculation of a cross section a
combination of an n-particle and an (n+ 1)-particle process and attempts to adjust the parton shower attached to each
of these two contributions such that there is no double counting.

Our starting point is the next–to–leading order computation of a cross section following Eq.(2.266). We can combine
it with appropriate soft and collinear subtraction terms C in the factorized (n+ 1)-particle phase space where for
simplicity we assume that the integrated subtraction terms exactly cancel the divergences from the virtual corrections.
In our simplified model where the extra radiation is only described by an integral over the energy fraction x we find

dσ

dx
= B δ(x) + αs

(
−B

2ε
+ V

)
δ(x) + αsR

= B δ(x) + αsV δ(x) + αs (R− CP) after soft–collinear subtraction

= B

[
δ(x) +

αsR

B
(1− P)

]
+ αs [V δ(x) + (R− C)P] . (2.284)

The projector P maps the nominal (n+ 1)-particle phase space of the real emission onto the n-particle phase space of
the leading order process. We keep it separate from the factor δ(x) and define Pδ(x) = δ(x).

The first term in Eq.(2.284) consists of the Born contribution and the hard emission of one parton, so we have to avoid
double counting when defining the appropriate Sudakov factors. The second term is suppressed by one power of αs,
so we can add a parton shower to it without any worry. A serious problem appears in Eq.(2.284) when we interpret it
probabilistically: nothing forces the combination of virtual and subtracted real emission in the second bracket to be
positive. To cure this shortcoming we can instead combine all n-particle contributions into one term

dσ

dx
=

[
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αsR

B
(1− P)

]
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δ(x) +
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= B

[
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αsR

B
θ
(
pT (x)− pmin

T

)]
+O(α2

s) . (2.285)
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Defined like this the combination B can only become negative if the regularized next–to–leading contribution
over–compensates the Born term which would indicate a breakdown of perturbation theory. If we replace the
symbolic projection (1− P) by a step function in terms of the transverse momentum of the radiated parton pT (x) we
can ensure that it really only appears for hard radiation above pmin

T and at the same time keep the integral over the
radiation phase space finite.

From CKKW jet merging we know what we have to do to combine an n-particle process with an (n+ 1)-particle
process, even in the presence of the parton shower: the n-particle process has to be exclusive, which means we need to
attach a Sudakov factor ∆ to veto additional jet radiation to the first term in the brackets of Eq.(2.285). In the CKKW
scheme the factor in the front of the brackets would be B and not B. The introduction of B is nothing but a
re-weighting factor for the events contributing to the n-particle configuration which we need to maintain the
next–to–leading order normalization of the combined n-particle and (n+ 1)-particle rates. The second factor αsR/B
is essentially the multiplicative PYTHIA or HERWIG matrix element correction used for an improved simulation for
example of W+jet events. The only technical issue with such a re-weighted shower is that the generating shower has
to cover the entire radiation phase space. From Section 2.3.5 we know that for a proper resummation the collinear
logarithms should only be integrated up to the combined renormalization and factorization scales, pT < µR ≡ µF .
This additional constraint needs to be addressed in the POWHEG approach.

The appropriate Sudakov factor for the real emission has to veto only hard jet radiation from an additional parton
shower. This way we ensure that for the (n+ 1)-particle contribution the hardest jet radiation is given by the matrix
element R, which means no splitting occurs in the hard regime pT > pmin

T . Such a vetoed shower we can define in
analogy to the (diagonal) Sudakov survival probability Eq.(2.166) by adding a step function which limits the
unwanted splittings to pT > pmin

T

∆(t, pmin
T ) = exp

(
−
∫ t

t0

dt′

t′

∫ 1

0

dz
αs
2π
P̂ (z) θ

(
pT (t′, z)− pmin

T

))
, (2.286)

omitting the resolution t0 in the argument and switching back to the proper real emission phase space in terms of z
and t′. This modified Sudakov factor indicates that in contrast to the MC@NLO method we now modify the structure
of the parton shower which we combine with the higher order matrix elements.
For the vetoed Sudakov factors to make sense we need to show that they obey a DGLAP equation like Eq.(2.180),
including the veto condition in the splitting kernel

f(x, t) = ∆(t, pmin
T )f(x, t0) +

∫ t

t0

dt′

t′
∆(t, t′, pmin

T )

∫ 1

0

dz

z

αs
2π

P̂ (z) θ
(
pT (t′, z)− pmin

T

)
f
(x
z
, t′
)
. (2.287)

Again, we show the diagonal case to simplify the notation. The proof of this formula starts from Eq.(2.180) with the
modification of an explicit veto. Using 1 = θ(g) + (1− θ(g)) we find Eq.(2.287) more or less straight away. The
bottom line is that we can consistently write down vetoed Sudakov probabilities and build a parton shower out of them.

Inserting both Sudakov factors into Eq.(2.285) gives us for the combined next–to–leading order exclusive
contributions

dσ

dΦn
= B

[
∆(t, 0) + ∆(t′, pmin

T )
αsR

B
θ
(
pT (t′, z)− pmin

T

)
dt′dz

]
+O(α2

s) . (2.288)

The first Sudakov factor is not vetoed which means it is evaluated at pmin
T = 0.

Based on the next–to–leading order normalization of the integrated form of Eq.(2.288) we can determine the form of
the splitting probability entering the Sudakov factor from the perturbative series: the term in brackets integrated over
the entire phase space has to give unity. Starting from Eq.(2.287) we first compute the derivative of the Sudakov factor
with respect to one of its integration boundaries, just like in Eq.(2.176)

d∆(t, pmin
T )

dt
=
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= ∆(t, pmin

T )
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pT (t, z)− pmin

T

)
. (2.289)
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MC@NLO/POWHEG matching CKKW/MLM merging
hard jets first jet correct all jets correct
collinear jets all jets correct, tuned all jets correct, tuned
normalization correct to NLO correct to LO plus real emission
implementations MC@NLO, POWHEG, SHERPA, HERWIG SHERPA, Alpgen, Madgraph,...

Table 4: Comparison of the MC@NLO and CKKW schemes combining collinear and hard jets.

Using this relation we indeed find for the integral over the second term in the brackets of Eq.(2.288)
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∫
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∫
dz

αs
2πt′

P̂ (z) θ
(
pT (t′, z)− pmin

T

)
= −

∫ t

t0

dt′
d∆(t′, pmin

T )

dt′

= −∆(t, pmin
T ) ⇔ αsR

B
=

αs
2πt′

P̂ (z) . (2.290)

Looking back at Eq.(2.99) this corresponds to identifying B = σn and αsR = σn+1. In the POWHEG scheme the
Sudakov factors are based on the simulated splitting probability αsR/B instead of the splitting kernels. This
replacement is nothing new, though. We can already read it off Eq.(2.99).

A technical detail which we have not mentioned yet is that the POWHEG scheme assumes that our Sudakov factors
can be ordered in such a way that the hardest emission always occurs first. Following the discussion in Section 2.5.4
we expect any collinear transverse momentum ordering to be disrupted by soft radiation, ordered by the angle. The
first emission of the parton shower might well appear at large angles but with small energy, which means it will not be
particularly hard.
For the POWHEG shower this soft radiation has to be removed or moved to a lower place in the ordering of the
splittings. The condition to treat soft emission separately we know from CKKW merging, namely Eq.(2.262): the
scale at which we resolve a parton splitting does not have to identical with the lower boundary of simulated splittings.
We can construct a parton shower taking into account such splitting kernels, defining a truncated shower. This
modified shower is the big difference between the MC@NLO scheme and the POWHEG scheme in combining
next–to–leading order corrections with a parton shower. In the MC@NLO scheme we modify the next–to–leading
order correction for a given shower, but the shower stays the same. In the POWHEG scheme the events get
re-weighted according to standard building blocks of a next–to–leading order calculation, but the shower has to be
adapted.

In Sections 2.6.2 and Sections 2.7.2-2.7.3 we have introduced different ways to simulate jet radiation at the LHC. The
main features and shortcomings of the matching and merging approaches we summarize in Table 4.
At this stage it is up to the competent user to pick the scheme which describes their analysis best. First of all, if there
is a well defined and sufficiently hard scale in the process, the old-fashioned Monte Carlo with a tuned parton shower
will be fine, and it is by far the fastest method. When for some reason we are mainly interested in one hard jet we can
use MC@NLO or POWHEG and benefit from the next–to–leading order normalization. This is the case for example
when a gluon splits into two bottoms in the initial state and we are interested in the radiated bottom jet and its
kinematics. In cases where we really need a large number of jets correctly described we will end up with CKKW or
MLM simulations. However, just like the old-fashioned parton shower Monte Carlo we need to include the
normalization of the rate by hand. Or we are lucky and combined versions of CKKW and POWHEG, as currently
developed by both groups, will be available.

I am not getting tired of emphasizing that the conceptual progress in QCD describing jet radiation for all transverse
momenta is absolutely crucial for LHC analyses. If I were a string theorist I would definitely call this achievement a
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revolution or even two, like 1917 but with the trombones and cannons of Tchaikovsky’s 1812. In contrast to a lot of
other progress in theoretical physics jet merging solves a problem which would otherwise have limited our ability to
understand LHC data, no matter what kind of Higgs or new physics we are looking for.

2.8 Further reading
Just like the Higgs part, the QCD part of these lecture notes is something in between a text book chapter and a review
of QCD and mostly focused on LHC searches. I cut some corners, in particular when calculations do not affect the
main topic, namely the resummation of logarithms in QCD and the physical meaning of these logarithms. There is no
point in giving a list of original references, but I will list a few books and review articles which should come in handy
if you would like to know more:

– I started learning high energy theory including QCD from Otto Nachtmann’s book. I still use his appendices for
Feynman rules because I have not seen another book with as few (if not zero) typos [45].

– similar, but maybe a little more modern is the Standard Model primer by Cliff Burgess and Guy Moore [46]. At
the end of it you will find more literature.

– the best source to learn QCD at colliders is the pink book by Keith Ellis, James Stirling, and Bryan
Webber [41]. It includes everything you ever wanted to know about QCD and more. This QCD section
essentially follows its Chapter 5.

– a little more phenomenology you can find in Günther Dissertori, Ian Knowles and Michael Schmelling’s
book [47]. Again, I borrowed some of the discussions in the QCD section from there. In the same direction but
more theory oriented is the QCD book by Ioffe, Fadin, and Lipatov [48].

– if you would like to learn how to for example compute higher order cross sections to Drell–Yan production,
Rick Field works it all out [49].

– for those of you who are now hooked on QCD and jet physics at hadron colliders there are two comprehensive
reviews by Steve Ellis etal. [50] and by Gavin Salam [51].

– aimed more at perturbative QCD at the LHC is the QCD primer by John Campbell, Joey Huston, and James
Stirling [12].

– coming to the usual brilliant TASI lectures, there are Dave Soper’s [52] and George Sterman’s [53] notes. Both
of them do not exactly use my kind of notations and are comparably formal, but they are a great read if you
know something about QCD already. More on the phenomenological side there are Mike Seymour’s lecture
notes [54].

– for a more complete discussion of the Catani–Seymour dipoles the very brief discussion in this writeup should
allow you to follow the original long paper [55].

– the only review on leading order jet merging is by Michelangelo Mangano and Tim Stelzer [56]. The original
CKKW paper beautifully explains the general idea for final state radiation, and I follow their analysis [42]. For
other approaches there is a very concise discussion included with the comparison of the different models [57].

– to understand MC@NLO there is nothing like the original papers by Bryan Webber and Stefano Frixione [58].

– the POWHEG method is really nicely described in the original paper by Paolo Nason [59]. Different processes
you can find discussed in detail in a later paper by Stefano Frixione, Paolo Nason, and Carlo Oleari [60].

– even though they are just hand written and do not include a lot of text it might be useful to have a look at
Michael Spira’s QCD lecture notes [61] to view some of the topics from a different angle.
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3 LHC phenomenology

While the first two parts of these lecture notes focus on Higgs physics and on QCD, biased towards aspects relevant to
the LHC, they hardly justify the title of the lecture notes. In addition, both introductions really are theoretical physics.
The third section will introduce other aspects which theorists working on LHC topics need to know. It goes beyond
what you find in theoretical physics text books and is usually referred to as ‘phenomenology’. 1

This terms indicates that these topics are not really theoretical physics in the sense that they rely on for example field
theory. They are not experimental physics either, because they go beyond understanding the direct results of the LHC
detectors. Instead, they lie in between the two fields and need to be well understood to allow theorists and
experimentalists to interact with each other.
Sometimes, phenomenology has the reputation of not being proper theoretical physics. From these lecture notes it is
clear that LHC physics is field theory, either electroweak symmetry breaking, QCD, or — not covered in these notes
— physics models describing extensions of our Standard Model at the TeV scale. This chapter supplements the pure
theory aspects and links them to experimental issues of the ATLAS and CMS experiments. In Section 3.1 we fill in
some blanks from Section 1.5.4, 1.7, and 2.6.2. We first discuss jets and how to link the asymptotic final states of
QCD amplitudes, partons, to experimentally observed QCD objects, jets. Then, we turn to a current field of research,
so-called fat jets. In Section 3.2 we introduce a particularly efficient way of computing transition amplitudes from
Feynman rules, the helicity method. Most professional tools for the computation of LHC cross sections or for
simulating LHC events use this method instead of squaring amplitudes analytically. Section 3.3 discusses how to
reconstruct particles which interact too weakly to be observed in LHC detectors. In the Standard Model those would
be neutrinos, but as part of the LHC program we hope to find dark matter candidates that way. Finally, in Section 3.4
we very briefly discuss LHC uncertainties from a theory point of view. In the public arXiv version more sections will
follow, hopefully triggered by LHC measurements challenging theorists and their simulations.

3.1 Jets and fat jets

Throughout Section 2 we pretend that quarks and gluons produced at the LHC are what we observe in the LHC
detectors. In perturbative QCD they are assumed to form the initial and final states, even though they cannot exist
individually as long as QCD is asymptotically free. In Eq.(2.64) we even apply wave function renormalization factors
to their quantum fields. On the other hand, in Section 2.2.2 we see that the strong coupling explodes at small energy
scales around ΛQCD which means that something has to happen with quarks and gluons on their way through the
detectors. Indeed, the gluon and all quarks except for the top quark hadronize before they decay and form bunches of
baryons and mesons which in turn decay in many stages. At the LHC these particles carry a lot of energy, typically
around the electroweak scale. Relativistic kinematics then tells us that these baryons and mesons are strongly boosted
together to form jets. Those jets we measure at hadron colliders and link to the partons produced in the hard
interaction.

Consequently, in Section 2 we use the terms parton and jet synonymously, essentially assuming that each parton at the
LHC turns into a jet and that the measured jet four-momentum can be linked to the parton four-momentum. The way
we usually define jets is based on so-called recombination algorithms, including for example the Cambridge–Aachen
or (anti-) kT algorithms. Imagine we observe a large number of energy depositions in the ATLAS or CMS calorimeter
which we would like to combine into jets. We know that they come from a small number of partons which originate in
the hard QCD process and which since have undergone a sizeable number of splittings, hadronized and decayed to
stable particles. Can we try to reconstruct the original partons?
The answer is yes, in the sense that we can combine a large number of subjets into smaller numbers, where
unfortunately nothing tells us what the final number of jets should be. We know from Section 2 that in QCD we can
produce an arbitrary number of hard jets in a hard matrix element and another arbitrary number of jets via soft or
collinear radiation. Therefore, we need to tell the jet algorithm either how many jets it should arrive at or what the
resolution of the smallest subjets we consider partons should be, whatever the measure for this resolution might be.

1The term ‘phenomenology’ is borrowed from philosophy where it means exactly the opposite from what it means in physics. Originally,
phenomenology is a school based on Edmund Husserl, who were interested not in observations but the actual nature of things. Doing exactly the
opposite, physicist phenomenologists are theorists who really care about measurements.
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Below we will therefore discuss what criteria exist for a subjet recombination to correspond to an assumed physical
jet.

3.1.1 Jet algorithms

The basic idea of recombination algorithms is to ask if a given subjet has a soft or collinear partner. This follows from
Section 2: we know that partons produced in a hard process preferably turn into collinear pairs of partons as
approximately described by the parton shower. To decide if two subjets have arisen from one parton leaving the hard
process we have to define a collinearity measure. This measure will on the one hand include the distance in R space as
introduced in Eq.(2.35) and on the other hand the transverse momentum of one subjet with respect to another or to the
beam axis. Explicit measures weighted by the relative power of the two ingredients are

kT yij =
∆Rij
R

min (pT,i, pT,j) yiB = pT,i

C/A yij =
∆Rij
R

yiB = 1

anti-kT yij =
∆Rij
R

min
(
p−1
T,i, p

−1
T,j

)
yiB = p−1

T,i . (3.1)

The parameter R balances the jet–jet and jet–beam criteria. In an exclusive jet algorithm we define two subjets as
coming from one jet if yij < ycut, where ycut is a reference scale we give to the algorithm. Such an exclusive jet
algorithm then proceeds as

(1) for all combinations of two subjets in the event find the minimum ymin = minij(yij , yiB)

(2a) if ymin = yij < ycut merge subjets i and j and their momenta, keep only the new subjet i, go back to (1)

(2b) if ymin = yiB < ycut remove subjet i, call it beam radiation, go back to (1)

(2c) if ymin > ycut keep all subjets, call them jets, done

The result of the algorithm will of course depend on the resolution ycut. Alternatively, we can give the algorithm the
minimum number of physical jets and stop there.

In an inclusive jet algorithm we do not introduce ycut. We can postpone the decision if want to include a jet in our
analysis to the point where all jets are defined. Instead, yiB acts as the cutoff:

(1) for all combinations of two subjets in the event find the minimum ymin = minij(yij , yiB)

(2a) if ymin = yij merge subjets i and j and their momenta, keep only the new subjet i, go back to (1)

(2b) if ymin = yiB remove subjet i and call it a final state jet, go back to (1)

The algorithm ends when condition (2a) has left no particles or subjets in the event. Now, the smallest jet–beam
distance yiB sets the scale for all jet–jet separations. In the C/A example we immediately see that this translates into a
geometric jet size given by R. For regular QCD jets we choose values of R = 0.4...0.7. For the C/A and kT cases we
see that an inclusive jet algorithm produces jets arbitrarily close to the beam axis. Those are hard to observe and often
not theoretically well defined, as we know from our discussion of collinear divergences. Therefore, inclusive jet
algorithms have to include a final minimum cut on pT,jet which at the LHC can be anything from 20 GeV to more than
100 GeV, depending on the analysis.

A technical question is what ‘combine jets’ means in terms of the four-momentum of the new jet. The
three-momentum vectors we simply add ~ki + ~kj → ~ki. For the zero component we can assume that the new physical
jet have zero invariant mass, which is inspired by the massless parton we are usually looking for. If instead we add the
four-momenta we can compute the invariant mass of the jet constituents, the jet mass. As we will see in the next
section this allows us to extend the concept of jet algorithms to massive particles like a W or Z boson, the Higgs
boson, or the top quark.
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All jet algorithms them have in common that they link physical objects, namely calorimeter towers, to other more or
less physical objects, namely partons from the hard process. As we can see from the different choices in Eq.(3.1) we
have all the freedom in the world to weight the angular and transverse momentum distances relative to each other. As
determined by their power dependence on the transverse momenta, the three algorithms start with soft constituents
(kT ), purely geometric (Cambridge–Aachen C/A) or hard constituents (anti-kT ) to form a jet. While for the kT and
the C/A algorithms it is fairly clear that the intermediate steps have a physical interpretation, this is not clear at all for
the anti-kT algorithm.
From Section 2 and the derivation of the collinear splitting kernels it is obvious why theorists working on perturbative
QCD often prefer the kT algorithm: we know that the showering probability or the collinear splitting probability is
best described in terms of virtuality or transverse momentum. A transverse momentum distance between jets is
therefore best suited to combine the correct subjets into the original parton from the hard interaction, following a
series of actual physical intermediate splittings. Moreover, this transverse momentum measure is intrinsically infrared
safe, which means the radiation of an additional soft parton cannot affect the global structure of the reconstructed jets.
For other algorithms we have to ensure this property explicitly, and you can find examples in QCD lectures by Mike
Seymour.
The problem of the kT algorithm arises with pile–up or underlying event, i.e. very soft QCD activity entering the
detectors undirectionally or from secondary partonic vertices. Such noise is easiest understood geometrically in a
probabilistic picture. Basically, the low energy jet activity is constant all over the detector, so we
subtract it from each event. How much energy deposition we have to subtract from a reconstructed jet depends on the
area the jet covers in the detector. Therefore, it is a major step that even for the kT algorithm we can compute an
IR–safe geometric jet size. The C/A and anti-kT algorithms are more compact and easier to interpret experimentally.

3.1.2 Fat jets

Starting from the way the experiments at the Tevatron and the LHC search for bottom jets, including several detailed
requirements on the content of such jets, the question arises if we can look for other heavy objects inside a jet. Such
jets involving heavy particles and (usually) a large geometrical size are referred to as fat jets. For example, looking for
boosted top quarks a fat jet algorithm will try to distinguish between two splitting histories, where we mark the
massive splittings from boosted top decays:

u

t
b

W

The splittings inside the light–flavor jet are predicted by the soft and collinear QCD structure. The splittings in the top
decays differ because some of the particles involved have masses. This is the jet substructure pattern a fat jet
algorithm looks for.

Three main motivations lead us into the direction of fat jets: first, dependent on our physics model heavy objects like
W bosons or top quarks will be boosted enough to fit into a regular jet of angular size R . 0.7. Secondly, a jet
algorithm might include hadronic decay products which we would not trust to include in a regular mass reconstruction
based on reconstructed detector objects. And finally, even if only a fraction of the heavy particles we are searching for
are sufficiently boosted such an algorithm automatically resolves signal combinatorics known to limit some LHC
analyses.
At the LHC, we are guaranteed to encounter the experimental situation pT /m & 1 for electroweak gauge bosons,
Higgs bosons, and top quarks. The more extreme case of pT � m, for example searching for top quarks with a
transverse momentum in excess of 1 TeV, is unlikely to appear in the Standard Model and will only become
interesting if we encounter very heavy resonances decaying to a pair of top quarks. This is why we focus on the
moderate scenario. Amusingly, the identification of W and top jets was part of the original paper studying the pattern
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of splittings yij defining the kT algorithm. At the time this was mostly a gedankenexperiment to test the consistency
of the general kT algorithm approach. Only later reality caught up with it.

Historically, fat jet searches were first designed to look for strongly interacting W bosons. Based on the kT algorithm
they look for structures in the chain of y values introduced in Eq.(3.1), which define the kinematics of each jet. For
such an analysis of y values it is helpful but not crucial that the intermediate steps of the jet algorithm have a physics
interpretation. More recent fat jet algorithms looking for not too highly boosted heavy particles are based on the C/A
algorithm which appears to be best suited to extract massive splittings inside the jet clustering history. A comparison
of different jet algorithms can be found in the original paper on associated Higgs and gauge boson production. Using a
C/A algorithm we can search for hadronically decaying boosted W and Z bosons. The problem is that for those we
only have one hard criterion based on which we can reject QCD backgrounds: the mass of the W/Z resonance.
Adding a second W/Z boson and possibly the mass of a resonance decaying to these two, like a heavy Higgs boson,
adds to the necessary QCD rejection. For Higgs and top decays the situation is significantly more promising.

Starting with the Higgs tagger we search for jets which include two bottom quarks coming from a massive Higgs
boson with mH & 120 GeV. First, we run the C/A algorithm over the event, choosing a large geometric size R = 1.2
estimated to cover

Rbb̄ ∼
1√

z(1− z)
mH

pT,H
>

2mH

pT,H
, (3.2)

in terms of the transverse momentum of the boosted Higgs and the momentum fractions z and 1− z of the two bottom
jets.
We then uncluster again this fat jet, searching for a drop in jet mass indicating the decay of the massive Higgs to two
essentially massless quarks. The iterative unclustering we start by undoing the last clustering of the jet j, giving us
two subjets j1, j2 ordered such that mj1 > mj2 . If the mass drop between the original jet and its more massive
splitting product is small, i.e. mj1 > 0.8 mj , we conclude that j2 is soft enough to come from the underlying event or
soft–collinear QCD emission and discard j2 while keeping j1; otherwise we keep both j1 and j2; each surviving
subjet ji we further decompose recursively until it reaches some minimum value, mji < 30 GeV, ensuring it does not
involve heavy states. This way we obtain a splitting pattern which should only include massive splittings and which
for the Higgs jet uniquely identifies the H → bb̄ decay. Making use of the scalar nature of the Higgs boson we can add
an additional requirement on the balance based on min(p2

Tj1
, p2
Tj2

)∆R2
j1j2

. Of course, all actual numbers in this
selection are subject to experimental scrutiny and can only be determined after testing the algorithm on LHC data.

Experimentally, the goal of such a Higgs search is a distribution of the invariant mass of the bottom quarks which
gives us a signal peak and side bins to estimate the background. However, applying jet algorithms with very large R
size makes us increasingly vulnerable to underlying event, pile–up, or even regular initial–state radiation as described
in Section 2.3.2. Therefore, we cannot simply use the mass of a set of fat jet constituents. Instead, we apply a filtering
procedure looking at the same constituent with a higher resolution which can for example be Rfilt = min(0.3, Rbb̄/2).
This filtering significantly reduces the y-φ surface area of the relevant constituents and thereby the destructive power
of the underlying event and pile–up. The invariant mass we include in the histogram is the mass of the three hardest
filtered constituents, the two bottom quarks and possibly a radiated gluon.

In a busy QCD environment another problem arises: errand jets from initial–state radiation or other particles in the
final state enter the fat jet algorithm and give us several mass drops in the fat jet history. To avoid shaping the
background side bins we can include several (filtered) subjet combinations, ordered in the modified Jade distance
pT,1pT,2(∆R12)4 — the original Jade distance is given by pT,1pT,2(∆R12)2. The invariant mass distributions for
different Higgs search channels in Figure 25 include Standard Model Higgs searches in WH/ZH production, in tt̄H
production, and in decays of squarks and gluinos.
From the above discussion we see that Higgs taggers rely only on one kinematic criterion, the mass of the bb̄ pair. In
terms of background rejection this is not much, so we usually add two bottom tags on the constituents which
according to detector simulations can be very efficient. The two combined add to a QCD rejection of at least 10−4,
which might even allows us to run a Higgs tagger over any kind of event sample and see if we find any Higgs bosons
for example in new physics decays.
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Figure 25: Invariant mass distributions for Higgs searches using fat jets from H → bb̄ decays. For a Standard Model
Higgs boson the production mechanisms are pp → WH/ZH (left) and pp → tt̄H (center). In cascade decays of
supersymmetric squarks and gluinos we can apply the same search for the light Higgs boson (right). Figures from
Refs. [16], [62] and [63] (left to right).

While fat jet Higgs searches are targeted mostly at the Standard Model, looking for other boosted heavy particles is
usually motivated by new physics scenarios. Looking for massive particles decaying to heavy quarks top taggers
should be the next step. Starting from a C/A jet of size R = 1.5− 1.8 we again search for mass drops, this time
corresponding to the top and W masses. After appropriate filtering we apply two mass window conditions: first, the
entire fat jet has to reproduce the top mass. Second, we require a mass drop corresponding to the W decay and
effectively constrain a second combination of two decay jets evaluating the helicity angle of the left handed W decay.
Instead of these two distinct steps we can also apply a two-dimensional condition on the kinematics of the three top
decay products which avoids assigning the two W decay jets in cases where two combinations of decay jets give
similar invariant masses. On the simulation level both methods give similar results.
Applying these three kinematic conditions for example in the HEPTopTagger implementation gives a QCD rejection
of a few per-cent. If this should not be sufficient for a given analysis we can increase the rejection rate by requiring a
bottom tag which as a bonus also tells us which of the three top decay jets should reconstruct the W mass. When we
use top taggers to look for new particles decaying to top quarks we are not only interested in finding boosted top
quarks, but we would like to know their invariant mass. This means we would like to reconstruct their direction and
their energy. Such a reconstruction is possible in a reasonably clean sample, provided the top quarks have large
enough energy to boost all three decay jets into a small enough cone.

While it seems like the C/A jet algorithm with its purely geometric selection has the best potential to search for
massive particles in its jet history there exists a multitude of algorithms searching for boosted top quarks. Once the top
quarks have very large transverse momenta the two-step mass drop criterion becomes less critical because the three
decay jets are too close to be cleanly resolved. In this situation analyses based on the kT or anti-kT algorithms can be
very promising, as could be event shapes which do not involve any jet algorithm.

3.2 Helicity amplitudes
When we simulate LHC events we do not actually rely on the approach usually described in text books. This is most
obvious when it comes to the computation of a transition matrix elements in modern LHC Monte Carlo tools, which
you will not even recognize when looking at the codes. In Section 2.1 we compute the cross section for Z production
by writing down all external spinors, external polarization vectors, interaction vertices and propagators and squaring
the amplitude analytically. The amplitude itself inherits external indices for example from the polarization vectors,
while |M|2 is a real positive number with a fixed mass dimension depending on the number of external particles.
For the LHC nobody calculates gamma matrix traces by hand anymore. Instead, we use powerful tools like FORM to
compute traces of Dirac matrices in the calculation of |M|2. Nevertheless, a major problem with squaring Feynman
diagrams and computing polarization sums and gamma matrix traces is that once we include more than three particles
in the final state, the number of terms appearing in |M|2 soon becomes very large. Moreover, this approach requires
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symbolic computer manipulation instead of pure numerics. In this section we illustrate how we can transform the
computation of |M|2 at the tree level into a purely numerical problem.

As an example, we consider our usual toy process

uū→ γ∗ → µ+µ− . (3.3)

The structure of the amplitudeM with two internal Dirac indices µ and ν involves one vector current on each side
(ūfγµuf ) where f = u, µ are to good approximation massless, so we do not have to be careful with the different
spinors u and v. The entries in the external spinors are given by the spin of the massless fermions obeying the Dirac
equation. For each value of µ = 0 · · · 3 each current is a complex number, computed from the four component of each
spinor and the respective 4× 4 gamma matrix γµ shown in Eq.(2.109). The intermediate photon propagator has the
form gµν/s, which is a real number for each value of µ = ν. Summing over µ and ν in both currents forms the matrix
element. To square this matrix element we need to sumM∗ ×M over all possible spin directions of the external
fermions.

Instead of squaring this amplitude symbolically we can follow exactly the steps described above and compute an array
of numbers for different spin and helicity combinations numerically. Summing over the internal Dirac indices we
compute the matrix element; however, to compute the matrix element squared we need to sum over external fermion
spin directions or gauge boson polarizations. The helicity basis we have to specify externally. This is why this method
is called helicity amplitude approach. To explain the way this method works, we illustrate it for muon pair production
based on the implementation in the Madgraph/Helas package.
Madgraph is a tool to compute matrix elements this way. Other event generators have corresponding codes serving the
same purposes. In our case, Madgraph5 automatically produces a Fortran routine which then calls functions to
compute spinors, polarization vectors, currents of all kinds, etc. These functions are available as the so-called Helas
library. For our toy process Eq.(3.3) the slightly shortened Madgraph5 output reads

REAL*8 FUNCTION MATRIX1(P,NHEL,IC)
C
C Generated by Madgraph 5
C
C Returns amplitude squared summed/avg over colors
C for the point with external lines W(0:6,NEXTERNAL)
C
C Process: u u˜ > mu+ mu- / z WEIGHTED=4 @1
C

INTEGER NGRAPHS, NWAVEFUNCS, NCOLOR
PARAMETER (NGRAPHS=1, NWAVEFUNCS=5, NCOLOR=1)

REAL*8 P(0:3,NEXTERNAL)
INTEGER NHEL(NEXTERNAL), IC(NEXTERNAL)

INCLUDE ’coupl.inc’

DATA DENOM(1)/1/
DATA (CF(I, 1),I= 1, 1) / 3/

CALL IXXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1))
CALL OXXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL(4),+1*IC(4),W(1,4))
CALL FFV1_3(W(1,1),W(1,2),GC_2,ZERO, ZERO, W(1,5))
CALL FFV1_0(W(1,3),W(1,4),W(1,5),GC_3,AMP(1))
JAMP(1)=+AMP(1)

DO I = 1, NCOLOR
DO J = 1, NCOLOR

ZTEMP = ZTEMP + CF(J,I)*JAMP(J)
ENDDO
MATRIX1 = MATRIX1 + ZTEMP*DCONJG(JAMP(I))/DENOM(I)

ENDDO

END

The input to this function are the external four-momenta p(0 : 3, 1 : 4) and the helicities of all fermions nhel(1 : 4) in
the process. Remember that helicity and chirality are identical only for massless fermions because chirality is defined
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as the eigenvalue of the projectors (11± γ5)/2, while helicity is defined as the projection of the spin onto the
momentum direction, i.e. as the left or right handedness. We give the exact definition of these two properties in
Section 4. The entries of nhel will be either +1 or −1. For each point in phase space and each helicity combination the
Madgraph subroutine MATRIX1 computes the matrix element using standard Helas routines.

· IXXXXX(p,m, nhel, nsf, F ) computes the wave function of a fermion with incoming fermion number, so either
an incoming fermion or an outgoing anti–fermion. As input it requires the four-momentum, the mass and the
helicity of this fermion. Moreover, nsf = +1 marks the incoming fermion u and nsf = −1 the outgoing
anti–fermion µ+, because by convention Madgraph defines its particles as u and µ−.

The fermion wave function output is a complex array F (1 : 6). Its first two entries are the left–chiral part of the
fermionic spinor, i.e. F (1 : 2) = (11− γ5)/2 u or F (1 : 2) = (11− γ5)/2 v for nsf = ±1. The entries F (3 : 4)
are the right–chiral spinor. These four numbers can directly be computed from the four-momentum if we know
the helicity. The four entries correspond to the size of one γ matrix, so we can compute the trace of the chain of
gamma matrices. Because for massless particles helicity and chirality are identical, our quarks and leptons will
only have finite entries F (1 : 2) for nhel = −1 and F (3 : 4) for nhel = +1.

The last two entries of F contain the four-momentum in the direction of the fermion flow, namely
F (5) = nsf(p(0) + ip(3)) and F (6) = nsf(p(1) + ip(2)).

· OXXXXX(p,m, nhel, nsf, F ) does the same for a fermion with outgoing fermion flow, i.e. our incoming ū and
our outgoing µ−. The left–chiral and right–chiral components now read F (1 : 2) = ū(11− γ5)/2 and
F (3 : 4) = ū(11 + γ5)/2, and similarly for the spinor v̄. The last two entries are F (5) = nsf(p(0) + ip(3)) and
F (6) = nsf(p(1) + ip(2)).

· FFV1 3(Fi, Fo, g,m,Γ, Jio) computes the (off–shell) current for the vector boson attached to the two external
fermions Fi and Fo. The coupling g(1 : 2) is a complex array with the interaction of the left–chiral and
right–chiral fermion in the upper and lower index. For a general Breit–Wigner propagator we need to know the
mass m and the width Γ of the intermediate vector boson. The output array Jio again has six components which
for the photon with momentum q are

Jio(µ+ 1) = − i

q2
FTo γµ

(
g(1)

11− γ5

2
+ g(2)

11 + γ5

2

)
Fi µ = 0, 1, 2, 3

Jio(5) = −Fi(5) + Fo(5) ∼ −pi(0) + po(0) + i (−pi(3)− po(3))

Jio(6) = −Fi(6) + Fo(6) ∼ −pi(1) + po(1) + i (−pi(2) + po(2)) . (3.4)

The first four entries in Jio correspond to the index µ or the dimensionality of the Dirac matrices in this vector
current. The spinor index is contracted between FTo and Fi.

As two more arguments Jio includes the four-momentum flowing through the gauge boson propagator. They
allow us to reconstruct qµ from the last two entries

qµ = (ReJio(5),ReJio(6), ImJio(6), ImJio(5)) . (3.5)

· FFV1 0(Fi, Fo, J, g, V ) computes the amplitude of a fermion–fermion–vector coupling using the two external
fermionic spinors Fi and Fo and an incoming vector current J which in our case comes from FFV1 3. Again,
the coupling g(1 : 2) is a complex array, so we numerically compute

FTo /J
(
g(1)

11− γ5

2
+ g(2)

11 + γ5

2

)
Fi . (3.6)

All spinor and Dirac indices of the three input arguments are contracted in the final result. Momentum
conservation is not enforced by FFV1 0, so we have to take care of it by hand.

Given the list above it is easy to follow how Madgraph computes the amplitude for uū→ γ∗ → µ+µ−. First, it calls
wave functions for all external particles and puts them into the array W (1 : 6, 1 : 4). The vectors W (∗, 1) and
W (∗, 3) correspond to Fi(u) and Fi(µ+), while W (∗, 2) and W (∗, 4) mean Fo(ū and Fo(µ−).
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The first vertex we evaluate is the incoming quark–photon vertex. Given the wave functions Fi = W (∗, 1) and
Fo = W (∗, 2) FFV1 3 computes the vector current for the massless photon in the s-channel. Not much changes if we
instead choose a massive Z boson, except for the arguments m and Γ in the FFV1 3 call. Its output is the photon
current Jio ≡W (∗, 5).
The last step combines this current with the two outgoing muons coupling to the photon. Since this number gives the
final amplitude, it should return a complex number, not an array. Madgraph calls FFV1 0 with Fi = W (∗, 3) and
Fo = W (∗, 4), combined with the photon current J = W (∗, 5). The result AMP is copied into JAMP without an
additional sign which could have come from the relative ordering of external fermions in different Feynman diagrams
contributing to the same process.
The only remaining sum left to compute before we square JAMP is the color structure, which in our simple case
means one color structure with a color factor Nc = 3.
As an added bonus Madgraph produces a file with all Feynman diagrams in which the numbering of the external
particles corresponds to the second argument of W and the numbering of the Feynman diagrams corresponds to the
argument of AMP. This helps us identify intermediate results W , each of which is only computed once, even if is
appears several times in the different Feynman diagrams.
As mentioned above, to calculate the transition amplitude Madgraph requires all masses and couplings. They are
transferred through common blocks in the file coupl.inc and computed elsewhere. In general, Madgraph uses unitary
gauge for all vector bosons, because in the helicity amplitude approach it is easy to accommodate complicated tensors,
in exchange for a large number of Feynman diagrams.

The function MATRIX1 described above is not yet the full story. When we squareM symbolically we need to sum
over the spins of the outgoing states to transform a spinor product of the kind uū into the residue or numerator of a
fermion propagator. To obtain the full transition amplitude numerically we correspondingly sum over all
helicity combinations of the external fermions, in our case 24 = 16 combinations.

SUBROUTINE SMATRIX1(P,ANS)
C
C Generated by Madgraph 5
C
C Returns amplitude squared summed/avg over colors
C and helicities for the point in phase space P(0:3,NEXTERNAL)
C
C Process: u u˜ > mu+ mu- / z
C

INTEGER NCOMB, NGRAPHS, NDIAGS, THEL
PARAMETER (NCOMB=16, NGRAPHS=1, NDIAGS=1, THEL=2*NCOMB)

REAL*8 P(0:3,NEXTERNAL)

INTEGER I,J,IDEN
INTEGER NHEL(NEXTERNAL,NCOMB),NTRY(2),ISHEL(2),JHEL(2)
INTEGER JC(NEXTERNAL),NGOOD(2), IGOOD(NCOMB,2)
REAL*8 T,MATRIX1
LOGICAL GOODHEL(NCOMB,2)

DATA NGOOD /0,0/
DATA ISHEL/0,0/
DATA GOODHEL/THEL*.FALSE./

DATA (NHEL(I, 1),I=1,4) /-1,-1,-1,-1/
DATA (NHEL(I, 2),I=1,4) /-1,-1,-1, 1/
DATA (NHEL(I, 3),I=1,4) /-1,-1, 1,-1/
DATA (NHEL(I, 4),I=1,4) /-1,-1, 1, 1/
DATA (NHEL(I, 5),I=1,4) /-1, 1,-1,-1/
DATA (NHEL(I, 6),I=1,4) /-1, 1,-1, 1/
DATA (NHEL(I, 7),I=1,4) /-1, 1, 1,-1/
DATA (NHEL(I, 8),I=1,4) /-1, 1, 1, 1/
DATA (NHEL(I, 9),I=1,4) / 1,-1,-1,-1/
DATA (NHEL(I, 10),I=1,4) / 1,-1,-1, 1/
DATA (NHEL(I, 11),I=1,4) / 1,-1, 1,-1/
DATA (NHEL(I, 12),I=1,4) / 1,-1, 1, 1/
DATA (NHEL(I, 13),I=1,4) / 1, 1,-1,-1/
DATA (NHEL(I, 14),I=1,4) / 1, 1,-1, 1/
DATA (NHEL(I, 15),I=1,4) / 1, 1, 1,-1/
DATA (NHEL(I, 16),I=1,4) / 1, 1, 1, 1/
DATA IDEN/36/
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DO I=1,NEXTERNAL
JC(I) = +1

ENDDO

DO I=1,NCOMB
IF (GOODHEL(I,IMIRROR) .OR. NTRY(IMIRROR).LE.MAXTRIES) THEN
T = MATRIX1(P ,NHEL(1,I),JC(1))
ANS = ANS+T

ENDIF
ENDDO

ANS = ANS/DBLE(IDEN)
END

The important part of this subroutine is the list of possible helicity combinations stored in the array nhel(1 : 4, 1 : 16).
Adding all different helicity combinations means a loop over the second argument and a call of MATRIX1 with the
respective helicity combination. Because of the naive helicity combinations many are not allowed the array GOODHEL
keeps track of valid combinations. After an initialization to all ‘false’ this array is only switched to ‘true’ if MATRIX1
returns a finite value, otherwise Madgraph does not waste time to compute the matrix element. At the very end, a
complete spin–color averaging factor is included as IDEN and in our case given by 2× 2×N2

c = 36.

Altogether, Madgraph provides us with the subroutine SMATRIX1 and the function MATRIX1 which together
compute |M|2 for each phase space point given as an external momentum configuration. This helicity method might
not seem particularly appealing for a simple (2→ 2) process, but it makes it possible to compute processes with many
particles in the final state and typically up to 10000 Feynman diagrams which we could never square symbolically, no
matter how many graduate students’ live times we throw in.

3.3 Missing transverse energy
Some of the most interesting signatures at the LHC involve dark matter particles. From cosmological constraints we
know that dark matter definitely interacts gravitationally and that it cannot carry electromagnetic or color charges.
Weak interactions are allowed because of their limited reach. It turns out that a weakly interacting particle with a mass
around the electroweak scale typically gives the observed relic density in the universe. This is called the
WIMP miracle. It it the reason why in modern TeV-scale model building every model (and its dog) predict a stable
WIMP. From supersymmetry we know that this is not hard to achieve: all we need is a Z2 symmetry to induce a
multiplicative quantum number for a sector of newly introduced particles. In supersymmetry this is called R parity, in
little-Higgs models T parity, and in extra-dimensional models Kaluza–Klein parity.

At the LHC we typically produce strongly interacting new particles, provided they exist. In the presence of a
conserved dark matter quantum number exists we will always produce them in pairs. Each of them decays to the
weakly interacting sector which includes a stable dark matter agent. On the way, the originally produced particles
have to radiate quarks or gluons to shed their color charge. If in some kind of cascade decays they also radiate leptons
or photons those can be very useful to trigger on and to reduce QCD backgrounds, but this depends on the details of
the weakly interacting new physics sector. The decay steps ideally are two body decays from on–shell particle to
on–shell particle, but they do not have to be. What we therefore look for is jets in association with pairs of only
weakly interacting, hence invisible particles in the ATLAS and CMS detectors.

From Eq.(2.28) and the discussion of parton densities we remember that at hadron colliders we do not know the
kinematics of the initial state. While in the transverse plane by definition the incoming partons have zero momentum,
in beam direction we only know its boost statistically. The way to look for invisible particles therefore is a
mis-balance of three-momentum in the transverse plane. The actual observable is the missing transverse momentum
defined as the vector sum of the transverse momenta of all invisible particles. We can convert it into a missing
transverse energy which in the absence of any information on particle masses is defined as the absolute value of the
two-dimensional missing momentum vector. LHC events including dark matter are characterized by a high jet
multiplicity and large missing transverse energy.
At the end of Section 2.6.2 we focus on the proper simulation of W+jets and Z+jets samples, which are the Standard
Model backgrounds to such signals. It will turn out that jet merging is needed to reliably predict the missing
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Figure 26: Left: missing energy distribution from the early running phase of the DZero experiment at the Tevatron.
Figure from Beate Heinemann. Right: corrected missing energy distribution in QCD events at ATLAS using only data
from April/May 2010 at 7 TeV collider energy. Figure from Ref.[64].

transverse momentum distributions in Standard Model processes. After all our studies in Section 2 we are at least
theoretically on safe ground. However, this is not the whole story of missing transverse momentum.

3.3.1 Measuring missing energy

The left panel of Figure 26 is a historic distribution of missing transverse energy from DZero. It nicely illustrates that
by just measuring missing transverse energy, Tevatron would have discovered supersymmetry based on two beautiful
peaks around 150 GeV and around 350 GeV. However, this preliminary experimental result has nothing to do with
physics, it is purely a detector effect.
We can illustrate the problem of missing energy using a simple number: to identify and measure a lepton we need
around 500 out of 200000 calorimeter cells in an experiment like ATLAS, while for missing transverse energy we
need all of them. To cut on a variable like missing transverse momentum we need to understand our detectors really
well, and this level of understanding needs a lot of time and effort.

There are several sources of missing energy which we have to understand before we get to search for new physics:

– First, we have to subtract bad runs. They happen if for a few hours parts of the detector do not work properly.
We can identify them by looking at the detector response and its correlation. One example is a so-called ring of
fire where we see coherent effects in detector modules of circular shape around the beam axis.

– Next, there will be coherent noise in the calorimeter. With 200000 cells we know that some of them will
individually fail or produce noise. Some sources of noise, like leaking voltage or other electronic noise can be
correlated geometrically and lead to beautiful missing momentum signals. The way to get rid of such noise
event by event is to again look for usual detector response. Combined with bad runs such events can constitute
O(0.1%) of all events and get removed from the data sample.

– In addition, there might be particles crossing our detector, but not coming from the interaction point. They can
be cosmic rays and lead to unbalanced energy deposition as well. Such events will have reconstructed particle
tracks which are not compatible with the measured primary vertex.

– Another source of fake missing energy is failing calorimeter cells, like continuously hot cells or dead cells.
ATLAS for example has developed such a hole by 2010. Events where missing energy points into such a region
can often be removed once we understand the detector.

– While not really a detector fake the main source of missing energy at hadron colliders are mis-measured QCD
jets. If parts of jets point into regions with poor calorimetry, like support structures, the jet energy will be
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wrongly measured, and the corresponding QCD event will show missing transverse energy. One way to tackle
this problem is to require a geometric separation of the missing momentum vector and hard jets in the event.
ATLAS detector studies indicate that up to O(0.1%− 1%) of all hard QCD events at the LHC lead to more than
100 GeV of well separated fake missing transverse energy. Figure 10 in Section 1.5.4 shows that this is not at all
a negligible number of events.

Once we understand all sources of fake missing momentum we can focus on real missing momentum. This missing
transverse momentum we compute from the momenta of all tracks seen in the detector. This means that any
uncertainty on these measurements, like the jet or lepton energy scale will smear the missing momentum. Moreover,
we know that there is for example dead matter in the detector, so we have to compensate for this. This compensation
is a global correction to individual events, which means it will generally smear the missing energy distribution. The
right panel of Figure 26 shows a very early missing transverse energy distribution of ATLAS after some of the
corrections described above.
To simulate a realistic missing transverse momentum distribution at the LHC we have to smear all jet and lepton
momenta, and in addition apply a Gaussian smearing of the order

∆ /ET
GeV

∼ 1

2

√∑
ET

GeV
& 20 . (3.7)

While this sounds like a trivial piece of information it is impossible to count the number of papers where people forget
this smearing and discover great channels to look for Higgs bosons or new physics. They fall apart when
experimentalists take a careful look. The simple rule is: phenomenological studies are right or wrong based on if they
can be reproduced by real experimentalists and real detectors or not.

3.3.2 Missing energy in the Standard Model

In the Standard Model there exists a particle which only interacts weakly: the neutrino. At colliders we produce them
in reasonably large numbers in W decays. This means that in W+ jets production we can learn how to reconstruct the
mass of a leptonically decaying W from one observed and one missing particle. We construct a transverse mass in
analogy to an invariant mass, but neglecting the longitudinal momenta of the decay products

m2
T = (ET,miss + ET,`)

2 − (~pT,miss + ~pT,`)
2

= m2
` +m2

miss + 2 (ET,`ET,miss − ~pT,` · ~pT,miss) , (3.8)

in terms of a transverse energy E2
T = ~p2

T +m2. Since the transverse mass is always smaller than the actual W mass
and reaches this limit for realistic phase space regions we can extract mW from the upper edge in the mT,W

distribution. Obviously, we can define the transverse mass in many different reference frames. However, its value is
invariant under — or better independent of — longitudinal boosts. Moreover, given that we construct it as the
transverse projection of an invariant mass it is also invariant under transverse boosts. By construction we cannot
analyze the transverse mass event by event, so this W mass measurement only uses the fraction of events which
populate the upper end of the transverse mass distribution.

Alternatively, from single top production and the production of mixed leptonically and hadronically decaying top pairs
we know another method to conditionally reconstruct masses and momenta involving one invisible particle: from a
leptonically decaying top quark we only miss the longitudinal momentum of the neutrino. On the other hand, we
know at least for the signal events that the neutrino and the lepton come from an on–shell W boson, so we can use this
on–shell condition to reconstruct the longitudinal neutrino momentum under the assumption that the neutrino has zero
mass. Recently, we have seen that sufficiently boosted top quarks with leptonic decays can be fully reconstructed even
without using the measured missing energy vector. Instead, we rely on the W and t on–shell conditions and on an
assumption about the neutrino momentum in relation to the bottom-lepton decay plane.
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From Higgs searches we know how to extend the transverse mass to two leptonic W decays with two neutrinos in the
final state. The definition of this transverse mass

m2
T,WW = (ET,miss + ET,``)

2 − (~pT,miss + ~pT,``)
2

= m2
`` +m2

miss + 2 (ET,``ET,miss − ~pT,`` · ~pT,miss) (3.9)

is not unique because it is not clear how to define mmiss, which also enters the definition of ET,miss. From Monte Carlo
studies it seems that identifying mmiss ≡ m``, which is correct at threshold, is most strongly peaked. On the other
hand, setting mmiss = 0 to define a proper bounded–from–above transverse mass variable seems to improve the Higgs
mass extraction.

For an unspecified number of visible and invisible particles in the final state there also exist global observables we can
rely on. The visible mass is based on the assumption that we are looking for the decay of two heavy new states where
the parton densities will ensure that these two particles are non–relativistic. We can then approximate the partonic
energy

√
ŝ ∼ m1 +m2 by some kind of visible energy. If the heavy states are produced with little energy, boost

invariance is not required for this construction. Without taking into account missing energy and adding leptons ` and
jets j the visible mass looks like

m2
visible =

∑
`,j

E

2

−

∑
`,j

~p

2

. (3.10)

Similarly, the Tevatron experiments have for a long time used an effective transverse mass scale which is usually
evaluated for jets only, but can trivially be extended to leptons:

HT =
∑
`,j

ET =
∑
`,j

pT , (3.11)

where the last step assumes that all final–state particles are massless. In an alternative definition of HT we sum over a
number of jets plus the missing energy and skip the hardest jet in this sum.
When combining such a measure with missing transverse momentum the question arises: do we want to pair up the
missing transverse momentum with the visible transverse momenta or with the complete visible momenta? For
example, we can use the scalar sum of all transverse momenta in the event, now including the missing transverse
momentum

meff =
∑
`,j,miss

ET =
∑
`,j,miss

pT . (3.12)

This effective mass is known to trace the mass of the heavy new particles decaying for example to jets and missing
energy. This interpretation relies on the non–relativistic nature of the production process and our confidence that all
jets included are really decay jets.

3.3.3 Missing energy and new physics

The methods described in the last section are well studied for different Standard Model processes and can be applied
in new physics searches for various lengths of decay chains. However, there is need for one significant modification,
namely to account for a finite unknown mass of the missing energy particle. This is a problem of relativistic
kinematics and at leading order does not require any knowledge of QCD or new physics models.
The chain of three successive three-body decays shown in Figure 27 is the typical left handed squark cascade decay in
supersymmetry. The same topology we can interpret in extra-dimensional models (universal extra dimensions or
UED) as the decay of a Kaluza–Klein quark excitation

q̃L → χ̃0
2q → ˜̀±`∓q → χ̃0

1`
+`−q Q

(1)
L → Z(1)q → `(1)±`∓q → γ(1)`+`−q . (3.13)

In both cases the last particle in the chain, the lightest neutralino or the Kaluza–Klein photon excitation pass the
detectors unobserved. The branching ratio for such decays might not be particularly large; for example in the
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Figure 27: Feynman diagram for the long decay chain shown in Eq.(3.13).

supersymmetric parameter point SPS1a with a mass spectrum we will discuss later in Figure 31 the long squark decay
ranges around 4%. On the other hand, strongly interacting new particles should in principle be generously produced at
the LHC, so we usually assume that there will be enough events to study. The question is how we can then extract the
four masses of the new particles appearing in this decay from the three observed external momenta.

The proposals to solve this problem can be broadly classified into four classes. While all of them should in principle
work and would then differ mostly by statistics, we only know how QCD and detector smearing affect the first
strategy.

1. Endpoint methods extract masses from lower (threshold) and upper (edge) kinematic endpoints of invariant
mass distributions of visible decay products. This method is best suited for long decay chains, where the
number of independent endpoint measurements in one leg at least matches the number of unknown masses in
the cascade. An implicit assumption of these endpoint techniques is that the form of the matrix element
populates the phase space close to the endpoint well. Otherwise, the endpoint will be soft and difficult to
identify on top of the continuum background.

The squark decay Eq.(3.13) has a particular kinematic feature: the invariant mass distributions of the two
leptons m``. Looked at in the rest frame of the intermediate slepton it is a current–current interaction, similar to
the Drell–Yan process computed in Eq.(2.11). Because in the s-channel there now appears a scalar particle there
cannot be any angular correlations between the two currents, which means the m`` distribution will have a
triangular shape. We can compute its upper limit, called the dilepton edge: in the rest frame of the scalar lepton
the three-momenta of the incoming and outgoing pair of particles have the absolute values
|~p| = |m2

χ̃0
1,2
−m2

˜̀|/(2m˜̀). The lepton mass we set to zero. The invariant mass of the two lepton reaches its
maximum if the two leptons are back–to–back and the scattering angle is cos θ = −1

m2
`` = (p`+ + p`−)2

= 2 (E`+E`− − |~p`+ ||~p`− | cos θ)

< 2 (E`+E`− + |~p`+ ||~p`− |)

= 4
m2
χ̃0

2
−m2

˜̀

2m˜̀

m2
˜̀−m2

χ̃0
1

2m˜̀
using E2

`± = ~p2
`± . (3.14)

This kinematic statement is independent of the shape of the m`` distribution. For the particle assignments
shown in Eq.(3.13) the kinematic endpoints are given by

0 < m2
`` <

(m2
χ̃0

2
−m2

˜̀)(m
2
˜̀−m2

χ̃0
1
)

m2
˜̀

0 < m2
`` <

(m2
Z(1) −m2

`(1))(m
2
`(1) −m2

γ(1))

m2
`(1)

. (3.15)

A problem in realistic applications of endpoint methods is combinatorics. We need to either clearly separate the
decays of two heavy new states, or we need to combine a short decay chain on one side with a long chain on the
other side. In supersymmetry this is naturally the case for associated squark and gluino production. A right
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Figure 28: Example for the mass relation method using three successive two-body decays on both sides of the events
(left). After detector smearing we can reconstruct the masses for the supersymmetric parameter point SPS1a with the
squark decay chain shown in Eq.(3.13) (right). Figure from Ref. [65].

handed squark often decays directly to the lightest neutralino which is the dark matter candidate in the model.
The gluino has to radiate two quark jets to reach the weakly interacting sector of the model and can then further
decay in many different ways. In other models this feature is less generic. The impressive potential of endpoint
methods in the case of supersymmetry we will illustrate later in this section.

When looking at long cascade decays for example with two leptons we usually cannot tell which of the two
leptons is radiated first. Therefore, endpoint techniques will always be plagued with combinatorial background
from the mapping of the particle momenta on the decay topology. The same applies to QCD jet radiation vs
decay jets. In this situation it is useful to consider the correlation of different invariant masses and their
endpoints. The endpoint method can be extended to use invariant mass distributions from both sides of the event
(hidden threshold techniques), and correlations between the distributions from each leg (wedgebox techniques).

2. Mass relation methods generalize the single top example in Section 3.3.2 and completely reconstruct the
kinematics event by event. For each event this construction provides a set of kinematic constraints. While for
one event the number of parameters can be larger than the number of measurements, adding signal events
increases the number of measurements while keeping the number of unknowns constant. Eventually, the system
of equations will solve, provided all events are really signal events. Implicitly, we always assume that all
decaying particles are on–shell.

In Figure 28 we show the general topology of a three-step cascade decay on each side of the event, like we
expect it for a pair of left handed squarks following Eq.(3.13). To extract the masses of the new particles we
need to solve the system of equations

(p1 + p2 + p3 + p4)2 = m2
Z

(p2 + p3 + p4)2 = m2
Y

(p3 + p4)2 = m2
X

p2
4= m2

N , (3.16)

for each side of the event. For each event there are eight unknown masses and six unknown missing momentum
components of which we measure two combinations as the missing transverse momentum. All of these 12
unknowns we can determine if we add a sufficiently large number of events.

One strategy to solve this problem is to assume eight test masses m = (m2
Z ,m

2
Y ,m

2
X ,m

2
N , ...), use the three

first equations in Eq.(3.16) for each event plus the two missing transverse momentum components to determine
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the two-body decay. Figure from Ref. [66].

both missing four-momenta, and test the consistency of this solution using the last line of Eq.(3.16) for each of
the two legs. In this consistency test we combine the information from several events.

We can conveniently solve the first three lines in Eq.(3.16) for the missing momentum p4

−2(p1p4) ≡ s1 = m2
Y −m2

Z + 2(p1p2) + 2(p1p3)

−2(p2p4) ≡ s2 = m2
X −m2

Y + 2(p2p3)

−2(p3p4) ≡ s3 = m2
N −m2

X , (3.17)

for simplicity assuming massless Standard Model decay products. Similarly, we define the measured
combinations s5,6,7 from the opposite chain. In addition, we measure the two-dimensional missing transverse
momentum, so we can collect the two missing four-momenta into pmiss = (~p4, E4, ~p8, E8) and define two
additional entries of the vector s in terms of measured quantities and masses like

(x̂p4) + (x̂p8) = s4

(ŷp4) + (ŷp8) = s8 . (3.18)

Combining the first equal signs of Eqs.(3.17) and (3.18) for both halves of the events reads A · pmiss = s, where
the matrix A includes only components of measured momenta and is almost block diagonal, so it can be
inverted. Following the second equal sign in Eq.(3.17) we can then write s = B ·m+ c, where the matrix B
only contains non-zero entries ±1 and the vector c consists of measured quantities. Together, this gives us

pmiss = A−1s = A−1Bm+A−1 c . (3.19)

We show the result for all masses in the decay chain using 25 events per set and including all combinatorics in
Figure 28. The mass relation method has also been successfully applied to single legs as well as in combination
with kinematic endpoints.

3. MT2 methods are based on a global variable mT2. It generalizes the transverse mass known from W decays to
the case of two massive invisible particles, one from each leg of the event. The observed missing energy in the
event we can divide into two scalar fractions pT,miss = q1 + q2. Given the two fractions qj we can construct a
transverse mass for each side of the event, assuming we know the invisible particle’s mass mT,j(qj ; m̂miss); the
second argument is an external assumption, so m̂miss is an assumed value for mmiss.

Inspired by the usual transverse mass we are interested in a mass variable with a well–defined upper edge, so we
need to construct some kind of minimum of mT,j as a function of the splitting of pT,miss. Naively, this minimum
will simply be the zero transverse momentum limit of mT on one leg, which is not very interesting. On the
other hand, in this case the transverse mass from the other leg reaches a maximum, so we can instead define

mT2(m̂miss) = min
pT,miss=q1+q2

[
max
j

mT,j(qj ; m̂miss)

]
(3.20)
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Figure 30: Invariant mass of two leptons after selection cuts for the SPS1a parameter point: SUSY signal Opposite Sign
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background: grey. Figure from Giacomo Polesello (ATLAS).

as a function of the unknown missing particle mass. There are two properties we know by construction

mlight + m̂miss < mT2(m̂miss)

mlight +mmiss < mT2(mmiss) < mheavy . (3.21)

The first line means that each of the mT,j lie between the sum of the two decay products’ masses and the mass
of the decaying particle, so for massless Standard Model decay products there will be a global mT2 threshold at
the missing particle’s mass.

Moreover, for the correct value of mmiss the mT2 distribution has a sharp edge at the mass of the parent particle.
In favorable cases mT2 may allow the measurement of both the parent particle and the LSP based on a
single–step decay chain. These two aspects for the correct value m̂miss = mmiss we can see in Figure 29: the
lower threshold is indeed given by mT2 −mχ̃0

1
= mπ . while the upper edge of mT2 −mχ̃0

1
coincides with the

dashed line for mχ̃+
1
−mχ̃0

1
.

An interesting aspect of mT2 is that it is boost invariant if and only if m̂miss = mmiss. For a wrong assignment of
mmiss it has nothing to do with the actual kinematics and hence with any kind of invariant, and house numbers
are not boost invariant. We can exploit this aspect by scanning over mmiss and looking for so-called kinks,
defined as points where different events kinematics all return the same value for mT2.

Similar to the more global meff variable we can generalize mT2 to the case where we do not have a clear
assignment of the two decay chains involved. This modification MTGen again has an upper edge, which
unfortunately is not as sharp as the one in mT2. Similarly, the procedure can be generalized to any one-step
decay, for example a three-body decay with either one or two missing particles on each side of the event. Such
MTX distributions are useful as long as they have a sharp enough edge, as illustrated in Figure 29.

4. Extreme kinematics can also give us a handle on mass reconstruction from an incomplete set of observables.
One such phase space region are points close kinematic endpoints where particles are produced at rest. Other
examples are the approximate collinear Higgs mass reconstruction in a decay to boosted tau pairs described in
Section 1.6.3 or the boosted leptonic top decays mentioned before.

The way mass measurements can lead to proper model reconstruction we sketch for one scenario. The classic example
for the endpoint method is the long supersymmetric left handed squark decay chain shown in Eq.(3.13) and in
Figure 27. The quoted supersymmetric partner masses are by now ruled out, but in the absence of more recent studies
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Figure 31: Masses extracted from the gluino-sbottom decay chain, including estimated errors. The faint blue lines
indicate wrong solutions when inverting the endpoint–mass relations. The supersymmetric mass spectrum is given by
the SPS1a parameter point. Figure from Ref. [67].

we stick to their historic values. When we use such kinematic endpoints or other methods to extract mass parameters
it is crucial to start from a signal–rich sample to avoid combinatorics and washed out endpoints vanishing in a
fluctuating or even sculptured background. For jets, leptons and missing energy a major background will be top pairs.
The key observation is that in long cascade decays the leptons are flavor–locked, which means the combination
e+e− + µ+µ− − e−µ+ − e+µ− becomes roughly twice µ+µ− for the signal, while it cancels for top pairs. Using
such a combination for the endpoint analysis means the top background is subtracted purely from data, as illustrated in
Figure 30.
The long squark decay in by now ruled out SPS1a-like parameter points with squark masses in the 500 to 600 GeV
range has an important advantage: for a large mass hierarchy we should be able to isolate the one decay jet just based
on its energy. In complete analogy to the dilepton edge shown in Eq.(3.15), but with somewhat reduced elegance we
can measure the threshold and edge of the `+`−q distribution and the edges of the two `±q combinations. Then, we
solve the system for the intermediate masses without any model assumption, which allows us to even measure the dark
matter mass to O(10%). The limiting factors will likely be our chances to observe enough endpoints in addition to
mmax
`` and the jet energy scale uncertainty. An interesting question is how well we will do with tau leptons, where the

edge is softened by neutrinos from tau decays.

Provided the gluino or heavy gluon is heavier than the squarks or heavy quarks we can measure its mass by extending
the squark chain by one step: g̃ → qq̃. This measurement is hard if one of the two jets from the gluino decay is not
very hard, because its information will be buried by the combinatorial error due to QCD jet radiation. The way around
is to ask for two bottom jets from the strongly interacting decay: g̃ → bb̃∗ or G(1) → bB̄(1). The summary of all
measurements in Figure 31 shows that we can extract for example the gluino mass at the per-cent level, a point at
which we might have to start thinking about off–shell propagators and at some point even define what exactly we
mean by ‘masses as appearing in cascade decays’.
A generic feature or all methods relying on decay kinematics is that it is easier to constrain the differences of squared
masses than the absolute mass scale. This is also visible in Figure 31. It is due to the form of the endpoint formulas
which involve the difference of mass squares m2

1 −m2
2 = (m1 +m2)(m1 −m2). This combination is much more

sensitive to (m1 −m2) than it is to (m1 +m2). Experimentally, correlated jet and lepton energy scale uncertainties
do not make life easier either. Nevertheless, the common lore that kinematics only constrain mass differences is
obviously not true for two body decays.

Alternatively, we can use the same gluino decay to first reconstruct the intermediate neutralino or Kaluza–Klein Z
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Figure 32: Asymmetry inmj`/m
max
j` for supersymmetry (dashed) and universal extra dimensions (solid). The spectrum

is assumed to be hierarchical, typical for supersymmetric theories. Figure taken from Ref. [68].

momentum for lepton pairs residing near the m`` edge. In that case the invisible heavy state is produced
approximately at rest, and the momenta are correlated as

~pχ̃0
2

=

(
1−

mχ̃0
1

m``

)
~p`` ~pZ(1) =

(
1−

mγ(1)

m``

)
~p`` (3.22)

If both neutralino masses (or the Kaluza–Klein photon and Z masses) are known, we can extract the sbottom
(Kaluza–Klein bottom) and gluino (Kaluza–Klein gluon) masses by adding the measured bottom momenta to this
neutralino (Kaluza–Klein photon) momentum. Again, for the mass spectrum shown in Figure 31 we can measure the
gluino mass to few per-cent, depending on the systematic errors.
For a complete analysis, kinematic endpoints can be supplemented by any other method to measure new physics
masses. For short decay chains mT2 is best suited to measure the masses of particles decaying directly to the dark
matter agent. In supersymmetry, this happens for right handed sleptons or right handed squarks. The issue with short
decay chains is that they often require on some kind of jet veto, which following Sections 2.6.2 and 1.6.2 is
problematic for low-pT jets.

Keeping in mind that endpoint analyses only use a small fraction of the events, namely those with extreme kinematics,
an obvious way to improve their precision is to include the complete shape of the invariant mass distributions.
However, this strategy bears a serious danger. Invariant masses are just an invariant way of writing angular
correlations between outgoing particles. Those depend on the spin and quantum numbers of all particles involved. For
example, in the case of the m`` endpoint the triangular shape implies the absence of angular correlations, because the
intermediate particle is a scalar. This means that we should be careful when extracting information for example from
kinematic endpoints we do not observe. Depending on the quantum numbers and mixing angles in the new physics
scenario, kinematic endpoints can for example be softened, so they vanish in the background noise.

This argument we can turn around. Measuring discrete quantum numbers, like the spin of new particles, is hard in the
absence of fully reconstructed events. The usual threshold behavior is not observable at hadron colliders, in particular
when the final state includes missing transverse energy. Instead, we rely on angular correlation in decays. For the
squark decay chain given in Eq.(3.13) there exists a promising method to simultaneously determine the spin of all new
particles in the chain:

1. Instead of trying to measure spins in a general parameterization we start from the observation that cascade
decays radiate particles with known spins. This is most obvious for long gluino decays where we know that the
radiated bottom quarks as well as muons are fermions. The spins inside the decay chain can only alternate
between fermions and bosons. Supersymmetry switches this fermion/boson nature compared to the
corresponding Standard Model particle, so we can contrast it with another hypothesis where the spins in the
decay chain follow the Standard Model assignments. Such a model are Universal Extra Dimensions, where each
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Standard Model particle acquires a Kaluza–Klein partner from the propagation in the bulk of the additional
dimensions.

2. Thresholds and edges of all invariant masses of the radiated fermions are completely determined by the masses
inside the decays chain. Kinematic endpoints cannot distinguish between supersymmetry and universal extra
dimensions. In contrast, the shape of the distribution between the endpoints is nothing but an angular correlation
in some reference frame. For example, the mj` distribution in principle allows us to analyze spin correlations in
squark decays in a Lorentz invariant manner. The only problem is the link between `± and their ordering in
decay chain.

3. a proton–proton collider like the LHC produces considerably more squarks than antisquarks in the
squark–gluino associated channel. For the SPS1a spectrum at 14 TeV collider energy their ratio ranges around
2:1. A decaying squark radiates a quark while an antisquark radiates an antiquark, which means that we can
define a non-zero production-side asymmetry between mj`+ and mj`− . Such an asymmetry we show in
Figure 32, for the SUSY and for the UED hypotheses. Provided the masses in the decay chain are not too
degenerate we can indeed distinguish the two hypotheses.

This basic idea has since been applied to many similar situations, like decays including gauge bosons, three-body
decays, gluino decays with decay–side asymmetries, cascades including charginos, weak boson fusion signatures, etc.
They show that the LHC can do much more than just discover some kind of particle beyond the Standard Model. It
actually allows us to study underlying models and symmetries.

3.4 Uncertainties
As we argue in the very beginning of the lecture, LHC physics always means extracting signals from often large
backgrounds. This means, a correct error estimate is crucial. Before we discuss the challenges in LHC physics, let us
first compare the Poisson distribution with the Gaussian distribution for a counting experiment. From Eq.(2.173) or
Eq.(1.225) we know that the probability of observing something n times while it is expected to occur 〈n〉 times is
given by a Poisson distribution

P(n; 〈n〉) =
〈n〉n e−〈n〉

n!
=
〈n〉n e−〈n〉

Γ(n+ 1)
. (3.23)

This distribution ensures P(n) = 0 for all n < 0. For large continuous values of 〈n〉 and n it turns into a Gaussian
distribution, given for example in Eq.(1.184). To show this we use a particular representation of n! in terms of Euler’s
number e,

P(n; 〈n〉) =
〈n〉n e−〈n〉√
2πn(n/e)n

=
1√

2π〈n〉
1√

1 + δ

〈n〉〈n〉(1+δ) e−〈n〉

〈n〉〈n〉(1+δ)(1 + δ)〈n〉(1+δ)
e〈n〉(1+δ) with δ〈n〉 = n− 〈n〉 � 〈n〉 ∼ n

=
1√

2π〈n〉
e−〈n〉

(1 + δ)〈n〉(1+δ)
e〈n〉(1+δ) (1 +O(δ))

=
1√

2π〈n〉
e〈n〉δ

e〈n〉(δ−δ2/2+O(δ3))
(1 +O(δ)) with log(1 + δ)〈n〉(1+δ) = 〈n〉(1 + δ)

(
δ − δ2

2

)
' 1√

2π〈n〉
e−〈n〉δ

2/2 ≡ 1√
2π〈n〉

e−(n−〈n〉)2/(2〈n〉) (3.24)

The Gaussian distribution has an expectation value as well as a variance of 〈n〉, so its standard deviation is
√
〈n〉.

This relation is an example of the central limit theorem which says that a sufficiently large number of independent
random variables will eventually follow a Gaussian shape. For the Gaussian we know that the integral can be linked to
the number of standard deviations over which which we integrate on both sides,
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integration range 〈n〉 ± 1σ 〈n〉 ± 2σ 〈n〉 ± 3σ 〈n〉 ± 4σ 〈n〉 ± 5σ
integral fraction 68.3% 95.4% 99.7% 99.99% 99.9999%

Correspondingly, the area outside the five sigma range corresponds to a fraction of 5.7× 10−7, or 2.9× 10−7 on each
side of the maximum. The main problem for counting experiments is that the Gaussian shape is symmetric around
n = 〈n〉 and therefore gives a finite probability for example for negative event counts. This gives us a minimum
number of expected events below which the Gaussian should not be applied. For example, for 〈n〉 = 25 the limit of
zero events is five standard deviations away from the expectation value. According to the above numbers this means
that 2.9× 10−7 of the Gaussian distribution are in the unphysical regime, a fraction most numerical simulations can
easily live with.

For LHC calculations we are usually confronted with three types of errors.

1. The first and easiest one are the statistical errors. For small numbers of events these experimental errors are
described by Poisson statistics. For large event numbers they converge to the Gaussian limit, with the number of
standard deviations given in terms of the number of signal and background events as S/

√
B. The two event

numbers are proportional to the integrated luminosity L which means that the statistical significance in the
Gaussian limit increases with

√
L. In high energy physics five standard deviations above a known background

we call a discovery, three sigma is often referred to as an evidence. The Poisson region is the only complication
we encounter for statistical errors. It means that for small number of signal and background events we need
more luminosity than the Gaussian limit suggests.

2. The second set of errors are systematic errors, like the calibration of the jet and lepton energy scales, the
measurements of the luminosity, or the efficiencies to for instance identify a muon as a muon. Some readers
might remember a bunch of theorists mistaking a forward pion for an electron — that happened right around my
TASI in 1997 and people not only discovered supersymmetry but also identified its breaking mechanism. Of
course, our experimentalist CDF lecturer told us that the whole thing was a problem of identifying a particle in
the detector with an efficiency which does not have to be zero or one.

Naively, we would not assume that systematic errors follow a Gaussian distribution, but experimentally we
determine efficiencies and scaling factors largely from well understood background processes. Such counting
experiments in background channels like Z → leptons and their extracted parameters also follow a Gaussian
distribution. The only caveat is the shape of far-away tails, which often turn out to be higher than the
exponentially suppressed Gaussian tails.

Systematic errors which do not follow a Gaussian distribution can scale like S/B, which means they do not
improve with increasing luminosity. Again, five standard deviations are required to claim a discovery, and once
we are systematics dominated waiting for more data does not help.

3. The third source of errors are theoretical errors. They are hardest to model because they are often dominated by
higher–order QCD effects in fixed order perturbation theory. From Section 2 we know that higher order
corrections for example to LHC production rates do not follow a naive power counting in αs but are enhanced
by large logarithms. If we can compute or reliably estimate some higher order terms in the perturbative QCD
series we call this a prediction. In other words, once we consider a statement about perturbative QCD a
statement about its uncertainty we are probably only giving a wild guess.

To model theoretical uncertainties it is crucial to realize that higher order effects are not any more likely to give
a K factor of 1.0 than 0.9 or 1.1. In other words, likelihood distributions accounting for theoretical errors do not
have a peak and are definitely not Gaussian. Strictly speaking, all we know is a range of theoretically acceptable
values. There is a good reason to choose the Gaussian short cut, which is that folding three Gaussian shapes for
statistical, systematic and theoretical errors gives us a Gaussian distribution altogether, which makes things
numerically much easier. But this approach assumes that we know much more about QCD than we actually do
which means it is not conservative at all.

On the other hand, we also know that theoretical errors cannot be arbitrarily large. Unless there is a very good
reason, a K factor for a total LHC cross section should not be larger than something like two or three. If that
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happens we need to conclude that perturbative QCD breaks down, and the proper description of error bars is our
smallest problem. In other words, the centrally flat theory probability distribution for an LHC observable has to
go to zero for very large deviations from the currently best value. Strictly speaking, even this minimalist
distribution is not well defined, because there is not frequentist interpretation of a range of theory uncertainties
which could be used to define or test such a distribution.

For example in the case if Higgs coupling measurements these different sources of errors pose two problems: first, we
need to construct a probability measure combining all these three sources. Second, this exclusive probability or
likelihood has to be reduced in dimensionality such that we can show an error bar on one of the Higgs couplings in a
well defined manner. Both of these problems lead us to the same objects, likelihoods vs probabilities:
A likelihood is defined as a probability to obtain an experimental outcome ~xmeas given model predictions ~xmod, varied
over the model space. We can link it to the corresponding probability as

P (~xmeas|~xmod) = L(~xmod|~xmeas) , (3.25)

where in both expressions are meant to be evaluated over model parameter space. In Section 1.8.1 we introduce the
logarithm of a likelihood Eq.(1.242) as a generalization of the usual χ2 distribution

χ2(~m) =

nmeas∑
j=1

|~xmeas − ~xmod(~m)|2j
σ2
j

, (3.26)

which is expressed in terms of the measurements ~xmeas, the model predictions ~xmod, and the variance σ2. This
definition is really only useful in the Gaussian limit where we know what the variance is.
According to the definition Eq.(3.25) we can replace the Gaussian form of χ2 by any other estimated shape for the
statistical distribution of ~xmeas. This includes the Poisson, Gaussian, and box shapes discussed above, as well as any
combination of the three. Before we discuss in detail how to construct a likelihood for example for a Higgs couplings
measurement we should link this likelihood to a mathematically properly defined probability.

Bayes’ theorem tells us how to convert the likelihood Eq.(3.25) into the probability that a choice of model parameters
~xmod is true given the experimental data, ~xmeas. This is what we are actually interested in when we measure for
example Higgs couplings

P (~xmod|~xmeas) = P (~xmeas|~xmod)
P (~xmod)

P (~xmeas)
≡ L(~xmod|~xmeas)

P (~xmod)

P (~xmeas)
. (3.27)

In this relation P (~xmeas) is a normalization constant which might be hard to evaluate but which ensures that the
probability P (~xmod|~xmeas) summed over all possible experimental outcomes is normalized to unity. The problem is the
prior P (~xmod) which is a statement about the model or the model parameter choice and which obviously cannot be
determined from experiment. If we bring it to the other side of Eq.(3.27) it ensures that the conditional probability
P (~xmeas|~xmod) integrated over model space is unity. This implies some kind of measure in model space or model
parameter space. As an example, if we want to measure the mass of a particle we can integrate m over the entire
allowed or interesting range, but we can also integrate logm instead. In an ideal world of perfect measurement the
difference between these two measures will not affect the final answer for P (~xmod|~xmeas). The problem is that Higgs
coupling measurements are far from ideal, so we have to decide on a measure in Higgs couplings space to compute a
probability for a set of couplings to be true.
One aspect we can immediately learn from this Bayesian argument is how to combine different uncertainties, i.e.
statistical, systematic, and theoretical uncertainties for the same observable: we introduce one so-called nuisance
parameter for each of these errors, describing the deviation of the measured value from the expected value for the
given observable. All three nuisance parameters combined correspond to an actual observable, individually they are
not interesting. This means that we want to remove them as dimensions or degrees of freedom from our big exclusive
likelihood map. If the integral over model parameter space, including nuisance parameters, is well defined we simply
integrate them out, leaving for example the normalization of our probability intact. If we write out this integration it
turns out to be a convolution.
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As is well known, the convolution of several Gaussians is again a Gaussian. The convolution of a Gaussian
experimental error with a flat theory error returns a two-sided error distribution which has a peak again. While we
started with the assumption that theory errors should not give a preferred value within the error band, the measure in
model space after convolution again returns such a maximum.

The frequentist construction to reduce the number of model parameters avoids any measure in model parameter space,
but leads to mathematical problem: to keep the mathematical properties of a likelihood as a probability measure,
including the normalization, we would indeed prefer to integrate over unwanted directions. In the frequentist approach
such a measure is not justified. An alternative solution which is defined to keep track of the best–fitting points in
model space is the profile likelihood. It projects the best fitting point of the unwanted direction onto the new
parameter space; for each binned parameter point in the (n− 1)-dimensional space we explore the nth direction
which is to be removed L(x1,...,n−1, xn). Along this direction we pick the best value and identify it with the
lower–dimensional parameter point L(x1,...,n−1) ≡ Lmax(n)(x1,...,n−1, xn). Such a projection avoids defining a
measure but it does not maintain for example the normalization of the likelihood distribution.
We first compute the profile likelihood for two one-dimensional Gaussians affecting the same measurement x,
removing the nuisance parameter y, and ignoring the normalization. The form of the combined likelihood is the same
as for a convolution, except that the integral over y is replaced by the maximization,

L(x) ∼ max
y

e−y
2/(2σ2

1) e−(x−y)2/(2σ2
2)
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y

exp
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2/(2σ2) . (3.28)

We use that the profile likelihood over y and y′ is the same after the linear transformation. Just like in the case of the
convolution, the profile likelihood of two Gaussian is again a Gaussian with σ2 = σ2

1 + σ2
2 . Next, we use the same

reasoning to see what happens if we combine two sources of flat errors with identical widths,

L(x) = max
y

Θ(xmax − y) Θ(y − xmin) Θ(xmax − x+ y) Θ(x− y − xmin)

= max
y∈[xmin,xmax]

Θ((xmax + y)− x) Θ(x− (xmin + y))

= Θ(2xmax − x) Θ(x− 2xmin) . (3.29)

Each of the original boxes starts with a of xmax − xmin. The width of the box covering the allowed values for x after
computing the profile likelihood is 2(xmax − xmin), so unlike for the Gaussian case the two flat errors get
added linearly, even though they are assumed to be uncorrelated. We can follow the same kind of calculation for the
combination of a Gaussian and a flat box–shaped distribution,

L(x) = max
y

Θ(xmax − y) Θ(y − xmin) e−(x−y)2/(2σ2)

= max
y∈[xmin,xmax]

e−(x−y)2/(2σ2)

=


e−(x−xmin)

2/(2σ2) x < xmin

1 x ∈ [xmin, xmax]

e−(x−xmax)
2/(2σ2) x > xmax .

(3.30)
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This profile likelihood construction is called Rfit scheme and is used for example by CKMfitter or SFitter. We obtain
the combined distribution by cutting open the experimental Gaussian distribution and inserting a flat theory piece.
Exactly the same happens for the profile likelihood combination of a Poisson distribution and a flat box. The last
combination we need to compute is a Gaussian with widths σ with a Poisson with expectation value N . This
projection is not trivial to compute,

L(x) = max
y

e−NNy

y!
e−(x−y)2/(2σ2)

= max
y

exp

[
−N + y logN − log y!− (x− y)2

2σ2

]
= max

y
exp

[
−N + y logN − 1

2
log

2π

y + 1
− (y + 1) log

y + 1

e
− (x− y)2

2σ2

]
. (3.31)

However, we can approximate the result numerically as

1

logL(x)
=

1

logLPoisson
+

1

logLGauss
=

1

log
e−NNx

x!

+
1

− x2

2σ2

. (3.32)

We can check this formula for the case of two Gaussians

1

logL(x)
= −2σ2

1

x2
− 2σ2

2

x2
= −2σ2

x2
⇔ L = e−x

2/(2σ2) , (3.33)

with σ2 = σ2
1 + σ2

2 . This is precisely the result of Eq.(3.28). Another sanity check is that if one of the likelihoods
becomes very large it decouples from the final results and the combined likelihood is dominated by the bigger
deviation. We can test that Eq.(3.33) reproduces the full result to a few per-cent.

Numerically, we usually compute the logarithm of the likelihood instead of the likelihood itself. The reason is that for
many channels we need to multiply all individual likelihoods, leading to a vast numerical range of our likelihood map.
It is numerically much more stable to use the logarithm instead and add the log-likelihoods instead. In the Gaussian
limit this is related to the χ2 value via χ2 = −2 logL. If we allow for a general correlation matrix C between the
entries in the measurements vector ~xmeas and a symmetric theory error x± σ(theo) we find the RFit expression

−2 logL = ~xT C−1 ~x

xi =



xmeas,i − xmod,i + σ(theo)
i

σ(exp)
i

xmeas,i < xmod,i − σ(theo)
i

0 |xmeas,i − xmod,i| < σ(theo)
i

xmeas,i − xmod,i − σ(theo)
i

σ(exp)
i

xmeas,i > xmod,i + σ(theo)
i .

(3.34)

This distribution implies that for very large deviations there will always be tails from the experimental errors, so we
can neglect the impact of the theoretical errors on this range. In the center the distribution is flat, reflecting our
ignorance of the theory prediction. The impact of the size of the flat box we need to test.
This concludes our construction of the multi–dimensional correlated likelihood map with different types of errors,
which we can apply for example in the Higgs couplings analysis introduced in Section 1.8.1. In principle, it is
possible to compute an exclusive likelihood map even more generally by keeping all the nuisance parameters,
avoiding any of the profile constructions described below, and then removing the nuisance parameter alongside the
unwanted couplings at the end. However, this hugely increases the number of dimensions we initially encounter, so it
is numerically more economical to first apply analytical profiling as done in SFitter.

3.5 Further reading
Again, there exist several good review articles with more in-depth discussions of different aspects touched in this
Section:
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– as mentioned in Section 2, two very useful reviews of jet physics are available by Steve Ellis and
collaborators [50] and by Gavin Salam [51].

– if you are interested in top identification using fat jet techniques we wrote a short pedagogical review article
illustrating the different techniques and tools available [69].

– for the general phenomenology of the heaviest Standard Model particles, the top quark, have a look at Sally
Dawson’s TASI lectures [70].

– if you use Madgraph/HELAS to compute helicity amplitudes there is the original documentation which
describes every routine [71].

– a lot of experimental knowledge on new physics searches well described and theoretically sound you can find in
the CMS technical design report. Some key analyses are described in detail while most of the documentation
focuses on the physics expectations [14].

– more on the magical variable mT2 you can find in an article by Alan Barr, Chris Lester and Phil Stephens [66].
Chris Lester’s thesis [72] is a good point to start with. Recently, Alan Barr and Chris Lester published a broad
review on techniques to measure masses in models with dark matter particles [73].

– as mentioned in the introduction, there is our more advanced review on new physics at the LHC which includes
an extensive chapter on LHC signatures [1].

– a lot of insight into new physics searches at the LHC and at a linear collider you can find in a huge review
article collected by Georg Weiglein [74].

– the pivotal work on determining spins in cascade decays is Jennie Smillie’s PhD thesis [68]. On the same topic
there exists a nicely written review by Liantao Wang and Itay Yavin [75].

– many useful pieces of information on mass extraction, errors, and the statistical treatment of new-physics
parameter spaces you can find in the big SFitter publication [76]. The SFitter analysis of the Higgs sector [23] is
very similar in structure, but different in the physics application.

– if you are interested in a recent discussion of experimental and theoretical errors and how to factorize them, you
can try a recent paper we wrote with Kyle Cranmer, Sven Kreiss, and David Lopez–Val [77].
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4 Not using Feynman rules
In these LHC lecture notes we always assume some field theory background which allows us to compute transition
amplitudes on the basis of Feynman rules and phase space integrals. In other words, the corresponding lectures are
meant to be heard after Quantum Field Theory I and II. Nevertheless, it can be useful to briefly repeat the steps which
we have to go through to compute a transition amplitude from an action or from first principles. In this short section
we will sketch this calculation and indicate where in the calculation Feynman ruled come in and significantly simplify
our lives. In that sense this section is not actually needed to understand the other parts of these notes, but it might
come in handy at times.

When we compute transition amplitudes for collider like LEP or LHC, we usually combine building blocks defined by
Feynman rules in a way which does not make it obvious that we are dealing with a quantum field theory. For example,
in Section 2.1 we compute the transition amplitude for the process e+e− → γ∗ → qq̄ through a photon, all starting
from these Feynman rules. In this section, we will give a brief sketch of what we have to do to describe the quantum
fields involved and to compute this transition amplitude without using Feynman rules.

From theoretical mechanics we remember that there are several ways to describe a physical system and calculate the
time evolution of the states. One object to start from is the action as a function of one degree of freedom or field φ

S =

∫
d4xL (φ, ∂µφ) . (4.1)

With x we denote the four-vector including the time component (x0, ~x). The action has to be invariant under a
variation δS = 0. We can translate this condition into the Euler-Lagrange equations

∂µ

(
∂L

∂(∂µφ)

)
=
∂L

∂φ
, (4.2)

Using the notation ∂µ = ∂/∂xµ. A convenient second parameter in addition to x is the conjugate momentum
π(x) = ∂L /∂φ̇. With this coordinate we define the third object which we can use to describe the dynamics of a
system, the Hamiltonian

H(t) =

∫
d3x

(
πφ̇−L

)
. (4.3)

While for example in quantum mechanics this Hamiltonian or energy functional is the basis of most calculations, in
field theory we usually start from the Lagrangian.

We already know that for our scattering process we need to compute a transition amplitude between two kinds of
matter particles, namely incoming electrons and outgoing quarks, interacting via their electric charges. The interaction
is classically described by the electromagnetic Lagrangian based on the abelian U(1) field theory,

L ⊃ −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ , (4.4)

in terms of a photon vector field Aµ. The Maxwell equations

0 = ∂µFµν = ∂µ∂µAν − ∂µ∂νAµ = �Aν (4.5)

are the equations of motion for this photon field. In the last step we assume the Lorentz gauge condition ∂µAµ = 0
and find the d’Alembert equation for the vector potential Aµ.

To omit the vector index of the photon field we instead use a real scalar field φ to illustrate bosonic fields, their
quantization, their equation of motions, and how they enter a calculation. Including a mass for this real scalar field we
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can write down its equation of motion which is the same for a spin-zero scalar boson as for the spin-one vector boson
of Eq.(4.5) (

�+m2
)
φ(x) = 0 . (4.6)

This Klein–Gordon equation corresponds to the d’Alembert equation for the electromagnetic vector potential in
Lorentz gauge. This equation of motion corresponds to a contribution to the Lagrangian of the form

L ⊃ 1

2
(∂µφ)(∂µφ)− m2

2
φ2 , (4.7)

which we can easily confirm using the Euler-Lagrange equation Eq.(4.2).

Under a Lorentz transformation of the d’Alembert operator and of the scalar field,

xµ → x′
µ

= Λµν x
ν

φ(x)→ φ′(x) = φ(Λ−1x) , (4.8)

the Klein–Gordon equation keeps its form in the new coordinates. It is a standard wave equation which we can solve
using plane waves, and which modulo prefactors gives us

φ(x) =

∫
d3k

(2π)32k0

(
eik·xa∗(~k) + e−ik·xa(~k)

)
. (4.9)

Complex conjugates a and a∗ are required for a real field φ. The value of k0 is given by the dispersion relation, which
means that if φ fulfills the Klein–Gordon equation it is k2

0 = ~k2 +m2. The Fourier transform a therefore explicitly
only depends on ~k. Up to this point the field φ is a real function of the space coordinates, i.e. it is not quantized.

Because in the remaining lecture we will only use quantized operator valued fields we will not change notation at this
point. Switching from a field function to a field operator φ leaves the Klein–Gordon equation Eq.(4.6) the same,
except that now it constrains an operator φ(x) which for example we cannot simply commute with other operators. φ
used to be a real field, so now it will be a hermitian operator φ† = φ. In the plane wave solution Eq.(4.9) the
coefficients a and (now) a† are promoted to operators as well.
The Hilbert space in which our system resides includes a vacuum state |0〉 which has to be normalized, 〈0|0〉 = 1, and
which has zero energy and momentum. We can show that the on–shell state |k〉 ≡ a†(~k)|0〉 is an eigenvector of the
energy–momentum operator with eigenvalues kµ. We can interpret a† as a creation operator for a state with
three-momentum ~k. Successive application of a†(~kj) on the vacuum gives a basis of states with a varying number of
states, defining the Fock space. Acting with the energy–momentum operator on a(~k)|0〉 gives us a negative energy
eigenvalue, which means that we have to set a(~k)|0〉 = 0; the operator a(~k) is an annihilation operator.
For operators it is crucial that we define their commutation relations. The basic property which we use to fix the
commutators of a and a† is causality, namely that field configurations outside each other’s light cone cannot affect
each other and therefore their field operators commute

[φ(x), φ(x′)] = 0 for (x− x′)2 < 0 or (t− t′)2 < |~x− ~x′|2

or [φ(~x), φ(~x′)] = 0 for t = t′, |~x− ~x′| > 0 . (4.10)

Similar commutators exist between the field φ and its time derivative φ̇. We can insert the operator–valued form of
Eq.(4.9) into the equal-time commutators (t = t′, ~x 6= ~x′) of φ and φ̇, where the latter allows us to vary the relative
factor between a and a† and derive several independent relations. One of them reads

0 =
[
φ(~x), φ̇(~x′)

]
(4.11)

=

∫
d3k

(2π)32k0

d3k′

(2π)32k′0
e−i(

~k~x+~k′~x′)(ik′0)
[(
eik0ta†(~k) + e−ik0ta(−~k)

)
,
(
eik
′
0ta†(~k′)− e−ik

′
0ta(−~k′)

)]
.
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In this Fourier transform for free k0 and k′0 the integral vanishes only if the integrand, and therefore all commutators
under the integral vanish, at least as long as ~x 6= ~x′. For ~x = ~x′ the condition [φ(~x, t), φ̇(~x′, t)] = iδ3(~x− ~x′) fixes the
third commutation relations for bosonic creation and annihilation operators[

a†(~k), a†(~k′)
]

= 0[
a(~k), a(~k′)

]
= 0[

a(~k), a†(~k′)
]

= (2π)32k0 δ
3(~k − ~k′) . (4.12)

For a hermitian operator φ we can use the fact that the creation and annihilation are linked as a†(~k) = −a(−~k), but
for finite ~k this makes no difference to the above relations.

Looking at the scattering process we want to evaluate, we need to describe is four external fermions, their coupling to
a photon, and the propagation of this boson from the e+e− annihilation to the point where is splits into a quark and
antiquark pair. All of this has to be sandwiched between vacuum states. Let us start with this propagator. Such a
propagator is defined as a time–ordered product of two field operators sandwiched between vacuum states. For scalar
fields it reads

∆(x− x′) ≡ i 〈0|T (φ(x)φ(x′)) |0〉 . (4.13)

The time–ordered product of two operators is defined as

T (A(x)B(x′)) = θ(x0 − x′0)A(x)B(x′) + θ(x′0 − x0)B(x′)A(x) . (4.14)

We again use the operator version of Eq.(4.9) to evaluate this combination for free fields

〈0|φ(x)φ(x′)|0〉

∣∣∣∣∣
x0>x′0

=

∫
d3k

(2π)32k0

d3k′

(2π)32k′0
〈0|
(
eikxa†(~k) + e−ikxa(~k)

) (
eik
′x′a†(~k′) + e−ik

′x′a(~k′)
)
|0〉

=

∫
d3k

(2π)32k0

d3k′

(2π)32k′0
e−i(kx−k

′x′)〈0|a(~k)a†(~k′)|0〉 with vacuum 〈0|a† = 0 = a|0〉

=

∫
d3k

(2π)32k0

d3k′

(2π)32k′0
e−i(kx−k

′x′)〈0|[a(~k)a†(~k′)]|0〉

=

∫
d3k

(2π)32k0
e−ik(x−x′)〈0|0〉 with

[
a, a†

]
= (2π)32k0 δ

3(~k − ~k′)

=

∫
d3k

(2π)3
ei
~k(~x−~x′) e

−ik0(x0−x′0)

2k0
. (4.15)

In the integral k0 is given by its the on–shell value, so for ~k = ~k′ we also have k0 = k′0. Under the assumption
x0 > x′0 the last ratio under the integral can be viewed as the result of a contour integration over the k0 component, to
allow us to write the propagator as a four-dimensional integral over d4k. We discuss this integral in detail in
Section 2.1.2, where we find in Eq.(2.17)

i

2π

∫
dk0

e−ik0(x0−x′0)

k2 −m2 + iε
= θ(x0 − x′0)

e−ik
(os)
0 (x0−x′0)

2k(os)
0

+ θ(x′0 − x0)
eik

(os)
0 (x0−x′0)

2k(os)
0

. (4.16)

As in Eq.(4.15) k(os)
0 =

√
~k2 +m2 is the on–shell value of the energy component of the four-momentum. Using this

result and slightly abusing our notation by now writing k0 for the zero component of the four-dimensional k
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integration we can write

〈0|φ(x)φ(x′)|0〉

∣∣∣∣∣
x0>x′0

=

∫
d3k

(2π)3
ei
~k(~x−~x′) e

−ik0(x0−x′0)

2k0
θ(x0 − x′0)

=i

∫
d4k

(2π)4
ei
~k(~x−~x′) e−ik0(x0−x′0)

k2 −m2 + iε

=i

∫
d4k

(2π)4
e−ik(x−x′) 1

k2 −m2 + iε
. (4.17)

Similarly, we can show the same relation for x0 < x′0, picking up the other theta function and returning for the
combination of the two

∆(x− x′) = −
∫

d4k

(2π)4
e−ik(x−x′) 1

k2 −m2 + iε
. (4.18)

This Feynman propagator is a Green function for the Klein–Gordon equation Eq.(4.6), which we can explicitly
confirm to read (

�+m2
)

∆(x− x′) = −
∫

d4k

(2π)4

(
�+m2

)
e−ik·(x−x

′) 1

k2 −m2

=

∫
d4k

(2π)4

(
(−ik)2 +m2

)
e−ik·(x−x

′) (−1)

k2 −m2

=

∫
d4k

(2π)4
e−ik·(x−x

′) = δ4(x− x′) . (4.19)

This concludes our discussion of the bosonic propagator. Using a scalar field instead of a vector field we have shown
how the field can be expressed in terms of creation and annihilation operators and what the commutation rules for the
scalar fields as well as for the creation and annihilation operators are. The time–ordered correlation function of two
scalar fields is the Feynman propagator, defining an inverse of the Klein–Gordon equation over the entire position
space.
All these properties we will later use for the photon field. The photon Aµ is a vector field, where each of the
components obey the Klein–Gordon equation. The commutation relations and the photon propagator will not change,
they will simply be dressed up by factors gµν where appropriate. For the propagator this generalization is strictly
speaking gauge dependent, gµν corresponds to Feynman gauge. Nevertheless, from Section 2.1.2 we know that
additional terms from other gauge choices do not contribute to our scattering amplitude.

The second object we need to describe for our scattering process are the external fermion fields. Most generally,
scalars and gauge bosons are not the only particle we find in Nature. Matter particles or fermions, like electrons or
quarks have a different equation of motion and a different contribution to the Lagrangian. No matter how it looks, the
equation of motion for fermion fields ψ has to be invariant under a Lorentz transformation

ψ(x)→ ψ′(x) = Λ1/2 ψ(Λ−1x) , (4.20)

where Λ1/2 is a different representation of the Lorentz transformations. It is called spinor representation and we can
define it using the four Dirac matrices γµ with their anti–commutator Clifford algebra

{γµ, γν} = 2gµν 11 . (4.21)

The unit matrix has the same size as the γ matrices. That we usually write them as 4× 4 matrices has nothing to do
with the number of — also four — γ matrices. The explicit form of the γµ matrices is not relevant because it never
appears in actual calculations. All we need is a few trace relations arising from their commutators. A representation of
the Lorentz algebra in terms of the Dirac matrices is

Sµν =
i

4
[γµ, γν ] implying Λ1/2 = exp

(
− i

2
ωµνS

µν

)
. (4.22)
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The transformation property

Λ−1
1/2 γ

µ Λ1/2 = Λµνγ
ν (4.23)

is the reason why we sometimes think of the spinor representation as a representation which alows us to take the
square root of the Klein–Gordon equation. We can postulate an equation of motion for the fermions, the
Dirac equation

(iγµ∂µ −m11) ψ(x) ≡ (i /∂ −m11) ψ(x) = 0 . (4.24)

The unit matrix in the mass term is a four-by-four matrix, just like the Dirac matrices. Of course, we need to check
that this equation is invariant under Lorentz transformations, keeping in mind that Λ1/2 commutes with everything
except for the Dirac matrices

(iγµ∂µ −m11) ψ(x)→
(
iγµ(Λ−1)νµ∂ν −m11

)
Λ1/2ψ(Λ−1x)

= Λ1/2Λ−1
1/2

(
iγµ(Λ−1)νµ∂ν −m11

)
Λ1/2ψ(Λ−1x)

= Λ1/2

(
iΛ−1

1/2γ
µΛ1/2(Λ−1)νµ∂ν −m11

)
ψ(Λ−1x)

= Λ1/2

(
iΛµργ

ρ(Λ−1)νµ∂ν −m11
)
ψ(Λ−1x)

= Λ1/2

(
igνργ

ρ∂ν −m11
)
ψ(Λ−1x)

= Λ1/2 (iγν∂ν −m11) ψ(Λ−1x) = 0 . (4.25)

Indeed, we can multiply the Dirac equation with (−iγµ∂µ −m11) and obtain the Klein–Gordon equation
(∂2 +m2)ψ = 0. This will be useful when we construct a fermion propagator.
An additional problem is that for example to define a mass term in the Lagrangian we need to form Lorentz scalars or
invariants out of the fermion fields ψ. Naively, (ψ†ψ) would work if the Lorentz transformations in (ψ†Λ†1/2Λ1/2ψ)

cancelled. Unfortunately Λ1/2 is not a unitary transformation, which means we have to go beyond (ψ†ψ). One can
show that the Dirac adjoint

ψ = ψ†γ0 with ψ → ψΛ−1
1/2 and ψψ → ψψ (4.26)

has the correct transformation property. This allows us to write down the Lagrangian for a fermion field

L ⊃ ψ(i /∂ −m11)ψ . (4.27)

Just like for bosons we can show that this term produces the Dirac equation of motion. Because we will later need the
fermion–photon interaction in the form of a Hamiltonian or Lagrangian we introduce the convenient form of the
covariant derivative

L ⊃ ψ (i /D −m11)ψ ≡ ψ (i( /∂ + ieQ /A)−m11)ψ = ψ (i( /∂ −m11)ψ + eQAµ ψγ
µψ (4.28)

The last term describes the coupling of a vector photon field Aµ to a vector-like expression ψγµψ which we call a
vector current.

Everything written above we could as well apply to classical fields. Just like in the bosonic case we need to define the
Dirac field operator in terms of plane wave coefficients

ψ(x) =

∫
d3k

(2π)32k0

∑
spin s

(
eikxvs(k)b†s(

~k) + e−ikxus(k)as(~k)
)

ψ(x) =

∫
d3k

(2π)22k0

∑
spin s

(
eikxūs(k)a†s(

~k) + e−ikxv̄s(k)bs(~k)
)
, (4.29)
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where the fermion spin can be ±1/2. In the absence of any other constraints we have four generating operators,
a, a†, b, b†. Acting on the vacuum a and b are annihilation operators and a†, b† are creation operators, a for particles
and b for anti–particles. These operators only depend on the momentum three-vector because the fourth component
follows from the dispersion relation of the on–shell particles. The way we introduce the spinors u and v the same
would hold for them, but there are instances where we use them also for off–shell states and we have to take into
account their dependence on the complete momentum four-vector. Again following causality we postulate the
anti–commutation relations, for example at equal time t = t′

{ψ(x), ψ(x′)} = 0 =
{
ψ(x), ψ(x′)

}{
ψ(x), ψ(x′)

}
= γ0δ3(~x− ~x′) . (4.30)

Trying the same thing with commutators simply does not work, as Michael Peskin nicely shows in his book. These
anti–commutators we can link to anti–commutators for the creation and annihilation operators in momentum space{

ar(~k), a†s(
~k′)
}

= δrs(2π)3 2k0 δ3(~k − ~k′){
br(~k), b†s(

~k′)
}

= δrs(2π)3 2k0 δ3(~k − ~k′){
ar(~k), bs(~k

′)
}

= 0 for all other a(†) and b(†), (4.31)

provided we know the spin sums for the spinors u and v and their Dirac adjoints∑
spin

us(k)ūs(k) = /k +m11

∑
spin

vs(k)v̄s(k) = /k −m11 . (4.32)

Strictly speaking, /k is a (4× 4) matrix, so in the mass term we need to include a unit matrix which is often omitted.
Most of the time this is not a problem, unless we for example compute traces of chains of Dirac matrices and need to
remember that Tr 11 6= 1. To produce such a matrix u and v are four-dimensional objects.
These anti–commutator relation have the fundamental consequence that for two fermion states generated from the
vacuum we have to keep track of the ordering

|e−(k, r)e−(k′, r′)〉 = a†r(k)a†r′(k
′)|0〉 = −a†r′(k

′)a†r(k)|0〉 = −|e−(k′, r′)e−(k, r)〉 . (4.33)

This factor (−1) needs to be taken into account when we apply normal–ordering to fermions. For k = k′ and r = r′

this leads to Pauli’s exclusion principle: two identical fermion states cannot co-exist exactly in the same point.
Again, this is all we need to say about fermions to compute our electron–positron scattering process. We know the
Dirac equation and the corresponding contribution to the Lagrangian, including the definition of the Dirac adjoint to
construct Lorentz scalars. The quantized fermion field obeys anti–commutation relations, as do its creation and
annihilation operators. To link them we need to know the form of the spin sums over the spinors u and v.

To illustrate how we can compute a transition amplitude without using Feynman rules we use our usual scattering
process

e−(k1, s1) + e+(k2, s2)→ q(p1, s3) + q̄(p2, s4) , (4.34)

where kj , pj and sj are the four-momenta and spin orientations of the external fermions. In the future, or more
specifically asymptotically for t→ +∞, the initial state limt→−∞ |t〉 ≡ |i〉 will have evolved into the final state
limt→∞ |t〉 = S|i〉 via a yet unknown linear operator S . To describe this scattering into a final state 〈f | we need to
compute the transition amplitude

S ≡ 〈f |t→∞〉 = 〈f |S|i〉 = 〈q3q̄4|S|e+
1 e
−
2 〉 = 〈0|a3b4 S a†1b

†
2|0〉 . (4.35)
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We use one index to indicate the momenta and spins of the external particles. Something we will come back to later is
that obviously this transition amplitude is not a vacuum expectation value, but the operator S sandwiched between
physically measurable states.

The transition matrix element S can be computed from the time evolution of the initial state i∂t|t〉 = H(t)|t〉 in the
interaction picture with a time dependent Hamilton operator. The evolution equation then reads

|t〉 = |i〉 − i
∫ t

−∞
dt′H(t′)|t′〉

= |i〉 − i
∫ t

−∞
dt′H(t′)

[
|i〉 − i

∫ t′

−∞
dt′′H(t′′)|t′′〉

]

= |i〉 − i
∫ t

−∞
dt′H(t′)

[
|i〉 − i

∫ t′

−∞
dt′′H(t′′)

[
|i〉 − i

∫ t′′

−∞
dt′′′H(t′′′)|t′′′〉

]]
, (4.36)

just inserting the same evolution twice. The problem with this form is that it still involves |t′′′〉 at the very end. What
we instead want is something that is only proportional to |i〉. We can achieve this by looking at the integration
boundaries: the integration range becomes smaller in each step of primed variables. In the limit of infinitely many
insertions the remaining integrals should be over less and less time, starting at t→ −∞. Neglecting higher powers of
the Hamilton operatorH or, as we will see later, neglecting powers of a coupling mediating the interaction between
the states involves we can rewrite this form as

|t→∞〉 = |i〉+ (−i)
∫ ∞
−∞

dt′H(t′) |i〉+ (−i)2

∫ ∞
−∞

dt′H(t′)

∫ t′

−∞
dt′′H(t′′) |i〉+O(H3)

= |i〉+ (−i)
∫ ∞
−∞

dt′H(t′) |i〉+ (−i)2

∫ ∞
−∞

dt′dt′′ θ(t′ − t′′) H(t′)H(t′′) |i〉+O(H3)

= |i〉+ (−i)
∫ ∞
−∞

dt′H(t′) |i〉+
(−i)2

2

∫ ∞
−∞

dt′dt′′ T (H(t′)H(t′′)) |i〉+O(H3)

!
= S |i〉 , (4.37)

where the time–ordered product only contributes a factor two for two identical and hence commuting operators. The
last line of Eq.(4.37) with the time–ordered Hamilton operators and the corresponding factor 1/(2!) is important
because it means that we can sum S to an exponential series

S = T
(
e−i

∫
dtH(t)

)
, (4.38)

and ensure that it generates a unitary transformation. For our computation we will be fine with the quadratic term
which we explicitly list.

The form of the interaction Hamiltonian for two fermionic currents each involving a different particle species j with
charge Qj follows from the covariant derivative Eq.(4.28)

Hint(t) = −
∫
d3xLint(x) ⊃

∑
j

−eQj
∫
d3xAµ ψjγ

µψj , (4.39)

in terms of the four-vector x including its first entry t = x0, the fermion current (ψγµψ), and the photon vector field
Aµ. To connect four creation and annihilation operators arising from the external states we need four such operators
from S, which means the first term which will contribute to the scattering process is the quadratic term inHint. The
two Hamiltonians contribute one electron and one quark current each. It is not hard to check that the two possible
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assignments give the same result, so we only follow one of them and include an additional factor two in the formula

S = 2× (−i)2

2

∫
dt′dt′′〈0|a3b4 T (Hint(t

′)Hint(t
′′)) a†1b

†
2|0〉

= −e2QeQq

∫
d4x′d4x′′〈0|a3b4 T

(
ψq(x

′)γµψq(x
′)Aµ(x′)ψe(x

′′)γνψe(x
′′)Aν(x′′)

)
a†1b
†
2|0〉

= −e2QeQq

∫
d4x′d4x′′〈0|T (Aµ(x′)Aν(x′′)) |0〉

〈0|a3b4T
(
ψq(x

′)γµψq(x
′)ψe(x

′′)γνψe(x
′′)
)
a†1b
†
2|0〉 . (4.40)

The first of the time–ordered products is a gauge boson propagator in Feynman gauge

〈0|T (Aµ(x′)Aν(x′′)) |0〉 = −i
∫

d4q

(2π)4
e−iq(x

′−x′′) g
µν

q2
≡ gµν∆(x′ − x′′) . (4.41)

The second of the time–ordered product includes fermion currents, sandwiched between the four external states. From
Eq.(4.29) we know that each Dirac operator involves creation (a†, b†) and annihilation (a, b) operators. One of the
possible combinations is

ψ(x)a†(~p)|0〉 =

∫
d3k

(2π)22E

∑
spins

(
eikxb†(~k)v(k) + e−ikxa(~k)u(k)

)
a†(~p)|0〉

=

∫
d3k

(2π)22E

∑
spins

(
eikxv(k) b†(~k)a†(~p)|0〉+ e−ikxu(k) a(~k)a†(~p)|0〉

)
. (4.42)

The second of the two terms is exactly what we want, an operator from the interaction Hamiltonian combining with
the external state and defining a scattering process. The first term does not offer such a physical interrpetation. It
consists of two creation operators which are eventually evaluated in the form of a vacuum expectation value. No
matter what the numerical result will be, it’s is not the scattering process we want to compute. Even worse, it turns out
that the integral defining the expectation value for the energy k0 in such a basis diverges. We can project away these
non-physical contributions through the so-called normal–ordering, which is defined as only evaluating contributions
where all annihilation operators a are moved to the right and all creation operators a† to the left

: a†a : = a†a

: a†a† : = a†a†

: aa : = aa

: aa† : = a†a . (4.43)

The Wick theorem links normal–ordering and time–ordering in a way which makes them identical as long as we only
compute leading order processes at tree level.

For our scattering process this means that we need to evaluate Eq.(4.40) with normal–ordered fermion currents

〈0|a3b4 : ψq(x
′)γµψq(x

′) : : ψe(x
′′)γνψe(x

′′) : a†1b
†
2|0〉 . (4.44)

We can drop the time ordering, because it does not affect our calculation once we use the normal–ordered currents.
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The above combination is now reduced to the scattering term,

: · · ·ψ(x) : a†(~p)|0〉 =

∫
d3k

(2π)22E

∑
spins

e−ikxu(k) a(~k)a†(~p)|0〉

=

∫
d3k

(2π)22E

∑
spins

e−ikxu(k) {a(~k)a†(~p)}|0〉

=

∫
d3k

(2π)22E

∑
spins

e−ikxu(k) (2π)32E δ3(~k − ~p) |0〉

=
∑
spins

e−ipxu(k) |0〉 (4.45)

Correspondingly, we find the other normal–ordered combinations

: · · ·ψ(x) : b†(~p)|0〉 ∼
∑
spins

e−ipx v̄(p)|0〉

〈0|b(~p) : ψ(x) · · · : = 〈0|
∑
spins

eipx v(p)

〈0|a(~p) : ψ(x) · · · : = 〈0|
∑
spins

eipx ū(p) . (4.46)

The fact that electromagnetic currents only link one kind of particle and do not convert quarks into electrons limits the
number of permutations we need to take into account. We find one unique non–vanishing combination of external
states and current creators and annihilators, namely matching a3ψ and b4ψ for the quarks and ψb†1 as well as ψa†1 for
the electrons,

〈0|a3b4 : ψq(x
′)γµψq(x

′) : : ψe(x
′′)γνψe(x

′′) : a†1b
†
2|0〉 =

∑
spins

ei(p1+p2)x′ ū3γµv4 e
−i(k1+k2)x′′ v̄2γνu1 . (4.47)

Inserting the different contributions into Eq.(4.40) we find

S = −e2QeQq

∫
d4x′d4x′′

∫
d4q

(2π)4
eiq(x

′−x′′) −igµν

q2

∑
spins

ei(p1+p2)x′ ū3γµv4 e
−i(k1+k2)x′′ v̄2γνu1

=
∑
spins

ie2QeQq

∫
d4q

(2π)4
ū3γµv4

1

q2
v̄2γ

µu1

∫
d4x′ ei(q+p1+p2)x′

∫
d4x′′ e−i(q+k1+k2)x′′

=
∑
spins

ie2QeQq (2π)8

∫
d4q

(2π)4
ū3γµv4

1

q2
v̄2γ

µu1 δ
4(q + k1 + k2)δ4(−q − p1 − p2)

=
∑
spins

i(2π)4δ4(k1 + k2 − p1 − p2) e2QeQq ū3γµv4
1

(k1 + k2)2
v̄2γ

µu1 . (4.48)

Stripping off unwanted prefactors we can define the transition matrix element for quark–antiquark production in QED
as

M = e2QeQq (ū3γµv4)
1

(k1 + k2)2
(v̄2γ

µu1) , (4.49)

with (k1 + k2)2 = (p1 + p2)2. This matrix element or transition amplitude we have to square to compute the
transition probability. Part of the squaring is the sum over all spins which uses the spin sums Eq.(4.32) to get rid of the
spinors and then some trace rules to get rid of all Dirac matrices. Neither for the spinors nor for the Dirac matrices we
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need to know their explicit form

|M|2 =
∑

spin, color

e4Q2
eQ

2
q

1

(k1 + k2)4
(v̄4γνu3)(ū1γ

νv2) (ū3γµv4) (v̄2γ
µu1)

=e4Q2
eQ

2
qNc

1

(k1 + k2)4

∑
spin

(v̄4γνu3)(ū1γ
νv2) (ū3γµv4) (v̄2γ

µu1) . (4.50)

The color factor Nc is the number of color singlet states we can form out of a quark and an antiquark with opposite
color charges. Because color only appears in the final state we sum over all possible color states or multiply by Nc. In
the next step we can observe how the crucial structure of transition amplitudes with external fermions, namely traces
of chains of Dirac matrices, magically form:

|M|2 =e4Q2
eQ

2
qNc

1

(k1 + k2)4

∑
spin

(v̄4)i(γν)ij(u3)j(ū3)k(γµ)kl(v4)l · · · for one trace

=e4Q2
eQ

2
qNc

1

(k1 + k2)4

∑
spin

(v4)l(v̄4)i

 ∑
spin

(u3)j(ū3)k

 (γν)ij(γµ)kl · · ·

=e4Q2
eQ

2
qNc

1

(k1 + k2)4
( /p4)li( /p3)jk(γν)ij(γµ)kl · · · using Eq.(4.32)

=e4Q2
eQ

2
qNc

1

(k1 + k2)4
Tr ( /p4γν /p3γµ) Tr ( /p1γ

ν /p2γ
µ) both traces again. (4.51)

In the final step we need to use a know expression for the Dirac trace. More complicated and longer traces become
very complicated very fast and we use FORM to evaluate them on the computer. We find

|M|2 =e4Q2
eQ

2
qNc

1

(k1 + k2)4
4 (p3νp4µ + p3µp4ν − gµν(p1p2)) 4 (kν1k

µ
2 + kµ1 k

ν
2 − gµν(k1k2))

=16e4Q2
eQ

2
qNc

1

(k1 + k2)4
[2(k1p1)(k2p2) + 2(k1p2)(k2p1) + 0× (p1p2)(k1k2)] with gµνg

µν = 4

=32e4Q2
eQ

2
qNc

1

(k1 + k2)4
[(k1p1)(k2p2) + (k1p2)(k2p1)] , (4.52)

This result for the matrix element and the matrix element squared is the same expression as we obtain from Feynman
rules in Eq.(2.8).

Before we generalize this approach, we need to follow up one detail in the definition of the Lorentz-invariant matrix
element, Eq.(4.49). One of the prefactors we split off is δ4(k1 + k2 − p1 − p2), the four-dimensional delta
distributions which guarantees energy and momentum conservation. At this stage this term is not problematic, but
eventually we need to square it to compute the transition probability between the incoming and final states. Such a
square is not even defined in the sense of a distribution. Using the same definition which gave us the delta
distributions in Eq.(4.48) we can write for a four-dimensional large Volume

[
δ4(k1 + k2 − p1 − p2)

]2
=

∫
V

d4x

(2π)4
ei(k1+k2−p1−p2)x δ4(k1 + k2 − p1 − p2) (4.53)

= δ4(k1 + k2 − p1 − p2)

∫
V

d4x

(2π)4
ei(k1+k2−p1−p2)x =

V

(2π)4
δ4(k1 + k2 − p1 − p2)

Going back to the definition in Eq.(4.35) this leads us to the combination

|〈f |S|i〉|2 =
∑
spins

V

(2π)4
|M|2 δ4(k1 + k2 − p1 − p2) . (4.54)

This is what we need to calculate for a given experimental setup.
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Feynman rules are calculational rules which we can extract from the Lagrangian. These building blocks representing
external and internal particles we combine to constructM. To compute the matrix element in Eq.(4.47) while
skipping everything we did to get this formula, we start by drawing Feynman diagrams representing all ways we can
link the given initial and final states through interaction vertices and internal propagators. For qq̄ production in e+e−

scattering described by QED there exists only one such diagram:

It consist of four external fermions, one internal photon, and two interaction vertices. From Eq.(4.47) we know how to
describe external fermions in terms of spinors:

symbol diagram
u(p, s) incoming fermion (e−, q) with momentum p and spin s
v̄(p, s) incoming anti–fermion (e+, q̄)
ū(p, s) outgoing fermion (e−, q)
v(p, s) outgoing anti–fermion (e+, q̄)

Spin sums are the only way to get rid of spinors in the computation. Equation (4.32) shows that as long as we neglect
fermion masses the two spinors u and v for particles and antiparticles are identical. To link external particles to each
other and to internal propagators we need vertices. In Eq.(4.47) we see that two fermions and a gauge boson interact
via a vector current proportional to γµ. As a convention, we add one factor i, so the vertex rule in QED becomes

ieQf γ
µ (f − f̄ − γ). (4.55)

This factor i we can consistently change for all three-point and four-point vertices in our theory. Finally, there is the
intermediate photon which propagates between the γµ and the γν vertices. The wave line in the Feynman diagram
corresponds to

−igµν

p2 + iε
. (4.56)

Again, the factor −i is conventional. For a bosonic propagator it does not matter in which direction the momentum
flows. Blindly combining these Feynman rules gives us directly Eq.(4.47), so all we need to do is square the matrix
element, insert the spin sums and compute the Dirac trace.
Whenever we compute such a matrix element starting from a Feynman diagram nothing tells us that the lines in the
Feynman diagrams are not actual physical states propagating from the left to the right. Even including loop diagrams
will still look completely reasonably from a semi–classical point of view. Feynman rules define an algorithm which
hides all field theory input in the calculation of scattering amplitudes and are therefore perfectly suited to compute the
differential and total cross sections on the computer.

The vector structure of the QED couplings, for example mediated by a covariant derivative Eq.(4.28) we did not
actually motivate. It happens to work on the Lagrangian level and agrees with data, so it is correct. We can write a
completely general interaction of two fermions with a boson in terms of basis elements

g ψMψ =
∑

basis j

gj ψMjψ . (4.57)

For a real (4× 4) matrix M the necessary 16 basis elements can be organized such that they are easy to keep track of
using Lorentz transformation properties. This eventually leads to the Fierz transformation used in Section 1.9.1. The
vector γµ from the QED interaction gives us four such basis elements, the unit matrix a fifth. Another six we already
know as well, they are the generators of the spinor representation [γµ, γν ]. We can check that all of them are linearly
independent. Five basis elements in a handy form are still missing.
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To define them, we need to know that there exists another (4× 4) matrix which is invariant under proper Lorentz
transformations. We can write it in terms of the four Dirac matrices in two equivalent forms

γ5 = iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ , (4.58)

using the totally anti–symmetric Levi–Civita tensor εµνρσ. This form already shows a major technical complication in
dealing with γ5: in other than four space–time dimensions we do not know how to define the Levi–Civita tensor,
which means that for example for regularization purposes we cannot analytically continue our calculation to
n = 4− 2ε dimensions. The main property of γ5 is equivalent to that fact that it is another basis element of our
(4× 4) matrices, it commutes with the other four Dirac matrices [γµ, γ5] = 0. Combining this new object as (γµγ5)
and iγ5 gives us all 16 basis element for the interaction of two spinors with a third scalar, vector, or tensor field:

degrees of freedom basis elements Mj

scalar 1 11
vector 4 γµ

pseudoscalar 1 iγ5

axialvector 4 γµγ5

tensor 6
i

2
[γµ, γν ]

The field indices need to contract with the indices of the object ψMψ. Again, the factors i are conventional. In the
Standard Model as a fundamental theory, tensor interactions do not play a major role. The reason is the dimensionality
of the Lagrangian. The mass dimension of a fermion field ψ or ψ is m3/2 while the mass dimension of a scalar field, a
photon field, or a derivative is m. For example from Eq.(4.28) we see that every term in the QED Lagrangian is of
mass dimension four. This is required for a renormalizable fundamental field theory. Introducing a tensor coupling we
have to contract two indices, µ and ν, and not with the metric tensor. The only other objects coming to mind have
mass dimension m2, which means that together with the fermion fields the term in the Lagrangian has mass dimension
of at least m5 and is therefore not allowed.

The second obvious question is: what does it mean to include a factor γ5 in the interaction, i.e. what distinguishes a
scalar from a pseudoscalar and a vector from an axialvector? We can give an easy answer by defining three
transformations of our field in space and time. The first one is the parity transformation P which mirrors the three
spatial coordinates (t, ~x)→ (t,−~x). The second is charge conjugation C which converts particles into their
anti–particles. Both of them leave the Dirac equation intact and can be represented by a unitary transformation. The
third transformation is time reversal T which converts (t, ~x)→ (−t, ~x), also leaves the Dirac equation intact, but only
has an anti–unitary representation. Every single one of them is violated in our Standard Model.
Instead of writing out the representation of these transformations in terms of Dirac matrices we characterize them
using the basic interactions from Eq.(4.57). Parity symmetry does not allow any interaction including γ5, which
means it forbids pseudoscalars and axialvectors. Time reversal symmetry does not allow any complex couplings gj .
Because any field theory described by a Lagrangian not including some kind of external field is invariant under CPT ,
and we have never observed CPT violation, a combined CP invariance is essentially the same as T invariance.

To again look at the same question we rotate the {11, γ5} plane and define the two (4× 4) matrix valued objects which
we already use in Eq.(1.15),

PR,L =
1

2
(11± γ5) . (4.59)

It is easy to show that the two are orthogonal

PLPR =
1

4
(11− γ5) (11 + γ5) =

1

4

(
11− γ2

5

)
= 0 using γ2

5 = 11 , (4.60)
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and projectors

P2
R,L =

1

4

(
11± 2γ5 + γ2

5

)
=

1

4
(211± 2γ5) =

1

2
(11± γ5) = PR,L . (4.61)

In QED these combinations do not play any role. Their effect on kinetic and mass terms we compute in Eqs.(1.16)
and (1.17). Looking at interactions, we can for example define a combined vector–axialvector coupling as
γµ ± γµγ5 = 2γµPR,L. Sandwiching this coupling between fermion fields gives for example

ψ γµPL ψ = ψ γµP2
L ψ

= ψ†PL γ0 γµ PLψ with {γ5, γµ} = 0

= (PLψ)
†
γ0 γµ PLψ with γ†5 = γ5

= ψL γµ ψL with ψL,R ≡ PL,R ψ . (4.62)

If we call the eigenstates of PR,L right handed and left handed fermions ψL,R this chirality allows us to define a vector
coupling between only left handed fermions by combining the vector and the axialvector couplings with a relative
minus sign. The same is of course true for right handed couplings. In Section 1.1.3 we show that kinetic terms can
also be defined independently for left and right handed fermions, while mass terms or scalar interactions mix the two
chiralities

ψ /∂ ψ = ψR /∂ ψR + ψL /∂ ψL
ψ 11ψ = ψR 11ψL + ψL 11ψR . (4.63)

In other words, we can write for example QED in terms of independent left and right handed fields as long as we
neglect all fermion masses. This defines the chiral limit where the Lagrangian is symmetric under ψL ↔ ψR.
Introducing fermion masses breaks this chiral symmetry, or turning the argument around, to introduce fermion masses
we need to combine a left handed and a right handed fermion fields and give them one common Dirac mass.

At this stage it is not obvious at all what chirality means in physics terms. However, we will see that in the Standard
Model the left handed fermions play a special role: the massive W bosons only couple to them and not to their right
handed counter parts. So chirality is a property of fermions known to one gauge interaction of the Standard Model as
part of the corresponding charge. The Higgs mechanism breaks it and only leaves the QCD–like gauge symmetry
intact.

There exists a property which is identical to chirality for massless fermions and has an easy physical interpretation:
the helicity. It is defined as the projection of the particle spin onto its three-momentum direction

h = ~s · ~p
|~p|

=
(
~s+ ~L

)
· ~p
|~p|

= ~J · ~p
|~p|

with ~p ⊥ ~L , (4.64)

or equivalently the projection of the combined orbital angular momentum and the spin on the momentum direction.
From quantum mechanics we know that there exist discrete eigenvalues for the z component of the angular
momentum operator, symmetric around zero. Applied to fermions this gives us two spin states with the eigenvalues of
h being ±1/2. Unfortunately, there is no really nice way to show this identity. What we need to know is that the spin
operator is in general given by

~s = γ5γ
0 ~γ . (4.65)

We can show this by writing it out in terms of Pauli matrices, but we will skip this here and instead just accept this
general form. We then write the solution ψ to the massless Dirac equation after transforming it into momentum space
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ψ(~x) = u(~p) exp(−ip · x) (
γ0p0 − ~γ~p

)
u(~p) = 0

γ5γ
0 γ0p0 u(~p) = γ5γ

0 ~γ~p u(~p)

γ5p0 u(~p) = ~s · ~p u(~p) with
(
γ0
)2

= 11

γ5 u(~p) =
~s · ~p
p0

u(~p)

γ5 u(~p) = ±~s · ~p
|~p|

u(~p) = ±h u(~p) . (4.66)

In other words, the chirality operator γ5 indeed gives us the helicity of the particle state, modulo a sign depending on
the sign of the energy. For the helicity it is easy to argue why for massive particles this property is not Lorentz
invariant and hence not a well defined property: massless particles propagate with the speed of light, which means we
can never boost into their rest frame or pass them. For massive particles we can do that and this way switch the sign of
~p and the sign of h. Luckily, for almost all Standard Model fermions we can at the LHC neglect their masses.
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[33] V. Büscher and K. Jakobs,
“Higgs boson searches at hadron colliders”
Int. J. Mod. Phys. A 20, 2523 (2005).

[34] M. Gomez-Bock, M. Mondragon, M. Mühlleitner, M. Spira, and P. M. Zerwas,
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