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Abstract

We study a two-dimensional Hubbard model with a Fermi surface containing the saddle points (rr, 0) and (0, =).
Including Cooper and Peierls channel contributions leads to a one-loop renormalization group flow to strong coupling.
Various fixed points are found by varying hopping energies as well as Coulomb repulsion. Natures of these fixed points
are investigated through response functions. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fermi surface patching [1] is a method to study renor-
malization group (RG) flows of Fermionic systems in
dimension larger than one. This has been used to study
the effect of the Umklapp scattering in two-dimensional
Hubbard model near half-filling [2,3], as well as effects of
the van Hove singularity [4-8]. In this paper, we discuss
the RG flows of the two-dimensional Hubbard model
with both van Hove singularity and Umklapp scattering.
The basis of attraction toward various fixed points is
investigated within '/t and U/t parameter space, where
t (¢') is the n.n. (n.n.n.) hoppings and U is the Coulomb
repulsion. Nature of the fixed points are also discussed.

2. One-loop RG flow

We study the case with a Fermi surface touching the
saddle points (r, 0) and (0, ). We restrict ourselves to
a small '/t region. Due to the van Hove singularity, the
leading singularity arises at the saddle points. The sus-
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ceptibility for the Cooper channel at ¢ = 0 shows a log-
square divergence yEP(w) oc In?(w). For the Peierls chan-
nel at Q = (r, n), there exists a crossover: z§(w) oc In*(w)
at o > |t'| while yp"w) oc In(w) at o < |t'|. The Peierls
channel at ¢ = 0 and the Cooper channel at g = Q also
diverges log-linearly but have smaller coefficients at
t'/t <1, and therefore are neglected in this paper. Pos-
sible ferromagnetism arising from these terms at in-
creased values of '/t has been discussed in Refs. [8,9].

Taking into account the most singular parts of the
Fermi surface, we study the two-patch model where
patches are taken at the saddle points (r, 0) and (0, ).
There are four species of interaction vertices at these
patches as defined in Ref. [3]. The RG flow equations is
given by [3,6]

g1 =2d1g1(92 — 91), (1)
g2 = di(93 + 93), 2
J3 = — 29394 +2d,193(29; — g1), ©)
ga = — (93 +42). @

Here, §; = (dg;)/(dy) where y = In*(w/E,) oc 78°(w). We
define d; as d,(y) = dyy'/dy. The asymptotic forms are
di(y)»>laty~landd(y) ~ 1n|t/t’|/\/; asy — . We
study the repulsive Hubbard-model by taking an equal
initial value for all couplings g; = U > 0 (i = 1-4).
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The case d; = 1 arises in the limit ¢ = 0 as well as in
the strong U region where t' is irrelevant in the Peierls
channel divergence. This case, where both Cooper and
Peierls channels have log-square singularity, was studied
by Schulz [4] and also by Dzyaloshinskii [5]. The most
divergent term appears at the antiferromagnetic (AF)
susceptibility, which has the same exponent as d-wave
superconductivity (d-SC) but is dominant due to the next
leading divergent terms. The uniform charge susceptibil-
ity is suppressed to zero. Thus we have a Mott insulator
with an AF order.

Dzyaloshinskii treated the limit d; = 0 [7] where Eqgs.
(3) and (4) combine to give g+ = —gi with
g+ = ga T g3. From the initial condition g3 = g, = U,
these RG equations lead to a weak-coupling fixed point
g+ — 0 which he discusses as a Tomonaga-Luttinger
fixed point. However, with nonzero d; in Eq. (3),
g- flows into negative region and finally to a strong
coupling fixed point g - — oo. For the two-patch
Hubbard model with generic values of U > 0, RG flows
to strong coupling fixed points.

3. Nature of the fixed points

Difference in @ dependences of the two channels cre-
ates an additional energy scale which causes susceptibil-
ity exponents to vary as a function of U. Within the RG
scheme, these exponents are determined by d; at the
critical point which monotonically increases as a func-
tion of U.

In the small U limit, we have d; < 1 and the RG flows
togs+ »0and g- - — oo. Hence we have g3 > + o
and g4 » — oo. The most dominant susceptibility of
this fixed point is d-SC with spin gap. As U is increased,

the strength of AF correlation increases and finally be-
comes identically divergent as d-SC correlation at
dy =1, and a transition to Mott-AF state occurs here.

What is speculated from the charge compressibility
calculation is that the transition to an insulating state
seems to occur at a smaller value of U. Namely, as U is
increased, phase transitions from the d-SC to a new
insulating phase with dominant d-wave pairing occurs,
and then transition to the AF insulating phase follows
later. This new insulating phase in the intermediate re-
gion also has a spin gap, and can be interpreted as an
RVB state defined by Gutzwiller projected d-SC state.
The origin of such insulating behaviour should be due to
the Umklapp process [2] at van Hove singular points.
RVB state seems to emerge at the region of competition
between d-SC and AF correlations.
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