On transport in quantum devices

Gian Michele Graf
ETH Zurich

August 2010
Ecole de physique des Houches
La théorie quantique des petites aux grandes échelles

Some pictures

Outline

Quantum pumps: The scattering approach
Quantization of charge transport
Quantum pumps: The topological approach
A comparison
Counting statistics
The determinant for independent particles
Application to tunnel junction
Collaborators: Y. Avron, S. Bachmann, A. Elgart, I. Klich, L. Sadun, G. Ortelli

Outline

Quantum pumps: The scattering approach

Quantization of charge transport

Quantum pumps: The topological approach

A comparison

Counting statistics

The determinant for independent particles

Application to tunnel junction

Quantum pumps

Charge quantum mechanically transferred between leads due to parametric operations, e.g. changing gate voltages. Idealized:

- independent electrons $(e=+1)$
- each channel filled up to Fermi energy μ with incoming electrons
- $S=S(X)=\left(S_{j k}\right)$ scattering $n \times n$ matrix at energy μ given the pump configuration X (w.r.t. to reference configuration X_{0})
- At fixed X : no net current

Charge transport

(Büttiker, Thomas, Prêtre) Under a slow change $X \rightarrow X+d X$, and hence $S \rightarrow S+d S$, a net charge

$$
d Q_{j}=\frac{\mathrm{i}}{2 \pi}\left((d S) S^{*}\right)_{j j}
$$

leaves the pump through channel j

Remarks

$$
d Q_{j}=\frac{\mathrm{i}}{2 \pi}\left((d S) S^{*}\right)_{j j}
$$

is a thermodynamic formula: exchanged charge $đ Q_{j}$ expressed through static quantities $S(X)$ (\& their variation) accessible from the outside, (cf. work $d W=-p d V$);
$\int_{A}^{B} d Q_{j}$ depends on path, but not on its time parameterization.

- $\oint d Q_{j} \neq 0$: it is a pump!
- Kirchhoff's law does not hold:

$$
\begin{aligned}
\sum_{j=1}^{n} d Q_{j} & =\frac{\mathrm{i}}{2 \pi} \operatorname{tr}\left((d S) S^{*}\right)=\frac{\mathrm{i}}{2 \pi} d \log \operatorname{det} S \\
& =-d \xi \neq 0
\end{aligned}
$$

where " $\xi(\mu)=\operatorname{Tr}\left(P(\mu, X)-P\left(\mu, X_{0}\right)\right)$ " is the Krein spectral shift and $P(\mu, X)=\theta(\mu-H(X))$ is the spectral projection for the Hamiltonian $H(X)$.
= is Friedel sum rule/Birman-Krein formula

$$
\operatorname{det} S=\mathrm{e}^{2 \pi \mathrm{i} \xi(\mu)}
$$

- But

$$
\oint \sum_{j=1}^{n} d Q_{j}=0
$$

A semiclassical/adiabatic picture

$E \in[0, \infty)$: 1-particle energy spectrum in a channel
$\rho(E)$: occupation of incoming states, e.g.
$\rho(E)=\theta(\mu-E)\left(\right.$ at temperature $\left.\beta^{-1}=0\right)$
or $\rho(E)=\left(1+\mathrm{e}^{\beta(E-\mu)}\right)^{-1}$
$S(E, t)=S(E, X(t))$: static scattering matrix
$S(E, X)$ at energy E along
slowly varying $X=X(t)$.
out state: channel j, energy E, time of passage t at fiducial point under X_{0}
$\mathcal{T}(E, t)=-\mathrm{i} \frac{\partial S}{\partial E} S^{*}$: Eisenbud-Wigner time delay:
$t-\mathcal{T}_{j j} \quad$ time of passage of in state corresponding to same out state under $X(t)$.
$\mathcal{E}(E, t)=\mathrm{i} \frac{\partial S}{\partial t} S^{*}$: Martin-Sassoli energy shift:
$E-\mathcal{E}_{j j} \quad$ energy of in state under $X(t)$.

Incoming charge during $[0, T]$ in lead j

$$
\frac{1}{2 \pi} \int_{0}^{T} d t \int_{0}^{\infty} d E \rho(E)
$$

($2 \pi=$ size of phase space cell of a quantum state)
Outgoing charge

$$
\frac{1}{2 \pi} \int_{0}^{T} d t^{\prime} \int_{0}^{\infty} d E^{\prime} \rho(E)
$$

where
$\left(E^{\prime}, t^{\prime}\right) \mapsto(E, t)=\left(E^{\prime}-\mathcal{E}_{j j}\left(E^{\prime}, t^{\prime}\right), t^{\prime}-\mathcal{T}_{j j}\left(E^{\prime}, t^{\prime}\right)\right)$
maps outgoing to incoming data
Net charge (linearize in \mathcal{E})

$$
Q_{j}=-\frac{1}{2 \pi} \int_{0}^{T} d t \int_{0}^{\infty} d E \rho^{\prime}(E) \mathcal{E}_{j j}(E, t)
$$

For $\rho(E)=\theta(\mu-E)$ this equals $Q_{j}=\int_{0}^{T} d t \dot{Q}_{j}(t)$ with

$$
\dot{Q}_{j}(t)=\frac{1}{2 \pi} \mathcal{E}_{j j}(\mu, t)=\frac{\mathrm{i}}{2 \pi}\left(\frac{\partial S}{\partial t} S^{*}\right)_{j j}
$$

(cf. BPT)

What's behind: Adiabatic evolution in absence of gap

- Adiabatic evolution

$$
\begin{gathered}
H=H_{s}, \quad s=\varepsilon t \\
\mathrm{i} \frac{d}{d s} U_{\varepsilon}\left(s, s_{0}\right)=\varepsilon^{-1} H_{s} U_{\varepsilon}\left(s, s_{0}\right), \quad U_{\varepsilon}\left(s_{0}, s_{0}\right)=1
\end{gathered}
$$

in the limit $\varepsilon \rightarrow 0$. Assume $d H_{s} / d s$ compact operator (device).

- Initial state (1-particle density matrix) at s_{0} : spectral projection

$$
P_{s_{0}}=\theta\left(\mu-H_{s_{0}}\right)
$$

with μ Fermi energy.

- State at s

$$
P_{\varepsilon}(s)=U_{\varepsilon}\left(s, s_{0}\right) P_{s_{0}} U_{\varepsilon}\left(s, s_{0}\right)^{*} \quad\left(\neq P_{s}\right)
$$

- Current operator at distance a from the device: $I_{j}(a)$

Theorem. For $s>s_{0}$,

$$
\lim _{a \rightarrow \infty} \lim _{\varepsilon \downarrow 0} \varepsilon^{-1} \operatorname{tr}\left(P_{\varepsilon}(s) I_{j}(a)\right)=\frac{\mathrm{i}}{2 \pi}\left(\frac{d S}{d s}(s, \mu) S(s, \mu)^{*}\right)_{j j}
$$

Remarks.

- Order of limits: Ammeter is many wavelengths away from the pump, but reached within $\ll \varepsilon^{-1}$ (adiabatic time).
- Generalization to positive temperature.
- Most adiabatic theorems discuss

$$
U_{\varepsilon}\left(s, s_{0}\right) P U_{\varepsilon}\left(s, s_{0}\right)^{*}
$$

where P is the spectral projection of $H_{s_{0}}$ onto (i) an isolated part of its spectrum or (ii) an embedded eigenvalue. Here (iii) $P=\theta\left(\mu-H_{s_{0}}\right)$ corresponds to a gapless part of continuous spectrum.
(i)
(ii)
(iii)

An idea from the proof

- Scattering is about comparing two dynamics:

$$
\text { scattering matrix }=U_{l}(+\infty,-\infty)
$$

$U_{l}\left(t^{\prime}, t\right)$: propagator in the interaction picture.

- Answer in terms of static scattering matrix: generators $\left(H_{s^{\prime}}, H_{s}\right) \rightsquigarrow S\left(s^{\prime}, s\right)$.
At $s^{\prime}=s$: may replace $(d S / d s) S^{*} \rightsquigarrow d S / d s$
- Starting point is non-autonomous dynamics $H_{\varepsilon t}$, hence dynamic scattering matrix: generators $\left(H_{s+\varepsilon t}, H_{s}\right) \rightsquigarrow \mathcal{S}(s)$.
Then
$\rho\left(H_{s}\right)$ incoming 1-pdm (e.g. $\left.\rho\left(H_{s}\right)=\theta\left(\mu-H_{s}\right)\right)$
$\mathcal{S}(s) \rho\left(H_{s}\right) \mathcal{S}^{*}(s)$ outgoing 1-pdm

An idea from the proof: $S\left(s^{\prime}, s\right)$ vs. $\mathcal{S}(s)$

- Linearize $H_{s+\varepsilon t}=H_{s}+\varepsilon \dot{H}_{s} t+\ldots$. Scattering operator (dynamic) in Born approximation

$$
\begin{aligned}
\mathcal{S}(s) & =1-\mathrm{i} \varepsilon \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} H_{s} t}\left(\dot{H}_{s} t\right) \mathrm{e}^{-\mathrm{i} H_{s} t}+\ldots \\
& \equiv 1+\varepsilon \mathcal{S}^{(1)}(s)+\ldots
\end{aligned}
$$

whence

$$
\mathcal{S} \rho\left(H_{s}\right) \mathcal{S}^{*}=\rho\left(H_{s}\right)+\varepsilon\left[\mathcal{S}^{(1)}(s), \rho\left(H_{s}\right)\right]+\ldots
$$

- Linearize for $s^{\prime} \rightarrow s$

$$
H_{s^{\prime}}=H_{s}+\left(s^{\prime}-s\right) \dot{H}_{s}+\ldots
$$

Scattering operator (static) in Born approximation

$$
\begin{aligned}
S\left(s^{\prime}, s\right) & =1-\mathrm{i}\left(s^{\prime}-s\right) \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} H_{s} t} \dot{H}_{s} \mathrm{e}^{-\mathrm{i} H_{s} t}+\ldots \\
& \equiv 1+\left.\left(s^{\prime}-s\right) \partial_{s^{\prime}} S\left(s^{\prime}, s\right)\right|_{s^{\prime}=s}+\ldots
\end{aligned}
$$

An idea from the proof (cont.)

$$
\begin{gathered}
\mathcal{S}^{(1)}(s)=-\mathrm{i} \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} H_{s} t} \dot{H}_{s} t \mathrm{e}^{-\mathrm{i} H_{s} t} \\
\left.\partial_{s^{\prime}} S\left(s^{\prime}, s\right)\right|_{s^{\prime}=s}=-\mathrm{i} \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} H_{s} t} \dot{H}_{s} \mathrm{e}^{\mathrm{i} H_{s} t}
\end{gathered}
$$

Claim:

$$
\left[\mathcal{S}^{(1)}(s), \rho\left(H_{s}\right)\right]=-\left.\mathrm{i} \partial_{s^{\prime}} \mathcal{S}\left(s^{\prime}, s\right)\right|_{s^{\prime}=s} \rho^{\prime}\left(H_{s}\right)
$$

Remark: relates dynamic \rightarrow static, $\rho \rightarrow \rho^{\prime}$.
Proof immediate for $\rho(\lambda)=\mathrm{e}^{-\mathrm{i} \lambda \tau},-\mathrm{i} \rho^{\prime}(\lambda)=-\tau \mathrm{e}^{-\mathrm{i} \lambda \tau}$:

$$
\begin{aligned}
\mathcal{S}^{(1)}(s) \mathrm{e}^{-\mathrm{i} H_{s} \tau} & =\mathrm{e}^{-\mathrm{i} H_{s} \tau}(-\mathrm{i}) \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} H_{s} t} \dot{H}_{s} \cdot(t-\tau) \mathrm{e}^{-\mathrm{i} H_{s} t} \\
& =\mathrm{e}^{-\mathrm{i} H_{s} \tau}\left(\mathcal{S}^{(1)}(s)-\tau \partial_{s^{\prime}} S\left(s^{\prime}, s\right)| |_{s^{\prime}=s}\right)
\end{aligned}
$$

Outline

Quantum pumps: The scattering approach

Quantization of charge transport

Quantum pumps: The topological approach

A comparison

Counting statistics

The determinant for independent particles

Application to tunnel junction

Further transport properties

- Noise

$$
\left\langle\left\langle n_{j}^{2}\right\rangle\right\rangle=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{0}^{T} \frac{1-\left|\left(S(t) S^{*}\left(t^{\prime}\right)\right) j_{j j}\right|^{2}}{\left(t-t^{\prime}\right)^{2}} d t d t^{\prime}
$$

- Energy dissipated to reservoirs

Remark (dissipation inequality): For any source

$$
\langle\dot{E}\rangle-\mu\langle\dot{n}\rangle \geq \pi\langle\dot{n}\rangle^{2}
$$

- related to $P=R R^{2}$ with $R \geq \pi=(1 / 2)\left(h / e^{2}\right)$ (point contact resistance; $e=\hbar=1$)
- for pumps: $\left(\mathcal{E}^{2}\right)_{j j} \geq\left(\mathcal{E}_{j j}{ }^{2}\right.$

Theorem: Optimal pump processes

Hypotheses: • cyclic process: $X(0)=X(T) \bullet$ fix a lead, j
The following are equivalent:

- Dissipation inequality is saturated (minimal dissipation)
- No noise: $\left\langle\left\langle n_{j}^{2}\right\rangle\right\rangle=0$
- The charge transported in a cycle is quantized:

$$
n_{j}=\left\langle n_{j}\right\rangle \in \mathbb{Z}
$$

Note: holds for arbitrary number number of leads n (instead of 2)

The content is geometric

The Hopf map

Unit sphere $S^{2 n-1} \subset \mathbb{C}^{n}$ preserved by circle action $|\psi\rangle \mapsto \mathrm{e}^{\mathrm{i} \theta}|\psi\rangle$

$$
S^{2 n-1} / \sim=P \mathbb{C}^{n-1}
$$

$S^{2 n-1}$ (fibre bundle)
connection 1-form
$\langle\mathrm{i} \psi \mid \dot{\psi}\rangle=-\mathrm{i}\langle\psi \mid \dot{\psi}\rangle$
Hopf map $\pi \downarrow$

$$
P \mathbb{C}^{n-1} \text { (base space) }
$$

Geometric interpretation of optimality

Recall: $\mathcal{E}=\mathrm{i} \dot{S} S^{*}=-\mathrm{i} S \dot{S}^{*}$
Let $\langle\psi(t)|=j$-th row of $S(t)$ (incoming state feeding channel j)

$$
\begin{gathered}
\langle\psi(t) \mid \psi(t)\rangle=1 \\
\mathrm{i}\left(\dot{S} S^{*}\right)_{j j}=\mathcal{E}_{j j}=-\mathrm{i}\langle\psi \mid \dot{\psi}\rangle
\end{gathered}
$$

Charge transport $\left\langle n_{j}\right\rangle=(2 \pi)^{-1} \oint \mathcal{E}_{j j} d t$ is holonomy (Berry phase).
If process proceeds along fiber, $|\psi(t)\rangle=\mathrm{e}^{\mathrm{i} \theta(t)}|\psi(0)\rangle$, then

- $\mathcal{E}_{j j}=\dot{\theta}$ and $(2 \pi)^{-1} \oint \dot{\theta} d t$ is the winding number
- $\left|\left(S(t) S^{*}\left(t^{\prime}\right)\right)_{j j}\right|^{2}=\left|\left\langle\psi(t) \mid \psi\left(t^{\prime}\right)\right\rangle\right|^{2}=1$: no noise
- $\left(\mathcal{E}^{2}\right)_{j j}=\langle\dot{\psi} \mid \dot{\psi}\rangle=\langle\dot{\psi} \mid \psi\rangle\langle\psi \mid \dot{\psi}\rangle=\left(\mathcal{E}_{j j}\right)^{2}$: minimal dissipation

Quantized transport

Cyclic process: $X(0)=X(T)$
Theorem. The charge transported in a cycle is quantized

$$
n_{j}=\left\langle n_{j}\right\rangle \in \mathbb{Z} \quad(j=1,2)
$$

iff scattering matrix $S(t)$ is of the form

$$
S(t)=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \varphi_{1}(t)} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \varphi_{2}(t)}
\end{array}\right) S_{0}
$$

Then n_{j} is the winding number of $\varphi_{j}(t),(j=1,2)$

Quantized transport (cont.)

Generalization to many channels:

In a cycle, the charge delivered to the Left (resp. Right) channels as a whole is quantized iff

$$
S(t)=\left(\begin{array}{cc}
U_{1}(t) & 0 \\
0 & U_{2}(t)
\end{array}\right) S_{0}
$$

with $U_{j}(t)$ unitary $n_{j} \times n_{j}$-matrices $(j=1,2)$. The charge is the winding number of $\operatorname{det} U_{j}(t)$.

Outline

Quantum pumps: The scattering approach
 Quantization of charge transport

Quantum pumps: The topological approach

A comparison

Counting statistics

The determinant for independent particles

Application to tunnel junction

Some examples

The setup of the topological approach

Infinitely extended 1-dimensional system

$$
H(s)=-\frac{d^{2}}{d x^{2}}+V(s, x) \quad \text { on } L^{2}\left(\mathbb{R}_{x}\right)
$$

depending on parameter s, real. Potential V doubly periodic

$$
V(s, x+L)=V(s, x), \quad V(s+2 \pi, x)=V(s, x)
$$

Change s slowly with time t.
Hypothesis. The Fermi energy lies in a spectral gap for all s.
Theorem (Thouless 1983). The charge transported (as determined by Kubo's formula) during a period and across a reference point is an integer, C.
(What's behind: Adiabatic evolution in presence of gap)

The integer as a Chern number

$\psi_{n k s}(x)$: n-th Bloch solution of quasi-momentum $k \in[0,2 \pi / L]$ (Brillouin zone), normalized over $x \in[0, L]$ (unique up to phase).
$\boldsymbol{C}=\sum_{n} C_{n} \equiv \sum_{n} \frac{\mathrm{i}}{2 \pi} \int_{\mathbb{T}}\left(\left\langle\left.\frac{\partial \psi_{n k s}}{\partial s} \right\rvert\, \frac{\partial \psi_{n k s}}{\partial k}\right\rangle-\left\langle\left.\frac{\partial \psi_{n k s}}{\partial k} \right\rvert\, \frac{\partial \psi_{n k s}}{\partial s}\right\rangle\right) d s d k$

- sum extends over filled bands n
- integral over torus $\mathbb{T}=[0,2 \pi] \times[0,2 \pi / L]$
- as a rule, phase can be chosen such that $\left|\psi_{n k s}\right\rangle$ is smooth only locally \mathbb{T}
- integrand (curvature) is smooth globally
- C_{n} is Chern number, obstruction to global section $\left|\psi_{n k s}\right\rangle$

Generalizations

1) n channels:

$$
H(s)=-\frac{d^{2}}{d x^{2}}+V(s, x) \quad \text { on } L^{2}\left(\mathbb{R}_{x}, \mathbb{C}^{n}\right)
$$

with $V(s, x)=V^{*}(s, x) \in M_{n}(\mathbb{C})$.
2) Time, but not space periodicity is essential. Sufficient: Fermi energy lies in a spectral gap for all s. What about C ?
Let $z \notin \sigma(H(s))$ and $\psi(x), \chi(x) \in M_{n}(\mathbb{C})$ with

$$
\begin{array}{ll}
(H(s)-z) \psi(x)=0, & \psi(x) \rightarrow 0(x \rightarrow+\infty) \\
\chi(x)(H(s)-z)=0, & \chi(x) \rightarrow 0(x \rightarrow-\infty)
\end{array}
$$

with $\psi(x), \chi(x)$ regular for some $x \in \mathbb{R}$. Wronskian

$$
W(\chi, \psi ; x)=\chi(x) \psi^{\prime}(x)-\chi^{\prime}(x) \psi(x) \in M_{n}(\mathbb{C})
$$

is independent of x for solutions ψ, χ. Normalize:

$$
W(\chi, \dot{\psi} ; x)=1 .
$$

Theorem. The transported charge is

$$
C=\frac{\mathrm{i}}{2 \pi} \int_{\mathbb{T}} \operatorname{tr}\left(W\left(\frac{\partial \chi}{\partial s}, \frac{\partial \psi}{\partial z} ; x\right)-W\left(\frac{\partial \chi}{\partial z}, \frac{\partial \psi}{\partial s} ; x\right)\right) d s d z
$$

(any x). This is the Chern number of the bundle of solutions ψ on $(s, z) \in \mathbb{T}=[0,2 \pi] \times \gamma$.

Outline

Quantum pumps: The scattering approach
 Quantization of charge transport
 Quantum pumps: The topological approach

A comparison
Counting statistics

The determinant for independent particles

Application to tunnel junction

A comparison

Are Thouless' and Büttiker's approaches incompatible?

- Topological approach: Fermi energy μ in gap: no states there

Charge transport attributed to energies way below μ

- Scattering approach: Depends on scattering at Fermi energy

$$
\mu
$$

Charge transport attributed to states at energy μ
Truncate potential V to interval $[0, L]$

$$
H(s)=-\frac{d^{2}}{d x^{2}}+V(s, x) \chi_{[0, L]}(x) \quad \text { on } L^{2}\left(\mathbb{R}_{x}, \mathbb{C}^{n}\right)
$$

Gap closes.

A comparison (cont.)

Scattering matrix

$$
S_{L}(s)=\left(\begin{array}{cc}
R_{L} & T_{L}^{\prime} \\
T_{L} & R_{L}^{\prime}
\end{array}\right)
$$

exists at Fermi energy.
Theorem

- As $L \rightarrow \infty$,

$$
S_{L}(s) \rightarrow\left(\begin{array}{cc}
R(s) & 0 \\
0 & R^{\prime}(s)
\end{array}\right)
$$

exponentially fast, with R, R^{\prime} unitary. Hence: conditions for quantized transport attained in the limit.

- Charge transport in both descriptions agree: Winding number of $\operatorname{det} R$ is Chern number C.

Sketch of proof

- Solution $\psi_{z, s}(x)$ for $(z, s) \in \mathbb{T}$
- $\psi_{z, s}(x)$ or $\psi_{z, s}^{\prime}(x)$ regular at any $x \in \mathbb{R}$
- $\psi_{z, s}(x=0)$ regular except for $(z=\mu, s)$ at discrete values s^{*} of s.
- Except for these critical points, there is a global section $\psi_{z, s}$ (e.g. $\psi_{z, s}(0)=1$)

Sketch of proof (cont.)

- Near a given critical point $\left(z=\mu, \boldsymbol{s}=s^{*}\right)$ let $\psi_{z, s}$ be a local section, analytic in $z\left(\right.$ e.g. $\left.\psi_{z, s}^{\prime}(0)=1\right)$

$$
L(z, s):=\psi_{\bar{z}, s}^{*}(0) \psi_{z, s}(0)
$$

is analytic with $L(z, s)=L(\bar{z}, s)^{*}$

- Generically, $L(z, s)$ has a simple eigenvalue $\lambda(z, s)$ vanishing to first order at $\left(\mu, s^{*}\right) ; \lambda(z, s) \in \mathbb{R}$ for $z \in \mathbb{R}$

$$
\begin{aligned}
C & =-\sum_{s^{*}} \text { winding number of } \lambda(z, s) \text { around }\left(\mu, s^{*}\right) \\
& =\left.\sum_{s^{*}} \operatorname{sgn}\left(\frac{\partial \lambda}{\partial z} \frac{\partial \lambda}{\partial s}\right)\right|_{\left(z=\mu, s=s^{*}\right)}=-\left.\sum_{s^{*}} \operatorname{sgn}\left(\frac{\partial \lambda}{\partial s}\right)\right|_{\left(z=\mu, s=s^{*}\right)}
\end{aligned}
$$

- $\partial \lambda / \partial z<0$ for $z \in \mathbb{R}$ (Sturm oscillation)

Sketch of proof (cont.)

- Matching condition at $x=0$ yields $(L \rightarrow \infty)$

$$
R(s)=\left(\mathrm{i} \sqrt{\mu} \psi_{\mu, s}(0)-\psi_{\mu, s}^{\prime}(0)\right)\left(\mathrm{i} \sqrt{\mu} \psi_{\mu, s}(0)+\psi_{\mu, s}^{\prime}(0)\right)^{-1}
$$

$R(s)$ has eigenvalue -1 iff $\psi_{\mu, s}(0)$ is singular

- Eigenvalue crossing is counterclockwise iff $\partial \lambda /\left.\partial s\right|_{\left(z=\mu, s=s^{*}\right)}<0$
- Together:
$C=\#$ eigenvalue crossings of R at $z=-1$
$=$ winding number of $\operatorname{det} R$

Summary

- Scattering approach: gapless systems, finite scatterer; transport based on scattering matrix and attributed to states, both at Fermi energy; quantized in special cases only
- Topological approach: gapped systems, infinite device; transport attributed to states way below Fermi energy; quantized
- A comparison has been obtained.

Outline

> Quantum pumps: The scattering approach

> Quantization of charge transport

> Quantum pumps: The topological approach

> A comparison

Counting statistics

The determinant for independent particles

Application to tunnel junction

Noises

1. Equilibrium noise: • no voltage applied; • temperature β^{-1}
Q : charge flowed during time T

$$
\langle Q\rangle=0
$$

(Johnson, Nyquist 1928)
2. Non-equilibrium noise: • voltage V; • zero temperature

$$
\begin{aligned}
\frac{\langle Q\rangle}{T} & =\frac{V}{R} \quad(\text { Ohm }) \\
\left\langle\left\langle Q^{2}\right\rangle\right\rangle & :=\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2} \quad \text { (shot noise } \ldots \text {) }
\end{aligned}
$$

Classical shot noise

$$
\left\langle\left\langle Q^{2}\right\rangle\right\rangle=e\langle Q\rangle \quad \text { (Schottky 1918) }
$$

(e electron charge)
Interpretation. Poisson distribution (parameter λ)
n : number of electrons

$$
\begin{aligned}
& p_{n}=\mathrm{e}^{-\lambda} \frac{\lambda^{n}}{n!} \\
& \langle n\rangle=\lambda, \quad\left\langle\left\langle n^{2}\right\rangle\right\rangle=\lambda
\end{aligned}
$$

Charge: $Q=e n$

$$
\left\langle\left\langle Q^{2}\right\rangle\right\rangle=e^{2} \lambda=e\langle Q\rangle
$$

Quantum shot noise

$$
\left\langle\left\langle Q^{2}\right\rangle\right\rangle=e\langle Q\rangle\left(1-|t|^{2}\right) \quad \text { (Khlus 1987, Lesovik 1989) }
$$

Interpretation. Binomial distribution with N attempts

$$
\begin{gathered}
p_{n}=\binom{N}{n} p^{n} q^{N-n} \\
\langle n\rangle=N p, \quad\left\langle\left\langle n^{2}\right\rangle\right\rangle=N p(1-p)
\end{gathered}
$$

Besides: For bias V the semi-classical count is $N=V T /(2 \pi)$.

The generating function of counting statistics

p_{n}
$\chi(\lambda)=\sum_{n \in \mathbb{Z}} p_{n} \mathrm{e}^{\mathrm{i} \lambda n}=\left\langle\mathrm{e}^{\mathrm{i} \lambda \Delta Q}\right\rangle$ $\log \chi(\lambda)$
probability of transfer of n electrons
moment generating function:
$\left\langle n^{k}\right\rangle=\left.(-\mathrm{i} d / d \lambda)^{k} \chi(\lambda)\right|_{\lambda=0}$
cumulant generating function

- For binomial statistics:

$$
\log \chi(\lambda, t)=\frac{V t}{2 \pi} \log \left((1-T)+\mathrm{e}^{\mathrm{i} \lambda} T\right)
$$

- For a random variable with outcomes α_{n} :

$$
\chi(\lambda)=\sum_{n \in \mathbb{Z}} p_{n} \mathrm{e}^{\mathrm{i} \lambda \alpha_{n}}
$$

Quantum mechanics and measurement

Hilbert space with vectors $|\psi\rangle$ (pure states) and operators, representing

- mixed state: $\rho \geq 0, \operatorname{tr} \rho=1$; pure if indecomposable, i.e. $\rho=|\psi\rangle\langle\psi|$ is rank 1 projection.
- observable $\boldsymbol{A}^{*}=\boldsymbol{A}=\sum_{i} \alpha_{i} P_{i}$ (spectral decomposition)
- evolution U unitary; $\rho \mapsto U_{\rho} U^{*}$

Measurement of A :

$$
\rho \mapsto \sum_{i} P_{i} \rho P_{i} \quad \text { ("collapse of the state") }
$$

with $\operatorname{tr}\left(P_{i} \rho P_{i}\right)=\operatorname{tr}\left(\rho P_{i}\right)$ probability of outcome α_{i}.
Two measurements of A, with evolution U in between.

$$
\rho \mapsto \sum_{i, j} P_{j} U P_{i} \rho P_{i} U^{*} P_{j}
$$

with $\operatorname{tr}\left(U^{*} P_{j} U P_{i} \rho P_{i}\right)$ probability of history $\left(\alpha_{i}, \alpha_{j}\right)$

Quantum mechanics and measurement (cont.)

Moment generating function for difference of outcomes
$\chi(\lambda)=\sum_{i, j} \operatorname{tr}\left(U^{*} P_{j} U P_{i} \rho P_{i}\right) \mathrm{e}^{\mathrm{i} \lambda\left(\alpha_{j}-\alpha_{i}\right)}=\sum_{i} \operatorname{tr}\left(U^{*} \mathrm{e}^{\mathrm{i} \lambda A} U P_{i} \rho P_{i}\right) \mathrm{e}^{-\mathrm{i} \lambda \alpha_{i}}$
If $[A, \rho]=0$, then: $P_{i} \rho P_{i}=P_{i} \rho$ (no collapse at 1st measurement) and

$$
\chi(\lambda)=\operatorname{tr}\left(U^{*} \mathrm{e}^{\mathrm{i} \lambda A} U \mathrm{e}^{-\mathrm{i} \lambda A} \rho\right)
$$

Charge and current

Consider the operators (on the appropriate Hilbert space of the system)

$Q(t)$	charge on the Right lead
$I(t)=\mathrm{i}[H, Q(t)]$	current through the junction

$$
Q(t)-Q(0)=\int_{0}^{t} d t^{\prime} l\left(t^{\prime}\right)
$$

ΔQ in quantum mechanics

$$
Q(t)-Q(0)=\int_{0}^{t} d t^{\prime} l\left(t^{\prime}\right)
$$

Single (?) measurement (Levitov, Lesovik 1992)

$$
\begin{gathered}
\Delta Q=Q(t)-Q(0) \\
\chi(\lambda, t)=\left\langle\mathrm{e}^{\mathrm{i} \lambda(Q(t)-Q(0))}\right\rangle \\
\left\langle\left\langle(\Delta Q)^{k}\right\rangle\right\rangle=\int_{0}^{t} d^{k} t\left\langle\left\langle l\left(t_{1}\right) \ldots l\left(t_{k}\right)\right\rangle\right\rangle
\end{gathered}
$$

($\left.d^{k} t=d t_{1} \ldots d t_{k}\right)$
But: $Q(t), Q(0)$ are based at different times; have integer spectrum, while $Q(t)-Q(0)$ does not. (This protocol not pursued.)

ΔQ in quantum mechanics (cont.)

$$
Q(t)-Q(0)=\int_{0}^{t} d t^{\prime} l\left(t^{\prime}\right)
$$

Two measurements (Levitov, Lesovik 1993)

- Measure charge $Q(0)$ in R at time $t=0$ and so prepare initial state $\langle\cdot\rangle$
- Wait till t
- Measure charge $Q(t)$ in R
- Transferred ΔQ is difference of the two measurements.
- ΔQ is an integer!

ΔQ in quantum mechanics (cont.)

Generating function:

$$
\chi(\lambda, t)=\left\langle\mathrm{e}^{\mathrm{i} H t} \mathrm{e}^{\mathrm{i} \lambda Q} \mathrm{e}^{-\mathrm{i} H t} \mathrm{e}^{-\mathrm{i} \lambda Q}\right\rangle \equiv\left\langle\mathrm{e}^{\mathrm{i} \lambda Q(t)} \mathrm{e}^{-\mathrm{i} \lambda Q}\right\rangle
$$

Proof. $\chi(\lambda, t)=\left\langle\mathrm{e}^{\mathrm{i} \lambda Q(t)}\right\rangle \mathrm{e}^{-\mathrm{i} \lambda q}$ with q : eigenvalue of $Q=Q(0)$ in
$\langle\cdot\rangle$
Relation to current: If $[Q, I]=0$

$$
\left\langle\left\langle(\Delta Q)^{k}\right\rangle\right\rangle=\int_{0}^{t} d^{k} t\left\langle\left\langle T\left(I\left(t_{1}\right) \ldots I\left(t_{k}\right)\right)\right\rangle\right\rangle
$$

Proof. $\chi(\lambda, t)=\left\langle\mathrm{e}^{\mathrm{i} H t} \mathrm{e}^{-\mathrm{i} H(\lambda) t}\right\rangle$ with

$$
\begin{aligned}
H(\lambda) & =\mathrm{e}^{\mathrm{i} \lambda Q} H \mathrm{e}^{-\mathrm{i} \lambda Q} \\
& =H-\mathrm{i} \lambda[H, Q]=H-\lambda I
\end{aligned}
$$

Dyson expansion for $\mathrm{e}^{\mathrm{i} H t} \mathrm{e}^{-\mathrm{i} H(\lambda) t}$

Outline

Quantum pumps: The scattering approach
 Quantization of charge transport
 Quantum pumps: The topological approach
 A comparison
 Counting statistics

The determinant for independent particles

Application to tunnel junction

Second quantization: from one to many particles

1-particle: Hilbert space \mathcal{H}, operator A many particles (fermions): Hilbert space

$$
\mathcal{F}(\mathcal{H})=\bigoplus_{n=0}^{\infty} \bigwedge^{n} \mathcal{H} \quad \text { (Fock space) }
$$

Operator, acting on $\bigwedge^{n} \mathcal{H}$

$$
\begin{aligned}
\Gamma(A) & =A \otimes \ldots \otimes A \\
d \Gamma(A) & =\sum_{i=1}^{n} 1 \otimes \ldots \otimes A \otimes \ldots \otimes 1
\end{aligned}
$$

(for independent evolutions)
(for additive observables)

For a trace class operator A

$$
\operatorname{Tr}_{\mathcal{F}(\mathcal{H})} \Gamma(A)=\operatorname{det}_{\mathcal{H}}(1+A)
$$

(Fredholm determinant)

Second quantization (cont.)

$0 \leq N \leq 1 \quad$ 1-particle density matrix; $N|\psi\rangle=\nu|\psi\rangle$ means "the 1-particle state $|\psi\rangle$ is occupied with probability ν in the many-particle state $\rho "$
Quasi-free state: Uncorrelated many-particle state determined by 1 -particle density matrix N

$$
\rho=\frac{\Gamma(M)}{Z} \quad(Z=\operatorname{Tr} \Gamma(M))
$$

with $N=M(1+M)^{-1}$, resp. $M=N(1-N)^{-1}$. In fact, on $\mathcal{F}[|\nu\rangle]=\oplus_{n=0}^{1} \wedge^{n}[|\nu\rangle]$,

$$
\frac{1_{0}+\frac{\nu}{\nu^{\prime}} 1_{1}}{1+\frac{\nu}{\nu^{\prime}}}=\nu^{\prime} 1_{0}+\nu 1_{1} \quad\left(\nu^{\prime}=1-\nu\right)
$$

Example:

$$
M=\mathrm{e}^{-\beta H}, \quad N=\left(1+\mathrm{e}^{\beta H}\right)^{-1} .
$$

Remark: $[N, A]=0$ implies $[\rho, d \Gamma(A)]=0$.

Main formula (Levitov, Lesovik)

Hypothesis: $[Q, N]=0$; means "state does not collapse under 1st measurement".
Then

$$
\chi(\lambda)=\operatorname{det}\left(1-N+\mathrm{e}^{\mathrm{i} \lambda U^{*} Q U} N \mathrm{e}^{-\mathrm{i} \lambda Q}\right)
$$

Derivation:

$$
\begin{aligned}
\chi(\lambda) & =\operatorname{Tr}\left(\Gamma(U)^{*} \mathrm{e}^{\mathrm{i} \lambda d \Gamma(Q)} \Gamma(U) \mathrm{e}^{\mathrm{i} \lambda d \Gamma(Q)} \rho\right) \\
& =\frac{\operatorname{Tr} \Gamma\left(U^{*} \mathrm{e}^{\mathrm{i} \lambda} U \mathrm{e}^{-\mathrm{i} \lambda Q} M\right)}{\operatorname{Tr} \Gamma(M)}=\frac{\operatorname{det}\left(1+U^{*} \mathrm{e}^{\mathrm{i} \lambda Q} U \mathrm{e}^{-\mathrm{i} \lambda Q} M\right)}{\operatorname{det}(1+M)} \\
& =\operatorname{det}\left(1-N+U^{*} \mathrm{e}^{\mathrm{i} \lambda Q} U \mathrm{e}^{-\mathrm{i} \lambda Q} N\right)
\end{aligned}
$$

A consequence

$$
\begin{aligned}
&\langle n\rangle=-\mathrm{i} \chi^{\prime}(0)=\operatorname{tr}(\underbrace{U^{*} Q U-Q}) N \\
& \Delta Q: \text { transmitted charge } \\
&\left\langle\left\langle n^{2}\right\rangle\right\rangle=-(\log \chi)^{\prime \prime}(0) \\
&=\operatorname{tr}(N(\Delta Q)(1-N) \Delta Q) \\
&=\underbrace{\operatorname{tr}\left(N(1-N)(\Delta Q)^{2}\right)}_{\text {thermal noise } \alpha \beta^{-1}}+\underbrace{\frac{1}{2} \operatorname{tr}(\mathrm{i}[\Delta Q, N])^{2}}_{\text {shot noise }}
\end{aligned}
$$

thermal noise: fluctuation in the source of particles shot noise: fluctuation in the transmission of particles (cf. Büttiker)

Questions

Is the determinant Fredholm?

$$
\chi(\lambda)=\operatorname{det}\left(1-N+\mathrm{e}^{\mathrm{i} \lambda U^{*} Q U} N \mathrm{e}^{-\mathrm{i} \lambda Q}\right)
$$

Is $Z<\infty$?
Yes, if both \bullet leads and \bullet energy range are finite.
But: Bounds on these quantities are physically irrelevant, because

- transport is across the dot (compact in space)
- transport occurs near the Fermi energy (compact in energy)
Hence: Such bounds ought not to be necessary mathematically.

A quick fix

$$
\chi(\lambda)=\operatorname{det}\left(1-N+\mathrm{e}^{\mathrm{i} \lambda U^{*} Q U} N \mathrm{e}^{-\mathrm{i} \lambda Q}\right)=\operatorname{det}\left(N^{\prime}+\mathrm{e}^{\mathrm{i} \lambda Q_{U}} N \mathrm{e}^{-\mathrm{i} \lambda Q}\right)
$$

with $N^{\prime}:=1-N$ occupation of hole states;
$Q_{U}:=U^{*} Q U$ (Heisenberg) evolution of Q.
Multiply determinant by

$$
" \operatorname{det}\left(\mathrm{e}^{-\mathrm{i} \lambda N_{U} Q_{U}}\right) \cdot \operatorname{det}\left(\mathrm{e}^{\mathrm{i} \lambda N Q}\right)=\mathrm{e}^{\mathrm{i} \lambda \operatorname{tr}\left(Q N-Q_{U} N_{U}\right)}=1 "
$$

Result: regularized determinant

$$
\chi(\lambda)=\operatorname{det}\left(\mathrm{e}^{-\mathrm{i} \lambda N_{U} Q_{U}} N^{\prime} \mathrm{e}^{\mathrm{i} \lambda N Q}+\mathrm{e}^{\mathrm{i} \lambda N_{U}^{\prime} Q_{U}} N \mathrm{e}^{-\mathrm{i} \lambda N^{\prime} Q}\right)
$$

- Particle-hole symmetry: $(N, \lambda) \leftrightarrow\left(N^{\prime},-\lambda\right)$
- Determinant is Fredholm under reasonable assumptions
- Analogy with $\operatorname{det}_{2}(1+A)=\operatorname{det}(1+A) \mathrm{e}^{-\operatorname{tr} A}$ (A HilbertSchmidt).

An illustrative example

$\log \chi(\lambda) \rightsquigarrow \log \chi(\lambda)+\mathrm{i} \lambda \operatorname{tr}\left(Q N-Q_{U} N_{U}\right)$: Only 1st cumulant affected.

Example: free particles in a lead.

dispersion relation

phase space

Before regularization: $\langle n\rangle=\operatorname{tr}\left(Q_{U}-Q\right) N$

- trace vanishes by compensation between + and -
- trace class norm (α area of \pm) diverges as $p_{F} \rightarrow \infty$

After regularization:

$$
\langle n\rangle=\operatorname{tr}\left(Q_{U}-Q\right) N+\operatorname{tr}\left(Q N-Q_{U} N_{U}\right)=\operatorname{tr} Q_{U}\left(N-N_{U}\right)
$$

- vanishes as operator.

A more fundamental approach

for systems with infinitely many degrees of freedom
Algebraic approach to quantum theory

- observables A : elements of C^{*}-algebra \mathcal{A}
- (mixed) states ω : positive, normalized linear functionals on \mathcal{A}

$$
\omega(A): \text { expectation of } A \text { in } \omega
$$

The GNS construction: Given a state ω there are

- a Hilbert space \mathcal{H}_{ω}
- a representation π_{ω} of \mathcal{A}
- a cyclic vector $\Omega_{\omega} \in \mathcal{H}_{\omega}$
such that

$$
\omega(A)=\left(\Omega_{\omega}, \pi_{\omega}(A) \Omega_{\omega}\right)
$$

Note: also mixed states are realized as vectors; then

$$
\underbrace{\overline{\pi_{\omega}(\mathcal{A})}} \quad \neq \quad \underbrace{\mathcal{B}\left(\mathcal{H}_{\omega}\right)}
$$

von Neumann algebra bounded operators (observables)

CAR-Algebra

(Recall: \mathcal{H} 1-particle Hilbert space with operators U, Q, N)

- Algebra $\mathcal{A}(\mathcal{H})$ generated by $a^{*}(f), a(f),(f \in \mathcal{H})$ with canonical anticommutation relations

$$
\left\{a(f), a^{*}(g)\right\}=\langle f \mid g\rangle, \quad\{a(f), a(g)\}=0
$$

- States: $0 \leq N \leq 1$ defines a quasi-free state ω by

$$
\omega\left(a^{*}(f) a(g)\right)=\langle g| N|f\rangle \quad \text { (\& Wick's lemma) }
$$

Note: the states in the example

$$
\begin{array}{ll}
N=0 & \text { vacuum } \\
N=\theta(-H) & \text { Fermi sea } \\
N=\left(1+\mathrm{e}^{\beta H}\right)^{-1} & \text { Fermi-Dirac distribution }
\end{array}
$$

cannot be realized in each other's GNS space.
E.g. for $N=0: \mathcal{H}_{\omega} \cong \mathcal{F}(\mathcal{H})$

A theorem

(Recall: \mathcal{H} 1-particle Hilbert space with operators U, Q, N) Under suitable and reasonable assumptions

1. The algebra automorphisms $a^{*}(f) \mapsto a^{*}(U f)$ and $a^{*}(f) \mapsto a\left(\mathrm{e}^{\left.\mathrm{i} \lambda Q_{f}\right)}\right.$ are unitarily implementable: There exists (non-unique) \widehat{U} and $\mathrm{e}^{\mathrm{i} \lambda \widehat{Q}}$ on \mathcal{H}_{ω} such that

$$
\widehat{U} \pi_{\omega}\left(a^{*}(f)\right)=\pi_{\omega}\left(a^{*}(U f)\right) \widehat{U} \quad \text { etc. }
$$

2. $\widehat{Q} \in \overline{\pi_{\omega}(\mathcal{A})}$ (observable meaning: renormalized charge)
3. The moment generating function

$$
\chi(\lambda):=\left(\Omega_{\omega}, \widehat{U}^{*} \mathrm{e}^{\left.\mathrm{i} \lambda \hat{Q} \widehat{U} \mathrm{e}^{-\mathrm{i} \lambda \hat{Q}} \Omega_{\omega}\right) .}\right.
$$

(not affected by the above non-uniqueness) is given by the regularized determinant seen before.

Methods: Shale-Stinespring, Araki, Jaksic-Pillet

Outline

> Quantum pumps: The scattering approach

> Quantization of charge transport

> Quantum pumps: The topological approach

> A comparison

> Counting statistics

> The determinant for independent particles

Application to tunnel junction

The essential description

$$
\begin{aligned}
& p=|t|^{2} \text { transmission probability } \\
& q=1-|t|^{2} \text { reflection probability }
\end{aligned}
$$

Energy independent scattering matrix

$$
S=\left(\begin{array}{ll}
\mathfrak{r} & \mathfrak{t}^{\prime} \\
\mathfrak{t} & \mathfrak{r}^{\prime}
\end{array}\right)
$$

for fermions with linear dispersion relation (left, right movers) and Fermi energies μ_{L}, μ_{R}.

A discrepancy about the third cumulant

- For single-step measurement of ΔQ :

$$
\left\langle\left\langle(\Delta Q)^{3}\right\rangle\right\rangle=\int_{0}^{t} d^{3} t\left\langle\left\langle I\left(t_{1}\right) \ldots I\left(t_{3}\right)\right\rangle\right\rangle=-2 T^{2}(1-T) \cdot(V t / 2 \pi)
$$

- For two-step measurement: $\left\langle\left\langle(\Delta Q)^{3}\right\rangle\right\rangle$ equals
- (Lesovik, Chtchelkatchev 2003)

$$
\int_{0}^{t} d^{3} t\left\langle\left\langle T\left(I\left(t_{1}\right) \ldots l\left(t_{3}\right)\right)\right\rangle\right\rangle=-2 T^{2}(1-T) \cdot(V t / 2 \pi)
$$

- Based on determinant (Lesovik, Levitov): Binomial result

$$
T(1-T)(1-2 T) \cdot(V t / 2 \pi)
$$

Same with the above regularization; same by (Salo, Hekking, Pekola 2006) by different means.

Experimental data (Reznikov et al. 2005)

$$
I=T \cdot V / 2 \pi
$$

FIG. 3: Measured third cumulant $S^{(3)}$ of the transmitted charge obtained separately for different current directions. (Markers are the same as in Fig. 2, the straight line is $S^{(3)}=$ $e^{2} 1$.) Upper inset: $S^{(3)} 2 s . I$ without amplifier nonlinearity correction; Lower inset: normalizod histogram of the linearly swept signal, used to calibrate the A / D converter (see text).

Result is for T small. Sign of slope is consistent with binomial alternative.

Discussion of hypotheses

Recall: the computation by means of $T\left(I\left(t_{1}\right) \ldots I\left(t_{k}\right)\right)$ relies on $[Q, I]=0$. Typical Hamiltonian for particles with linear dispersion:

$$
H=p \sigma_{z}+V(x) \quad \text { on } L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)
$$

($V=V^{*}$). Then

$$
\begin{gathered}
\mathrm{i}[H, x]=\sigma_{Z} \\
Q=\theta(x) 1, \quad \quad I=\mathrm{i}[H, Q]=\sigma_{Z} \delta(x)
\end{gathered}
$$

Hence $[Q, \Gamma]=0$.
But the Hamiltonian underlying the essential description is not typical!

Reconstructing the Hamiltonian

$$
S=\left(\begin{array}{ll}
\mathfrak{r} & \mathfrak{t}^{\prime} \\
\mathfrak{t} & \mathfrak{r}^{\prime}
\end{array}\right)
$$

H defined on $L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ through either

- ("shift and scatter")

$$
\left(\mathrm{e}^{-\mathrm{i} H t} \psi\right)(x)=(1+(S-1) \theta(0<x<t)) \psi(x-t) \quad(t>0)
$$

- (Falkensteiner, Grosse 1987) $H=p$ with boundary condition $\psi(0+)=\boldsymbol{S} \psi(0-)$
- (Albeverio, Kurasov 1997)

$$
H=p+2 \mathrm{i} \frac{S-1}{S+1} \delta(x) \quad\left(\delta=\left(\delta_{+}+\delta_{-}\right) / 2\right)
$$

Discussion of hypotheses (cont.)

With

$$
Q=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad I=\mathrm{i}[H, Q]
$$

one has

$$
[Q(t), I(t)]=\left(\left[Q, S^{*} Q S\right] \theta(-x)+\left[S Q S^{*}, Q\right] \theta(x)\right) \delta(x+t) \neq 0
$$

The hypothesis is not satisfied!

Back to the starting point

$$
\chi(\lambda, t)=\left\langle\mathrm{e}^{\mathrm{i} H t} \mathrm{e}^{\mathrm{i} \lambda Q} \mathrm{e}^{-\mathrm{i} H} \mathrm{t} \mathrm{e}^{-\mathrm{i} \lambda Q}\right\rangle=\left\langle\mathrm{e}^{\mathrm{i} \lambda Q(t)} \mathrm{e}^{-\mathrm{i} \lambda Q}\right\rangle=\left\langle T \mathrm{e}^{\mathrm{i} \lambda(Q(t)-Q)}\right\rangle
$$

Thus

$$
\begin{aligned}
\left\langle(\Delta Q)^{k}\right\rangle & =\left\langle T(Q(t)-Q)^{k}\right\rangle \\
& =\left.T\left(\left(Q\left(t_{1}\right)-Q\right) \ldots\left(Q\left(t_{k}\right)-Q\right)\right)\right|_{t_{1}=\ldots=t_{k}=t} \\
& =\left.\int_{0}^{t} d t_{1} \frac{\partial}{\partial t_{1}}\left\langle T\left(\left(Q\left(t_{1}\right)-Q\right) \ldots\left(Q\left(t_{k}\right)-Q\right)\right)\right\rangle\right|_{t_{2}=\ldots=t_{k}=t} \\
& =\int_{0}^{t} d^{k} t \frac{\partial}{\partial t_{k}} \cdots \frac{\partial}{\partial t_{1}}\left\langle T\left(\left(Q\left(t_{1}\right)-Q\right) \ldots\left(Q\left(t_{k}\right)-Q\right)\right)\right\rangle \\
& =\int_{0}^{t} d^{k} t \frac{\partial}{\partial t_{k}} \cdots \frac{\partial}{\partial t_{1}}\left\langle T\left(Q\left(t_{1}\right) \ldots Q\left(t_{k}\right)\right)\right\rangle
\end{aligned}
$$

Another time ordering

- Hence

$$
\left\langle\left\langle(\Delta Q)^{k}\right\rangle\right\rangle=\int_{0}^{t} d^{k} t\left\langle\left\langle T^{*}\left(I\left(t_{1}\right) \ldots I\left(t_{k}\right)\right)\right\rangle\right\rangle
$$

with T^{*} : Matthews' time ordering: time-derivative outside of the T-ordering (no assumption on $[Q, I]$).

$$
T^{*}\left(I\left(t_{1}\right) \ldots I\left(t_{k}\right)\right)=T\left(I\left(t_{1}\right) \ldots I\left(t_{k}\right)\right)
$$

+ contact terms supported at $t_{i}=t_{j}$

The discrepancy solved

In the context of the model Hamiltonian the expansion in contact terms of the third cumulant is

$$
\begin{aligned}
& \left\langle\left\langle(\Delta Q)^{3}\right\rangle\right\rangle= \\
& \int_{0}^{t} d^{3} t\left\langle\left\langle\hat{T}_{1} \widehat{T}_{2} \widehat{I}_{3}\right\rangle\right\rangle+3 \int_{0}^{t} d^{2} t\left\langle\left\langle\widehat{T}_{1}\left[\widehat{Q}_{2}, \widehat{T}_{2}\right]\right\rangle\right\rangle+\int_{0}^{t} d t_{1}\left\langle\left[\widehat{Q}_{1},\left[\widehat{Q}_{1}, \widehat{T}_{1}\right]\right]\right\rangle
\end{aligned}
$$

(with ${ }^{\wedge}$ reminding of second quantization).
It takes the form

$$
\begin{aligned}
\left\langle\left\langle(\Delta Q)^{3}\right\rangle\right\rangle & =\left(-2 T^{2}(1-T)+0+T(1-T)\right) \cdot(V t / 2 \pi) \\
& =T(1-T)(1-2 T) \cdot(V t / 2 \pi)
\end{aligned}
$$

Binomial result!

Computation of a contact term

- Initial state: fermionic, quasi-free with single-particle density matrix

$$
\rho=\left(\begin{array}{cc}
\theta\left(\mu_{L}-p\right) & 0 \\
0 & \theta\left(\mu_{R}-p\right)
\end{array}\right) \quad\left(V=\mu_{L}-\mu_{R}\right)
$$

Since $\rho=\rho^{2}$, the many-particle state $\langle\cdot\rangle$ is pure. Since $[Q, \rho]=0$, the $\langle\cdot\rangle$ is an eigenstate of \widehat{Q}.

- Second quantization based the GNS space of $\langle\cdot\rangle$:

$$
A \mapsto \widehat{A}
$$

for $[A, \rho] \in$ Hilbert-Schmidt (Shale-Stinespring). One has $\langle\widehat{\boldsymbol{A}}\rangle=0$ (vacuum substraction)

Computation of a contact term (cont.)

- In the Fock representation $(\rho=0): \widehat{A}=d \Gamma(A)$

$$
[\widehat{A}, \widehat{B}]=[d \Gamma(A), d \Gamma(B)]=d \Gamma([A, B])=\widehat{[A, B]}
$$

- In general, corrections by Schwinger terms

$$
\begin{aligned}
& {[\widehat{A}, \widehat{B}]=\widehat{[A, B]}+s(A, B) 1 } \\
s(A, B) & =\operatorname{tr}\left([\rho, A] \rho^{\prime}[B, \rho]\right)-\operatorname{tr}\left([\rho, B] \rho^{\prime}[A, \rho]\right) \quad\left(\rho^{\prime}=1-\rho\right) \\
& =\operatorname{tr}\left(\rho \boldsymbol{A} \rho^{\prime} B \rho\right)-\operatorname{tr}\left(\rho^{\prime} \boldsymbol{A} \rho \boldsymbol{B} \rho^{\prime}\right)
\end{aligned}
$$

In particular:

$$
\langle[\widehat{A}, \widehat{B}]\rangle=s(A, B)
$$

- $\widehat{A}(t)=\widehat{A(t)}+\mathrm{i} \int_{0}^{t} d t^{\prime} s\left(H, A\left(t^{\prime}\right)\right) 1$

Computation of a contact term (cont.)

In our case

$$
\begin{aligned}
\int_{0}^{t} d t_{1}\left\langle\left[\widehat{Q}\left(t_{1}\right),\left[\widehat{Q}\left(t_{1}\right), \widehat{I}\left(t_{1}\right)\right]\right]\right\rangle & \left.=\int_{0}^{t} d t_{1}\left\langle\widehat{Q\left(t_{1}\right)},\left[\widehat{Q\left(t_{1}\right)}, \widehat{I\left(t_{1}\right)}\right]\right]\right\rangle \\
& =\int_{0}^{t} d t_{1} s\left(Q\left(t_{1}\right),\left[Q\left(t_{1}\right), I\left(t_{1}\right)\right]\right) \\
& =T(1-T) \cdot(V t / 2 \pi)
\end{aligned}
$$

as announced

Summary

- The correct time ordering for the cumulants of charge ordering is T^{*}

$$
\left\langle\left\langle(\Delta Q)^{k}\right\rangle\right\rangle=\int_{0}^{t} d^{k} t\left\langle\left\langle T^{*}\left(I\left(t_{1}\right) \ldots l\left(t_{k}\right)\right)\right\rangle\right\rangle
$$

- In many cases the $*$ can be omitted. It can not in the simplest case of energy-independent, instantaneous scattering. The difference to the T ordering consists in contact (Schwinger) terms.

