Our group works on elucidating the real-time properties of strongly coupled quantum systems, such as e.g. the quark-gluon plasma created in relativistic heavy-ion collisions. To this end we study the spectral properties of bound states and single particles in QCD and scalar theories. The non-perturbative nature of the problems we investigate leads us to use predominantly numerical methods, such as lattice QCD. A particular interest of our group lies in the extraction of spectral functions from Euclidean correlator data using Bayesian inference.
We are part of the collaborative research center SFB1225 ISOQUANT via its project "Probing the QCD phase structure with heavy quarks" and participate in a 2016 USQCD computing grant.

Learn more

A 2016 Highlight

We devised a simulation prescription for thermal fields on the lattice, which operates in imaginary frequencies. Its hallmark is the possibility to evaluate correlation functions at frequencies between the conventional Matsubara frequencies. J.Pawlowski,A.R. arXiv:1610.09531

Research Topics

Bayesian inference

Reconstruction of spectral functions from Euclidean correlator data computed in lattice QCD or functional approaches to QCD.

Quarkonium Effective Field Theory

Simulation of heavy quarkonium in Euclidean lattice QCD by using non-relativistic effective descriptions, such as NRQCD. Extracting the static in-medium pNRQCD heavy quark potential non-perturbatively.

Real-time simulations

Investigating the real-time properties and the topology of QCD in classical statistical simulations in combination with effective theories for e.g. chiral fermions.

Master Thesis

We are looking for an excellent master student to work on modelling heavy quark-antiquark bound states in heavy-ion collisions in the presence of finite baryon chemical potential and magnetic fields. For references see: Quarkonium Spectral functions and Debye Mass. In case of interest please contact: Alexander Rothkopf

Group members


  • Philosophenweg 12, Office 108
    D-69120 Heidelberg, Germany

  • +49 6221 54 5046

  • rothkopf@thphys.uni-heidelberg.de