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Abstract

I discuss the setup and details of proofs of perturbative renormalizability
by renormalization group differential equations. As an example, I show that
φ3 theory in six dimensions is perturbatively renormalizable.

1 Introduction

In these notes, I give a largely selfcontained introduction to the flow equation
method as a tool for proving perturbative renormalizability of field theories. I ap-
ply it to φ3 theory in6 dimensions because this is an example at which Connes and
Kreimer exhibited the Hopf algebra structure underlying BPHZ renormalization.
Since then it the Hopf algebra method has been applied to many other examples;
φ3 was probably chosen because it has the simplest graphical structure.

In many ways, the method presented here is complementary to the Connes–
Kreimer method. One of its main advantages is that one can do all proofs without
even talking of Feynman graphs, but that one can also use it to generate the Feyn-
man graph expansion in all detail. Indeed, the Brydges–Kennedy tree formula [1],
a natural outcome of integrating the RG differential equations, provides a particu-
larly convenient arrangement of perturbation theory.
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From the point of view of nonperturbative quantum field theory, the focus on
all–order graphical expansions seems almost anachronistic in bosonic theories,
and also, dimensional regularization should not be regarded as fundamental to
renormalization because it is up to now a method that is strictly tied to pertur-
bation theory in graphical terms, whereas other methods of renormalization have
already been applied in a nonperturbative setting. It would certainly be a major
breakthrough if dimensional regularization could be established as a nonperturba-
tive method. One hope in this direction comes from noncommutative field theory.

An aspect not captured in formal perturbation expansions is the need to split
field space in small–field and large–field regions. It is possible to disentangle this
split, which is fundamental in bosonic theories, from the renormalization problem
of putting counterterms as it arises in perturbation theory. This has been done
in pioneering work and used for the mathematical construction of the infrared
limit of φ4 theory in four dimensions (i.e. the theory with a fixed UV cutoff, but
zero mass) and the Gross–Neveu model in2 and2 + ε dimensions [7, 8, 9]. The
Wilsonian flow equation method discussed here shares at least the basic idea with
these hard analysis proofs, but it is substantially simpler because it is applied only
in a perturbative setting here.

For the example to be discussed below,φ3 theory, the partition function can-
not even be written in a completely regularized version of the field theory on a
Euclidean lattice with finitely many points because theφ3 action is not bounded
below, so this example is usually not considered. For perturbative considerations
this problem is inessential: one can add a termδ φ4, δ > 0 very small, to the
action at cutoff scale. Then the action is bounded below, the partition function
makes sense, and one can takeδ → 0 at fixed cutoff in the perturbative equa-
tions for the Green functions. Below I shall also show that one can add aφ4 term
with an inverse power of the ultraviolet cutoff instead ofδ as a prefactor without
spoiling the property of renormalizability.

In Section 2 I introduce the generating functions of field theory and describe
the renormalization problem very briefly. In Section 3 I give a short derivation of
the flow equation and in Section 4 I discuss its application toφ3

6. I will not provide
a general introduction to renormalization since this has been done at many places.
The RGDE method of renormalization has been described in detail in [2, 3]. I will
use notations and conventions from [2].
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2 The problem of renormalizability

In this section, I describe renormalizability of field theories in the sense of finite-
ness of the Green functions of the theory in the limit as a regulating momen-
tum space cutoff is removed. This is the minimal condition for a theory to be
called renormalizable. In theories with large symmetry groups of the classical
Lagrangian, such as gauge theories, finiteness of the limit is only a starting point.
One then has to prove that the limiting function satisfy the Ward or Slavnov-Taylor
identities to know that they are really gauge theories. Proofs of this are rather
nontrivial add–ons to the few statements shown here even for the simplest gauge
theories. Such proofs have, however, been given using the method described here
[17, 18, 19, 20].

2.1 Generating functions

The combinatorial structure of quantum field theories is best captured by using
generating functions, e.g. those for the connected Green functions or the vertex
functions. To make these generating functions well–defined, I put the theory on a
finite lattice of lattice spacingε and sidelengthL. Then the functional integral for
the generating function becomes an ordinary integral, and functional derivatives
simply become ordinary partial derivatives, scaled by an inverse power ofε. This
integral for the generating function is convergent provided the action is bounded
below. All this is explained in detail e.g. in [2]. Given this finite–dimensional
integral, one can then work with generating functions that are well–defined and
derive equations for the Green functions.

The first natural mathematical question about the ultraviolet problem of a thus
defined regularized field theory is whether the functionG exists in the contin-
uum limit ε → 0 if the interactionV is adjusted appropriately as a function of
ε (without this adjustment, the limit does not exist). The limit has been proven
to exist for a variety of theories in two and three dimensions but not yet for a
four–dimensional theory. The reason why this is so inφ4 theory is that the theory
is not asymptotically free in the ultraviolet, and most likely to be noninteracting
[10, 11, 12]. In Yang–Mills theory, the technical problems remain formidable
despite pioneering work in which stability was shown [13].

Here I only study perturbative renormalizability, i.e. the following question.
Let g be a formal parameter and replaceV by gV. Can one prove that the con-
tinuum limit of G exists as a formal power series ing, provided that only terms
of a fixed functional form (usually a local polynomial of fixed degree in the field
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and its derivatives) are added to the bare interaction? As everyone knows, this
question has been answered in various schemes, most of which do not refer to the
lattice regularization. A direct proof that the continuum limit of a lattice theory
exists in formal perturbation theory to all orders was given using BPHZ methods
[14]. A signficiant complication in that proof as compared to continuum proofs is
that on the lattice the theory does not have full Euclidian invariance, so there are
many more possible counterterms.

To avoid these problems for the discussion of the flow equation proof, I first
introduce a momentum space ultraviolet cutoffΛ0. In presence of this cutoff, the
lattice regulator can be removed rather easily and Euclidian symmetry is restored
in the limit. In a second step, the cutoffΛ0 is removed using the counterterms of
the continuum theory and a flow equation technique. Thus, in the present setting,
the only purpose of the lattice is to provide well–defined generating functions
in a straightforward way. Once equations for the cutoff Green functions have
been obtained, the infinite–volume and continuum limit will be taken, and the
dependence onΛ0 is studied afterwards.

Let ε > 0, andL � 1 be such thatL/(2ε) ∈ N. The finite lattice is the torus
ΓL,ε = εZd/LZd, i.e. I choose periodic boundary conditions with periodL. A
field configurationφ ∈ RΓL,ε of a real scalar field is simply a map fromΓL,ε to R.
We assume the action to be of the form

S0(φ) =
1

2
(φ, Qφ) + V(φ) (1)

whereQ defines a strictly positive quadratic form andV is bounded below:V(φ) ≥
−v for all φ ∈ RΓL,ε. In the examples of interest, the action is the discretization of
a local continuum action: let∇ denote the forward lattice derivative(∇f)k(x) =
ε−1(f(x+εek)−f(x)) (with ek the unit vector in directionk ∈ {1, . . . , d}). Then

(φ, Qφ) =

∫
ΓL,ε

(
(∇φ)2 + µ2φ2

)
(2)

with m the mass of the scalar field and

V(φ) =

∫
ΓL,ε

dx V (φ(x)) (3)

whereV : R → R is bounded below. Here I have used the shorthand notation∫
ΓL,ε

dx f(x) = εd
∑

x∈ΓL,ε
f(x). I also denote(f, g) =

∫
ΓL,ε

f̄g.
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The generating functionW for the connected Green functions is defined by

W (J) = − log

∫ ∏
x∈ΓL,ε

dφ(x) e−S(φ)+(J,φ) (4)

The source termsJ can be used to calculatem–point functions by taking deriva-
tives with respect toJ in the usual way. A function arising naturally in the Wilso-
nian flow is the Wilsonian effective potential

G(φ) = − log

∫
dµC(φ′) e−V(φ′+φ) (5)

wheredµC is the normalized Gaussian measure onRΓL,ε with mean zero and
covarianceC = Q−1. SinceQ was assumed to be strictly positive,C exists. By
completion of the square,

G(φ) = W (C−1φ) +
1

2
(φ,C−1φ) + log det(πC)1/2 (6)

so studyingW andG is equivalent. Up to the explicitφ–independent term from
the normalization and the quadratic term, the only difference between the two
functions is that the source terms inG(φ) andW (J) are related byJ = C−1φ.
In graphical expansions this means that external propagators are amputated by the
free propagator.G is therefore the generating function for the connectedampu-
tatedGreen functions. In the following I shall focus onG and its Wick ordered
counterpart (calledH below).

Let C = (−∆ + µ2)−1 be the propagator of the scalar field with massµ > 0
defined above. LetΛ0 be an ultraviolet cutoff, imposed by changing the propa-
gatorC such that it vanishes unless momentum is smaller than a constant times
Λ0 (specified below). Assume thatg is a formal variable and the interactionV is
given by

V(φ) = g

∫
dx
(
ζΛ0(∇φ(x))2 + νΛ0φ(x)2 + PΛ0(φ(x))

)
(7)

wherePΛ0 is a polynomial of a fixed degreep whose coefficients are formal power
series ing that are allowed to depend onΛ0. The coefficientsζΛ0 andνΛ0 are for-
mal power series ing with Λ0–dependent coefficients, too. The highest coefficient
inP is required to be of the formg+O(g2). ExpandG(φ) as a formal power series
in g and in the fields. I show below that this expansion is

G(φ) =
∞∑

r=1

gr

m̄r∑
m=0

∫
dx1...dxm GΛ0

m,r(x1, ..., xm)φ(x1)...φ(xm) (8)
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(i.e. in every order ing the dependence onφ is polynomial) and that for anyPΛ0

that is bounded below, the limitsL →∞ andε → 0 of theGΛ0
m,r exist at fixedΛ0

and are Euclidian, i.e. translation andO(d), invariant. The general perturbative
renormalizability question is then: for givend, what is the maximal degree of a
polynomial whose coefficients can be adjusted as functions ofΛ0 such that the
limit of all GΛ0

m,r asΛ0 →∞ exists; how many parameters have to be included in
the polynomial, and in what sense are they unique? (norms in which the limit is
to be taken are given in Subsection 3.8).

The answer is well–known: Ford = 2, any degreep will do. For d = 3,
p ≤ 6, for d = 4, p ≤ 4, and ford = 6, p ≤ 3. Whenever the degree is the
maximally allowed one, all coefficients of monomials of degree≤ p that are not
forbidden by Euclidian symmetry or the symmetryφ → −φ (if present) need to
be adjusted in aΛ0–dependent way to obtain a finite limit of theGΛ0

m,r. If the
degree is not maximal (superrenormalizabletheories) some terms are not needed;
e.g.φ4 in d = 3 requires only a mass countertermνΛ0 but no field renormalization
ζΛ0 . Uniqueness is achieved by imposing one condition for each parameter in
the action that is necessary for finiteness (i.e. each counterterm). Posing such
renormalization conditionsis possible consistently to all orders ing.

For a RGDE proof of these statements ford ≤ 4, see [2]. In this paper I give
the proof forφ3 in d = 6. It will also become clear in the proof that higher powers
of φ can always be added,provided they are scaled with an appropriate inverse
power of the ultraviolet cutoffΛ0.

3 The RG equation

3.1 Basic identities for Gaussian integration

These identities are standard (see, e.g. [2]) so I will just recapitulate them very
briefly.

Wick’s theorem. Let P be an arbitrary polynomial in the fields. Then

(µC ∗ P )(φ) =

∫
dµC(φ′) P (φ′ + φ) = e

1
2
∆CP (φ) (9)

where

∆C =

(
δ

δφ
, C

δ

δφ

)
=

∫
ΓL,ε

dx

∫
ΓL,ε

dy
δ

δφ(x)
C(x, y)

δ

δφ(y)
(10)

6



Here δ
δφ(x)

= ε−d ∂
∂φ(x)

, as already discussed above, so that this Laplacian is
finite–dimensional, and the exponential is defined by its expansion (which is well–
defined since it terminates after a finite number of terms when acting on a poly-
nomial).

For a proof, see, e.g. [2]. In a nutshell, this identity holds because Gaussian
convolution describes the solution of a heat equation associated to this Laplacian.
It is called Wick’s theorem because the formulation of Wick’s theorem in terms of
contractions follows from it simply by expanding the exponential and doing the
derivatives. One advantage over the usual formulation of Wick’s theorem is that
the same identity holds for fermions, with the only change that the derivatives and
monomials live on a Grassmann algebra.

Equation(9) also makes it particularly obvious that Gaussian convolution de-
fines a semigroup: ifC = C1 + C2, then

µC ∗ P = µC1 ∗ (µC2 ∗ P ). (11)

This simple identity, applied many times, allows us to split covariances that have
singularities into many regular pieces and define a renormalization group flow
as an iteration of Gaussian convolutions, sometimes combined with suitable ex-
traction and rescaling operations. The continuous RG generated by the RGDE
belongs to a continuous decomposition of the covariance.

It is tempting to conclude from Wick’s theorem that

e−G(φ) = e
1
2
∆Ce−V(φ) (12)

but this identity is formal because the exponentials are not polynomials, and in-
deed the expansion is divergent for bosons(for fermions on a finite lattice, it still
makes sense since the maximal degree in a finitely generated Grassmann algebra
is finite). If V is replaced bygV andg is regarded as a formal expansion variable,
(12) uniquely defines the formal power series

G(φ) =
∞∑

r=1

grG(r)(φ) (13)

by recursive solution (inr) of[
exp

(
−

r∑
s=1

gsG(s)(φ)

)]
O(gr)

= e
1
2
∆C (−gV(φ))r. (14)
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with the subscript indicating that the series is truncated to the polynomial of de-
greer in g. Given that this is a recursion, it is clear thatG(r) is of degree at most
rp if V is a polynomial of degreep in φ. The recursive structure of the equation is
also obvious: the left hand side equals

1− grG(r)(φ) +

[
exp

(
−

r−1∑
s=1

gsG(s)(φ)

)]
O(gr)

(15)

so it can be solved easily forG(r) in terms of theG(s) with s < r. The solution
of the recursion is theconnected partof the right hand side which also has a tree
representation [4]. The connections by the lines of the tree decrease the degree of
G(r) further (see below). A suitable topology for defining convergence of iterations
on formal power series rings is given in Appendix A of [2].

3.2 Polchinski’s equation

Let C = CΛ depend differentiably on another parameterΛ, butV remain inde-
pendent ofΛ. Then the effective potentialG also depends onΛ; I denote it by
GΛ. Differentiating the exponential of the Laplacian and using that the Laplacian
commutes with its derivative gives Polchinski’s equation [5]

ĠΛ =
1

2
∆ĊΛ

GΛ −
1

2

(
δGΛ

δφ
, ĊΛ

δGΛ

δφ

)
(16)

(derivatives with respect toΛ are denoted by dots). Formally (and for fermions,
rigorously) this follows by applying a derivative w.r.t.Λ to (12). It can also be
shown easily using the definition ofG as a Gaussian convolution.

Polchinski’s equation was known to others before; however, he deserves credit
for giving an explicit argument for perturbative renormalizability using this equa-
tion. I will in the following discuss a rigorous version of his argument, which is
further simplified by using Wick ordering. For this it is now convenient to go to
the specific choice of the action(2) and also to specify the way the parameterΛ
enters as a cutoff. Most results do not depend on that specific choice, and using a
flow parameterΛ that is not a cutoff parameter can be very useful, see, e.g. [6].

8



3.3 Ultraviolet cutoff and flow parameter

Fix Λ0 > 0 (very large since it plays the role of an ultraviolet cutoff). For0 ≤
Λ ≤ Λ0, let

DΛ(p) =

∫
dp C(p)χΛ(p) (17)

whereχΛ ∈ C∞
0 (Rd, [0, 1]) is equal to one in the ball of radiusΛ around zero and

zero outside the ball of radius2Λ around zero, and

CΛ(p) = DΛ0(p)−DΛ(p). (18)

By the properties ofχΛ, CΛ is nonzero only for momenta in the rangeΛ ≤ |p| ≤
2Λ0. Thus Gaussian convolution withdµCΛ

means, roughly speaking, integrating
the fields with momenta in that range.

3.4 The Wick ordered RGDE

BecauseCΛ + DΛ = DΛ0, ĊΛ = −ḊΛ, so Polchinski’s equation reads in terms of
DΛ

ĠΛ = −1

2
∆ḊΛ

GΛ +
1

2

(
δGΛ

δφ
, ḊΛ

δGΛ

δφ

)
(19)

To expand in Wick ordered monomials, I define

HΛ = e
1
2
∆DΛ GΛ (20)

Then the linear term cancels in the equation forHΛ and

ḢΛ =
1

2
e

1
2
∆DΛ

(
e−

1
2
∆DΛ

δHΛ

δφ
, ḊΛe−

1
2
∆DΛ

δHΛ

δφ

)
. (21)

I now use a combinatorial trick, writing(
δA
δφ

, ḊΛ
δB
δφ

)
= E12

[
∆

(1,2)

ḊΛ
A(φ(1))B(φ(2))

]
(22)

whereE12 [·] is evaluation atφ(1 = φ(2) = φ and

∆
(i,j)

ḊΛ
=

(
δ

δφ(i)
, ḊΛ

δ

δφ(j)

)
. (23)

Because

δ

δφ
E12

[
A(φ(1))B(φ(2))

]
= E12

[(
δ

δφ(1)
+

δ

δφ(2)

)
A(φ(1))B(φ(2))

]
(24)
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the right hand side of(21) can now be written as

1

2
e

1
2
∆DΛE12

[
∆

(1,2)

ḊΛ
e
− 1

2
∆

D
(1,1)
Λ e

− 1
2
∆

D
(2,2)
Λ HΛ(φ(1))HΛ(φ(2))

]
=

1

2
E12

[
e

1
2

P2
i,j=1 ∆

(i,j)
DΛ ∆

(1,2)

ḊΛ
e
− 1

2
∆

D
(1,1)
Λ e

− 1
2
∆

D
(2,2)
Λ HΛ(φ(1))HΛ(φ(2))

]
=

1

2
E12

[
∆

(1,2)

ḊΛ
e
∆

D
(1,2)
Λ HΛ(φ(1))HΛ(φ(2))

]
. (25)

Thus

ḢΛ(φ) =
1

2
E12

[
∂Λ

(
e

1
2
∆

D
(1,2)
Λ − 1

)
HΛ(φ(1))HΛ(φ(2))

]
. (26)

Wick ordering removes self–contractions with “soft” linesDΛ. In the limitΛ → 0,
DΛ → 0, soH0 = G0. Thus studyingH is the same as studyingG in the limit
Λ → 0. At positiveΛ, GΛ can be obtained fromHΛ by moving the exponential of
the Laplacian to the other side of(20).

3.5 Expansion in the fields

The coefficients of an expansion ofHΛ in the fields are the connected amputated
Wick–ordered Green functions. The expansion is

HΛ(φ) =
∞∑

r=1

gr

m̄r∑
m=0

∫
dx1 . . . dxm HΛΛ0

m,r (x1, . . . , xm)φ(x1) . . . φ(xm) (27)

Here I have included a superscriptΛ0 to exhibit the dependence of these functions
onΛ0. I also write this in a more shorthand notation, usingX = (x1, . . . , xm), as

HΛ(φ) =
∞∑

r=1

gr

m̄r∑
m=0

∫
dmXHΛΛ0

m,r (X)φm(X). (28)

For everyr, the summation overm is finite because in an expansion

HΛ(φ) =
∞∑

r=1

gr H(r)(φ) (29)

everyH(r)(φ) is a polynomial inφ. This follows immediately from an expansion
in g as discussed after(12), since I am considering the case whereV(φ) is a
polynomial of a fixed degree.
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Graphically, these functions are connected, so a bound form̄r can be obtained
by considering tree graphs withr vertices. If the degree of the interaction as a
polynomial inφ is p, then each vertex can have at mostp legs, and

m̄r ≤ rp− 2(r − 1) = 2 + (p− 2)r (30)

(a tree onr vertices hasr − 1 lines, each of which binds two legs).
Thus, in formal perturbation theory, no convergence questions for expansions

in the fields arise because all the functions appearing are polynomials inφ. Be-
cause the fields commute, I choose the coefficient functions to be symmetric under
permutations:

HΛΛ0
m,r (xπ(1), . . . , xπ(m)) = HΛΛ0

m,r (x1, . . . , xm) (31)

for all permutationsπ of {1, . . . ,m}. For fermions, theHΛΛ0
m,r would be chosen

antisymmetric. This choice allows to compare coefficients and to obtain an equa-
tion for theHΛΛ0

m,r in which no fields appear any more. The algebra to do this is
straightforward: expand

e
∆

(1,2)
DΛ − 1 =

∑
k≥1

1

k!

(
∆

(1,2)
DΛ

)k

(32)

and use that by symmetry

δk

δφ(x1) . . . δφ(xm)

∫
dmXHΛΛ0

m,r (X)φm(X)

= k!

(
m

k

)∫
dm−kX ′HΛΛ0

m,r (xk, . . . , x1, X
′)φm−k(X ′). (33)

Reordering, symmetrizing and comparing coefficients gives

∂ΛHΛΛ0
m,r (X) =

1

2
S(±)

m

∑
r1≥1,r2≥1
r1+r2=r

∑
m1≥1,m2≥1,k≥1
m1+m2=m+2k

k!

(
m1

k

)(
m2

k

)
∫

dkY

∫
dkY ′ ∂Λ

(
k∏

i=1

DΛ(yi, y
′
i)

)
(34)

HΛΛ0
m,r (y1, . . . , yk, X

(1))HΛΛ0
m,r (y′k, . . . , y

′
1, X

(2))

with X(1) = (x1, . . . , xm1−k) andX(2) = (xm1−k+1, . . . , xm). HereS(±)
m denotes

(anti)symmetrization in(x1, . . . , xm).
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Equation(34) is the RGDE in component form. Together with the initial in-
teraction imposed by the choice of theory and counterterms and the renormaliza-
tion conditions, which fix the counterterms, it contains the information about the
model to all ordersr in formal perturbation theory.

Although the equation itself looks complicated, it has a number of very nice
features. Most importantly, it is recursive inr: the conditionsr1 + r2 = r and
ri ≥ 1 in the sum on the right hand side implyri < r. Statements about the Green
functions in perturbation theory are statements about theHΛΛ0

m,r for everyr. These
statements will be proven by induction; in the inductive step of showing them for
HΛΛ0

m,r , the inductive hypothesis forHΛΛ0
m,ri

can then be used on the right hand side.
Both the functional and the component form of the RG have their advantages.

The functional form is structurally and conceptually simple. The component form
contains only functions of finitely many arguments, so the auxiliary lattice regula-
tor introduced above can be removed. Once this is done, one could take the point
of view that the limiting system of equations, together with the initial condition
given as the form of the cutoff interation and with the renormalization conditions,
definesthe theory. This is possible because the system of differential equations
can be solved recursively to give the perturbation expansion. This way one can
avoid any mention of functional integrals etc., but in my opinion, the functional
approach provides much insight in the structure of the theory, just as generating
functions generally do in combinatorics.

3.6 Translation invariance and momentum conservation

The proof of the following simple lemma is a baby example how the recursive
structure of the RGDE is used in inductive proofs.

Lemma 1 Assume that translation invariance holds for the initial interaction and
the propagator: for allr ∈ N and alla ∈ εZd,

HΛ0Λ0
m,r (x1 + a, . . . , xm + a) = HΛ0Λ0

m,r (x1, . . . , xm) (35)

and for all Λ, DΛ(x + a, y + a) = DΛ(x, y). Then for allΛ ≤ Λ0, HΛΛ0
m,r is

translation invariant, i.e.

HΛΛ0
m,r (x1 + a, . . . , xm + a) = HΛΛ0

m,r (x1, . . . , xm). (36)

Proof: Induction onr, with the conclusion of the lemma as the inductive hy-
pothesis. Forr = 1, the RHS of(34) is zero. ThusHΛΛ0

m,r = HΛ0Λ0
m,r for all Λ ≤ Λ0,
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and the statement is obvious from the hypotheses of the lemma. Assume the state-
ment to hold for allr′ < r. The inductive hypothesis and a change of variables
yi → yi + a, y′i → y′i + a in (34) imply that

∂ΛHΛΛ0
m,r (x1 + a, . . . , xm + a) = ∂ΛHΛΛ0

m,r (x1, . . . , xm). (37)

The statement forr now follows by integration fromΛ0 to Λ and using that the
initial interaction is translation invariant.

The structure of the renormalizability proof is the same; what will change is
that the integration step becomes less trivial.

I consider only translation invariant interactions and propagators, so the hy-
potheses of Lemma 1 are satisfied. Thus

H̃ΛΛ0
m,r (p1, . . . pm) =

∫
dmX HΛΛ0

m,r (X) ei(p1·x1+...+pm·xm) (38)

contains a momentum conservation delta function, i.e.

H̃ΛΛ0
m,r (p1, . . . pm) = ĤΛΛ0

m,r (p1, . . . pm−1) δL(p1 + . . . + pm). (39)

whereδL(p) = Ld if p = 0 and0 otherwise. The variablesp are elements of the
dual lattice ofΓL,ε (for details, see [2]). The function̂HΛΛ0

m,r inherits permutation
symmetry as follows: for all permutationsπ of {1, . . . ,m},

ĤΛΛ0
m,r (pπ(1), . . . , pπ(m−1)) = ĤΛΛ0

m,r (p1, . . . , pm−1) (40)

with pm = −p1 − . . .− pm−1.
The RGDE in terms of thêHΛΛ0

m,r reads

∂ΛHΛ,Λ0
m,r (p1, . . . , pm−1) =

1

2
Sm

∑
r1,r2≥1
r1+r2=r

∑
l≥0

∑
m1,m2≥l+1

m1+m2=m+2l+2

(
m1

l + 1

)(
m2

l + 1

)
(l + 1) (l + 1)!

∫ ( l∏
k=1

dqk DΛ(qk)

)
∂ΛDΛ(q̃) (41)

ĤΛ,Λ0
m1,r1

(p1, . . . , pm1−l−1, q1, . . . , ql)

ĤΛ,Λ0
m2,r2

(pm1−l, . . . , pm−1, q1, . . . , ql)

13



with q̃ = −p1 − . . .− pm1−l−1 −
∑l

k=1 qk.
From now on, all considerations will be in momentum space, and I therefore

drop the hats on all functions and writeHΛ,Λ0
m1,r1

instead ofĤΛ,Λ0
m1,r1

.
I introduce the following shorthand notation which keeps only those pieces

explicit that are essential for the following arguments. I abbreviate the RHS of the
RGDE as

RΛ,Λ0
m,r (P ) =

〈∫
dρΛ(Q) ∂ΛDΛ(q̃)HΛ,Λ0

m1,r1
(P (1), Q)HΛ,Λ0

m2,r2
(P (2), Q)

〉
(42)

so that
∂ΛHΛ,Λ0

m,r = RΛ,Λ0
m,r (43)

The notations areP = (p1, . . . , pm−1), Q = (q1, . . . , ql), etc., and

dρΛ(Q) =
l∏

i=1

dqi DΛ(qi). (44)

The angular brackets include the summation overr1 ≥ 1, r2 ≥ 1, m1 ≥ 1,
m2 ≥ 1, l ≥ 1 with the restriction

m1 + m2 = m + 2l + 2, r1 + r2 = r, (45)

with the combinatorial factors, as well as symmetrization with respect to the exter-
nal momenta(p1, . . . , pm−1) as in(41). In other words,〈·〉 is a mean with respect
to a positive (discrete) measure.

Note again that the angular brackets include summation over theri andmi, so
that the result indeed depends only onm andr. I choose this notation in favour of
just writing a bilinear formBmr(H

Λ,Λ0 , HΛ,Λ0) because the inductive hypothesis
will depend onm andr and it is therefore useful to exhibit the dependence on the
“internal” variablesmi andri as well.

3.7 Choice of scaled propagator

To be specific, I now take the propagator of our scalar field theory and choose
the cutoff functionK ∈ C∞(R+

0 , [0, 1]), K(x) = 1 for x ∈ [0, 1], K(x) = 0 for
x ≥ 4, K ′(x) < 0 for x ∈ (1, 4). Let

D̂Λ(p) =
1

p2 + µ2
K

(
p2 + µ2

Λ2

)
(46)
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andDΛ(x, x′) =
∫

dp eip·(x−x′)D̂Λ(p). The initial propagatorC is defined as
C = DΛ0. It has an ultraviolet cutoff2Λ0 because the cutoff functionK vanishes
for |p| ≥ 2Λ0. TheDΛ in the decomposition used above is given by(46). For
Λ ≤ Λ0, this then implies that the propagatorCΛ is given by

ĈΛ(p) =
1

p2 + µ2

(
K

(
p2 + µ2

Λ0
2

)
−K

(
p2 + µ2

Λ2

))
(47)

i.e. it has ultraviolet cutoffΛ0 and infrared cutoffΛ. Thus the effective potential
GΛ describes the result of integrating fields with momenta roughly betweenΛ and
2Λ0 (“roughly” because of the smooth cutoff function and the mass parameterµ
that also appears in the cutoff function). Also,CΛ(p) ≥ 0 for all p as it must be
for the covariance of a well–defined Gaussian measure.

The scale parameterΛ is the flow parameter of our RG method. Its initial
value isΛ0. At Λ0, CΛ0 = 0, so nothing has been integrated yet, andGΛ0 = V.
Thus the initial value for the effective potential is the interactionV at the cutoff
scale. The final value ofΛ is zero: atΛ = 0, G0 contains the effect of integrating
over all degrees of freedom with momenta up to2Λ0, i.e. indeed the full cutoff
functional integral.

To avoid confusion one should keep in mind thatΛ is an auxiliary parameter
that has no direct physical significance. This means on the one hand thatΛ indeed
has to be sent to zero to get results about physical observables, on the other hand
that one has some freedom about how to treat it, in particular how to choose the
cutoff function, as long as one makes sure that in the end, all degrees of freedom
get integrated. I have already used this freedom by including the massµ in the
cutoff function (one could also have chosen simplyK(p2/Λ2) as a cutoff function.
The choice in(46) is convenient because

K

(
p2 + µ2

Λ2

)
= 0 for all Λ <

µ

2
. (48)

Thus in particular∂ΛDΛ = 0 for Λ < µ/2, and therefore the right hand side of
the RGDE vanishes forΛ < µ/2. Thus allHΛ,Λ0

m,r become independent ofΛ for
Λ < µ/2, and in particular

H0,Λ0
m,r = Hµ/2,Λ0

m,r (49)

so that

HΛ,Λ0
m,r = H0,Λ0

m,r +

∫ Λ

µ/2

d`R`,Λ0
m,r (50)
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Therefore, to give bounds forH0,Λ0
m,r , it suffices to boundHµ/2,Λ0

m,r , which is conve-
nient because the bounds I shall use contain inverse powers ofΛ.

I choose this cutoff function for technical convenience. One can equally well
do all proofs with the choiceK(p2/Λ2) (and the early proofs were done with
that choice), but the choice in(46) provides a slight simplification since one does
not have to stop the flow at an intermediate scaleΛ1. With the cutoff function
includingµ, ∂ΛDΛ(p) = − 2

Λ3 K
′(p2+µ2

Λ2 ) so that

‖∂ΛDΛ‖∞ ≤ 2‖K ′‖∞ Λ−3 (51)

3.8 Norms and Estimates

Integration of the RGDE downwards fromΛ0 to Λ gives

HΛΛ0
mr = HΛ0Λ0

mr −
∫ Λ0

Λ

d` R`Λ0
mr (52)

Let ξ, η > 0. ForF : (p1, . . . , pm−1) → F (p1, . . . , pm−1) define the seminorms

Aξ,η(F ) = ‖Fχmax{ξ,η}‖∞ (53)

= sup{|F (p1, . . . , pm−1)| : ∀i |pi| ≤ max{ξ, η}} (54)

Aξ,η(F ) is increasing inξ andη. It is a seminorm and not a norm becausem = 0
is left out in the sum. However,m = 0 terms never contribute to the RHS of
the flow equation form ≥ 1 so this seminorm is appropriate for bounding the
m–point functions form ≥ 1. Them = 0 terms can afterwards be bounded by a
constant times the volumeLd.

Like any seminorm,Aξ,η fulfils the triangle inequality so

Aξ,η(

∫
dν(s) F (s)) ≤

∫
dν(s) Aξ,η(F (s)) (55)

for any positive measureν, and therefore, if〈·〉 is as in(42),

Aξ,η (〈F 〉) ≤ 〈Aξ,η(F )〉. (56)

Moreover
Aξ,η(FG) ≤ Aξ,η(F ) Aξ,η(G) (57)

By (42), the above inequalities and becauseDΛ(qi) = 0 for |qi| > 2Λ,

A2Λ,η(R
ΛΛ0
mr ) ≤

〈
‖∂ΛDΛ‖∞

∫
dρΛ(Q) A2Λ,η(H

Λ,Λ0
m1,r1

)A2Λ,η(H
Λ,Λ0
m2,r2

)

〉
. (58)
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The integral over theqi now factorizes, so

A2Λ,η(R
ΛΛ0
mr ) ≤ 2

Λ3
‖K ′‖∞

〈
‖DΛ‖l

1A2Λ,η(H
Λ,Λ0
m1,r1

)A2Λ,η(H
Λ,Λ0
m2,r2

)
〉
. (59)

Estimates for derivatives are obtained by taking derivatives with respect to mo-
mentum (α a multiindex) and using the Leibniz rule

∂α(ĊH1H2) =
∑

α0,α1,α2
α0+α1+α2=α

α!

α0!α1!α2!
∂α0Ċ ∂α1H1 ∂α2H2 (60)

as well as‖∂α0∂ΛDΛ‖∞ ≤ κ|α0|Λ
−3−|α0| This gives

A2Λ,η(∂
αRΛΛ0

mr ) ≤
〈 κ|α0|

Λ3+|α0|
‖DΛ‖l

1A2Λ,η(∂
α1HΛ,Λ0

m1,r1
)A2Λ,η(∂

α2HΛ,Λ0
m2,r2

)
〉

(61)

Here, by abuse of notation, I have included the sum over theαi weighted with the
multinomial factors in the definition of〈·〉.

The dependence on the dimensiond enters through the properties ofDΛ —
the propagator determines the power counting of the theory.

‖DΛ‖1 =

∫
DΛ(p)ddp ≤

∫
|p|≤2Λ

ddp

p2
≤ κ̃ Λd−2 (62)

for d ≥ 3. Ford = 2, the dependence onΛ is logarithmic; also the mass can not
be set equal to zero in two dimensions.

The estimate for the integrated RGDE

∂αHΛΛ0
mr = ∂αHΛ0Λ0

mr −
∫ Λ0

Λ

d` ∂αR`Λ0
mr (63)

reads

A2Λ,η(∂
αHΛΛ0

mr ) ≤ A2Λ,η(∂
αHΛ0Λ0

mr ) +

∫ Λ0

Λ

d` A2Λ,η(∂
αR`Λ0

mr ) (64)

≤ A2Λ,η(∂
αHΛ0Λ0

mr ) +

∫ Λ0

Λ

d` A2`,η(∂
αR`Λ0

mr ). (65)

In the second inequality, I used thatAξ,η is increasing inξ.
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3.9 Removing the lattice regulator

I now take the limitsL → ∞ andε → 0 and show that the RGDE(34) remains
valid in these limits and that the Euclidian symmetries are restored. All this is
at fixedΛ0; the renormalization problem of convergence in the limitΛ0 → ∞ is
dealt with in the next section.

Theorem 1 Let m ≥ 2. If the action at the cutoff,HΛ0Λ0
mr , is continuous, the

limits L → ∞ and ε → 0 of HΛ0Λ0
mr exist and are continuous functions of mo-

mentum. They still satisfy the RGDE(34) (where the momentum integrals now
mean integrals, not scaled finite sums). If the action at the cutoff,HΛ0Λ0

mr , is Eu-
clidian invariant andC∞ in the momentapi, the same holds forHΛΛ0

mr for all
Λ ∈ [0, Λ0]. Moreover,HΛΛ0

mr is C∞ in Λ for all Λ ∈ [0, Λ0], and∂ΛHΛΛ0
mr = 0 for

Λ < µ/2. Because every connected graph must contain a tree graph,HΛΛ0
mr = 0

for m > r + 2.
The casem = 1 is special: by translation invariance, the expectation value of

φ(x) is independent ofx, hence

HΛΛ0
1r (p) =

{
HΛΛ0

1,r for p = 0
0 otherwise.

(66)

This theorem contains statements about derivatives, but the momentum space
of the finite lattice is discrete and finite. This can be understood as follows. Mo-
mentum space for the infinite lattice is the continuous torusTd = Rd/2πZd. The
statement that the initial action isC∞ is that its components in the sense of the
expansion in the fields have Fourier transforms defined as functions onT d (up to
removal of the overall momentum conservation delta function discussed above)
and areC∞. The right hand side of the RGDE(34) defines the functions∂ΛHΛ,Λ0

m,r

also for momenta inT d.
The proof of this theorem is obtained by taking the statements of the theorem

as inductive hypotheses inr and following the same simple inductive strategy as
in the proof of Lemma 1. Using this theorem, one can then take the limitsL →∞
and ε → 0 by an easy dominated convergence argument (for a variant of this
argument, see [15]).

A crucial ingredient in the theorem is that the propagators areC∞ and all in-
tegrals converge, in particular the one over the intermediate scale parameter` in
(64). This is only true in presence of an ultraviolet cutoffΛ0, and therefore the
bounds for the functions and their derivatives depend onΛ0. For the unrenor-
malized model, they diverge forΛ0 → ∞. For the renormalized model, they
converge, as proven in the following section.
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4 Renormalizability of φ3
6

For the unrenormalized model, the initial condition is

VΛ0(φ) = g

∫
φ3 so that HΛ0Λ0

mr = δm,3δr,1 (67)

corresponding to a bare action without counterterms. For the renormalized model,

VΛ0(φ) = gΛ0

∫
φ3 +

∫
1

2
φ(ζΛ0(−∆) + νΛ0)φ + ξΛ0φ. (68)

In the formal power series expansion ing

gΛ0 = g +
∞∑

r=2

ar(Λ0) gr (69)

and

ζΛ0 =
∞∑

r=2

br(Λ0) gr, νΛ0 =
∞∑

r=2

cr(Λ0) gr, ξΛ0 =
∞∑

r=2

dr(Λ0) gr. (70)

This corresponds to an initial condition

HΛ0Λ0
mr = δm,3ar(Λ0) +

1

2
(br(Λ0) p2 + cr(Λ0))δm,2 + dr(Λ0) δm,11(p = 0) (71)

for the RG flow. That thebr, cr anddr are at least second order ing is due to Wick
ordering. TheL1 norm of the propagator is ind = 6

‖DΛ‖1 ≤ κ̃ Λ4. (72)

Theorem 2 Let V be given by(67), with the coefficients given by the formal
power series(69), (70).

(a) For any sequence of real numbers(a
(R)
r , b

(R)
r , c

(R)
r , d

(R)
r )r≥2 therenormalization

conditions(R.C.)

H0Λ0
3,r (0, 0) = a(R)

r , (−∆H0Λ0
2,r )(0) = b(R)

r ,

H0Λ0
2,r (0) = c(R)

r , H0Λ0
1,r = d(R)

r 1(p = 0) (73)
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can be imposed consistently. They uniquely fix the countertermsgΛ0 , ζΛ0 , νΛ0

andξΛ0: the coefficientsar(Λ0), br(Λ0), cr(Λ0), dr(Λ0) are determined byΛ0 and
(a

(R)
s , b

(R)
s , c

(R)
s , d

(R)
s )s≤r.

(b) With the R.C. of (a), allHΛΛ0
mr are at fixedΛ bounded uniformly inΛ0, and

their limit Λ0 →∞ exists and satisfies the RGDE.
Specifically,∀m, r∃Emr ∀α ∀η∃hm,r,|α| such that∀Λ ∈ [µ/2, Λ0]

A2Λ,η(∂
αHΛΛ0

mr ) ≤ hm,r,|α| Λ
6−2m−|α|

(
log

2Λ

µ
e

)Emr

(74)

(heree denotes Euler’s constant). BecauseH0,Λ0
mr = H

µ/2,Λ0
mr , (74) implies

Aµ,η(∂
αH0Λ0

mr ) ≤ hm,r,|α|

(µ

2

)6−2m−|α|
(75)

Thus the connected amputated Green functions have a finite limit asΛ0 → ∞,
and the theory is perturbatively renormalizable.

Proof: Induction onr, with the statement of the theorem as inductive hypothe-
sis. The caser = 1 is trivial. Let r ≥ 2 and assume the statement of Theorem 2 to
hold for all r′ < r. Because all terms entering the definition ofR`Λ0

mr are of order
ri < r, the inductive hypothesis can be used in the expression forA2`,η(∂

αR`Λ0
mr ).

This gives

A2`,η(∂
αR`Λ0

mr ) ≤ 〈κ̃l`4l−3−|α0|κ|α0|hm1,r1,|α1|`
6−2m1−|α1|

hm2,r2,|α2|`
6−2m2−|α2|

(
log

2`

µ
e

)Em1r1+Em2r2

〉 (76)

≤ `5−2m−|α|
(

log
2`

µ
e

)Ẽmr

h̃m,r,|α|

where the constant

h̃m,r,|α| =
〈
κ̃l κ|α0| hm1,r1,|α1|hm2,r2,|α2|

〉
(77)

is given in terms of lower order constants and

Ẽmr = sup{Em1r1 + Em2r2 : m1 + m2 ≥ m + 2, r1 + r2 = r, mi ≤ m̄ri
} (78)

is finite because the supremum is over a finite set. LetEmr = 1 + Ẽmr.
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Case 1. Irrelevant terms2m + |α| > 6.

That is,m ≥ 4 and|α| ≥ 0, or m = 3 and|α| ≥ 1, or m = 2 and|α| ≥ 3, or
m = 1 and|α| ≥ 5

In all cases,∂αHΛ0Λ0
mr = 0, so the initial interaction does not contribute to the

RHS of(64). Thus

A2Λ,η(∂
αHΛΛ0

mr ) ≤ h̃m,r,|α|

∫ Λ0

Λ

d` `5−2m−|α|
(

log
2`

µ
e

)Ẽmr

(79)

Because5− 2m− |α| ≤ −2, this is bounded by

A2Λ,η(∂
αHΛΛ0

mr ) ≤ hm,r,|α|Λ
6−2m−|α|

(
log

2Λ

µ
e

)Ẽmr

(80)

with a new constanthm,r,|α|.

The remaining cases. There remain only the cases in the following list. All but
four involve functions that are zero by translational symmetry or evenness inp.
The remaining four relevant and marginal terms have to be renormalized. This is
the reason why there are four constants and renormalization conditions.

2m + α = 6 m = 3 α = 0 coupling renormalization

m = 2 |α| = 2 field renormalization

m = 1 |α| = 4 vanishes (no momentum dependence)

2m + α = 5 m = 2 |α| = 1 vanishes by evenness inp

m = 1 |α| = 3 vanishes (no momentum dependence)

2m + α = 4 m = 2 |α| = 0 mass renormalization

m = 1 |α| = 2 vanishes (no momentum dependence)

2m + α = 3 m = 1 |α| = 1 vanishes (no momentum dependence)

2m + α = 2 m = 1 |α| = 0 vacuum expectation value

Coupling renormalization. m = 3, α = 0. By Case 1, for all|p1|, |p2| ≤ η and
|α| = 1

|∂αHΛΛ0
3,r (p1, p2)| ≤ h3,r,1Λ

−1

(
log

2Λ

µ
e

)E3,r

(81)
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Thus by Taylor expansion

HΛΛ0
3,r (p1, p2) = HΛΛ0

3,r (0, 0) +
(
(p1 · ∇1 + p2 · ∇2)H

ΛΛ0
3,r

)
(π1, π2) (82)

with |πi| ≤ |pi| and hence

sup
p1,p2:|pi|≤η

|HΛΛ0
3,r (p1, p2)−HΛΛ0

3,r (0, 0)| ≤ 2η h3,r,1Λ
−1

(
log

2Λ

µ
e

)E3,r

(83)

This bound is uniform inΛ0, so all that is needed now is a bound forHΛΛ0
3,r inde-

pendently ofΛ0 at the single point(0, 0). This is shown by integrating the RGDE
from 0 to Λ and using the renormalization condition

HΛΛ0
3,r (0, 0) = H0Λ0

3,r (0, 0) +

∫ Λ

µ/2

d` R`Λ0
3,r (0, 0) (84)

The integration starts atµ/2 because the derivative with respect toΛ vanishes for
Λ < µ/2. By the renormalization condition,H0Λ0

3,r (0, 0) = a
(R)
r . By (64),

|R`Λ0
3r (0, 0)| ≤ A2`,η(R

`Λ0
3,r ) ≤ `−1

(
log

2`

µ
e

)Ẽ3,r

(85)

so∫ Λ

µ/2

d` |R`Λ0
3,r (0, 0)| ≤

∫ Λ

µ/2

d`

`

(
log

2`

µ
e

)Ẽ3,r

=
1

Ẽ3,r + 1

(
log

2Λ

µ
e

)Ẽ3,r+1

(86)
Thus

HΛΛ0
3,r (0, 0) = a(R)

r +

∫ Λ

µ/2

d` R`Λ0
3,r (0, 0) (87)

is well–defined and

|HΛΛ0
3,r (0, 0)− a(R)

r | ≤ h̃3,r,0

(
log

2Λ

µ
e

)E3,r

(88)

TheO(gr) bare coupling constant

ar(Λ0) = HΛ0Λ0
3,r (0, 0) = a(R)

r +

∫ Λ0

µ/2

d` R`Λ0
3,r (0, 0) (89)
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is uniquely fixed by the R.C. becauseR3,r has already been fixed by the inductive
hypothesis. By(88), it satisfies

|ar(Λ0)| ≤ h̃3,r,0

(
log

2Λ0

µ

)E3,r

, (90)

thus it diverges at most logarithmically asΛ0 →∞ (that it indeed diverges when
calculated perturbatively can be verified in low orders of perturbation theory).

Convergence asΛ0 → ∞ follows by an application of the dominated conver-
gence theorem. One can also get a rate of convergence as a function ofΛ0 by a
simple extension of the method [16, 2].

All remaining cases are done by simple repetitions of this argument: Any third
derivative of the two–point function (m = 2, |α| = 3) satisfies2m+ |α| = 7, so it
is convergent. As above, Taylor expansion implies that it suffices to fix the second
derivative of the two–point function at zero to get it finite everywhere. This is
done using the second renormalization condition (involvingb

(R)
r ) in (73), and it

uniquely fixes theO(gr) partbr of the countertermζΛ0. By Taylor expansion and
evenness, this implies that the two–point function itself is finite uniformly inΛ0

if this holds at zero momentum. This is guaranteed by the third renormalization
condition in(73), which then also fixes theO(gr) partcr of the countertermνΛ0.
Finally, the one–point function is just a constant due to translation invariance, and
it is fixed to be finite by the fourth renormalization condition in(73), which also
fixes theO(gr) partdr of the countertermξΛ0.

Remarks.

1. Becauseη occurs in the Taylor expansion bound,hm,r,0 depends onη. This
η–dependence can be studied in more detail by an appropriate inductive
ansatz.

2. The particular choice of RC

H0Λ0
3,r (0, 0) = δr,1, (−∆H0Λ0

2,r )(0) = 0,

H0Λ0
2,r (0) = 0, H0Λ0

1,r = vr 1(p = 0) (91)

means thatg is the renormalized coupling constant, defined as the value of
the three–point function at zero momenta, thatµ is the mass of the parti-
cle and the renormalized field strength is one, and that the orderr vacuum
expectation value isvr.
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3. The method is natural to study the flow of coupling constants and to cal-
culate beta functions. Doing this, one sees that the divergence of the bare
coupling asΛ0 →∞ need not carry over to the nonperturbative theory. The
flow of the coupling constant can also tend to zero (asymptotic freedom).
This property is used in the construction of infraredφ4

4 [7, 8, 9].

4. Clearly, the details of the cutoff function were inessential. One can also
relax the condition that the functionK should be a strict cutoff function;
a rapid enough decay at infinity would also be sufficient. In that case, the
norms also have to be adjusted.

5. The proof required no discussion of graphs or subgraphs.

6. The behaviour ofhm,r,|α| on m andr can be studied in detail by an appro-
priate inductive ansatz.

7. A rate of convergence asΛ0 → ∞ can be proven by applying∂Λ0 to the
RGDE and making an appropriate inductive ansatz.

8. Form = 4, Theorem 2 implies that

HΛΛ0
4,r ≤ h4,r,0Λ

−2(log Λ)E
4,r (92)

A glance at(79) shows that the condition that there is noφ4 term in the
initial action can be relaxed: one can put a term

g2

Λ0
2

∫
φ4

into the action. The only effect of this term is thatA2Λ,η(H
ΛΛ0
4,2 ) ≤ const.Λ0

−2

appears as an additional summand in(79) fpr m = 4, α = 0. This changes
the constanth4,2,0 in the bound, and hence the other constants, but every-
thing else remains the same. Similarly, one can add higher powers ofφ,
scaled with appropriate inverse powers ofΛ0, to the interaction and the
same bounds hold, with the same proof. This shows that cutoffφ3 theory
can after all be defined by a convergent integral if a stabilizing smallφ4

term is included. Moreover, it shows the robustness of the method. Adding
additional terms would change a graphical analysis but here the proof gets
only trivial modifications.
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