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Abstract

| discuss the setup and details of proofs of perturbative renormalizability
by renormalization group differential equations. As an example, | show that
¢> theory in six dimensions is perturbatively renormalizable.

1 Introduction

In these notes, | give a largely selfcontained introduction to the flow equation
method as a tool for proving perturbative renormalizability of field theories. | ap-
ply it to ¢3 theory in6 dimensions because this is an example at which Connes and
Kreimer exhibited the Hopf algebra structure underlying BPHZ renormalization.
Since then it the Hopf algebra method has been applied to many other examples;
¢® was probably chosen because it has the simplest graphical structure.

In many ways, the method presented here is complementary to the Connes—
Kreimer method. One of its main advantages is that one can do all proofs without
even talking of Feynman graphs, but that one can also use it to generate the Feyn-
man graph expansion in all detail. Indeed, the Brydges—Kennedy tree formula [1],
a natural outcome of integrating the RG differential equations, provides a particu-
larly convenient arrangement of perturbation theory.
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From the point of view of nonperturbative quantum field theory, the focus on
all-order graphical expansions seems almost anachronistic in bosonic theories,
and also, dimensional regularization should not be regarded as fundamental to
renormalization because it is up to now a method that is strictly tied to pertur-
bation theory in graphical terms, whereas other methods of renormalization have
already been applied in a nonperturbative setting. It would certainly be a major
breakthrough if dimensional regularization could be established as a nonperturba-
tive method. One hope in this direction comes from noncommutative field theory.

An aspect not captured in formal perturbation expansions is the need to split
field space in small—field and large—field regions. It is possible to disentangle this
split, which is fundamental in bosonic theories, from the renormalization problem
of putting counterterms as it arises in perturbation theory. This has been done
in pioneering work and used for the mathematical construction of the infrared
limit of ¢* theory in four dimensions (i.e. the theory with a fixed UV cutoff, but
zero mass) and the Gross—Neveu modé& and2 + ¢ dimensions [7, 8, 9]. The
Wilsonian flow equation method discussed here shares at least the basic idea with
these hard analysis proofs, but it is substantially simpler because it is applied only
in a perturbative setting here.

For the example to be discussed belatheory, the partition function can-
not even be written in a completely regularized version of the field theory on a
Euclidean lattice with finitely many points because #Heaction is not bounded
below, so this example is usually not considered. For perturbative considerations
this problem is inessential: one can add a térid, & > 0 very small, to the
action at cutoff scale. Then the action is bounded below, the partition function
makes sense, and one can take» 0 at fixed cutoff in the perturbative equa-
tions for the Green functions. Below | shall also show that one can addexm
with an inverse power of the ultraviolet cutoff insteadiads a prefactor without
spoiling the property of renormalizability.

In Section 2 | introduce the generating functions of field theory and describe
the renormalization problem very briefly. In Section 3 | give a short derivation of
the flow equation and in Section 4 | discuss its applicatiopgtd will not provide
a general introduction to renormalization since this has been done at many places.
The RGDE method of renormalization has been described in detail in [2, 3]. 1 will
use notations and conventions from [2].



2 The problem of renormalizability

In this section, | describe renormalizability of field theories in the sense of finite-
ness of the Green functions of the theory in the limit as a regulating momen-
tum space cutoff is removed. This is the minimal condition for a theory to be
called renormalizable. In theories with large symmetry groups of the classical
Lagrangian, such as gauge theories, finiteness of the limit is only a starting point.
One then has to prove that the limiting function satisfy the Ward or Slavnov-Taylor
identities to know that they are really gauge theories. Proofs of this are rather
nontrivial add—ons to the few statements shown here even for the simplest gauge
theories. Such proofs have, however, been given using the method described here
[17, 18, 19, 20].

2.1 Generating functions

The combinatorial structure of quantum field theories is best captured by using
generating functions, e.g. those for the connected Green functions or the vertex
functions. To make these generating functions well-defined, | put the theory on a
finite lattice of lattice spacing and sidelengtiL. Then the functional integral for

the generating function becomes an ordinary integral, and functional derivatives
simply become ordinary partial derivatives, scaled by an inverse powerTdfis
integral for the generating function is convergent provided the action is bounded
below. All this is explained in detail e.g. in [2]. Given this finite—dimensional
integral, one can then work with generating functions that are well-defined and
derive equations for the Green functions.

The first natural mathematical question about the ultraviolet problem of a thus
defined regularized field theory is whether the functipmexists in the contin-
uum limit e — 0 if the interaction)’ is adjusted appropriately as a function of
e (without this adjustment, the limit does not exist). The limit has been proven
to exist for a variety of theories in two and three dimensions but not yet for a
four—dimensional theory. The reason why this is seintheory is that the theory
is not asymptotically free in the ultraviolet, and most likely to be noninteracting
[10, 11, 12]. In Yang—Mills theory, the technical problems remain formidable
despite pioneering work in which stability was shown [13].

Here | only study perturbative renormalizability, i.e. the following question.
Let g be a formal parameter and replageby ¢g). Can one prove that the con-
tinuum limit of G exists as a formal power seriesgnprovided that only terms
of a fixed functional form (usually a local polynomial of fixed degree in the field
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and its derivatives) are added to the bare interaction? As everyone knows, this
guestion has been answered in various schemes, most of which do not refer to the
lattice regularization. A direct proof that the continuum limit of a lattice theory
exists in formal perturbation theory to all orders was given using BPHZ methods
[14]. A signficiant complication in that proof as compared to continuum proofs is
that on the lattice the theory does not have full Euclidian invariance, so there are
many more possible counterterms.

To avoid these problems for the discussion of the flow equation proof, | first
introduce a momentum space ultraviolet cutdff In presence of this cutoff, the
lattice regulator can be removed rather easily and Euclidian symmetry is restored
in the limit. In a second step, the cutaff, is removed using the counterterms of
the continuum theory and a flow equation technique. Thus, in the present setting,
the only purpose of the lattice is to provide well-defined generating functions
in a straightforward way. Once equations for the cutoff Green functions have
been obtained, the infinite—volume and continuum limit will be taken, and the
dependence oAy is studied afterwards.

Lete > 0, andL > 1 be such thal./(2¢) € N. The finite lattice is the torus
I'. = e€Z%/LZ% i.e. | choose periodic boundary conditions with period A
field configurationy € Rz of a real scalar field is simply a map frofj . to R.

We assume the action to be of the form

50(6) = 3(6,Q0) + V(9) @

where() defines a strictly positive quadratic form avids bounded belowV(¢) >
—v for all ¢ € RYz<. In the examples of interest, the action is the discretization of
a local continuum action: 167 denote the forward lattice derivativ® f)(z) =
e Y (f(z+eey)— f(x)) (with e; the unit vector in directio € {1,...,d}). Then

wazf (V) + i2?) @)

FL,E

with m the mass of the scalar field and
Vo) = [ do V(o) 3)
FL,s

whereV : R — R is bounded below. Here | have used the shorthand notation

Jro, de f(z) =€’ flx). lalsodenotéf,g) = [ fg.



The generating functiol” for the connected Green functions is defined by

W(J) = —log / I do(x) es@r+uo (4)

.Z’EFL’E

The source termg can be used to calculate—point functions by taking deriva-
tives with respect td in the usual way. A function arising naturally in the Wilso-
nian flow is the Wilsonian effective potential

G(¢) = —log / duc (@) eV +9) (5)

wheredc is the normalized Gaussian measureRfrt< with mean zero and
covarianceC = Q~!. Since() was assumed to be strictly positivé,exists. By
completion of the square,

G(¢) = W(C™'9) + 5(6.C7'9) + log det(C) ©

so studyinglV andg is equivalent. Up to the explicit—independent term from

the normalization and the quadratic term, the only difference between the two
functions is that the source termsgii¢) and W (J) are related by = C~'¢.

In graphical expansions this means that external propagators are amputated by the
free propagatorg is therefore the generating function for the connectagpu-

tated Green functions. In the following | shall focus ¢hand its Wick ordered
counterpart (calle@ below).

LetC' = (—A + p?)~! be the propagator of the scalar field with mass 0
defined above. Led, be an ultraviolet cutoff, imposed by changing the propa-
gatorC such that it vanishes unless momentum is smaller than a constant times
Ay (specified below). Assume thatis a formal variable and the interactidhis
given by

V() = g / de (Cao(Vo(2) + vand(x) + Pay (6(2)) @)

whereP,, is a polynomial of a fixed degreewhose coefficients are formal power
series ing that are allowed to depend dn. The coefficients,, andv,, are for-
mal power series ig with A,—dependent coefficients, too. The highest coefficient
in P is required to be of the form+O(¢?). Expandjg(¢) as a formal power series

in g and in the fields. | show below that this expansion is

[e%) Moy

06) =30 Y [ drredn, Gl (o1 smn)blan)(en) (@)
r=1 m=0
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(i.e. in every order iry the dependence anis polynomial) and that for ang,,
that is bounded below, the limits — co ande — 0 of the G0, exist at fixedA,
and are Euclidian, i.e. translation andd), invariant. The general perturbative
renormalizability question is then: for givel) what is the maximal degree of a
polynomial whose coefficients can be adjusted as functions,fuch that the
limit of all Gg(jr asAy — oo exists; how many parameters have to be included in
the polynomial, and in what sense are they unique? (norms in which the limit is
to be taken are given in Subsection 3.8).

The answer is well-known: Faf = 2, any degree will do. Ford = 3,
p < 6,ford =4, p < 4, and ford = 6, p < 3. Whenever the degree is the
maximally allowed one, all coefficients of monomials of degtee that are not
forbidden by Euclidian symmetry or the symmetry— —¢ (if present) need to
be adjusted in a\,—dependent way to obtain a finite limit of tt@ﬁ‘rgr. If the
degree is not maximas(perrenormalizabléheories) some terms are not needed;
e.g.¢* in d = 3 requires only a mass counterterr), but no field renormalization
(.- Uniqueness is achieved by imposing one condition for each parameter in
the action that is necessary for finiteness (i.e. each counterterm). Posing such
renormalization conditionss possible consistently to all ordersgn

For a RGDE proof of these statements doK 4, see [2]. In this paper | give
the proof forg?® in d = 6. It will also become clear in the proof that higher powers
of ¢ can always be addeg@yovided they are scaled with an appropriate inverse
power of the ultraviolet cutoff,.

3 The RG equation

3.1 Basic identities for Gaussian integration

These identities are standard (see, e.g. [2]) so | will just recapitulate them very
briefly.

Wick’s theorem. Let P be an arbitrary polynomial in the fields. Then

(e * P)(9) = / duc(d) P&/ + &) = 35 P(9) ©)

where

5 5 ) 0
se=(550) = [, |, W s 0O
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Here#@) = e*d%@), as already discussed above, so that this Laplacian is
finite—dimensional, and the exponential is defined by its expansion (which is well—
defined since it terminates after a finite number of terms when acting on a poly-
nomial).

For a proof, see, e.g. [2]. In a nutshell, this identity holds because Gaussian
convolution describes the solution of a heat equation associated to this Laplacian.
Itis called Wick’s theorem because the formulation of Wick’s theorem in terms of
contractions follows from it simply by expanding the exponential and doing the
derivatives. One advantage over the usual formulation of Wick’s theorem is that
the same identity holds for fermions, with the only change that the derivatives and
monomials live on a Grassmann algebra.

Equation(9) also makes it particularly obvious that Gaussian convolution de-
fines a semigroup: i€’ = C; + Cs, then

Ko * P = Hey * (ILLCQ * P) (11)

This simple identity, applied many times, allows us to split covariances that have
singularities into many regular pieces and define a renormalization group flow
as an iteration of Gaussian convolutions, sometimes combined with suitable ex-
traction and rescaling operations. The continuous RG generated by the RGDE
belongs to a continuous decomposition of the covariance.

It is tempting to conclude from Wick’s theorem that

0 9(0) _ o380 V(®) (12)

but this identity is formal because the exponentials are not polynomials, and in-
deed the expansion is divergent for bosons(for fermions on a finite lattice, it still
makes sense since the maximal degree in a finitely generated Grassmann algebra
is finite). If V is replaced by)V andg is regarded as a formal expansion variable,

(12) uniquely defines the formal power series

G(¢)=> g"G"(¢) (13)

by recursive solution (im) of
[exp (— nga<s><¢)>] = o720 (—gV(¢))". (14)
s=1 O(g™)
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with the subscript indicating that the series is truncated to the polynomial of de-
greer in ¢g. Given that this is a recursion, it is clear tiggt) is of degree at most
rpif Vis a polynomial of degregin ¢. The recursive structure of the equation is
also obvious: the left hand side equals

exp (— > gsG(s)(é))] (15)

O(gm)

1—g'6"(9) +

so it can be solved easily f@gi") in terms of theG*) with s < r. The solution

of the recursion is theonnected parof the right hand side which also has a tree
representation [4]. The connections by the lines of the tree decrease the degree of
G further (see below). A suitable topology for defining convergence of iterations
on formal power series rings is given in Appendix A of [2].

3.2 Polchinski’'s equation

Let C' = C\ depend differentiably on another parameterbut ¥V remain inde-
pendent ofA. Then the effective potenti@l also depends oA; | denote it by

Ga. Differentiating the exponential of the Laplacian and using that the Laplacian
commutes with its derivative gives Polchinski’s equation [5]

G = 200, — 1 (16,0175 (16)
(derivatives with respect ta are denoted by dots). Formally (and for fermions,
rigorously) this follows by applying a derivative w.rA. to (12). It can also be
shown easily using the definition gfas a Gaussian convolution.

Polchinski’s equation was known to others before; however, he deserves credit
for giving an explicit argument for perturbative renormalizability using this equa-
tion. 1 will in the following discuss a rigorous version of his argument, which is
further simplified by using Wick ordering. For this it is now convenient to go to
the specific choice of the actidg) and also to specify the way the parameter
enters as a cutoff. Most results do not depend on that specific choice, and using a
flow parameten\ that is not a cutoff parameter can be very useful, see, e.qg. [6].



3.3 Ultraviolet cutoff and flow parameter

Fix Ay > 0 (very large since it plays the role of an ultraviolet cutoff). BoxK
A< Ao, let

Da(p) = / dp C(p)xa(p) 17)

wherey, € C°(R%, [0, 1]) is equal to one in the ball of radiusaround zero and
zero outside the ball of radids\ around zero, and

Ca(p) = Da,(p) — Da(p)- (18)

By the properties of, C is nonzero only for momenta in the range< |p| <
2. Thus Gaussian convolution wittu, means, roughly speaking, integrating
the fields with momenta in that range.

3.4 The Wick ordered RGDE

Because’y + Dy = D,,, Cy = —D,, so Polchinski's equation reads in terms of

P 1 1
G = —58p,01+ 5 (%7DA%) (19)

To expand in Wick ordered monomials, | define
Hay = e3P Gy (20)

Then the linear term cancels in the equation76yr and
1.

Ha = Seboen (cT0m 8l fyemboon ) (21)
| now use a combinatorial trick, writing
(3. D2%2) = iz |AL2 A(60) B(62)] (22)
whereE, [-] is evaluation at"! = ¢ = ¢ and
- 5 . 4
(43) _
Apy = (5¢<z‘>  Da 5¢<j>) ' (23)
Because
) ) )
B (A =B | (5 + 5 ) AGOIBEY)]| @9
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the right hand side of21) can now be written as

1
12) ~28, 0 38 e

1 : ,
§e§ADA]E12 [A%’Ae POy e P0R HA(¢(1))HA(¢(2)):|

1 1 (i) 38 1) 34 (o
= ZE |:e;Z?,,7_1ADZ A(}’Q)e 2 D%'l)e 2 DE\22)H,\(¢(1))HA(¢(2))1

2 Dy
= SEn {A% Do o >HA<¢<2>>]. (25)
Thus ) A
Ha(9) = 5En {aA (e? G 1) HA<¢<“>HA<¢<2>>} . @9

Wick ordering removes self-contractions with “soft” linBg. In the limitA — 0,
Dy — 0, SOHy = Gy. Thus studyingH is the same as studying in the limit
A — 0. At positive A, G, can be obtained fromi{, by moving the exponential of
the Laplacian to the other side (0).

3.5 Expansion in the fields

The coefficients of an expansion &f, in the fields are the connected amputated
Wick—ordered Green functions. The expansion is

[e%e] My

= Zgr Z /dxl cdag, H,/,\Lf\f(xl, e ) O(11) - P(T)  (27)
r=1 m=0

Here | have included a superscrift to exhibit the dependence of these functions
on Ag. | also write this in a more shorthand notation, uskg= (x1, ..., ), as

00 My

=27 Z/d’”XHMO 0" (X). (28)

For everyr, the summation over: is finite because in an expansion
¢) =Y g H(¢) (29)
r=1

everyH (™) (¢) is a polynomial ing. This follows immediately from an expansion
in g as discussed aftgi2), since | am considering the case whéigy) is a
polynomial of a fixed degree.
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Graphically, these functions are connected, so a bouna faan be obtained
by considering tree graphs withvertices. If the degree of the interaction as a
polynomial in¢ is p, then each vertex can have at mp$tgs, and

my <rp—2(r—1)=2+(p—2)r (30)

(atree onr vertices has — 1 lines, each of which binds two legs).

Thus, in formal perturbation theory, no convergence questions for expansions
in the fields arise because all the functions appearing are polynomialsBe-
cause the fields commute, | choose the coefficient functions to be symmetric under
permutations:

H:}lﬁ,o (l‘ﬂ(l), e ,:L‘,r(m)) = HT/}L%NO (:L‘l, e ,xm) (31)
for all permutationsr of {1,...,m}. For fermions, thef7}* would be chosen

antisymmetric. This choice allows to compare coefficients and to obtain an equa-
tion for theHgﬁP in which no fields appear any more. The algebra to do this is
straightforward: expand

NS 1 1,2)\F
e A—1:ZH<ADA> (32)
E>1
and use that by symmetry
6k AA
dm X HA (X)o™(X
5wy | s (X)$X)
= k! (7:) / A" EXTHN O (2, .y, X" TR(X). (33)

Reordering, symmetrizing and comparing coefficients gives

Ao _ Lo ma ma
ONHMY (X) = §an) > >k L

r1>1,79>1 m1>1,mo>1,k>1
r1+ro=r mi1+mo=m+2k

k

/dky/dkyl O (H DA(Z/z‘,Z/;)) (34)
=1

H7/'r‘LAO<y1a cee 7yk7X(1))H717XLAO(y;m s ay17X(2))

1T 771

with X = (21,..., 2m,x) ANdX® = (2, _ps1, - .., Tm). HereSG denotes
(anti)symmetrization iz, ..., x,,).
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Equation(34) is the RGDE in component form. Together with the initial in-
teraction imposed by the choice of theory and counterterms and the renormaliza-
tion conditions, which fix the counterterms, it contains the information about the
model to all orders in formal perturbation theory.

Although the equation itself looks complicated, it has a number of very nice
features. Most importantly, it is recursive in the conditions + r, = r and
r; > 1inthe sum on the right hand side imply< r. Statements about the Green
functions in perturbation theory are statements abouﬁf;{éﬂ for everyr. These
statements will be proven by induction; in the inductive step of showing them for
H)', the inductive hypothesis fd,,"2 can then be used on the right hand side.

Both the functional and the component form of the RG have their advantages.
The functional form is structurally and conceptually simple. The component form
contains only functions of finitely many arguments, so the auxiliary lattice regula-
tor introduced above can be removed. Once this is done, one could take the point
of view that the limiting system of equations, together with the initial condition
given as the form of the cutoff interation and with the renormalization conditions,
definesthe theory. This is possible because the system of differential equations
can be solved recursively to give the perturbation expansion. This way one can
avoid any mention of functional integrals etc., but in my opinion, the functional
approach provides much insight in the structure of the theory, just as generating
functions generally do in combinatorics.

3.6 Translation invariance and momentum conservation

The proof of the following simple lemma is a baby example how the recursive
structure of the RGDE is used in inductive proofs.

Lemma 1 Assume that translation invariance holds for the initial interaction and
the propagator: for al- € N and alla € ¢Z¢,

H,ﬁ?,{\o(xl +a,..., Ty +a)= Hﬁl‘ffo (X1, ..y Tm) (35)

and for all A, Da(z + a,y + a) = Da(z,y). Then for allA < Ay, H))o is
translation invariant, i.e.

Hﬁf}?(wl—i-a,...,ocm—i—a):Hﬁ,\o(xl,...,xm). (36)

T

Proof:  Induction onr, with the conclusion of the lemma as the inductive hy-
pothesis. For = 1, the RHS of(34) is zero. Thudi}}» = H oM forall A < A,
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and the statement is obvious from the hypotheses of the lemma. Assume the state-
ment to hold for all” < r. The inductive hypothesis and a change of variables
Y — Yi + a,y, — y. + ain (34) imply that

ONHN (21 4 @, + a) = ONHAN (1, ). (37)

NS

The statement for now follows by integration from\, to A and using that the
initial interaction is translation invariant. [ |

The structure of the renormalizability proof is the same; what will change is
that the integration step becomes less trivial.

| consider only translation invariant interactions and propagators, so the hy-
potheses of Lemma 1 are satisfied. Thus

HY(py, . p) = / A" X Hp0 (X)) eltprentetpmm) (38)

T
contains a momentum conservation delta function, i.e.

Hfr\/,}?(pl, e Dm) = ﬁ%{\ro(pl, e Pm—1) OL(P1 4 - o+ D). (39)

whered, (p) = L if p = 0 and0 otherwise. The variablgsare elements of the
dual lattice ofl'; . (for details, see [2]). The functioH,ﬁ{}P inherits permutation

symmetry as follows: for all permutationsof {1,...,m},
I:—,;:L{\ro (pﬂ'(l)J R 7p7r(m—1)) = ‘H;}L/’\TO (ph S 7pm—1> (40)
with p,, = —p1 — ... — Pr_1.

The RGDE in terms of thé/ reads

aAlev}L’,?O (ph s 7pm—1) =

.Y YT (lnfl)(l?Ql)(lJrl)(lJrl)!

r1,rg>1 >0 my,mog>1l+1
r1+ro=" T mp+mo=m+2l+2

/(Hd% DA(Qk)) OAD(q) (41)

AL A
Hml,'r(*)l (p17 ey Pmi—1-1,415 - - - ,ql)
T ALA
Hmzn(")z (pmlflv <oy Pm—1,41,5 - - 7q1)
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With § = —p1 — ... — Prny—ic1 — 3y G-

From now on, all considerations will be in momentum space, and | therefore
drop the hats on all functions and writg}¢ instead off72: .

| introduce the following shorthand notation which keeps only those pieces
explicit that are essential for the following arguments. | abbreviate the RHS of the

RGDE as
r(r) = { [ 4@ onDA@HYY (P QHER (PP Q) (@2)

so that
ONHA0 = R (43)

The notations ar® = (p1,...,pm-1), Q@ = (1, ..., q), etc., and

!
dpa(Q) = Hd%‘ Dy (qs). (44)

=1

The angular brackets include the summation aver> 1, o > 1, m; > 1,
msy > 1,1 > 1 with the restriction

mi+mo=m-+20+2, ri+ro=r, (45)

with the combinatorial factors, as well as symmetrization with respect to the exter-
nal momentdp,, ..., pn_1) asin(41). In other wordsy-) is a mean with respect
to a positive (discrete) measure.

Note again that the angular brackets include summation ovef tgredm;, so
that the result indeed depends only:arandr. |1 choose this notation in favour of
just writing a bilinear forms,,,.(H*"°, H*40) because the inductive hypothesis
will depend onm andr and it is therefore useful to exhibit the dependence on the
“internal” variablesn,; andr; as well.

3.7 Choice of scaled propagator

To be specific, | now take the propagator of our scalar field theory and choose
the cutoff functionk” € C>~(R{, [0, 1]), K(x) = 1 for z € [0,1], K(z) = 0 for
x>4,K'(x) <0forz e (1,4). Let
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and Dy (z,2') = [dp @)D, (p). The initial propagatoC is defined as
C' = D,,. It has an ultraviolet cutoff A, because the cutoff functioi vanishes
for |p| > 2A¢. The D, in the decomposition used above is given(dg). For

A < Ay, this then implies that the propagatdy is given by

. B 1 P2+ 12 - P2+ 12
o = (5 ()~ (5 “n

i.e. it has ultraviolet cutoff\, and infrared cutoff\. Thus the effective potential
G describes the result of integrating fields with momenta roughly betweserd
2A, (“roughly” because of the smooth cutoff function and the mass parameter
that also appears in the cutoff function). Algt,(p) > 0 for all p as it must be
for the covariance of a well-defined Gaussian measure.

The scale parameteY is the flow parameter of our RG method. Its initial
value isAy. At Ay, Cy, = 0, so nothing has been integrated yet, ahgd = V.
Thus the initial value for the effective potential is the interactivat the cutoff
scale. The final value of is zero: atA = 0, G, contains the effect of integrating
over all degrees of freedom with momenta uRtk,, i.e. indeed the full cutoff
functional integral.

To avoid confusion one should keep in mind thais an auxiliary parameter
that has no direct physical significance. This means on the one handitigged
has to be sent to zero to get results about physical observables, on the other hand
that one has some freedom about how to treat it, in particular how to choose the
cutoff function, as long as one makes sure that in the end, all degrees of freedom
get integrated. | have already used this freedom by including the masthe
cutoff function (one could also have chosen simflgp? /A?) as a cutoff function.
The choice in(46) is convenient because

2 2
AR H
K( A2 )_OforaIIA<2. (48)

Thus in particulaw, Dy, = 0 for A < p/2, and therefore the right hand side of
the RGDE vanishes fak < 1/2. Thus allH)y* become independent df for
A < pi/2, and in particular

HOAo = i/ (49)

so that A
e / deRGh (50)

w/2
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Therefore, to give bounds fdi));, it suffices to boundif,’f/,f’AO, which is conve-
nient because the bounds | shall use contain inverse powdrs of

| choose this cutoff function for technical convenience. One can equally well
do all proofs with the choicd<(p?/A?) (and the early proofs were done with
that choice), but the choice {16) provides a slight simplification since one does
not have to stop the flow at an intermediate sc&je With the cutoff function

including s, 9ADa(p) = —%K’(%) so that
10 DAllse < 2] Ko A7° (51)

3.8 Norms and Estimates
Integration of the RGDE downwards froig to A gives

A
e =~ [ ae R (52)
A

Leté,n > 0. ForF : (p1,...,pm-1) — F(p1,...,pm—1) define the seminorms

AE,H(F) = ”FXmax{é,n}Hoo (53)
= sup{[F(p1,. ., Pm-1)| : Vi |pi| < max{{,n}} (54)

A¢ »(F) is increasing ir¢ ands. It is a seminorm and not a norm because= 0
is left out in the sum. Howevern = 0 terms never contribute to the RHS of
the flow equation forn > 1 so this seminorm is appropriate for bounding the
m—point functions form > 1. Them = 0 terms can afterwards be bounded by a
constant times the volumg’.

Like any seminormA, ,, fulfils the triangle inequality so

Aol [ () Fo) < [ auts) Acy(F(5) (55)
for any positive measure, and therefore, if-) is as in(42),
Agy ((F)) < (Agy(F)). (56)
Moreover
Aﬁ,n(FG) < AEW(F) As,n(G) (57)

By (42), the above inequalities and becausg(q;) = 0 for |¢;| > 2A,
Aopy(RN0) < <HaADA||oo/dPA(Q) A2A,17(H7/>{1/}791)AQA,n(HTZ,\@ﬁ%)>‘ (58)
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The integral over the; now factorizes, so

2
Aony(By®) < 55 I oo CIDAIL Azn (2, ) Aoa(Hops,)) - (89)
Estimates for derivatives are obtained by taking derivatives with respect to mo-
mentum ¢ a multiindex) and using the Leibniz rule

. | .
O(CHHy) = Y — e 9°°C 9™ H, 972 H, (60)
io’a}r’ag p-X1.009!

(XO C¥1 [12:(¥

as well a0 9y Dy [|oo < Kjag A3~ This gives

Klag|
A3+l

Agp (0 RAM) < < HDAHQAQA,H@MHT%’S%>A2A,n<aa2H£L;A,£2>> (61)
Here, by abuse of notation, | have included the sum oventheeighted with the
multinomial factors in the definition of).
The dependence on the dimensidenters through the properties bf, —

the propagator determines the power counting of the theory.

_ d dp _ i

[Dallr = [ Dalp)d®p < — <kA (62)
lpl<2a P

for d > 3. Ford = 2, the dependence ahis logarithmic; also the mass can not
be set equal to zero in two dimensions.
The estimate for the integrated RGDE

Ao
O“Hpyo = 9% Hpoto — / Al 9° R (63)
A
reads
Ao
Aop (0% HAM) < Agy (07 M) 4 / A0 Aoy, (PREY)  (64)
A
Ao
< Agp (0% HAM) 4 / Al Agp (0% RE0). (65)
A

In the second inequality, | used thdt , is increasing irg.
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3.9 Removing the lattice regulator

| now take the limitsL — oo ande — 0 and show that the RGDBE34) remains
valid in these limits and that the Euclidian symmetries are restored. All this is
at fixed Ay; the renormalization problem of convergence in the lilgjt— oo is
dealt with in the next section.

Theorem 1 Letm > 2. If the action at the cutofffi72o%, is continuous, the
limits L — oo ande — 0 of H20% exist and are continuous functions of mo-
mentum. They still satisfy the RGDB4) (where the momentum integrals now
mean integrals, not scaled finite sums). If the action at the cutbff’c, is Eu-
clidian invariant andC* in the momenta;, the same holds fof724 for all
A € [0, Ag]. Moreover,H2A0 is C>in A for all A € [0, Ag], anddy HA2 = 0 for
A < pu/2. Because every connected graph must contain a tree gédpf, = 0
form > r + 2.

The casen = 1 is special: by translation invariance, the expectation value of
¢(r) is independent of, hence

Aoy _ HIA,’}O forp =0
Hy;™ (p) { 0 otherwise. (66)

This theorem contains statements about derivatives, but the momentum space
of the finite lattice is discrete and finite. This can be understood as follows. Mo-
mentum space for the infinite lattice is the continuous td@tus- R?/27Z%. The
statement that the initial action ¢ is that its components in the sense of the
expansion in the fields have Fourier transforms defined as functioié ¢up to
removal of the overall momentum conservation delta function discussed above)
and areC"™. The right hand side of the RGDB4) defines the functions, A,
also for momenta i,

The proof of this theorem is obtained by taking the statements of the theorem
as inductive hypotheses inand following the same simple inductive strategy as
in the proof of Lemma 1. Using this theorem, one can then take the limitsco
ande — 0 by an easy dominated convergence argument (for a variant of this
argument, see [15]).

A crucial ingredient in the theorem is that the propagatorg’&feand all in-
tegrals converge, in particular the one over the intermediate scale pardnreter
(64). This is only true in presence of an ultraviolet cutaff, and therefore the
bounds for the functions and their derivatives depend\gn For the unrenor-
malized model, they diverge fak, — oo. For the renormalized model, they
converge, as proven in the following section.
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4 Renormalizability of ¢}

For the unrenormalized model, the initial condition is
Vi () = g / ¢ sothat HAM = 6,0, (67)

corresponding to a bare action without counterterms. For the renormalized model,

V(o) =an, [+ [ S0lC(-8) 4ot as. (69
In the formal power series expansiongin
gro =g+ i ar(Ao) 9" (69)
r=2
and
- i b.(Ao)g", va, = i (M) g, Zd (Ao) g™ (70)
r=2 r=2

This corresponds to an initial condition

l(br(Ag) P° + ¢-(Ao))Om2 + dr(No) 61 1(p = 0) (71)

H{:;,AO = 5m,3ar(A0) + 9

for the RG flow. That thé,, ¢, andd, are at least second ordergns due to Wick
ordering. TheL! norm of the propagator is i = 6

[Dally < & A*. (72)

Theorem 2 Let V be given by(67), with the coefficients given by the formal
power serieg69), (70).

a rany sequence of real num ,O0p 7, Cp 7 dy 7 ) >0 erenormalization
Fo freal numbeis™ b i q) ., th lizat

conditions(R.C.)
H§,¢°<0,0) - a<R>, (- HS?O)(O) o,

r

Hyh0(0) = ¢, HYYe = d™ 1(p

b
0) (73)
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can be imposed consistently. They uniquely fix the countertekmsa,, va,
and¢,,: the coefficients,.(Ao), b.(Ao), ¢-(Ao), d,(Ao) are determined by, and
(al?, b0, P, dl) o,

(b) With the R.C. of (a), alH2% are at fixedA bounded uniformly in\,, and

their limit A, — oo exists and satisfies the RGDE.
Specificallyym, r3E,,, Vo Vn3hy, .o SUch that’A € [1/2, Ao

a 77 AA 6—2m—|«f 2A Fme
Aopn g (OH ) < Preja A log —e (74)
1

(heree denotes Euler’s constant). Becauggo = HEsN, (74) implies

6—2m—|a
A @) < oy (5) (75)
Thus the connected amputated Green functions have a finite lindg as oo,
and the theory is perturbatively renormalizable.

Proof:  Induction onr, with the statement of the theorem as inductive hypothe-
sis. The case = 1 is trivial. Letr > 2 and assume the statement of Theorem 2 to
hold for all+" < r. Because all terms entering the definitioniff'c are of order

r; < r, the inductive hypothesis can be used in the expressioAfgy(9* R%0).
This gives

o lAg ~1 p4l—3—|avo| 6—2m1—|a |
Aoy (0°RY) < (Y Koo Pomy 1, Jon | €

6—2m>—Jao| 90 \ EmiritEmar,
P ra o €271 (log _e) ) (76)
2 Enmr _
< g5—2m—|al (log —e) P o
1
where the constant
hm,r,la\ = </2;l Klao] hm1,r1,|a1|hm2,7'2,|a2|> (77)

is given in terms of lower order constants and

Epr = sup{Enyry + Epgry :mp +mo >m+ 2,1 +19 =1r,m; < m,,} (78)

is finite because the supremum is over a finite setA,gt= 1 + E,,,..
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Case 1. Irrelevant terms2m + |a| > 6.

Thatis,m > 4 and|a] > 0, orm = 3 and|a| > 1, orm = 2 and|a| > 3, or
m = 1land|a| >5

In all casesp~H2Aoto = (), so the initial interaction does not contribute to the
RHS of (64). Thus

~ AO 26 Emr
Aoy (0 HE2) < By / de ¢p—2m=lel <log —e) (79)
A %

Because — 2m — |a| < —2, this is bounded by

o 7 AN 6—2m—|«| 2\ B
Amm(a Hmro) S hmmMA log —C (80)
%

with a new constant,,, ,. /.

The remaining cases. There remain only the cases in the following list. All but
four involve functions that are zero by translational symmetry or evenness in
The remaining four relevant and marginal terms have to be renormalized. This is
the reason why there are four constants and renormalization conditions.
2m+a=6 m=3 a=0 coupling renormalization
m=2 |a=2 field renormalization
m=1 |a|=41 vanishes (no momentum dependence)
2m+a=5 m=2 |a|=1 vanishes by evennessn
m=1 |a|=3 vanishes (no momentum dependence)
2m+a=4 m=2 |o|=0 mass renormalization
m=1 |a/=2 vanishes (no momentum dependence)
2m+a=3 m=1 |a|=1 vanishes (no momentum dependence)
2m+a=2 m=1 |o|/=0 vacuum expectation value

Coupling renormalization. m = 3, « = 0. By Case 1, for allp,|, [p2| < n and
laf =1

oA \ P
‘aaHf?,’//‘\O (plapQ)‘ < hS,r,lA_l (log 78) (81)
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Thus by Taylor expansion
Hé\,f}o (Phpz) = H;?O(Oa O) + ((pl “Vi+ps- Vz)H:?,?O) (7T1, 7T2) (82)
with |r;| < |p;| and hence

oA\
Sup  [HI (py, po) — HAN(0,0)] < 2 By A~ (1og7e) (83)

p1,p2:|p:|<n

This bound is uniform in\y, so all that is needed now is a bound Hﬁfo inde-
pendently ofA, at the single point0, 0). This is shown by integrating the RGDE
from 0 to A and using the renormalization condition

A
Hi2(0,0) = Hyh0(0,0) + / d¢ R5Y(0,0) (84)
n/2

The integration starts at/2 because the derivative with respecttoanishes for
A < u/2. By the renormalization conditiorﬂgﬁo(o, 0) = at™. By (64),

20\ o
R0.0)] < Auy (1) < (10200 ) ©5)
o)
A A Es, B3 r+1
de 20 ’ 1 2A ’
/ de |RE(0,0)] < / — (log —e) = — (log —e)
p/2 7 w2 L o Fs3,+1 o
(86)
Thus N
Hy2(0,0) = al™ + / d¢ R5(0,0) (87)
w2

is well-defined and
. 2A \
|H3:720(0,0) — al™] < ha (1og —e) (88)
’ 7

TheO(g¢") bare coupling constant

Ao
a,(Ao) = Hy*(0,0) = al™ + / d¢ R5Y(0,0) (89)

n/2
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is uniquely fixed by the R.C. becau&g, has already been fixed by the inductive
hypothesis. BY88), it satisfies

- 200\
la,(Ao)| < hro (log 70) , (90)

thus it diverges at most logarithmically Ag — oo (that it indeed diverges when
calculated perturbatively can be verified in low orders of perturbation theory).
Convergence a8, — oo follows by an application of the dominated conver-
gence theorem. One can also get a rate of convergence as a funcfigribypfa
simple extension of the method [16, 2].
All remaining cases are done by simple repetitions of this argument: Any third
derivative of the two—point functiom{ = 2, |a| = 3) satisfiem + || = 7, so it
is convergent. As above, Taylor expansion implies that it suffices to fix the second
derivative of the two—point function at zero to get it finite everywhere. This is
done using the second renormalization condition (invol\ljﬁ@) in (73), and it
uniquely fixes the)(g") partb, of the counterterng,,. By Taylor expansion and
evenness, this implies that the two—point function itself is finite uniformlyxgn
if this holds at zero momentum. This is guaranteed by the third renormalization
condition in(73), which then also fixes th@(g") partc, of the counterternw,,,.
Finally, the one—point function is just a constant due to translation invariance, and
it is fixed to be finite by the fourth renormalization condition(if3), which also
fixes theO(g") partd, of the counterterngy,. u

Remarks.

1. Because) occurs in the Taylor expansion bourtd, , o depends om. This
n—dependence can be studied in more detail by an appropriate inductive
ansatz.

2. The particular choice of RC
H(0,0) = 6,1, (—AH)(0) =0,
HYY(0) =0, H) = v, 1(p =0) (91)

means thay is the renormalized coupling constant, defined as the value of
the three—point function at zero momenta, thas the mass of the parti-
cle and the renormalized field strength is one, and that the erdgcuum
expectation value is,.
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3. The method is natural to study the flow of coupling constants and to cal-
culate beta functions. Doing this, one sees that the divergence of the bare
coupling as\y — oo need not carry over to the nonperturbative theory. The
flow of the coupling constant can also tend to zero (asymptotic freedom).
This property is used in the construction of infrargd7, 8, 9.

4. Clearly, the details of the cutoff function were inessential. One can also
relax the condition that the functioR should be a strict cutoff function;
a rapid enough decay at infinity would also be sufficient. In that case, the
norms also have to be adjusted.

5. The proof required no discussion of graphs or subgraphs.

6. The behaviour of,, .|, onm andr can be studied in detail by an appro-
priate inductive ansatz.

7. A rate of convergence ag — oo can be proven by applying,, to the
RGDE and making an appropriate inductive ansatz.

8. Form = 4, Theorem 2 implies that
HM < hyyoA~2(log A)Y, (92)

A glance at(79) shows that the condition that there is ab term in the
initial action can be relaxed: one can put a term

9_2/¢4

Ag?

into the action. The only effect of this term is théty ,,(H15°) < const.Ag >
appears as an additional summandif) fpr m = 4, « = 0. This changes

the constant., 5, in the bound, and hence the other constants, but every-
thing else remains the same. Similarly, one can add higher powefs of
scaled with appropriate inverse powers/qf, to the interaction and the
same bounds hold, with the same proof. This shows that cutaffieory

can after all be defined by a convergent integral if a stabilizing setall
term is included. Moreover, it shows the robustness of the method. Adding
additional terms would change a graphical analysis but here the proof gets
only trivial modifications.
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