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The Stage

• Single Impurity Anderson Model (→ Severin)

• 1P-irreducible Matsubara FRG with sharp multiplicative Θ-cutoff

• usual flow equation hierachy:

• truncation procedure usually employed for SIAM-like models:

(a) neglect the contribution of γ3 to the flow of γ2

(b) neglect the frequency dependence of γ2

• zero/finite-frequency properties are described well/badly:
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Finite-frequency FRG

Straight-forward way of implementing frequency-dependence:

• regard γ2 as a function of three indep. bosonic frequencies νi

→ preserves symmetries automatically

• parametrize the self-energy ΣΛ(iω) and the two-particle vertex

γΛ
2 (iν1, iν2, iν3) using a discrete mesh of N Matsubara frequencies:

ωn = ω0a
n, n = 0 . . . N − 1

Important numerical aspect:

verify that physical properties are independent
of the actual choice of the discretization!

Technical issues:

• compute spectral function from (ill-controlled) Padé approximation

• replace SΛGΛ→ −ĠΛGΛ (Katanin 2004)



Results: small to intermediate U
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Numerical efficiency

The FRG works well for arbitrary parameters and intermediate U .

It is, however, numerically demanding.

Approximation to increase efficiency:

γ̇2 =− PP-term (ν1, ν2 = 0, ν3 = 0)

− PH-term (ν1 = 0,ν2, ν3 = 0)

+ HP-term (ν1 = 0, ν2 = 0,ν3)

⇒
one-dimensional

frequency meshes only
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At intermediate U , reliable
results can be obtained with

minor numerical effort!



Large U : the Kondo scale

quantities governed by TK: spin susceptibility, effective mass,

width of the Kondo resonance, . . .
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Frequency-independent FRG shows exponential behavior.

Frequency- dependent FRG shows no exponential behavior.



Discussion

Frequency-dependent FRG:

• gives better results at small to intermediate U

• there is no exponential energy scale

BUT: there are numerical (discretization) issues!

• choose N large enough so that results are converged
√

• different ways to parametrize γ2 do not give coinciding results

in the strong coupling regime (limitation of num. resources ?!)

• why does the non-Katanin scheme break down for large U?

? frequency discretization?

? fundamental reasons (neglection of γ3)?



So what?

Consider SIAM with BCS leads:

• low-energy physics: governed by an interplay of the Kondo effect

and induced superconductivity (ratio TK/∆)

• interesting quantity: supercurrent as a function of the gate voltage

• advantage: interesting physics at intermediate U

Zero-frequency FRG works fine for zero temperature!
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Frequency-dependent FRG can be used
to fast compute finite-energy properties
of the SIAM at small to intermediate U .

There is no exponential energy scale.

Thank you for your attention!



Single Impurity Anderson Model

The SIAM describes an impurity of interac-
ting spin up and down electrons coupled to
a bath of Fermi-liquid leads.

The low-energy physics of this model is dominated by the Kondo effect. The Ha-
miltonian consists of three parts, H = Hdot +Hleads +Hcoup, where

Hdot =
∑

σ

εσd
†
σdσ + Ud†↑d↑d

†
↓d↓

Hleads =
∑

s=L,R

∑

kσ

εskc
†
skσcskσ

Hcoup =
∑

s=L,R

ts
(

c†sσdσ + d†σcsσ
)

Single-particle energy: εσ = ε− U/2±B/2

Local electron operators at the impurity site: csσ =
∑

k cskσ/
√
N

Hybridisation energy: Γ = ΓL + ΓR, where Γs = πt2sρs = const. (wide-band limit)



The QD Josephson junction

Model Hamiltonian:

Hdot = (ε− U/2)
∑

σ

d†σdσ + Ud†↑d↑d
†
↓d↓ quantum dot

H lead
s=L,R =

∑

kσ

εskc
†
skσcskσ −∆

∑

k

[

eiφsc†sk↑c
†
s−k↓ + H.c.

]

BCS leads

Hcoup
s=L,R =− ts

∑

σ

c†sσdσ + H.c. coupling QD-leads

Hdirect =− td
∑

σ

c†LσcRσ + H.c. direct coupling



Kondo scale: the effective mass

Effective mass: 1/TK ∼ m∗ = 1− Im Σ(iω0)/ω0
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Spin susceptibility
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