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A proof of Fermi liquid behaviour of weakly coupled Hubbard–like models in two

spatial dimensions at positive temperature, in the sense of finiteness of the quasi-
particle interactions and regularity of the selfenergy, is discussed. The proof is by

a renormalization group flow in which the Fermi surface gets adjusted dynamically

during the flow, so that no counterterms are needed. To show the required regular-
ity properties of the selfenergy and the Fermi surface, the technique of improving

power counting by single and double overlaps is implemented in a nonperturbative

setting.

1. Introduction

In recent years, the foundations of Landau’s Fermi liquid (FL) theory [1] have come under
new investigation both from a mathematical and a theoretical physics point of view. The
mathematical studies started when Feldman and Trubowitz [2], and Benfatto and Gallavotti
[3], began to apply renormalization group (RG) methods of constructive quantum field the-
ory to nonrelativistic fermion systems. The solid–state physics community began to recon-
sider the problem when, in the wake of the discovery of high–Tc superconductivity in the
cuprate compounds, Anderson [4] conjectured that due to an infrared catastrophe, FL theory
was invalid in two–dimensional fermion systems. Two dimensions are relevant because the
cuprates are crystals with a layered structure and normal state transport between layers is
almost absent. Anderson gave arguments that the two–dimensional fermion system should
behave like the one–dimensional one no matter how small and short–range the interaction
is. The Luttinger model of spinless fermions in one dimension, which has a linear dispersion
relation, is exactly solvable by bosonization, and it exhibits anomalous decay exponents.
By RG and other arguments [5, 6] it had been argued early on that at most values of the
electron density, the long–distance behaviour of a one–dimensional electron system with
a repulsive interaction is determined by that of an associated Luttinger system. Haldane
coined the term Luttinger liquid (LL) for this universality class.

Although the high–Tc materials are far from being well–understood, the theoretical ef-
forts to understand the observed deviations from FL behaviour led to a clarification of a
number of points. Quasi–one–dimensional systems were studied using a combination of RG
and bosonization methods [7, 8, 9]. They can exhibit a behaviour that differs very much from
the Luttinger system. On the mathematical physics side, RG methods were used to prove
a number of nontrivial statements. LL behaviour was proven for a class of one–dimensional
systems in [10], and a number of results for 1d systems were subsequently proven[11]. In
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two dimensions, a crucial step in the development was [12], where the sector method was
introduced. This allowed Feldman, Knörrer, and Trubowitz to prove existence of a zero
temperature Fermi liquid with a (p → −p) – asymmetric dispersion relation [13, 14], and
Disertori and Rivasseau to show FL behaviour of a two–dimensional system with a round
Fermi surface [15].

Before starting to prove theorems about FL behaviour, one needs to define how to
recognize it. For p → −p symmetric systems, a property proven in [14], namely that a
jump in the occupation number density exists at zero temperature, is not expected to hold
because, by the Kohn–Luttinger effect, superconductivity will set in and smooth out the
step even in systems with a repulsive initial interaction. It is the asymmetry under p→ −p
which removes the Cooper instability in the model of [14], so that a jump remains at zero
temperature. On the other hand, deviations from the predictions of FL theory, such as the
T–linear resistivity, are observed in the cuprates well above the critical temperature (and
these are high–Tc materials), so it seems natural to study FL behaviour above the critical
temperature for symmetry breaking. A FL criterion at positive temperature was given in
[16] and then verified for rotationally invariant systems in two dimensions by Disertori and
Rivasseau [15].

The constructions in [14, 15] were done using counterterms that keep the Fermi surface
fixed. The counterterm technique is convenient from a technical point of view, and it allows
to formulate results about analyticity in the initial interaction. In the spherically symmetric
case, the counterterm is a shift in the chemical potential, and its effect is simply to fix the
Fermi momentum and hence the density. However, in the nonspherical case, the counterterm
is a function of momentum and thus a nontrivial modification of the kinetic term.

Because the counterterm changes the model, using it has to be justified to obtain com-
plete constructions. This was done in [17, 18, 19, 20] by proving an inversion theorem that
gives a complete justification for putting counterterms, as well as a one–to–one map between
the Fermi surface of the free and the interacting system. See also [21, 22, 23]. However,
the theorems proven in [17, 18, 19, 20] are perturbative, i.e. they apply to the perturbation
expansion to any fixed order, but the bounds given there do not contain nonperturbative
remainder estimates. These perturbative regularity theorems require very tight bounds on
the fermionic selfenergy. The inversion theorem has not been proven nonperturbatively up
to now.

In this paper we outline our nonperturbative result about regularity of the Fermi surface
and Fermi liquid behaviour in two–dimensional interacting fermion systems. We construct
the model without using counterterms. Instead of counterterms, we keep track of the change
of the Fermi surface during the RG flow that we use to construct the effective action. Thus
we can directly discuss the behaviour of a given system, without reference to an inversion
theorem. The essential regularity problem does not get any easier in our method; it is
only transferred into an inductive verification of regularity along the RG flow instead of a
one–step inversion theorem. The details of our work will be published in several papers [24].

Thus deviations from FL behaviour for weak and short–range interactions are not generic
in two dimensions but require special Fermi surfaces with nesting or van Hove singularities.
Approximate RG flows have been used to consider models of the cuprates [26, 27, 28, 29,
30, 31]. Some of the essential features of these materials can be understood in a natural
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way using the RG.
Proving FL behaviour in the three–dimensional case, where FL theory has had extraordi-

nary phenomenological success, remains an open mathematical problem, but partial results
exist [25].

2. Many–fermion systems and Fermi liquid theory

We consider a system of fermions on the lattice. Continuum systems with a Hamiltonian
consisting of a periodic Schrödinger operator and a two–body interaction can be treated
as well, provided that high energies are removed, which is natural in a crystal. Using the
lattice makes the setup easier, but it does not change the infrared problem that is at the core
of the analysis. Let Γ be a discrete torus, say Γ = Zd/LZd where the sidelength L of the
volume is very large. For a solid, L = O(108) and we shall only be interested in statements
that are uniform in L at large L and that hold also in the limit L→∞. The fermions obey
the usual canonical anticommutation relations {ax,α, a

+
x′,α′} = δα,α′δx,x′ . Here α ∈ {−1, 1}

is the z component of the spin in units of ~/2. The Hamiltonian

H = H0 + λV =
∑

x,y;α=±
t(x− y)a+

x,αay,α + λ
∑
x,y

: nx v(x− y) ny : (1)

has a kinetic term H0 and a density–density interaction v (here nx = a+
x,+ax,+ + a+

x,−ax,−
is the local density operator). More general interactions can be treated. We assume that
t(−ξ) = t(ξ) ∈ R and that both the hopping amplitude t(ξ) and interaction v(ξ) are short-
range, i.e.

∃α > 0 :
∑
ξ∈Zd

|t(ξ)| |ξ|α <∞ and
∑
ξ∈Zd

|v(ξ)| |ξ|α <∞. (2)

The problem is already nontrivial when t and v are finite–range, provided the density is
such that there is a Fermi surface in the noninteracting (λ = 0) system. A typical model of
this kind is the standard Hubbard model where the kinetic term is the discrete Laplacian
and the fermions interact only when they occupy the same site, i.e. v(ξ) = 0 for ξ 6= 0.

We only treat the weak–coupling case where λ is very small.
We consider the grand canonical ensemble at inverse temperature β = (kBT )−1 and

chemical potential µ. For an operator A on Fock space

〈A〉 =
1
Z

tr
(
e−β(H−µN) A

)
(3)

with Z chosen such that 〈1〉 = 1.
An essential object in the study of these systems is the Fermi surface. Let p be in the

dual lattice Γ] (for the infinite lattice, Γ] = Rd/2πZd = B is the first Brillouin zone). By
our assumptions on the hopping amplitude t, the dispersion relation e0(p) = t̂(p) − µ is
Cα and satisfies e0(−p) = e0(p) ∈ R. The Fermi surface of the noninteracting system is
S0 = {p ∈ B : e0(p) = 0}. The difference w = supp∈B e0(p) − infp∈B e0(p) is usually called
the bandwidth. Let ε0 > 0 be a fixed energy scale which is smaller than w, e.g. ε0 = w/10.
ε0 is used as a reference scale for energies.

As everyone knows, for λ = 0

np = 〈a+
p,αap,α〉 =

1
1 + e−βe0(p)

= lim
ε↓0

1
β

∑
ω∈MF

eiωε

iω − e0(p)
(4)
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where MF = π
β (2Z + 1) is the set of fermionic Matsubara frequencies. Thus in the limit

β →∞, np has a jump across S0.
Based on diagrammatic techniques one expects at λ 6= 0 that

np = lim
ε↓0

1
β

∑
ω∈MF

eiωε

iω − e0(p)− σ(ω, p)
(5)

with Dyson’s selfenergy σ, which depends on λ. Although the values of σ enter only at
discrete frequencies ω ∈ MF , σ is defined in a natural way for ω ∈ R in the diagrammatic
expansion. The existence and regularity of σ are among the main problems of a nonpertur-
bative analysis.

A simple way to distinguish a FL from a LL would be to take the limit β →∞ and check
if np has a jump across some submanifold S, the Fermi surface of the interacting system.
This is what is proven in [14] for a class of systems with a dispersion relation e0(p) that is
noninvariant under p→ −p, with counterterms that fix S to equal S0. For the systems with
e0(−p) = e0(p) considered here, the ground state is expected to exhibit superconductivity
or another form of symmetry breaking, so (5) is invalid. In other words, the σ in (5) will
diverge at some temperature T ∗ > 0. In one dimension, σ becomes singular so that the
small–ω behaviour of the denominator is no longer linear in ω but |ω|γ with γ < 1.

The FL criterion proposed in [16] makes statements about σ as a function of λ and β

in the region where |λ| log β is small, so that the Cooper instability is suppressed because
the temperature is still too high for the formation of pairs. However, boundedness of σ is
not enough; one has to show differentiability properties to prove that there is no anomalous
decay in a FL. The function σ determines the full propagator of the model but not all of
its properties. The higher correlation functions have to be controlled, too. In particular,
the four–point function, from which Landau’s quasiparticle interactions are derived, has to
be studied. For more precise definitions, the reader is referred to [16] and [24]; here we just
state our result for σ in the limit L→∞.

Theorem. Let the spatial dimension d = 2 and (2) hold for a sufficiently large α. Assume
that δ, the distance of the closest zero of ∇e0 to S0, is positive, that S0 encloses a convex
region, and that κ, the minimal curvature of S0, is positive. Then there are λ0(δ, κ) > 0
and c(δ, κ) > 0 such that for all (λ, β) that satisfy

|λ| < λ0 and |λ| log(βε0) < c, (6)

the selfenergy function σ : R × B → C, (ω, p) 7→ σ(ω, p), exists and is a C2 function of ω
and p, whose second derivative is bounded on R×B. σ and its first derivatives with respect
to ω and p are C1 in λ and vanish at λ = 0.

Remarks.
1. The Fermi surface of the interacting system, defined as S = {p ∈ B : e0(p)+σ(0, p) = 0},
has distance at most O(λ) to S0. The curvature of S is bounded and positive.
2. The quasiparticle weight Z(p) = (1 + i∂σ/∂ω)−1 is close to 1. This rules out anomalous
decay exponents.
3. In [24], we also prove statements about the higher correlation functions of the model.
In particular, we show that the four–point function, which determines the quasiparticle
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interactions of the FL, is bounded on the region given by (6). Together with items 1 and 2,
this implies that the system is a Fermi liquid.
4. The second restriction in (6) removes the Cooper instability. According to BCS theory,
for a local attractive interaction inducing s–wave pairing, the optimal constant c is 1/N(0)
where N(0) is the density of states at the Fermi surface S. If ε0 is chosen such that the
overlapping loop effect [17] gives an improvement already at scale ε0 (see [23], Chapter 4), a
proof that c is close to 1/N(0) seems feasible by a detailed analysis of ladder contributions,
but has not been done yet. The scale ε0 must not be too large because getting the correct
constant requires a ladder resummation which is accurate only below a certain scale.
5. The condition (6) only involves |λ|, while of course the sign of λ is crucial for the
existence of a solution to the BCS equations. It is expected (but still open) that one can
show that for a repulsive interaction the second condition in (6) can be replaced by

λ2 log(βε0) < c. (7)

Proving this would again require a detailed analysis of ladder contributions.
6. Disertori and Rivasseau [15] have proven analyticity in λ for the case e0(p) = p2 − 1,
using a counterterm to fix the density. Because of the spherical symmetry, the Fermi surface
is fixed to be a circle. This largely simplifies the regularity problem treated here. The
analyticity proof in [32] applies to nonspherical Fermi surfaces but does not provide enough
regularity to solve the inversion problem for the counterterm function introduced there.
7. The all–order perturbative analysis of the regularity of σ done in [17, 18, 19, 20] was
very much complicated by a peculiar lack of regularity of the selfenergy at zero temperature.
Namely, the function σ is actually not C2 at zero temperature. Its dependence on the
variables parallel to the Fermi surface is C2 [18, 19], but the second derivative in transversal
direction is logarithmically divergent. This complication, present already in second order
perturbation theory, does not arise under the restriction (6) because at positive temperature,
the logarithmic divergence becomes a factor log β, and a single such factor can be controlled
by the coupling constant and (6). To extend our present analysis to the zero temperature
asymmetric FL, we would have to perform a rather detailed higher–overlap classification
extending that of [19]. Although possible, this is a further significant complication and left
open for now.

3. Fermi surface flows

In this section we briefly outline the strategy of the proof. We study the system in its
functional Grassmann integral representation obtained from the standard Trotter product
formula (see, e.g. [23]). The generating function for the connected amputated Green func-
tions is given by the convolution integral over Grassmann fields Ψ = (ψ̄, ψ)

G(Ψ) = − log
∫

dµD0(Ψ
′) e−V0(Ψ+Ψ′). (8)

Here V0 is determined by the original two–body interaction in the usual way and dµD0

denotes the Grassmann Gaussian weight with covariance D0. In the following we assume
that the integration over the large frequency part has been done (see [14]). This leaves over
an interaction V0 which is the original two–body interaction plus a small correction analytic
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in λ, and D0 is the propagator given by

D0(τ, x; τ ′, x′) =
1
β

∑
ω∈MF

∫
d2p eiω(τ−τ ′)+ip·(x−x′)χ0,<(ω, p)

Q0(ω, p)
(9)

with Q0(ω, p) = iω − e0(p) and χ0,< a cutoff function that vanishes for |Q0(ω, p)| > ε0.
If the Gram constant of the propagator is finite, the functional integral defines connected
Green functions in a Banach space of functions that are analytic in the fields [33, 34]. This
is the case here because the positive temperature provides an infrared cutoff; however, the
Gram bounds give a very bad temperature behaviour. Therefore, one uses an RG method
to analyze the system. We now define a sequence of effective actions generated by RG
transformations, with the property that, if convergent at all, the sequence will converge to
G.

Let M > 1 be large enough and εj = ε0M
−j . Let χ< + χ> = 1 be a C∞ partition of

unity on [0,∞) such that χ<(x) = 1 for x ≤ 1 and χ>(x) = 1 for x ≥ 4. Set χ1,<(ω, p) =
χ<(ε−2

1 |Q0(ω, p)|2) and χ1,> = 1−χ1,<. Accordingly, split D0 = D0(χ1,<+χ1,>) = E0+F0.
The fluctuation covariance F0 = Q−1

0 χ0,< χ1,> is supported on {(ω, p) : ε1 ≤ |Q0(ω, p)| ≤
2ε0}. Let

G0(Ψ) = − log
∫

dµF0(Ψ
′) e−V0(Ψ+Ψ′) (10)

then

G(Ψ) = − log
∫

dµE0(Ψ
′) e−G0(Ψ+Ψ′). (11)

By Theorem 1 of [34], G0 is well–defined and analytic in the fields; we have

G0(Ψ) = K1 + (ψ̄, q0ψ) + V1(Ψ) (12)

where V1 contains the terms of order 4 and higher in Ψ and the q0 in the quadratic form
is translation invariant in space and Euclidian time. Its Fourier transform q̂0 satisfies
|q̂0(ω, p)| ≤ const.ε

3/2
1 , which is consistent with the behaviour of the propagator at scale

ε1 or ε2, so that it may seem that we can just go on iterating functional convolutions to
generate Gj+1 from Gj . However, the quadratic piece in Gj obtained in this way grows,
which in turn implies that the series diverges at some scale. One way to prevent this is to
subtract the two–point insertions by introducing a counterterm, but this changes the model
and requires a further justification. To avoid this, we move q0 into the covariance, defining

Q1(ω, p) = Q0(ω, p) + q0(ω, p)χ1,<(ω, p) and D1 = Q−1
1 χ1,<(ω, p) (13)

Consequently, with A1 = Q−1
1 Q0χ1,

G(E0 + F0, V0,Ψ) = K0 + (ψ̄, (q0 + q0D1q0)ψ) +G(D1, V1, A1Ψ) (14)

Before proceeding, we have to verify that Q1 has the same regularity properties as Q0, that
its zero set is {0} × S1 where S1 = {p ∈ B : Q1(0, p) = 0} is contained in a neighbourhood
of S0 of thickness of order λε1 and that S1 is a C2 curve with positive curvature. If all
this is the case, we can set χ2,<(ω, p) = χ<(ε−2

2 |Q1(ω, p)|2) and χ2,> = 1 − χ2,<, split
D1 = χ2,< +χ2,> = E1 +F1, integrate F1, and iterate the above steps, to obtain a sequence
of effective actions that converge to G(D0, V0). The so constructed sequence of Dj has
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shrinking supports and goes to zero. At positive temperature, the sequence terminates after
J = logM

2βε0
π steps because Dj = 0 for j > J . If the interaction Vj remains small enough

for all j ≤ J , we finally get G(0, VJ , AJΨ) = VJ(AJΨ). The explicit quadratic part in (14)
iterates to become the full propagator, and the amputation operator AJ becomes the ratio
of the full to the free covariance.

Verifying the above–mentioned regularity and smallness properties in every step j is the
hard part of the problem. Because the quartic part of Vj grows marginally, we need the
condition (6) to keep Vj small for j ≤ J . The procedure sketched roughly above has to be
supplemented and modified in a number of ways to get the desired bounds: following [15],
we use the Iagolnitzer–Magnen arch expansion to generate overlapping loops [17] from the
fermion determinants in the tree expansion for the selfenergy. To keep the flow in a set
of of dispersion relations of a fixed degree of differentiability, we use smoothing operator
techniques. Finally, as in all works on two–dimensional fermion systems, we use the sector
method of [12]. Because the sector estimates are weaker than the momentum space estimates
of a perturbative analysis, we need to exhibit double overlaps to prove the C2 property.
Higher derivatives of Qj also exist but they grow like inverse powers of εj .

The thus generated sequence of Fermi surfaces, (Sj)j , the Fermi surface flow, was cal-
culated to second order in the flowing coupling function in [29] for the example of the
(t, t′)–Hubbard model. In the density region considered there, t′ tends to decrease.

4. Outlook

We have outlined our proof of Fermi liquid behaviour in two dimensions by an RG method
in which the Fermi surface is allowed to flow. This avoids counterterms and the associated
inversion problem of their justification. Several open problems have already been mentioned
in the remarks following the theorem. In our opinion, it should be possible to get c close
to the optimal constant 1/N(0), to obtain the 1/λ2 in the exponent instead of 1/λ for
repulsive systems, and to show the existence of d–wave attractions near to antiferromagnetic
instabilities.

We believe that by an extension of our method one can also treat the p→ −p asymmetric
model of [14] at temperature zero without counterterms. This will, however, require a
further extension of our overlap classification results because of the above–mentioned subtle
differences in tangential and transversal regularity at T = 0.

Although our work shows that counterterms can be avoided, the inversion theorem it-
self remains of great interest because such it establishes a bijective map between dispersion
relations of noninteracting and interacting systems. At this time it seems that a nonpertur-
bative proof of such a theorem would require a refined classification of contributions going
beyond triple overlaps.

Last but not least we believe that the applications will continue to provide great stim-
ulation for this field. In particular, the study of Fermi surfaces at or near to van Hove
singularities leads to a number of interesting mathematical questions.
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