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Abstract

We give a selfcontained derivation of the differential equations for
Wilson’s renormalization group for the one–particle–irreducible Green
functions in fermionic systems. The application of this equation to the
(t, t′)– Hubbard model has appeared in [9]. Here we focus on theo-
retical aspects. After deriving the equations, we discuss the restric-
tions posed by symmetries on the effective action. We discuss scaling
properties due to the geometry of the Fermi surface, and give precise
criteria when they justify the use of one–loop flows. We also discuss
the relationship of this approach to other RG treatments, as well as
aspects of the practical treatment of truncated equations, such as the
projection to the Fermi surface and the calculation of susceptibilities.



1 Introduction

Renormalization group (RG) studies of fermionic models are important for
understanding models of solid-state theory and high–energy physics. In this
paper, we set up a system of equations suitable for studying flows for gen-
eral fermionic systems, in particular ones with a Fermi surface at any den-
sity and discuss general, but nontrivial, properties of their solutions. The
system of equations applies both to “normal” and to symmetry–broken sit-
uations of fermionic systems with short–range interactions in d ≥ 1 (by
short–range we mean that the two–particle interaction decays so fast that
its Fourier transform is a regular function). In [9] we have, together with N.
Furukawa and T.M. Rice, applied the RG equations that we derive here to
the two–dimensional (t, t′)–Hubbard model in the regime relevant for high–
temperature superconductivity. The purpose of the present paper is to give
more background on the theoretical aspects of the equations, in particular
on a detailed argument which justifies the one–loop flow in a certain scale
range even if the scale–dependent interaction is not small any more. In the
following, we give an overview; the details are filled in in the later sections.

1.1 The RG and the three scale regimes

The Wilsonian RG organizes the functional integration corresponding to the
grand canonical trace as an iterated integral over degrees of freedom with
energies in a certain range, i.e. those that belong to a corresponding length
scale. As such, it is simply a rewriting of the generating functional of the
correlation functions as a function of an energy scale ǫ, which, in contrast
to other RG schemes, does not require any assumptions about perfect scal-
ing laws as a function of ǫ. This idea of integrating over some degrees of
freedom does a priori not require a splitting of the Hamiltonian into a term
describing free particles and an interaction term, with an assumption that the
interaction term is small. However, it is of course in general a very difficult
task to calculate renormalization group flows in strongly coupled systems,
and we shall assume that the interaction in the Hamiltonian, which plays
the role of the initial interaction, is weak, so that we can think of energy
scales as kinetic energy scales. Thus the method we describe here is a weak–
coupling technique. A well–known property of the effective interaction is
that it cannot be described by a single coupling constant, and in the cases
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we are interested in, we need to study a coupling function that depends on
the momenta of the particles, as well as on the energy scale ǫ. As the energy
scale ǫ decreases, the generic behaviour in two or more spatial dimensions is
that the coupling function grows. Thus, even with a weak initial interaction,
the flow eventually leaves the weak–coupling regime, unless the temperature
is above all critical temperatures, so that it prevents any instabilities, see
[2] and the discussion below. This growth of the effective interaction signals
instabilities, and from the technical point of view it means that one has to
switch to a different description of the system, e.g. in terms of composite
fields describing Cooper pairs or spin variables. Because of the semigroup
property of the RG flow (which we recall in Section 2.2), one can stop the
flow at a nonzero scale ǫ2 and rewrite the effective interaction in terms of the
new fields at that scale. However, in the context of the present method, the
first question is to what scale one can get using the weak–coupling flow. In
Section 5 we give a precise criterion of how large the coupling constants are
allowed to get before the corrections to the one–loop flow become significant.
It turns out that there are nontrivial effects that suppress these corrections
even if the couplings are not small any more, and these effects depend on the
geometry of the Fermi surface. In the following, we describe briefly the main
idea behind a picture of three scale regions.

The renormalization group defines an effective interaction for the fermions
with kinetic energy e(p) less than some ǫ, obtained from the original inter-
action of the model by integrating over the degrees of freedom with energies
bigger than ǫ (in the technical implementation, it is useful to use smooth
cutoff functions). The phase space {p : |e(p)| ≤ ǫ} of the fermions with
energy at most ǫ is a neighbourhood of the Fermi surface. Thus the shape
of the Fermi surface determines the low–energy phase space, and this es-
sentially determines which terms are dominant in the RG equations. If the
Fermi surface is curved, there are power counting gains that suppress contri-
butions from all graphs that have overlapping loops. This is made precise by
an inequality for two– and higher–loop integrals that gives a rigorous bound
for such integrals [11, 12, 14]. The constants in that bound depend on the
curvature of the Fermi surface, and they diverge when the curvature of the
Fermi surface vanishes. As shown in [11, 2], the only four–legged graphs that
do not have overlapping loops are those that are generated by the one–loop
RG equation. This implies that there is an energy scale ǫ1, determined by the

curvature of the Fermi surface, below which “overlapping loop” effects [11]
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produce small scale factors that suppress corrections to the one–loop flow.
Thus, below this energy scale, one has an argument for the validity of the
one–loop flow, which does not require coupling constants to be very small
(see Section 5).

The flow thus splits in a natural way in three energy scale regions, as
follows. Regime 1 are the high scales, with energy above ǫ1. In this regime,
the only justification of a weak–coupling treatment is that the coupling con-
stants are indeed small, so that higher order terms are small. On the other
hand, this justification is mathematically rigorous: because the energy scale
ǫ1 provides an infrared cutoff for the functional integral for the effective ac-
tion at scale ǫ1, and because the fields are fermionic, there are rigorous proofs
[13] that perturbation theory for the effective action at scale ǫ1 converges.
Thus it can be used to calculate the effective action at scale ǫ1 reliably, if the
coupling is smaller than a value that depends on ǫ1.

Regime 2 is below ǫ1. The scaling improvements due to overlapping loops
now supress corrections to the one–loop flow. The latter usually gives grow-
ing coupling constants, especially in the physically interesting cases, which
signal the tendency towards (possibly competing) instabilites. However, the
scaling improvements due to overlapping loops are strong enough to suppress
the corrections to the one–loop flow even when the coupling constants are
not small any more. The one–loop flow itself leads to a divergence of the cou-
pling constants at a certain scale ǫ∗. Thus, at a scale ǫ2 > ǫ∗, the coupling
constants become so large that the scaling improvements are insufficient to
suppress the large factor from the coupling constants, and then the one–loop
approximation breaks down. The scales ǫ1 and ǫ2 will be determined in detail
in Section 5; see in particular eq. (111).

Regime 3 is below ǫ2. Here, the theory is strongly coupled. However,
the interaction has changed - and usually simplified - during the flow. For
instance, in the superconducting case, a leading term has emerged which
corresponds to the BCS model. In the (t, t′) Hubbard model, the interaction
has also developed a pronounced k–space structure at that scale [9], which
may lead to a tractable theory, but a full strong–coupling theory has not yet
been developed.

In summary, if one starts out at weak coupling, the one–loop RG flow
is justified down to an energy scale ǫ2 which is determined by the curvature
of the Fermi surface, and at which the effective coupling function need not

3



be small any more. The details of the flow down to scale ǫ2 depend on the
shape of the Fermi surface, as well as on the strength of the initial coupling
constant. We give a brief discussion of some cases in the next subsection.

1.2 Some consequences

1.2.1 The Kohn–Luttinger effect

In the case where the Fermi surface is positively curved and where the Umk-
lapp scattering is irrelevant, the three–scale picture provides a simple view
of the Kohn–Luttinger effect at weak coupling. Because the Fermi surface is
curved, the particle–hole terms in the flow equation (67) are small compared
to the particle–particle terms. The leading part of the coupling function is
then obtained by projecting on the Fermi surface, and one can expand the
coupling function in an orthonormal basis of functions φl on the Fermi sur-
face. The particle–particle flow has the property that it decouples different l,
so the corresponding coupling constants gl all flow independently, according
to the equations

ġl = −β̃lg2
l (1)

(for a more detailed discussion, see [3], Section 4.5). Because (1) is only
accurate below ǫ1, the initial condition for the gl is given at the scale ǫ1. If gl
is a repulsive coupling at ǫ1, i.e. gl(ǫ1) > 0, then gl decreases as ǫ decreases. If
gl is an attractive coupling at ǫ1, i.e. gl(ǫ1) < 0, then gl increases in absolute
value (see Figure 1). The Kohn–Luttinger effect is the observation that for
a weak repulsive interaction at scale ǫ0, there are l for which gl is negative
at the lower scale ǫ1, and thus gets larger in absolute value below that scale
(see Figure 1), eventually leading to a superconducting state with the gap
symmetry given by l.

Because the maximal four–point function defined in Section 5 initially
grows at most logarithmically in the energy scale, renormalized perturbation
theory above a scale ǫ converges if the biggest initial coupling constant g0 at
scale ǫ0 satisfies an inequality |g0| log ǫ0/ǫ ≪ 1 (here “renormalized” means
that the Fermi surface shift is treated appropriately [11, 12]).

Thus, if |g0| log ǫ0/ǫ1 ≪ 1, one can determine the superconducting insta-
bilities of the weak–coupling model by doing a perturbative calculation to
determine the gl at scale ǫ1 and checking which of these coupling constants
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Figure 1: The three scales and the flow of some coupling constants. The flow
starts at scale ǫ0. Below scale ǫ1, but above ǫ2, scaling effects from overlap-
ping loops justify a one–loop flow even if the couplings are not small. The
flow of the coupling constants is sketched for the situation without Umklapp
scattering and where the particle–particle term dominates the flow. In that
case, couplings that are negative grow in absolute value, positive couplings
get suppressed. Below scale ǫ2, the one–loop flow cannot be justified any
more.
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is the most negative.

It is important to note that the above–mentioned decoupling of the flow
of the coupling constants gl holds only in absence of Umklapp scattering and
when the particle–hole diagrams are not singular (this requires in particular
the absence of van Hove singularities). If the particle–hole terms in the flow
are important, the above–mentioned expansion in Fermi surface harmonics φl
does not lead to decoupled flow equations. This, and the Umklapp scattering,
is physically very important in the (t, t′)–Hubbard model (see [16, 9], and the
references therein).

1.2.2 Small curvature and nesting effects

The Kohn–Luttinger effect always drives the system to a superconducting
state if the coupling function stays small down to the scale where the particle–
particle flow is leading. As discussed above, such a scale always exists if
the Fermi surface is curved, but it goes to zero when the curvature goes
to zero. By the above reasoning, if the curvature of the Fermi surface is
nonzero, one can make the initial coupling constant so small that one stays
in the weak–coupling regime down to the scale where the curvature effects
become relevant. Thus, if the Fermi surface is regular and curved, and if
coupling constant is chosen small enough, depending on the Fermi surface

and thus in particular on the electron density, the instability will always be
of a superconducting type.

However, if the initial coupling constant is held fixed as the density varies,
it may, even though small, be so large that the one–loop flow leaves the weak–
coupling regime before the curvature effects set in. In that case, a different
instability, like one towards antiferromagnetism may be stronger than the
superconducting one. The details depend on the parameter regime of the
model; see [9, 5, 4] for results from one–loop RG flows. It should be noted
that when the curvature of the Fermi surface is very small, such as in the
case where t′/t is small and the filling is near to half–filling, the higher–order
terms generated by the 1PI six–point function are not suppressed by scaling
factors and therefore these higher order terms should be taken into account.
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1.2.3 The temperature range for Landau Fermi liquid theory

In view of the generic flow to strong coupling one may ask in what sense one
can regard Landau Fermi liquid theory as a “fixed point” of the RG. Because
of the Kohn–Luttinger effect, the answer is that (unless time–reversal sym-
metry is broken explicitly in the free system [15]) the only true weak–coupling
fixed point in d ≥ 2 is the free fermion point (coupling equal to zero), and it
is unstable with respect to any weak four–fermion perturbation, be it attrac-
tive or repulsive. The true meaning of the Landau Fermi liquid “fixed point”
in this connection is that, although the flow eventually leads away from the
zero–coupling fixed point, it may stay in its vicinity for a very long flow time,
i.e., to very low energy scales. Since temperature sets a natural energy scale
at which the renormalization group flow stops, it poses a natural restriction
on the maximal flow time. Thus, if the temperature is high enough, more
precisely if |g0| logβǫ0 ≪ 1, the system always stays weakly coupled, and
Landau Fermi liquid theory can be justified by convergent renormalized per-
turbation theory [2, 3, 17]. As discussed in [2, 3], this is also the physically
natural definition of Fermi liquid theory: Fermi liquids can be observed only
above a critical temperature where superconductivity or some other kind of
symmetry breaking sets in (this temperature may be very low). Above that
temperature, the k–space occupation number density does not have a dis-
continuity, but the Fermi surface can be identified simply by the scaling of
the maximal slope in the occupation density as a function of temperature.
For a Fermi liquid, the derivative of the occupation number density becomes
of order β at the Fermi surface, as in the Fermi gas, where the occupation
number is simply (1+eβe(p))−1, and only the prefactor changes due to a finite
wave function renormalization. For a Luttinger liquid, the anomalous scaling
of the two–point function (corresponding to an infinite wave function renor-
malization), leads to a scaling with βα, α < 1. If a gap occurs, the slope does
not scale with the temperature any more. This criterion also corresponds
to what is done in experiments – the integrated intensity measured in pho-
toemission experiments allows to reconstruct the occupation density if the
interaction matrix elements are known [19]. Theoretically, verifying that the
step in the occupation number density scales as in the Fermi gas corresponds
to showing that the first two derivatives of the selfenergy are finite. This
was first done in [2, 12]. Moreover, if |g0| log βǫ0 ≪ 1, the Cooper instability
does not lead to large coupling constants, and therefore the Landau function
describing the interaction of the quasiparticles is well–defined.
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1.2.4 Larger initial coupling constants

While the above discussion was to a good part about initially weakly coupled
systems, it may happen that the regime 2, where the couplings are not small
but the restricted phase space justifies looking at one–loop flows, still exists.
If the exact integration over the modes with energies above ǫ1 leaves over a
system with a curved Fermi surface, and if that curvature is big enough so
that the corrections to the nonoverlapping part of the flow are small, then
one can still use the one–loop approximation to do reliable calculations in
regime 2, and thus justify Fermi liquid theory above the critical temperature
of the superconducting transition. That this condition is ever fulfilled is not
at all obvious but it seems possible.

Acknowledgements. It is our pleasure to thank Gianni Blatter, Joel
Feldman, Walter Metzner, and Maurice Rice, for discussions.

2 The renormalization group

In this section, we present the renormalization group (RG) setup and then
discuss its application to our problem. We first review the path integral
representation very briefly; the RG is introduced as a transformation that
leaves the generating function for the correlation functions invariant.

2.1 The path integral representation

We consider a fermionic system with creation and annihilation operators a+
x,σ

and ax,σ (σ = ± the spin in units h̄/2) which obey the canonical anticom-
mutation relations, and with a Hamiltonian H(a+, a) that is a polynomial in
the fermion operators. For instance, a Hubbard type Hamiltonian is

H =
∑

x,x′,σ

Txx′a+
x,σax′,σ +

∑

x,x′

: nxV (x,x′)nx′ : (2)

with the number operators nx = a+
x,+ax,+ + a+

x,−ax,− and the dots denot-

ing normal ordering. The Hamiltonian is hermitian if Txy = Tyx and if
V (x,x′) = V (x′,x). For a translation-invariant system, Txy = T (x− y) and
V (x,y) = v(x−y). The usual repulsive on-site Hubbard interaction is given
by v(x − y) = U

2
δx,y with U > 0.
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The grand canonical trace Z = Tr e−β(H−µN) has a representation as a
Grassmann functional integral

Z =
∫

∏

τ,x,σ

dψ̄σ(τ,x) dψσ(τ,x)e−A(ψ̄,ψ) (3)

where the Grassmann fields ψ̄ and ψ now depend on an additional Euclidian
time τ , which we choose in the interval −β/2 ≤ τ < β/2, and which are
antiperiodic in τ . That is, ψ and ψ̄ are really defined for all −β ≤ τ < β,
they are periodic under τ → τ + 2β, and satisfy

ψσ(τ + β,x) = −ψσ(τ,x)
ψ̄σ(τ + β,x) = −ψ̄σ(τ,x).

(4)

The exponent A in (3) is the action corresponding to H ,

A(ψ̄, ψ) =
∫ β/2

−β/2
dτ [

∑

x,σ ψ̄σ(τ,x) ∂τψσ(τ,x)

− H(ψ̄(τ), ψ(τ))] (5)

The first summand is the analogue of the usual pq̇ term in the Legendre
transform. The second is just the Hamiltonian itself, in normal ordered
form, and with c+σ,x replaced by ψ̄σ(τ,x) and cσ,x replaced by ψσ(τ,x).

Strictly speaking, the functional integral is the limit n → ∞ of a finite-
dimensional Grassmann integral with discrete times τk = −β + k

n
β, 0 ≤ k <

n. At finite n, the analogue of the functional integral (3) is just a finite–
dimensional Grassmann integral. Taking the limit n → ∞ is a standard
procedure (see, e.g. [1], [3]).

For the Hamiltonian (2), the action consists of a quadratic and a quartic
term in the fields. A = A2 + A4. The quadratic term is

A2(ψ̄, ψ) = (ψ̄, Qψ) (6)

where, for Grassmann fields ψ and η̄, we have defined a fermionic bilinear
form

(η̄, ψ) =
∫

dξ η̄(ξ)ψ(ξ), (7)

used the integral notation
∫

dξ F (ξ) =
∫ β/2
−β/2 dτ

∑

x,σ F (τ,x, σ) (with ξ =
(τ,x, σ)), and denoted the quadratic operator in the action by Q:

Q(ξ, ξ′) = δσσ′δ(τ − τ ′)(δxx′(∂τ + µ) − Txx′). (8)
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The bilinear form satisfies (η̄, ψ) = −(ψ, η̄) because the Grassmann fields
anticommute. The quartic term is

A4(ψ̄, ψ) =
∫ β/2

−β/2
dτ

∑

x,x′,σ,σ′
ψ̄σ(τ,x)ψσ(τ,x)

V (x,x′)ψ̄σ′(τ,x
′)ψσ′(τ,x

′) (9)

The action has all symmetries of the Hamiltonian. Moreover, the action
and the integration measure, hence the partition function, are invariant under
the transformation

ψσ(τ,x) → iψ̄σ(−τ,x), ψ̄σ(τ,x) → iψσ(−τ,x). (10)

Observables transform accordingly (similarly as when taking adjoints).

It is convenient, and natural, to combine the exponential of the quadratic
part of the action and the Grassmann product measure into a Grassmann
Gaussian measure

dµC(ψ̄, ψ) =
1

detQ

∏

ξ

dψ̄(ξ) dψ(ξ) e−A2(ψ̄,ψ) (11)

The covariance C is the inverse of C = Q−1. The inverse exists because of
the antiperiodic boundary conditions. We also call A4(ψ̄, ψ) = V(ψ̄, ψ).

For a translation-invariant system, C can be calculated by a Fourier trans-
form

C(ξ; ξ′) =
δσσ′

βLd
∑

ω

∑

p

ei(τ−τ ′)ω+i(x−x′)p Ĉ(ω,p) (12)

with Ĉ(ω,p) = (iω − e(p))−1, and e(p) = T̂ (p) − µ, where T̂ denotes the
Fourier transform of the hopping amplitude T . The summation over p is over
the reciprocal lattice, and the sum over ω runs over all Matsubara frequencies,
ωn = π

β
(2n+1), n integer. Thus Ĉ is simply the usual Matsubara propagator.

The value of C at coinciding times is defined as the limit τ ′ ↑ τ , as required
by time ordering.

With these definitions, and with Grassmann source terms η and η̄, the
generating function for the connected Green functions is

W (η̄, η) = − log
∫

dµC(ψ̄, ψ)e−V(ψ̄,ψ)+(η̄,ψ)+(ψ̄,η) (13)
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The Z in (3) is now e−W (0,0) detQ. All information about the system is
contained in the connected correlation functions, which are the derivatives
of logZ(η̄, η) with respect to the source terms η̄ and η, at η = η̄ = 0.
When V = 0, the fermions are noninteracting, the integral for Z is Gaussian,
and W (η̄, η) = −(η̄, Cη). This implies that the correlation functions are
determinants of the two-point function (or covariance) C.

Thus all objects appearing in the functional integral have a natural in-
terpretation. The Gaussian measure with covariance C describes free fields,
i.e. particles with propagator C. The interaction appears in the form of an
(unnormalized) Boltzmann factor. Thus our system is characterized by C
and V. The renormalization group is a transformation of C and V which
depends on an energy scale and which leaves Z(η̄, η) invariant.

Performing a shift in the integration variables, one gets

e−W (η̄,η) = e(η̄,Cη)
∫

dµC(ψ̄, ψ)e−V(ψ̄−CT η̄, ψ−Cη) (14)

(here CT is the transpose of C). The function

G(φ̄, φ) = − log
∫

dµC(ψ̄, ψ)e−V(ψ̄+φ̄, ψ+φ) (15)

is called the effective action. We have W (η̄, η) = (η̄, Cη) − G(CT η̄, Cη), so
studying W is equivalent to studying G.

We now streamline notation and introduce Nambu-type fields, to make
the derivation of the RG equations simpler. Let X = (τ,x, σ, c), where the
charge index c = ±1 distinguishes between ψ and ψ̄: with the Grassmann
field Ψ(X) given by

Ψ(τ,x, σ, 1) = ψ̄σ(τ,x), Ψ(τ,x, σ,−1) = ψσ(τ,x), (16)

the quadratic part of the action is

(ψ̄, Qψ) =
1

2

(

(ψ̄, ψ),

(

0 Q
−QT 0

)(

ψ̄
ψ

))

=
1

2
(Ψ,QΨ) (17)

with QT (ξ, ξ′) = Q(ξ′, ξ). Thus Q satisfies QT = −Q. Because the source
terms are

(η̄, ψ) + (ψ̄, η) = (H,Ψ) with H =

(

−η
η̄

)

(18)
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we have (with C = Q−1)

∫

dµC(ψ̄, ψ)e(η̄,ψ)+(ψ̄,η) =
∫

dµC(Ψ)e(H,Ψ) = e−
1

2
(H,CH). (19)

The exponential of the effective action G is the convolution

eG(C,V)(Φ) =
∫

dµC(Ψ)e−V(Ψ+Φ) =
(

µC ∗ eV
)

(Φ) (20)

We shall not require Q to be of the form in (17) but only that it is antisym-
metric. Thus it may have diagonal terms, which correspond to non–charge
invariant terms, such as a superconducting gap.

2.2 RG flow: general setup

The semigroup law of the RG is based on the addition principle for Gaussian
fields: if C = C1+C2, then Ψ splits into two independent fields, Ψ = Ψ1+Ψ2,
where Ψ1 has covariance C1 and Ψ2 has covariance C2. The corresponding
Gaussian measure factorizes, so that

∫

dµC(Ψ)e−V(Ψ+Φ)

=
∫

dµC1
(Ψ1)

∫

dµC2
(Ψ2)e

−V(Ψ1+Ψ2+Φ). (21)

When one starts out at weak coupling, it is natural to label energy scales ac-
cording to the kinetic energy. In the following, we shall use the decomposition
C = Ds + Cs with a scale parameter s ≥ 0 corresponding to an energy scale
ǫs = ǫ0e

−s. The propagator Cs corresponds to fields with energy e(p) above
ǫs, and Ds to the fields with energy below ǫs. The effective action where the
fields with propagator Cs have been integrated out is Gǫs = G(Cs,V). In the
limit s → ∞, where the energy scale ǫs vanishes, Ds is identically zero and
everything has been integrated out. Inserting this decomposition and using
(21), we get for the effective action G0 = G(C,V), in which all fields have
been integrated over,

e−G0(Φ) =
∫

dµDs+Cs
(Ψ)e−V(Ψ+Φ)

=
∫

dµDs
(Ψ′)e−Gǫs(Ψ′+Φ). (22)
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Eq. (22) is the semigroup law of the RG; it can also be written in the form

G(Ds + Cs,V) = G(Ds,G(Cs,V)). (23)

The semigroup law imples that the system (C,V) that we want to study
is exactly equivalent to the system (Ds,G(Cs,V)) with propagator Ds and
effective interaction G(Cs,V). It also shows that the effective action G(Cs,V)
generates the connected, amputated correlation functions of the model with
covariance Cs. In our application, Cs is a covariance with an infrared cutoff
ǫs, and Ds is supported on a smaller momentum space because it is nonzero
only for fields with energies smaller than ǫs.

Set up in this way, the renormalization group is simply a symmetry of the
generating functional G(C,V), which contains all information of the model.
The RG differential equation expresses this statement in differential form,
namely that G(C,V) is independent of s. Thus the RGDE is the equation
∂
∂s
G(C,V) = 0, evaluated by inserting the right hand side of (22).

The exact symmetry comes at a price: G is a more complicated function
than the original interaction. It is an infinite power series

Gǫs(ψ) =
∑

σ

∫

dp ψ̄σ(p)B̂ǫs(p)ψσ(p)

+
∑

σ1,...,σ4

∫

dp1... dp4ψ̄σ1
(p1)ψ̄σ2

(p2)ψσ3
(p3)ψσ4

(p4)

δ(p1 + p2 − p3 − p4)F̂
(ǫs)
σ1,...,σ4

(p1, p2, p3) (24)

+ terms of order ψ6, ψ8, . . .

in the fields. We shall mainly be concerned with the quadratic and quar-
tic terms, which have the significance of the selfenergy correction and the
effective interaction; however, one should be aware that the interactions cor-
responding to the terms of order ψ6 or higher are always there and that the
convergence of the infinite series is a nontrivial problem (it has been shown
to converge in two dimensions; see [13]). The selfenergy term B produces,
among other things, a Fermi surface shift, which has to be kept track of in
the flow. This has been done for general Fermi surfaces [11].

In the following, we derive a differential equation for the one-particle-
irreducible (1PI) functions, from which we can obtain the above functions B

13



and F . This derivation is similar to the one used in [2], except that we do
not use Wick ordering here and give the equations for the 1PI functions. The
Wick-ordered equation of [2] is used in [5]. Yet another form (the original one
of Polchinski) is used in [4]. In an exact treatment, all these approaches are
equivalent because they give the same correlation functions. In approxima-
tions obtained by truncations of the equations, the question of equivalence
becomes nontrivial. From the technical point of view, there are a number of
differences, on which we shall comment later.

To summarize, the RG expresses the generating function of our field the-
ory in the form

∫

dµC(Ψ)e−V(Ψ+Φ) =
∫

dµD̃s
(Ψ)e−Ṽs(Ψ+Φ) . (25)

In the way derived above, D̃s = Ds and Ṽs = G(Cs,V), but other choices
are possible: G(Cs,V) will in general contain a selfenergy term (quadratic in
the fields) which we shall absorb in the new propagator D̃s later to deal with
the flow of the Fermi surface and the superconducting gap.

Note that because the generating function is invariant under the decom-
position, we shall be able to stop the flow at any scale we want; this will be
necessary because our flows generically lead to strong coupling.

3 The RG for the 1PI functions

In the following, we derive the RG for the 1PI functions. For the moment,
we shall not need all the details of the setup in terms of scale parameters; we
shall only use that Cs depends on a parameter s. Recall that studying W
(given in (13)) is equivalent to studying G. The 1PI functions are generated
by the first Legendre transform Γ of W .

3.1 The generating function of the 1PI vertices

In a general theory with fermionic fields, the fields ψ(X) and ψ̄(X) are la-
belled by an index X which comprises spacetime, spin, flavour, and possible
other indices. We collect ψ and ψ̄ into a single vector Ψ = (ψ̄, ψ). We also
use the notation (A,B) =

∫

dXA(X)B(X), where
∫

dX stands for summa-
tion over the discrete indices and integrals over the continuous ones. In the
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Hubbard model, the standard functional integral representation (see, e.g. [3],
Section 4.2) gives X = (τ,x, σ, c), where x is the position, σ = ± the third
component of the spin, −β/2 ≤ τ < β/2 the usual Euclidian time used to
convert the grand canonical trace to a functional integral over the Grass-
mann fields Ψ, and where the charge index c = ± distinguishes between the
components ψ and ψ̄ of Ψ.

The generating function for the connected non–amputated Green func-
tions is defined by

e−W (H) =
∫

dµC(Ψ)e−V(Ψ)+(H,Ψ) . (26)

Here the Gaussian integral is given by an invertible operator Q with integral
kernel Q(X,X ′). Because of the Grassmann nature of the fields, Q is anti-
symmetric, i.e. Q(X ′, X) = −Q(X,X ′). The covariance C is C = Q−1, and

dµC(Ψ) = (detQ)−1e−
1

2
(Ψ,QΨ)Dψ̄Dψ, with the notation (A,B) as defined

above. A general antisymmetric Q includes from the start the possibility
of non–charge invariant terms of type ψ(X)ψ(X ′); charge invariance corre-
sponds to a matrix Q of the form

(Q(ξ, ξ′))cc′ =
(

0 Q(ξ, ξ′

−Q(ξ′, ξ) 0

)

. (27)

In the Hubbard model,

Q(ξ, ξ′) = δσσ′δ(τ − τ ′)(δxx′(∂τ + µ) − Txx′), (28)

where T denotes the hopping matrix. V is the interaction term written in
terms of the fields Ψ (for details, see e.g. [3]).

The source term H is another Grassmann vector; if H =
(

−η
η̄

)

, then

(H,Ψ) is the usual combination (η̄, ψ) + (ψ̄, η).

If W has a nondegenerate quadratic part, the map H 7→ Φcl(H) , with

Φcl(H)(X) =
δ

δH(X)
W (H), (29)

can be inverted (this is the case in our fermionic models because the Grass-
mann variables are nilpotent and the covariance C is nondegenerate at pos-
itive temperature; in bosonic models, the map would not be invertible if
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symmetry breaking occurs; the Legendre transform is then defined by a vari-
ational equation; see, e.g. [7]). Denote the inverse map by φ 7→ h(φ) (h is an
odd element of the Grassmann algebra generated by φ), so that

Φcl(h(φ)) =
δW

δH
(h(φ)) = φ . (30)

Taking a derivative with respect to φ gives

∫

dZ
δh(φ)(Z)

δφ(Y )

(

δ2W

δH(Z)δH(X)

)

(h(φ)) = δ(X, Y ) . (31)

The first Legendre transform of W is

Γ(φ) = W (h(φ)) − (h(φ), φ) (32)

(with the last term a bilinear form as above); it generates the 1PI correlation
functions. We have δΓ

δφ
= h(φ) and thus by (31) (as operators)

(

δ2Γ

δφ2

)

(φ) =

[

δ2W

δH2
(h(φ))

]−1

(33)

For free particles (V = 0), W = 1
2
(H,CH), so δW/δH = CH , hence h(φ) =

C−1φ, and Γ(φ) = 1
2
(φ,C−1φ). In first order, the four–fermion interaction

term in Γ is just the original interaction V.

3.2 The RG differential equation for Γ

If W depends on a parameter s, then Γ and h also depend on s. By (30),

d

ds
Ws(hs(φ)) =

∂Ws

∂s
(hs(φ)) + (ḣs(φ), φ) (34)

(where the dot denotes the derivative with respect to s), so (32) implies

Γ̇s(φ) = Ẇs(hs(φ)). (35)

We now assume that the s–dependence of Ws is given as follows. In (26), V
remains independent of s, but C gets replaced by Cs = Q−1

s , where Qs now
depends on s. Then the derivative ∂/∂s can act only on dµCs

, that is, on the
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normalization factor or on the exponent. In the former case, it just produces
a constant term; in the latter it brings down (Ψ, Q̇sΨ) in the integral. Using

(Ψ, Q̇sΨ) e(H,Ψ) =

(

δ

δH
, Q̇s

δ

δH

)

e(H,Ψ) (36)

we can reexpress everything in terms of Ws(H) and get

Ẇs(H) =
1

2
Tr (CsQ̇s) +

1

2

(

δ

δH
, Q̇s

δ

δH

)

Ws(H)

+
1

2

(

δWs

δH
, Q̇s

δWs

δH

)

, (37)

and Tr (AB) =
∫

dX dY A(X, Y )B(Y,X). This is an equation similar to
Polchinski’s equation [6], but with Qs instead of Cs in the Laplacian because
the Green functions generated by W are not amputated. By (35), (30), and
(33), the differential equation for Γ(s) is

Γ̇(s|φ) =
1

2
Tr (CsQ̇s) +

1

2
(φ, Q̇sφ)

+
1

2
Tr



Q̇s

(

δ2Γ(s|φ)

δφ2

)−1


 . (38)

This is a nonpolynomial equation for Γ, but the inverse contains a sec-
ond derivative, which produces a field–independent term coming from the
quadratic term in Γ. Thus the equation makes sense in an expansion in the
fields.

3.3 Expansion in the fields

In this section we derive the equation for the scale–dependent 1PI m–point
functions γm(s), by expanding Γ(s|φ) in the fields. Readers that only want
to see the result can skip to the next subsection.

The 1PI m-point vertex functions γm(s|X1, . . . , Xm) are the coefficients
in an expansion of Γ as a power series in the fields:

Γ(s|φ) =
∑

m≥0

γ(m)(s|φ) (39)
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with

γ(m)(s|φ) =
1

m!

∫

dmX γm(s|X)φm(X) . (40)

Here we used the notations X = (X1, ..., Xm) and φm(X) = φ(X1)...φ(Xm).
We choose the function γm(s|X) totally antisymmetric: Amγm = γm, where
(AmF )(X1, . . . , Xm) = 1

m!

∑

π ǫ(π)F (Xπ(1), . . . , Xπ(m)) is the antisymmetriza-
tion operator (π is summed over all permutations of 1, . . . , m and ǫ(π) denotes
the sign of π). Any part of γm that is not antisymmetric would cancel out
in (40) because of the antisymmetry properties of the Grassmann variables.
Also, we shall later compare coefficients; this is allowed only when totally an-
tisymmetric functions are used. The γm(s|X) are the 1PI vertex functions.
Similarly, we have the expansion

δ

δφ(X)

δ

δφ(Y )
Γ(s|φ) =

∑

m≥0

γ̃(m)(s|X, Y ;φ) . (41)

By the antisymmetry of γm, two derivatives applied to γ(m+2) give a factor
(m + 2)(m + 1), which combines with the 1/(m + 2)! to 1/m! (this is the
reason for the convention of putting the prefactor 1

m!
in (40)). Thus

γ̃(m)(s|X, Y ;φ) =
1

m!

∫

dmX ′γm+2(s|X, Y,X ′)φm(X ′) . (42)

In particular, γ̃(0) is independent of φ:

γ̃(0)(s|X, Y ;φ) = γ2(s|X, Y ) . (43)

Therefore
δ2Γ(s|φ)

δφ(X)δφ(Y )
= γ2(s|X, Y ) + Γ̃(s|X, Y ;φ) (44)

with
Γ̃(s|X, Y ;φ) =

∑

m≥2

γ̃(m)(s|X, Y ;φ) . (45)

It is natural to think of γ2(s|X, Y ) and of Γ̃(s|X, Y ;φ) as integral kernels of
operators γ2 and Γ̃(s|φ). By the relation (33) at φ = 0,

Gs = γ2(s)
−1 (46)

is the full two-point function. As an equation between operators, we thus
have

δ2Γ

δφ2
(s|φ) = γ2(1 + GsΓ̃(s|φ)) , (47)
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so the differential equation for Γ now reads

Γ̇(s|φ) =
1

2
Tr (CsQ̇s) +

1

2
(φ, Q̇sφ)

+
1

2
Tr

[

GsQ̇s(1 + GsΓ̃(s|φ))−1
]

(48)

This equation is nonpolynomial in Γ because of the irreducibility condition.
We get the equations for the γm by expanding (1+GsΓ̃(s|φ))−1 in a geometric
series

Tr
[

GsQ̇s(1 + GsΓ̃(s | φ))−1
]

= Tr (GsQ̇s) − Tr (GsQ̇sGsΓ̃(s|φ)) (49)

+
∑

p≥2

(−1)p Tr
[

GsQ̇s(GsΓ̃(s|φ))p
]

The first term is a constant, which corresponds to a vacuum energy and is not
interesting for our purposes because it drops out in all correlation functions.
The term linear in Γ̃ generates contractions with single lines; its lowest order
in φ is quadratic in φ and therefore generates selfenergy corrections. The
graphical interpretation of the terms with p ≥ 2 is also straightforward: The
p’th oder term (GsΓ̃(s, φ))pGs is a linear tree with p vertices. Taking the
trace with Q̇s forms a loop. Thus in the graphical expansion, only 1PI graphs
contribute to Γ.

We define the single-scale propagator as

Ss = −GsQ̇sGs. (50)

The γ̃(m) defined in (42) are homogeneous of degree m in φ; inserting (39) on
the left hand side and (45) on the right hand side of (48), we get a system
of equations for the γ(m). For m ≤ 6 the equations are

γ̇(2)(s|φ) =
1

2
(φ, Q̇sφ) +

1

2
Tr (Ssγ̃

(2)(s|φ)) (51)

γ̇(4)(s|φ) =
1

2
Tr [Ssγ̃

(4)(s | φ)]

− 1

2
Tr [Ssγ̃

(2)(s | φ)Gsγ̃
(2)(s|φ)] (52)

γ̇(6)(s|φ) =
1

2
Tr [Ssγ̃

(6)(s|φ)]
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− 1

2
Tr [Ss(γ̃

(4)Gsγ̃
(2) + γ̃(2)Gsγ̃

(4)]

+
1

2
Tr [Ssγ̃

(2)Gsγ̃
(2)Gsγ̃

(2)] (53)

The last term contributing to γ̇(4) is

Tr (Ssγ̃
(2)Gsγ̃

(2)) =
∫

dX1.. dX4 φ(X1)..φ(X4)T4 (54)

with

T4 =
∫

dY1 . . . dY4 Ss(Y1, Y2) Gs(Y3, Y4) (55)

1

2
γ4(s|X1, X2, Y2, Y3)

1

2
γ4(s|X3, X4, Y4, Y1) .

Thus comparing coefficients of φ(X1) . . . φ(X4) gives, with X = (X1, . . . , X4),

γ̇4(s|X) =
1

2

∫

dY1 dY2 γ6(s|X, Y1, Y2)Ss(Y2, Y1)

− 4!

2
A4T4(X) (56)

(note that T4, as given in (55), is not in antisymmetrized form, so A4T4

appears in (56) because coefficients can only be compared if they are all
antisymmetric). To calculate A4T4, we have to antisymmetrize the product
A12B34 where Akl = γ4(s|Xk, Xl, Y1, Y3) and Bkl = γ4(s|Xk, Xl, Y4, Y1). The
antisymmetrization amounts to getting

P4(X, Y ) =
1

4

∑

π∈S4

ǫ(π)Aπ(1)π(2)Bπ(3)π(4) . (57)

By definition, Akl = −Alk and Bkl = −Blk. The extra factor 1
4

comes from
the two factors 1

2
in (55). We block the sum over π into those for which

π({1, 2}) = {a, b} is fixed. This gives
(

4
2

)

= 6 terms. All of them are similar,
so we discuss the case a = 1, b = 2. There are four permutations that leave
{1, 2} fixed, namely the identity, the transposition τ12 of 1 and 2, τ34 and
τ12 ◦ τ34. Taking into account the signs, we have

∑

π:π({1,2})={1,2}
ǫ(π)Aπ(1)π(2)Bπ(3)π(4)

= (A12 − A21)(B34 − B43) = 4A12B34 (58)
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by the antisymmetry of A and B. All other cases of π({1, 2}) are similar;
there is a global sign from permuting 1 to a and 2 to b which for a < b is
(−1)a+b−1. Thus

P4(X, Y ) = A12B34 − A13B24 + A14B23

+ A23B14 − A24B13 + A34B12. (59)

Inserting the definitions of A and B and relabelling the integration variables,
we can combine the terms containing A12 and B12, A13 and B13, etc.

3.4 The RGDE for the 1PI functions; Truncation

Denote Y = (Y1, . . . , Y4),

L(Y ) = Ss(Y1, Y2)Gs(Y3, Y4)

+ Ss(Y3, Y4)Gs(Y1, Y2), (60)

with Ss as in (50) and Gs as in (46) and

Bs(X, Y ) =

γ4(s|X1, X2, Y2, Y3)γ4(s | Y4, Y1, X3, X4)

− γ4(s|X1, X3, Y2, Y3)γ4(s | Y4, Y1, X2, X4)

+ γ4(s|X1, X4, Y2, Y3)γ4(s | Y4, Y1, X2, X3). (61)

The differential equation for the 1PI four–point function γ4 is

γ̇4(s|X) =
1

2

∫

dY1 dY2γ6(s|X, Y1, Y2)Ss(Y2, Y1)

− 1

2

∫

d4 Y L(Y )Bs(X, Y ). (62)

By (42) and (43), the equation for the 1PI two–point function γ2 becomes

γ̇2(s|X1, X2) = Q̇s(X1, X2) (63)

+
1

2

∫

dX3 dX4 Ss(X4, X3) γ4(s|X1, X2, X3, X4) .

Eq. (62) and (63) are the first two equations in the infinite system of RG
equations (labelled by m). Note that they do not form a closed system
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because γ6 enters in (62). This behaviour continues to all m: the right hand
side of the equation for γ̇m contains γm+2.

A way to close the system of equations for the 1PI four–point function
γ4 and the selfenergy is to drop the 1PI six-point vertex from (62). This
truncation is equivalent to setting all 1PI functions with m ≥ 6 external legs
zero, so that the connected (non–1PI) m-point functions with m ≥ 6 are
given by tree graphs made of the four–legged vertices and the approximation
to the full propagator provided by the solution of the differential equations.
The four–point and two–point differential equations are given in terms of
one–loop diagrams.

Note, however, that even the untruncated system of differential equa-
tions only contains one–loop terms in every equation. This is so because
in the differential formulation, only one differentiated propagator appears
in the equation (and there are no tree terms in an equation for 1PI func-
tions). Of course, this does not imply that only one–loop graphs appear in
the solution; the full RG produces, after all, the full Green functions. The
perturbation expansion is obtained by integrating the differential equation
from 0 to s and then iterating the thus obtained integral equation until only
bare vertices appear. Upon iteration, graphs with an arbitrary number of
loops are generated, and if one uses the untruncated equations, all graphs
are generated.

The truncated equations amount to a summation of part of the diagrams,
but these diagrams also contain two–loop graphs, in particular two–loop
graphs corresponding to the selfenergy.

The RG strategy does not necessarily aim at taking into account as many
graphs as possible but to single out the important ones by their scaling
behaviour. We discuss in Sect. 5 in which cases, and in which energy regimes,
the scaling behaviour justifies a truncation of the RGDE.

The initial condition for γ4 is the bare interaction. To renormalize the
Fermi surface correctly, one also needs to take into account a Fermi surface
counter term (see [14, 11, 12]).
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4 Consequences of symmetries

The derivation of equations (62) and (63) did not require any symmetries,
so these equations are also valid when symmetries are broken. In our sys-
tems, this means that they also hold in presence of a superconducting gap or
magnetic ordering or translational symmetry breaking. In two dimensions,
continuous symmetry breaking is impossible at any positive temperature by
the Mermin–Wagner theorem. A noninvariance of the effective action leads
immediately to long range order, hence mean–field type results. In order to
compare competing instabilities, we therefore first assume that all continuous
symmetries of the action remain unbroken. This leads to further simplifica-
tions in the differential equations, which we now successively discuss.

4.1 Charge invariance

Recalling that X = (ξ, c) where ξ consists of space, time, and spin indices,
and where c = ± is the charge index, this means that Ss((ξ, c), (ξ

′, c′)) and
Gs((ξ, c), (ξ

′, c′)) are nonzero only if c 6= c′, and that γ4(s|X1, . . . , X4) 6=
0 only if two of the charge indices are + and two are −. Because γ4 is
antisymmetric in all arguments, it is then determined by f(s|ξ1, . . . , ξ4) =
γ4(s|(ξ1,+), (ξ2,+), (ξ3,−), (ξ4,−)). Also, f inherits the antisymmetry under
exchange of ξ1 and ξ2 and that under exchange of ξ3 and ξ4.

We now rewrite (62) as an equation for f . The only thing to do is to
arrange the internal charge index sums. For instance, the first term on the
right hand side of (62) becomes

∑

c1,...,c4

∫

dη1, . . . dη4 L((η1, c1), . . . , (η4, c4))

γ4(s | (ξ1,+), (ξ2,+), (η2, c2), (η3, c3)) (64)

γ4(s | (η4, c4), (η1, c1), (ξ3,−), (ξ4,−)) .

The above-mentioned restrictions posed by γ4 imply that the only nonzero
term is c1 = c4 = + and c2 = c3 = −, so this is

∫

dη1 . . . dη4 L((η1,+), (η2,−), (η3,−), (η4,+))

f(s|ξ1, ξ2, η2, η3)f(s|η4, η1, ξ3, ξ4) . (65)
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The second and third term are similarly expressed in terms of f , using the
antisymmetry of γ4 and the charge-invariance properties. Using that

Gs((ξ,+), (ξ′,−)) = −G2(ξ
′, ξ)

Gs((ξ,−), (ξ′,+)) = G2(ξ, ξ
′)

(66)

and similarly for Ss, we get

ḟ(s|ξ1, ξ2, ξ3, ξ4) = Φpp(s|ξ1, ξ2, ξ3, ξ4)
+ Φph(s|ξ1, ξ2, ξ3, ξ4) (67)

− Φph(s|ξ1, ξ2, ξ4, ξ3)

with

Φpp(s|ξ1, .., ξ4) =
1

2

∫

dη1.. dη4 L(η2, η1, η3, η4)

f(s|ξ1, ξ2, η2, η3)f(s | η4, η1, ξ3, ξ4) (68)

and

Φph(s|ξ1, .., ξ4) = −
∫

dη1.. dη4 L(η1, η2, η3, η4)

f(s|η4, ξ2, ξ3, η1)f(s|ξ1, η2, η3, ξ4) (69)

and where

L(η1, .., η4) = Ss(η1, η2)Gs(η3, η4)

+ Gs(η1, η2)Ss(η3, η4) . (70)

There is no 1
2

in Φph because there are twice as many terms in the sum over
intermediate charge indices ci in the Φph as in Φpp. The function Φpp is
antisymmetric under exchange of (ξ1, ξ2) and of (ξ3, ξ4) because f has these
properties. The function Φph is not, but the difference appearing in (67) is
antisymmetric.

Equation (67) has the graphical representation shown in Figure 2. The
internal lines in these graphs correspond to ”full” propagators Gs, and to
single scale propagators Ss, respectively. The inverse of Gs is g2(s|ξ1, ξ2) =
γ2(s|(ξ1,+), (ξ2,−)) and satisfies

ġ2(s|ξ1, ξ2) = Q̇s(ξ1, ξ2)

−
∫

dξ1 dξ2 Ss(ξ4, ξ3) f(s|ξ1, ξ3, ξ4, ξ2). (71)
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Figure 2: The RGDE for f

4.2 Spin rotation invariance

We now derive the consequences of SU(2)–invariance (or, more generally,
SU(N)–invariance).

The initial interaction of important many–fermion models has the SU(2)
spin invariance. For instance, the initial Hubbard interaction, and interac-
tions of the form Sx · Sy, where Sx = ψ̄(x)σ

2
ψ(x) is the spin at x, have this

property. In the Gross–Neveu model, the interaction is U(N)–invariant for
a model with N colors.

Restricting to 1PI vertex functions that have the same invariance excludes
spontaneous symmetry breaking. In general this is a further assumption. But
if the model is two-dimensional, there is no true long-range order (LRO) in
the system at any positive temperature by the Mermin-Wagner theorem (a
version of this theorem applying to Hubbard models was proven by Koma and
Tasaki [8]). An effective action that is not invariant under SU(2) spin rota-
tions would automatically lead to LRO, and hence misleading results. Thus
in two dimensions, the invariance is not an additional assumption, and it is
very important to keep it in the effective interaction and the 1PI functions.
The Kosterlitz–Thouless–like behaviour that is expected in two–dimensional
superconductors below Tc is possible with spin-invariant interactions; they
simply get a slow power-law falloff (in layered materials, there is always a
coupling in the third direction which then stabilizes superconductivity).

Spin rotation invariance restricts the form of f as follows. If we define a
spin tensor (cf. (24))

F (s | x1, .., x4)σ1..σ4
= f(s | (x1, σ1), .., (x4, σ4)) (72)

then

F (s | x1, . . . , x4) = − ϕ(s | x1, x2, x3, x4)D

+ ϕ̃(s | x1, x2, x3, x4)E (73)
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where Dσ1...σ4
= δσ1σ4

δσ2σ3
and Eσ1...σ4

= δσ1σ3
δσ2σ4

. This can be seen by the
following argument (which also applies to U(N)–symmetries. The symmetry
transforms the fields as ψ → Uψ, ψ̄ → Ū ψ̄. Considering an infinitesimal
transformation, we get see that the only invariants are given by the above
Kronecker deltas E and D (also in the U(N) case).

The equation Eσ2σ1σ3σ4
= Dσ1σ2σ3σ4

and the antisymmetry of f under
(x1, σ1) ↔ (x2, σ2) imply that

ϕ̃(s | x1, x2, x3, x4) = ϕ(s | x2, x1, x3, x4)

= ϕ(s | x1, x2, x4, x3) (74)

Exchanging twice, we have (similarly to (74))

ϕ(s | x2, x1, x4, x3) = ϕ(s | x1, x2, x3, x4) . (75)

However there is no symmetry of ϕ under exchange of only one pair of coor-
dinates.

That interactions of the form Sx · Sy can be written in the form (73)
follows from the Fierz identity

3
∑

i=1

(σi)µν(σ
i)αβ = 2δανδβµ − δµνδαβ . (76)

Using (76), one can also reconstruct the four–fermion interaction in the form
S̃ · S̃ + ρ̃ρ̃, where S̃ and ρ̃ transform like spin densities and charge densities
as concerns the spin dependence. For a general ϕ, S̃ and ρ̃ will not be local
in space but involve different points.

We now rewrite the RGDE in terms of ϕ. The spin sum in the particle-
particle term is of the form

∑

τ,τ ′
Aσ1σ2ττ ′Bτ ′τσ3σ4

= (A ∗B)σ1σ2σ3σ4
(77)

and the spin sum in the particle-hole term is of the form
∑

τ,τ ′
Aσ1ττ ′σ4

Bτ ′σ2σ3τ = (A ◦B)σ1σ2σ3σ4
(78)

where A and B are F with different spatial arguments. Straightforward
calculation gives the relations

D ∗D = D, D ∗ E = E ∗D = E, E ∗ E = D,

D ◦D = 2D, D ◦ E = E ◦D = D, E ◦ E = E . (79)
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Inserting (73) into (67), using (79), and comparing the coefficient of −D, we
get the RGDE in the form

ϕ̇(s) = Tpp(s) + T d
ph(s) + T cr

ph(s) (80)

where, using x = (x1, x2, x3, x4),

Tpp(s|x) = −
∫

dy1 . . . dy4L(y2, y1, y3, y4)

ϕ(s|x1, x2, y2, y3)ϕ(s|y4, y1, x3, x4), (81)

T d
ph(s|x) = −

∫

dy1 . . . dy4L(y1, y2, y3, y4)

[ − 2ϕ(s|y2, x2, x3, y3)ϕ(s|x1, y4, y1, x4)

+ ϕ(s|y2, x2, x3, y3)ϕ(s|y4, x1, y1, x4)

+ ϕ(s|x2, y2, x3, y3)ϕ(s|x1, y4, y1, x4)], (82)

T cr
ph(s|x) = −

∫

dy1 . . . dy4L(y1, y2, y3, y4)

ϕ(s|x2, y2, x4, y3)ϕ(s|y4, x1, y1, x3), (83)

and L(y1, y2, y3, y4) = S(y1, y2)G(y3, y4) + G(y1, y2) S(y3, y4). Similarly, the
equation for the full inverse two–point function is

γ̇2(s x1, x2) = q̇s(x1, x2) − Σ̇s(x1, x2) (84)

with a scale–dependent selfenergy Σs that satisfies

Σ̇s(x1, x2) =
∫

dx3 dx4Ss(x4, x3) (85)

[ϕ(s|x3, x1, x4, x2) − 2ϕ(s|x1, x3, x4, x2)]

The initial condition for Σs depends on how the Fermi surface is renormalized.

Again, these equations have a convenient graphical interpretation: ϕ was
the coefficient of the direct spin term D, where the spin of particle 1 is the
same as that of particle 4, and similarly for 2 and 3. Thus we may draw
the vertex as in Figure 3, where the solid fermion lines going through at
the top and the bottom of the vertex indicate that spin is conserved along
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x1
x2 x3x4

Figure 3: The vertex corresponding to ϕ(s|x1, x2, x3, x4)

these lines. The symmetry (75) means that it does not matter if the vertex is
drawn upside down. The contributions to the right hand side of (80) can then
be represented graphically as in Figure 4. Thus (80) and (84) are obtained
by the usual QED–like Feynman rules, and the factor 2 and the minus sign
appear as the usual factors from the spin trace and the extra minus sign of
the fermion loop.

Note, however, that this graphical correspondence does not mean that the
fermion–boson vertex function that one can associate to the interaction by
a Hubbard–Stratonovitch transformation is independent of momentum, as it
would be for the bare Hubbard interaction. On the contrary: its momentum
dependence will be very important. Also, the propagators associated to the
internal lines of these graphs are the full propagator G(x, y) and the single–
scale propagator S(x, y). The function L is the symmetric combination of
the two, which means that every diagram stands for the two contributions
given by the summands in L.

The symmetry (10) implies that

ϕ(s|x1, x2, x3, x4) = ϕ(s|Rx4, Rx3, Rx2, Rx1) (86)

where R(τ,x) = (−τ,x). Similarly, the selfenergy satisfies

Σs(x1, x2) = Σs(Rx1, Rx2). (87)

The contributions to the right hand side of (85) have the graphical repre-
sentation shown in Figure 5, where the internal line stands for a single scale
propagator.

4.3 Translation invariance

If translation invariance is unbroken, we can take the Fourier transform. In
contrast to charge and spin invariance, translation invariance is only discrete

28



(a) (b)
(
)

Figure 4: The contributions to the right–hand side of the RGDE. (a)
the particle–particle term (b) the crossed particle–hole term (c) the direct
particle–hole term; the first of the three graphs gets a factor −2 because of
the fermion loop.

Figure 5: The contributions to the selfenergy
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in our lattice model and thus may be broken at positive temperature also
in two dimensions. Thus specializing to unbroken translation invariance is a
further assumption. It can be relaxed if one assumes that invariance under a
sufficiently large subgroup, e.g. that of translations of a sublattice, still holds.
The corresponding Fourier transform is then defined on a smaller momentum
space.

We take the convention that momenta corresponding to ψ̄ are counted
outgoing and those corresponding to ψ are counted as incoming. Then
translation invariance implies that ϕ̂(s|p1, p2, p3, p4) = δ(p1 + p2, p3 +
p4) Vs(p1, p2, p3), and the equation for Vs reads

V̇s = T̂pp + T̂ d
ph + T̂ cr

ph , (88)

with the particle–particle term

T̂pp(p1, p2, p3) = −
∫

dkL−(p1 + p2, k) (89)

Vs(p1, p2, k)Vs(p1 + p2 − k, k, p3),

the direct particle–hole term

T̂ d
ph(p1, p2, p3) = −

∫

dk L+(p2 − p3, k)

[ − 2Vs(k, p2, p3)Vs(p1, p2 − p3 + k, k) (90)

+Vs(k, p2, p3)Vs(p2 − p3 + k, p1, k)

+Vs(p2, k, p3)Vs(p1, p2 − p3 + k, k)],

and the crossed particle–hole term

T̂ cr
ph(p1, p2, p3) = −

∫

dk L+(p3 − p1, k) (91)

Vs(p2, k, p1 + p2 − p3)Vs(p3 − p1 + k, p1, k).

Here
L±(q, k) = Ŝ(k)Ĝ(q ± k) + Ŝ(q ± k)Ĝ(k). (92)

The symmetry (86) implies that

Vs(p1, p2, p3) = Vs(R(p1 + p2 − p3), Rp3, Rp2) (93)

with R(ω,p) = (−ω,p).
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These RG equations were studied in [9], and similar ones in [5] and [4].
For the numerical solution, there are still too many variables. By projecting
on the Fermi surface one can reduce the number of variables in the equations;
to calculate response functions one then calculates the flow of susceptibility
vertices, which is driven by that of the coupling functions. Details about the
susceptibilities are given in the appendix.

4.4 Comparison to other RG schemes

The main differences of this approach to the one in [4, 5] are the follow-
ing. In [4], Polchinski’s equation was used. The quantities appearing in
that equation are the connected amputated Green functions, which are in
general 1–particle reducible. Therefore, Zanchi and Schulz[4] have to keep
the tree–level six–point function and insert it into the equation for the four–
point function, thereby obtaining a flow equation that is nonlocal in the flow
parameter ǫs. This is the normal procedure in integrating the flow equa-
tion and, when iterated out, it gives a very useful representation for rigorous
studies, pioneered in [18]. We note that our truncation of the RGDE sys-
tem, namely dropping the one–particle irreducible six–point function from
the flow, actually also retains the one–particle reducible six–point function
at tree–level. Thus in that respect, the two formalisms are similar. However,
in the 1PI formalism, the higher n–point functions are also all kept at tree
level automatically, and the flow equation is local.

In [5], Halboth and Metzner use the Wick ordered RGDE of [2], which
has a number of advantages. First, as in the 1PI scheme, the flow equation
is local; the influence of the six–point function on the four–point function
is taken into account automatically by Wick ordering. The Wick ordering
also implies that part of the lines are supported below the scale ǫs instead
of above it. This makes the justification of projections to the Fermi surface
easier and it also leads to rather clear thresholds where scattering processes
die out because the available phase space disappears. One disadvantage of
the Wick ordered formalism is that taking selfenergy corrections into account
is not as convenient as in the 1PI formalism. If self–energy corrections are
ignored, as has been done in [5] and [4], and mostly in [9], this disadvantage
disappears. However, in the presence of van Hove singularities, self–energy
corrections may be important. So far, they have only been included in the
calculation of the Fermi surface deformation reported in the appendix of [9].
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5 Geometric arguments for dropping the 1PI

six–point function

In this section, we discuss the effects of the geometry of the energy shells
which form the support of the single scale propagators on power counting.
For the case of a smooth and curved Fermi surface, we use phase space bounds
to estimate the contribution of the 1PI six–point function γ6 to γ̇4. We show
that in a specific scale range, the correction due to γ6 is small even if the
scale–dependent coupling constant is not small any more. We then discuss
the case of Fermi surfaces with van Hove singularities.

5.1 The term of order γ4(s)
3

We now focus on Fermi surfaces that are smooth and curved. We give this
discussion for the flow with a fixed Fermi surface; the Fermi surface defor-
mation and the field strength renormalization can be dealt with using the
methods of [11, 12] and therefore not essential in this argument.

To estimate the influence of γ6 on γ4, we look at the integrated version of
the equation (53) for γ(6). Eq. (53) has the graphical representation shown
in Figure 6, where the m–legged vertex labelled by s represents γ(m)(s), and
where we have also labelled the propagators associated to the lines. When
coefficients of the monomials in the fields are compared to get the corre-
sponding equations for γ6(s|X1, . . . , X6), the antisymmetrization condition
implies that there is a sum over different possibilites of associating the inter-
nal propagators to the different lines, as in (60).

The vertex functions γ̂m(s|p1, . . . , pm−1) have a natural power counting
that is determined by the scaled propagator, or equivalently, the kinetic
energy. To be specific, we choose the scaled propagator of the form

Cs(p) =
1

iω − e(p)
χ

(

ω2 + e(p)2

ǫs2

)

, (94)

where ǫs = ǫ0e
−s, with ǫ0 some fixed energy scale, and where χ is a smooth

and monotonically increasing cutoff function with χ(x) = 1 for x ≥ 1 and
χ(x) = 0 for x ≤ 1/4. The details of the choice of χ play no role. The
discussion of flows in which the cutoff function χ is frequency–independent
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s = Sss
+ SsGss s + GsGs Sss ss

Figure 6: The differential equation for γ(6)

(i.e. where χ(e(p)2/ǫs
2) is the cutoff function) is similar – the power counting

is essentially the same.

The essential properties of Ċs are that it is large near to the Fermi surface,
but zero outside of a thin shell in (d + 1)–dimensional momentum space
around the Fermi surface. More precisely, because the differentiated cutoff
function χ′(x) is nonzero only for 1/4 ≤ x ≤ 1, Ċs(k) vanishes unless ǫs/2 ≤
|iω − e(k)| ≤ ǫs, so

|Ċs(k)| ≤
2

ǫs
1s(k) (95)

where 1s is the indicator function 1s(k) = 1 if k is in the energy shell where
Ċs 6= 0 (i.e. if ǫs/2 ≤ |iω− e(k)| ≤ ǫs), and 1s(k) = 0 if k is not in that shell.

In terms of the density of states N(E) =
∫ ddk

(2π)d δ(E − e(k)), the volume of
this momentum space shell is

W (s) =
∫

dd+1k 1s(k) ≤
1

β

∑

|ω|≤ǫs

ǫs
∫

−ǫs

dE N(E)

≤ Aǫs
2, (96)

with the constant A = 2
π
Nmax, where Nmax is the maximum of the density

of states N(E) over all |E| ≤ ǫs. Because N(E) is a surface integral over
1/|∇e|, the constant A is finite only in absence of a van Hove singularity.

Integrate (53) from scale 0 to s. This gives, among others, the third order
correction shown in Figure 7 to γ̇(4)(s). We consider this two–loop integral
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s0 s0
s0 Ss0Gs0
Gs0
Ss

(a)
Figure 7: A term cubic in γ4 arising from the contribution of γ6 to the flow
of γ4. This graph is integrated over s′ from s′ = 0 to s′ = s.

first and come back to the full equation for γ6 below. Let γ4(s) = Vs and let

g(s) = sup
0≤s′≤s

sup
p1,p2,p3

|γ4(s
′|p1, p2, p3)| (97)

be the maximal possible value of the four–point vertex at any flow time up to
s (i.e. at energy scales ǫs′ ≥ ǫs), and for any values of the external momenta.
The quantity g(s) provides a bound for the largest possible four–point cou-
pling constant that can arise in the flow. Because g(s) is the maximum over
s′ ≤ s, it is increasing in s. Because g(s) includes the maximum over all mo-
menta, we can bound all three vertex factors γ4(s

′) by g(s′). The contribution
Ia of the graph in Figure 7 is at most

Ia ≤
∫ s

0
ds′g(s′)3 J(s, s′, q1, q2) (98)

with

J(s, s′, q1, q2) =
∫

dk
∫

dp |Ss′(k)Ss(p)|
| Gs′(±k ± p+ q1)Gs′(±k + q2)| (99)

where q1 and q2 are linear combinations of the external momenta. They will
be unimportant because our estimate for J will be independent of q1 and q2.
Because g(s) is an increasing function of s, we can take it out of the integral
to get

Ia ≤ g(s)3
∫ s

0
ds′ J(s, s′, q1, q2) (100)
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The contribution is third order in g(s); if g(s) gets large, it will only stay
smaller than the second order terms if the coefficient function J is small.
Write

Gs′(±k ± p+ q1) =
∫ s′

0
ds′′Ġs′′(±k ± p+ q1). (101)

Because Ṡs and Ġs have the same size and support properties as Ċs, we can
use (95) to get

J(s, s′, q1, q2) ≤
1

ǫsǫs′2

∫

ds′′

ǫs′′
Vol(s, s′, s′′) (102)

with the two–loop momentum space volume

Vol(s, s′, s′′) =
∫

dd+1k
∫

dd+1p 1s(p) 1s′(k)

1s′′(±k ± p + q1) (103)

which depends on the three scales s, s′, s′′ and on q1. Here we have also used
that 1s′(±k + q2) ≤ 1, so the dependence on q2 has already dropped out.
One can easily bound J by dropping the third indicator function from the
integral. This gives

Vol(s, s′, s′′) ≤ W (s)W (s′), (104)

with W (s) as in (96), so

J(s, s′, q1, q2) ≤ A2ǫs

∫ s′

0

ds′′

ǫs′′
(105)

Because ǫs = ǫ0e
−s, the last integral is bounded by 1/ǫs′. Inserting this back

into (100) and doing the integral over s′, we arrive at the estimate

Ia ≤ A2g(s)3, (106)

which does not suggest that this term suppressed. This would correspond to
usual power counting, which suggests that all four–legged contributions have
the same order of magnitude.

However, if one does not drop 1s′′(±k ± p + q1) from the above integral,
one gets a better bound. It was shown in [11, 12] (see also Appendix B.8 of
[3]) that

Vol(s, s′, s′′) ≤ W (s)W (s′)Qvol(1 + s)ǫs′′ (107)
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where Qvol is a constant that depends on the Fermi surface geometry and
which we shall discuss below. This bound does not depend on q1. In d ≥ 3,
the logarithmic factor 1 + s is replaced by 1. Compared to (104), there is
an extra factor Qvol(1 + s)ǫs′′ in (107), and this factor is small for s′′ large.
Integrating the scales in the same way as before, we now get

Ia ≤ A2Qvolg(s)
3ǫs(1 + s)2 (108)

which, up to the factor (1 + s)2, is ǫs ∼ e−s smaller than before.

Let us now calculate the correction that this gives. In the flow where the
influence of γ6 is omitted, we have

ġ(s) ≤ β̃2g(s)
2 (109)

with β̃2 > 0 the maximal value of the single–scale bubble integral. Here we
have taken bounds; this gives the worst case scenario; if one looks at the flow
of a particular coupling constant (in an expansion in angular momentum
couplings, e.g. the s–wave coupling), the sign of the coupling constant at
s = 0 determines whether it grows or decreases under the flow. Taking the
equality sign in (109), we get

g(s) =
g(0)

1 − g(0)β̃2s
, (110)

which diverges at some nonzero sc, indicating the possibility of instabilities.
The flow given by (110) has essentially two different regimes. If g(0)β̃2 ≪ 1,
then g(s) ∼ g(0) + g(0)β̃2s grows logarithmically in ǫs. When s approaches
sc, it starts to grow like the inverse power 1/(sc − s).

At a positive temperature T = 1/β, the flow stops at sβ = log βǫ0
π

, because
nothing is left to integrate over when ǫs = π/β. If g(o) is so small that
sc > sβ , the four–point function stays finite, and there is no instability.
This is the basis of the Fermi liquid criterion of [2]: if sβ ≪ sc, the running
coupling constants stay small and one can use convergent perturbation theory
to justify Fermi liquid theory.

But even if the coupling constants do not stay small, the correction Ia to
the O(g(s)2) four–point flow is small if

A2Qvolg(s)ǫs(1 + s)2 ≪ 1 (111)

with g(s) given by (110).

Thus the flow is naturally split into three different regimes:
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(i) high scales s is so small that A2Qvolǫs(1 + s)2 is not very small.

(ii) intermediate scales s is such that (111) holds

(iii) low scales s is so large that (111) fails.

This provides a criterion when the flow is accurate and when it has to
be stopped, and it also makes clear what the role of weak coupling is in our
treatment. A weak initial coupling constant is needed to get through regime
(i) with a second order flow because the only small factor in region (i) is the
coupling g(s). If the coupling constant is not weak, there can be significant
corrections to the flow in that regime. In regime (ii), the coupling constant
need not be small because the scaling provides small factors that make the
correction term small. In regime (iii) the corrections become dominant, so
the one–loop flow has to be stopped before one enters regime (iii). What one
expects to happen around this scale is that gaps open up that cut off the
singularity.

If the initial interaction is sufficiently weak, more precisely, if g(0) log ǫ0
is small enough, regimes (i) and (ii) will exist. This is because regime (i) is,
by definition, the regime with infrared cutoff ǫ0, and it has been proven [13]
that perturbation theory for the many–fermion system converges if there is
an infrared cutoff. Thus, if the coupling constant is small enough, low order
perturbation theory can be used to calculate the effective interaction. After
that, the truncated flow can be used in regime (ii). This flow decouples into
angular momentum sectors (or their generalization in absence of spherical
symmetry; see e.g. [10] or [3]) which flow independently. Ones that start out
positive will decrease to smaller positive values, ones that start out negative
will decrease to more negative values, and eventually, at some s̃c, diverge
in the one–loop flow. As discussed, there is no real divergence of a coupling
constant in the full flow; instead, one enters regime (iii) where the corrections
to the one–loop flow can no longer be neglected.

It might happen that in the flow, all coupling constants remain positive,
which would mean that none of them diverges. We do not know of any
example for such behaviour in d ≥ 2 and with p → −p symmetry – there is
always a coupling constant that becomes negative ( Kohn–Luttinger effect)
at scale ǫ0 and therefore starts to grow in absolute value at lower scales. If the
symmetry under p → −p is broken, there is no Cooper instability and the
coupling constants remain finite down to scale zero even at zero temperature
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[15]. The reason for this is not that all couplings stay positive (in fact, their
sign does not matter), but that the constant β̃2 is replaced essentially by
const. ǫs

1/3 (see Lemma 4.8 in [12]), which just integrates to a constant, so
that g(s) ≤ g(0)/(1 − g(0) const.) in that case.

5.2 The influence of the full γ6

The above discussion was only for a single graph, but the essential points also
apply to the other terms, because of the following. The equation for γ6 is
linear; in finite volume, where the momenta are discrete, it can be viewed as
a system of linear differential equations, labelled by P = (P1, . . . , P6), where
the Pi include momentum, spin, and charge indices. We have

γ̇6(s) = B6(γ4(s), γ6(s)) + T6(γ4(s), γ4(s), γ4(s))

+ L6(γ8(s)) (112)

where B6, T6, and L6 are linear in each of the coupling functions, and depend
on the momenta P . We drop γ8 from the equation. The argument for doing
this is similar to the one we are describing (see below). Now γ6 can be calcu-
lated in terms of γ4 as the solution of the linear differential equation (112).
Defining a maximal six–point coupling g6(s) (independent of momentum) in
analogy to (97), one gets

ġ6(s) ≤ β̃2g(s)g6(s) +
1

ǫs
g(s)3. (113)

To get a bound for g6, we replace the inequality by an equality. This is
now just a linear differential equation in one variable s, which can be solved
explicitly. Using that g(s) is increasing in s, we get

g6(s) ≤
1

ǫs
g(s)3 exp

(

β̃2

∫ s

0
g(s′) ds′

)

. (114)

Here we already see the main change as compared to the discussion of the
third order term: the integral of g(s) gets exponentiated. Using (110), we
can calculate this integral and get

g6(s) ≤
1

ǫs
g(s)3 (1 − g(0)β̃2s)

−1. (115)
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(a) (b)
Figure 8: Graphical representation of terms arising in the solution of the
differential equation for γ6 as a function of γ4. (a) a chain of four-legged
insertions attached to the third–order term in the equation for γ6 (b) a term
containing overlapping loops which has a small scaling factor

In other words, solving the differential equation for γ6 gives another factor in
the denominator which is similar to the one already in g(s). Thus the power
in the denominator increases by one.

In graphical terms, the integration of the differential equation for γ6 corre-
sponds to a resummation of infinitely many graphs, and the new denominator
comes from long chains of four–point functions attached to the third order
term, as shown in Figure 8 (a), which arise from iterating the same term in
the equation many times.

The other terms, such as the one drawn in Figure 8 (b), contain a loop
overlap [11] on one line (e.g. the one drawn heavy in the figure) and are
therefore suppressed (this is also the reason why the prefactor of g(s)g6(s)
in (113) is β̃2). If one goes through this in more detail (which we skip here
for brevity, and because the argument is similar to the one in [11]), one finds
that the overlapping loop structure is in all terms that do not involve self–
contractions of four–point vertices. The latter are treated by a Fermi surface
counterterm in the way done in [11, 12].

The backreaction of γ6 on γ4 is now obtained by joining two legs of differ-
ent vertices to form an additional loop. The above discussion has shown that
this always creates a loop overlap which cancels the 1/ǫs in (115). Hence the
correction of γ6 to the flow for γ4 is bounded by

ψ(s, g(s)) = QvolA
2(1 + s)2g(s)3 1

1 − g(0)β̃2s
. (116)

Thus, the analogue of (111), with the power of the denominator increased by
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one, defines the condition that the correction remains small.

The above argument has shown that, with g(s) given by the unperturbed
one–loop flow (110), the term ψ(s, g(s)) that we dropped is small in regions
(i) and (ii). A standard stability analysis now shows that the solution of the
equation where the contribution of γ6 is taken into account in the equation
for γ4, is given by g(s) → g(s)(1 + h(s)), where h(s) is small as long as
ψ(s, g(s)) remains small.

This completes the justification of dropping γ6 in the equation for γ4

under the hypothesis that γ8 can be dropped from the equation for γ6. One
can now go on to discuss the equations for γ8 etc. The same argument applies
because of the following observations: (1) when γm+2 is dropped, γm can be
expressed in terms of γ4 by integration of the differential equation. (2) the
γm are 1PI functions, so the selfcontraction term which γm contributes to
γm−2 always involves a two–loop graph which is either taken care of by Fermi
surface renormalization or gets a small factor by the overlapping loop bound.
A careful graphical analysis is done in [11, 12]. The combinatorial problem
is treated in [13].

5.3 Fermi surfaces with van Hove singularities

We now discuss what changes if van Hove singularities and small curvature
of the Fermi surface are present. Obviously, the estimate (96) for W (s) no
longer holds if the region of k with |e(k)| ≤ ǫs contains a zero of the gradient.
In d = 2, the integral for k at distance at most kc from a saddle point of e
is, in natural momentum space coordinates (u, v) around the saddle point,
where e(p) = uv,

∫

|e(k)|≤ǫs

ddk

(2π)d
∼

∫

|uv|≤ǫs

u2+v2≤k2
c

du dv ∼ ǫs log
k2
c

ǫs
(117)

so there is an extra logarithmic factor s. Again, for d ≥ 3 this factor is
replaced by 1. Moreover, Qvol depends on the curvature of the Fermi surface
and diverges if the curvature vanishes.

For our case this means that the argument for omitting higher order
terms works only on those parts of the Fermi surface which are curved (and
that regime (i) can get uncomfortably large). That the curvature is nonzero
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is meant in the more precise sense that the scale should be so low that
Qvol(1 + s)ǫs < 1. Otherwise, (107) provides no improvement over (104). In
the t′ = 0 Hubbard model near to half–filling (µ small), the improvement
starts only at scales ǫs < µ. For the (t, t′) model with t′ 6= 0, the curvature
is nonvanishing away from the saddle points. Moreover, the curved region of
the Fermi surface gets larger and larger as the scale decreases because the
shells get thinner. Thus one can take the radius kc of the disk around the
van Hove singularity to shrink with ǫs, and the part of momentum space
where there is no improvement gets smaller and smaller. Inside the disk
of radius kc, there is, however, no gain. Choosing kc proportional to

√
ǫs,

we get that the influence of a region of that size to the integral is of order
1 instead of order s. Thus the origin of the extra logarithms is not in a
very small neighbourhood of the van Hove singularity but in the range of√
ǫs ≤ kc ≤ 1. This is similar to the observation that the one–dimensional

integral
∫ 1
0

dx√
x2+a2

, which grows like | log a| for small a, can be split into the

contribution of a small neighbourhood of 0,
∫ a
0

dx√
x2+a2

, which is bounded

because it is ≤ ∫ a
0

dx
a

≤ 1 and the piece
∫ 1
a

dx√
x2+a2

=
∫ 1
a

dx
x

+ regular terms,
which produces the logartihm.

In presence of a van Hove singularity, the estimate for the leading flow,
i.e. the largest coupling changes to

g(s) =
g(0)

1 − g(0)β̃s2
(118)

because of the extra logarithm from the local density of states integral (117),
which effectively replaces β̃2 by β̃2s in the differential equation. The flow

now diverges unless T ≥ T0e
−1/

√
g(0)β̃2 , which is much earlier than in absence

of a van Hove singularity. It should be kept in mind, however, that in the
weakly coupled repulsive Hubbard model, any attractive coupling generated
by integrating out degrees of freedom is of order at least U2, and therefore
the square root just gives back the usual scaling of T as a function of U .

A Projections and susceptibilities

Even the truncated system of RG equations cannot be solved exactly in the
physically interesting cases. The four–point function is a function of three
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momenta and three frequencies (the fourth being fixed by momentum con-
servation) thus a function of 3d+ 3 variables, and the RGDE is a nonlinear
integrodifferential equation for this function. Similarly, the selfenergy de-
pends on momentum and frequency. The large number of variables makes
a computational solution of the RGDE difficult. However, the RG and its
power counting provide further means for reducing the number of variables.
The basic argument is, again, that the singularity is on the Fermi surface, and
therefore only the degrees of freedom on the Fermi surface should influence
the leading behaviour. A more detailed argument uses Taylor expansions
around the Fermi surface. Although often discussed as a standard RG argu-
ment, a rigorous justification of this procedure is nontrivial, in particular in
the case with van Hove singularities.

The projected four–point function does not contain the full information
any more, and in particular it is not sufficient for calculating response func-
tions to determine instabilities. These response functions can be recovered
by considering a flow with external fields and calculating the linear and
quadratic term in the external field.

The general feature of these equations is that only the equation for the
coupling function (i.e. the projected function) is nonlinear, and that, given
the coupling function, the others can be obtained from a linear equation
whose coefficients depend on the coupling function. In this way, the logarith-
mic growth of couplings integrates to power laws of the response functions,
as well as for the four–point function away from the Fermi surface.

The susceptibilities are obtained by coupling external boson fields a to
the bilinears in the fermions that represent charge, spin, Cooper pair and
other local densities, and by calculating the corresponding RG flow for these
functions. The presence of the a fields makes no difference for the derivation
of the RGDE because the a fields simply appear as parameters. Thus the
equations are unchanged, except that now all functions depend on a. The
fields a are external because no integration in a is done. Correlation functions
for the gaps, spins, etc, are given by derivatives of the generating functional
with respect to the a fields. Thus for their calculation, it suffices to get the
dependence on a in terms of an expansion in a. The expansion of Γs now
reads

Γ(s | a, φ) =
∑

m,n≥0

γ(m,n)(s | a, φ) (119)
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Figure 9: The differential equations for γ20 and γ12.

with

γ(m,n)(s | a, φ) =
1

m!n!

∫

dmX dnY γm,n(s|X, Y )am(X)φn(Y ) . (120)

Because the a fields are boson fields, the coefficient gm,n(s|X, Y ) is totally
symmetric under permutations of X. The RGDE is now derived in the same
way as above. Because the a fields are external fields only, the equations for
the a–independent parts γ0n remain unchanged, so that γ0n = γn for all n,
with the γn given as above. Thus the flow for the susceptibilities is driven
by the flow for the coupling functions; it takes the form of a system of linear
integro–differential equations.

For m+ n > 0 we have

γ̇(m,n)(s | a, φ) = −1

2
Tr [G2Q̇sG2γ̃

(m,n)(s | a, φ)]

+
1

2

∑

p≥2

(−1)p
∑

m1,...,mp≥0

m1+...+mp=m

∑

n1,...,np≥2

n1+...+np=n

(121)

Tr



G2Q̇s

p
∏

q=1

G2γ̃
(mq ,nq)(s | a, φ)





with γ̃(m,n) defined in analogy to (44) and (45).

Since one a field couples to a fermionic bilinear, an external a field corre-
sponds to a pair of fermions. Thus the truncation consistent with dropping
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the 1PI six–point function is to leave out all m and n with 2m+n ≥ 6. This
gives the equations

γ̇12(s|X;Y1, Y2) =
1

2

∫

d4Z L(Z1, . . . , Z4) (122)

γ12(s|X,Z2, Z3)γ04(s|Z4, Z1;Y1, Y2)

and

γ̇20(s|X1, X2) =
1

2

∫

d4Z L(Z1, . . . , Z4) (123)

γ12(s|X1, Z2, Z3)γ12(s|X2;Z4, Z1)

with L given by (60). The initial condition on γ12 at s = 0 determines which
susceptibility is considered; in particular, it determines the symmetry of the
superconducting instability in the case of the coupling to Cooper pairs.

In presence of charge invariance, we get separate equations
for the particle–particle (”superconductance”) and particle–hole (”nor-
mal”)susceptibilities, defined as

γpp,ǫ12 (s|X, (y1, σ1), (y2, σ2))

= γ12(s|X; (y1, σ1, ǫ), (y2, σ2, ǫ)) (124)

and

γph,ǫ12 (s|X, (y1, σ1), (y2, σ2))

= γ12(s|X; (y1, σ1, ǫ), (y2, σ2,−ǫ)) (125)

By the fermionic antisymmetry,

γpp,−12 (s|X, (y1, σ1), (y2, σ2)) = −γpp,+12 (s|X, (y2, σ2), (y1, σ1)) (126)

and similarly for γph,±12 , so it suffices to consider one of the ”±” quantities. We
now also assume spin rotation invariance; then the normal charge (∼ δσ1σ2

)
and spin ∼ (τ3)σ1σ2

susceptibility (τ3 the Pauli matrix) do not couple in the
flow. The resulting equations are

γ̇pp,−12 (s|X, (y1, σ1), (y2, σ2))

=
∫

du1 . . . du4L(u1, . . . , u4) (127)

γpp,−12 (s|X, (u2, σ1), (u3, σ2))ϕ(s|u4, u1; y1, y2)
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for the superconductance susceptibility,

γ̇12,charge(s|x; y1, y2)

=
∫

du1 . . . du4 Re L(u1, u2, u4, u3) (128)

γ12,charge(s|x; u3, u2)

[2ϕ(s|y1, u1, u4, y2) − ϕ(s|u1, y1, u4, y2)]

for the charge susceptibility, and

γ̇12,spin(s|x; y1, y2)

=
∫

du1 . . . du4 Re L(u1, u2, u4, u3) (129)

γ12,spin(s|x; u1, u4)ϕ(s|u3, y1, u2, y2)

for the spin susceptibility.
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