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Abstract

We study a two-dimensional Hubbard model with a Fermi surface containing the saddle points (p, 0) and (0, p).
Including Cooper and Peierls channel contributions leads to a one-loop renormalization group #ow to strong coupling.
Various "xed points are found by varying hopping energies as well as Coulomb repulsion. Natures of these "xed points
are investigated through response functions. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fermi surface patching [1] is a method to study renor-
malization group (RG) #ows of Fermionic systems in
dimension larger than one. This has been used to study
the e!ect of the Umklapp scattering in two-dimensional
Hubbard model near half-"lling [2,3], as well as e!ects of
the van Hove singularity [4}8]. In this paper, we discuss
the RG #ows of the two-dimensional Hubbard model
with both van Hove singularity and Umklapp scattering.
The basis of attraction toward various "xed points is
investigated within t@/t and ;/t parameter space, where
t (t@) is the n.n. (n.n.n.) hoppings and ; is the Coulomb
repulsion. Nature of the "xed points are also discussed.

2. One-loop RG 6ow

We study the case with a Fermi surface touching the
saddle points (p, 0) and (0, p). We restrict ourselves to
a small t@/t region. Due to the van Hove singularity, the
leading singularity arises at the saddle points. The sus-

ceptibility for the Cooper channel at q"0 shows a log-
square divergence s11

0
(u)Jln2(u). For the Peierls chan-

nel at Q"(p, p), there exists a crossover: s1)
Q

(u)Jln2(u)
at u<Dt@D while s1)

Q
(u)Jln(u) at u;Dt@D. The Peierls

channel at q"0 and the Cooper channel at q"Q also
diverges log-linearly but have smaller coe$cients at
t@/t;1, and therefore are neglected in this paper. Pos-
sible ferromagnetism arising from these terms at in-
creased values of t@/t has been discussed in Refs. [8,9].

Taking into account the most singular parts of the
Fermi surface, we study the two-patch model where
patches are taken at the saddle points (p, 0) and (0, p).
There are four species of interaction vertices at these
patches as de"ned in Ref. [3]. The RG #ow equations is
given by [3,6]
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Here, g5
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)/(dy) where y,ln2(u/E
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(u). We

de"ne d
1

as d
1
(y)"ds1)

Q
/dy. The asymptotic forms are

d
1
(y)P1 at y+1 and d

1
(y)&ln Dt/t@D/Jy as yPR. We

study the repulsive Hubbard-model by taking an equal
initial value for all couplings g

i
";'0 (i"1}4).
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The case d
1
,1 arises in the limit t@"0 as well as in

the strong ; region where t@ is irrelevant in the Peierls
channel divergence. This case, where both Cooper and
Peierls channels have log-square singularity, was studied
by Schulz [4] and also by Dzyaloshinskii [5]. The most
divergent term appears at the antiferromagnetic (AF)
susceptibility, which has the same exponent as d-wave
superconductivity (d-SC) but is dominant due to the next
leading divergent terms. The uniform charge susceptibil-
ity is suppressed to zero. Thus we have a Mott insulator
with an AF order.

Dzyaloshinskii treated the limit d
1
,0 [7] where Eqs.

(3) and (4) combine to give g5
B
"!g2
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B
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. From the initial condition g

3
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these RG equations lead to a weak-coupling "xed point
g
B
P0 which he discusses as a Tomonaga}Luttinger

"xed point. However, with nonzero d
1

in Eq. (3),
g
~
#ows into negative region and "nally to a strong

coupling "xed point g
~
P!R. For the two-patch

Hubbard model with generic values of ;'0, RG #ows
to strong coupling "xed points.

3. Nature of the 5xed points

Di!erence in u dependences of the two channels cre-
ates an additional energy scale which causes susceptibil-
ity exponents to vary as a function of ;. Within the RG
scheme, these exponents are determined by d

1
at the

critical point which monotonically increases as a func-
tion of ;.

In the small; limit, we have d
1
;1 and the RG #ows

to g
`
P0 and g

~
P!R. Hence we have g

3
P#R

and g
4
P!R. The most dominant susceptibility of

this "xed point is d-SC with spin gap. As ; is increased,

the strength of AF correlation increases and "nally be-
comes identically divergent as d-SC correlation at
d
1
"1, and a transition to Mott-AF state occurs here.
What is speculated from the charge compressibility

calculation is that the transition to an insulating state
seems to occur at a smaller value of ;. Namely, as ; is
increased, phase transitions from the d-SC to a new
insulating phase with dominant d-wave pairing occurs,
and then transition to the AF insulating phase follows
later. This new insulating phase in the intermediate re-
gion also has a spin gap, and can be interpreted as an
RVB state de"ned by Gutzwiller projected d-SC state.
The origin of such insulating behaviour should be due to
the Umklapp process [2] at van Hove singular points.
RVB state seems to emerge at the region of competition
between d-SC and AF correlations.
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