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1 Quantum Many-Body Systems

1.1 The Hamiltonian

For a system of N particles, the Hamiltonian typically takes the form

HN =
N∑

i=1

p2i
2mi

+ V (x1, . . . xN )

where mi is the mass of particle i, pi ∈ R3 and xi ∈ R3 are its mo-
mentum and position, respectively, and V denotes the total potential
energy. Classically, H is a function on phase space, but in quantum me-
chanics it becomes a linear operator with the substitution pj = −i!∇j .
We shall choose units such that ! = 1 from now on.

The Hamiltonian HN is a linear operator on Hilbert space, which
is a suitable subspace of L2(R3N ), the square integrable functions of
N variables xi ∈ R3. Only a subspace is relevant physically, since for
two identical bosons, say i and j, there is the symmetry requirement

ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = ψ(x1, . . . , xj , . . . , xi, . . . xN )

For fermions, there is an additional minus sign, i.e., the wave function is
antisymmetric with respect to exchange of coordinates. For simplicity
of notation, we ignore here internal degrees of freedom of the particles,
like spin, but these could easily be taken into account by adding to the
coordinates xi these additional parameters.

The form of the potential energy depends on the physical system
under consideration. Typically, it is a sum of various terms, containing
one-particle potentials of the form

∑
i W (xi), corresponding to an ex-

ternal force, two-body interaction potentials
∑

i<j W (xi, xj) for pair-
wise interaction, or even some more complicated interactions involving
more than two particles at the same time. We will usually assume that

V (xi, . . . , xN ) =
N∑

i=1

W (xi) +
∑

1≤i<j≤N

v(|xi − xj |).
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1.2 Quantities of Interest

Given the Hamiltonian HN of a quantum systems, there are many
questions one can try to address. The first one might be concerning
its ground state energy, i.e., the lowest values of the spectrum, which
we denote by

E0(N) = inf specHN

If E0(N) is an eigenvalue, the corresponding ground state wave func-
tion ψ0 is determined by Schrödinger’s equation HNψ0 = E0(N)ψ0.

More generally, if the system is at some positive temperature T > 0,
one would like to compute the free energy of the system, given by

F = −T lnTr e−HN/T

We choose units such that Boltzmann’s constant equals 1, and small
often write T = 1/β. The trace is over the physical Hilbert space,
of course, respecting symmetry constraints arising form the indistin-
guishability of particles. The equilibrium state at temperature T is the
Gibbs state

#β = e−β(H−F )

It is normalized to have Tr #β = 1. For large particle number, it
is usually hopeless to try to calculate #β directly, but one will try
to investigate properties of the reduced n-particle density matrices,
obtained by taking the partial trace of #β over N − n variables.

It is often convenient not to fix the particle number N , but rather
work in the grand-canonical ensemble, where one takes a certain aver-
age over the number of particles in the system. For simplicity, consider
a system of just one species of particles. The N -particle Hilbert space,
HN , is then the set of square-integrable functions that are either to-
tally symmetric or antisymmetric under permutations, depending on
whether the particles are bosons or fermions.

In the grand-canonical ensembles, one has as Hilbert space the Fock
space

F =
∞⊕

N=0

HN

Here, H0 = C by definition, and the corresponding vector is called the
vacuum vector. As Hamiltonian on Fock space one simply takes

H =
∞⊕

N=0

HN

with HN the N -particle Hamiltonian. Typically, H0 = 0, i.e., the
vacuum has zero energy.
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For µ ∈ R, the grand canonical potential is defined as

J = −T lnTrFe
−β(H−µN)

where N denotes the number operator, i.e,

N =
∞⊕

n=0

n

Since H is particle number conserving, we can also write this as

J = −T ln
∑

N≥0

zNTrHN
e−βHN

where z = eβµ is called the fugacity.
The grand-canonical Gibbs state is

#β,µ = e−β(H−µN−J)

The chemical potential µ is adjusted to achieve a given average particle
number 〈N〉. The latter equals

〈N〉 = TrN#β,µ = −
∂

∂µ
J

1.3 Creation and Annihilation Operators on Fock
Space

On Fock space F , a particularly useful concept are the creation and
annihilation operators a†(f) and a(f), with f ∈ H1, the one-particle
Hilbert space. For any N ≥ 0, we have

a†(f) : HN → HN+1

i.e., it creates a particle. Likewise, a(f) annihilates a particle, i.e.,

a(f) : HN → HN−1

Explicitly, they are defined as follows. If ψN is an N -particle wave
function in HN ,

(
a†(f)ψN

)
(x1, . . . , xN+1) =

1√
N + 1

N+1∑

i=1

f(xi)ψN (x1, . . . , *xi, . . . , xN+1)

and

(
a(f)ψN

)
(x1, . . . , xN−1) =

√
N

∫

R3

f̄(xN )ψN (x1, . . . , xN−1, xN )dxN
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This definition works for bosons, for fermions one has to introduce
the appropriate (−1) factors to preserve the antisymmetry of the wave
functions. One readily checks that these operators satisfy a(f)† =
a†(f), i.e., a†(f) is the adjoint of a(f), as well as the canonical (anti-
)commutation relations

[a(f), a†(g)] = 〈f |g〉 , [a(f), a(g)] = 0 , [a†(f), a†(g)] = 0

Here, [ · , · ] denotes the usual commutator [A,B] = AB − BA for
bosons, while it is the anticommutator [A,B] = AB+BA for fermions.

Consider now a typical many-body Hamiltonian containing one-
and two-body terms. For h a one-body operator and W a two-body
operator, the N -particle Hamiltonian is thus of the form

HN =
N∑

i=1

hi +
∑

1≤i<j≤N

Wij

where the subscripts indicate what particles the operator acts on. Us-
ing creation and annihilation operators, the Fock space Hamiltonian
H =
⊕

N≥0 HN can conveniently be written as

H =
∑

i,j

〈ϕi|h|ϕj〉 a†iaj +
1

2

∑

i,j,k,l

〈ϕi ⊗ ϕj |W |ϕk ⊗ ϕl〉 a†ia
†
jakal

where {ϕi} is an orthonormal basis of H1, and a†i = a†(ϕi), ai = a(ϕi).
A possible choice of the basis {ϕi} is to diagonalize h, i.e.,

〈ϕi|h|ϕj〉 = eiδij

The number operator N is simply N =
∑

i a
†
iai.

In terms of the creation and annihilation operators, the reduced
n-particle density matrices γ(n) of a state on Fock space are defined
via the expectation values

〈f1 ⊗ · · · ⊗ fn|γ(n)|g1 ⊗ · · · ⊗ gn〉 = 〈a†(g1) . . . a†(gn)a(fn) . . . a(f1)〉

Since product functions span the whole n-particle space, this defines
γ(n) uniquely. For a state with a fixed particle number, the definition
agrees with the previous definition in the canonical ensemble using
partial traces (except for an overall normalization factor).

1.4 Ideal Quantum Gases

Consider now an ideal quantum system without interactions. The N -
particle Hamiltonian is simply HN =

∑N
i=1 hi, where, for example,

h =
1

2m
p2 = −

1

2m
∆
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on the cube [0, L]3 with appropriate boundary conditions. In par-
ticular, we assume that h has discrete spectrum. Let us denote the
eigenvalues of h by ei,

e0 ≤ e1 ≤ e2 ≤ . . .

On Fock space, we then have

H =
∑

i≥0

eia
†
iai

and also
βH − µN =

∑

i≥0

εia
†
iai

with εi = βei − µ.
We wish to calculate

lnTr e−
∑

i εia
†
iai

The spectrum of
∑

i εia
†
iai is of the form

∑
i εini, with ni ∈ {0, 1, 2, . . . }

for bosons, and ni ∈ {0, 1} for fermions. Summing over all possible oc-
cupation numbers is the same as summing over all eigenstates, hence
we have

Tr e−
∑

i εia
†
iai =
∏

i

∑

n

e−εin =
∏

i

{
(1 − e−εi)−1 bosons
1 + e−εi fermions

For bosons, we have to assume that εi > 0 for all i for the geometric
series to converge. In particular

lnTr e−
∑

i εia
†
iai =
∑

i

∓ ln(1 ∓ e−εi)

where − is for bosons and + for fermions.
Consider now an ideal gas in a cubic box of side length L, with

periodic boundary conditions. The spectrum of p2 = −∆ equals

(
2π

L

)2 (
n2
x + n2

y + n2
z

)

with (nx, ny, nz) ∈ Z3. The corresponding eigenstates are the plane
waves eip·x, with p ∈ ( 2π

L Z)3. The grand canonical potential (which
equals the negative of the pressure times the volume in this case) thus
equals

J = ±T
∑

p∈( 2π
L

Z)3

ln
(
1∓ e−β(p2−µ)

)

where we set the mass of the particles equal to 1/2 for simplicity.
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For bosons, we have to assume that µ < 0. This is not really a
restriction, however, as any particle number can be achieved even for
negative µ. In fact, the average particle number equals

〈N〉 = −
∂

∂µ
J =

∑

p∈( 2π
L

Z)3

1

eβ(p2−µ) ∓ 1︸ ︷︷ ︸
〈a†

pap〉

Here, the summands are just 〈a†pap〉, the average occupation number of
momentum p. As µ varies within (−∞, 0) (for bosons), and (−∞,∞)
(for fermions), clearly 〈N〉 various between 0 and +∞.

We now perform a thermodynamic limit L → ∞. The sum over
p can then be interpreted as a Riemann sum for the corresponding
integral. In fact,

1

L3

∑

p∈( 2π
L

Z)3

−→
1

(2π)3

∫

R3

dp

as L → ∞. The thermodynamic pressure of the system is thus

P = − lim
L→∞

J

L3
= ∓

T

(2π)3

∫

R3

ln
(
1∓ e−β(p2−µ)

)
dp

and the average density equals

# = lim
L→∞

〈N〉
L3

=
1

(2π)3

∫

R3

1

eβ(p2−µ) ∓ 1
dp. (1)

Let us know restrict our attention to the bosonic case, where there
is a minus sign in the denominator in (1). Notice that the density stays
bounded as µ → 0! I.e.,

#c(β) := lim
µ↗0

# =
1

(2π)3

∫

R3

1

eβp2 − 1
dp < ∞ (2)

since the integrand behaves like |p|−2 for small p, which is integrable
in 3 dimensions.

What is happening here? Recall that µ has to be chosen as to fix
the density # and, hence, has to depend on L, in general. If # < #c(β),
then µ(L) → µ < 0 in the thermodynamic limit. But when # ≥ #c(β),
µ(L) has to tend to zero as L → ∞. In this case, the limits L → ∞
and µ → 0 must be taken simultaneously and, in particular, do not
commute.

In fact, if # > #c(β), then µ is asymptotically equal to

µ =
(
−βL3(# − #c(β))

)−1
as L → ∞
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Figure 1: Particle density of an ideal quantum gas at infinite volume, as a
function of the chemical potential µ.

For this value of µ, we see that

lim
L→∞

1

L3
〈a†0a0〉 = lim

L→∞

1

L3

1

e−βµ − 1
= # − #c(β)

That is, the zero momentum state is occupied by a macroscopic frac-
tion of all the particles. This phenomenon is called Bose-Einstein
Condensation (BEC). It occurs for # ># c(β), i.e., for # bigger than
the critical density or, equivalently, for

T < Tc(#) =
4π

ζ
(3/2)2/3#2/3

since #c(β) = ζ(3/2)(4π)−3/2β−3/2. Here, ζ denotes the Riemann zeta
functions

ζ(z) =
∑

k≥1

k−z

I.e., BEC occurs below a critical temperature Tc(#).
We note that only the zero momentum mode is macroscopically

occupied, and the other occupations are much smaller. The smallest
positive eigenvalue of the Laplacian equals (2π/L)2, and

1

eβ(2π/L)2 − 1
∼ L2 0 L3 for large L.

BEC represents a phase transition in the usual sense, namely that
the thermodynamic functions exhibit a non-analytic behavior. Con-
sider, for instance, the free energy, which is given in a standard way
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as the Legendre transform of the pressure. Specifically, the free energy
per unit volume equals

f(β, #) = µ#+
T

(2π)3

∫

R3

ln
(
1− e−β(p2−µ)

)
dp (3)

where µ is determined by Eq. (1) if # <# c(β), and µ = 0 if # ≥ #c(β).
In the latter case, we see that f(β, #) does not actually depend on #,
and is constant for # > #c(β). In particular, f is not analytic. Intu-
itively, what is happening as one increases the density beyond #c(β)
is that all additional particles occupy the zero momentum mode and
hence do not contribute to the energy or the entropy, hence also not
the the free energy.

(b)(a)

µ

p(β, µ)

βa(β)
ρ

f(β, ρ)

−a(β)

ρc

Figure 2: The pressure and the free energy of the ideal Bose gas in three
dimensions.

We conclude this section by noting that the grand-canonical en-
semble is somewhat unphysical for the ideal Bose gas for # > #c(β),
because of large particle number fluctuations. One readily computes
that

〈np(np − 1)〉 = 2〈np〉2 (4)

for any p, where np = a†pap denotes the number of particles with mo-
mentum p. Note that (4) is independent of β and µ. It can be easily
checked from the explicit form of the Gibbs state, or follows from
Wick’s rule, for instance.

The factor 2 on the right side of (4) is crucial. It means that the
variance of the occupation number is of the same order is its value.
In particular, if there is a macroscopic occupation, also the variance is
macroscopic! By summing over p, we also see that

〈N(N − 1)〉 = 〈N〉2 +
∑

p

〈np〉2
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The last term of is of the order 〈N〉2 if and only if # > #c(β). That
is, there are macroscopically large particle number fluctuations in this
case. For real, interacting systems, such fluctuation will typically be
suppressed and this problem is not expected to occur.

The macroscopic particle number fluctuations in particular mean
that there is not a full equivalence of ensembles for the ideal Bose
gas. Nevertheless, working in the canonical ensemble will produce the
same free energy (3) and the same occupation numbers 〈np〉 in the
thermodynamic limit. In particular, the conclusion concerning BEC
remains the same in the canonical ensemble, although the analysis is
much more tedious. (See [2] or also Appendix B of [22].)

2 BEC for Interacting Systems

2.1 The Criterion for BEC

Recall the definition of the one-particle density matrix γ. For 〈 ·〉 a
state on Fock space,

〈g|γ|f〉 = 〈a†(f)a(g)〉

Note that γ is a positive trace class operator on the one-particle Hilbert
space H1, with

Tr γ =
∑

i

〈ϕi|γ|ϕi〉 =

〈
∑

i

a†iai

〉

= 〈N〉

This definition applies to any state on Fock space, not only thermal
equilibrium states. In particular, one can also consider states of definite
particle number, and hence recover the definition for the canonical
ensemble.

According to a criterion by Penrose and Onsager [17], BEC is said
to occur if γ has an eigenvalue of the order of 〈N〉 of large 〈N〉. The
corresponding eigenfunction is called the condensate wave function.

Since this definition involves large particle numbers 〈N〉, it refers,
strictly speaking, not to a single state but rather a sequence of states for
larger and larger system size. When one speaks about the occurrence
of BEC one hence always has to specify how various parameters depend
on this size.

The standard case where one would like to understand BEC is a
translation invariant system at given inverse temperature β and chem-
ical potential µ, in the limit that the system size L tends to infinity.
In this case, BEC means that

lim
L→∞

1

L3
sup

‖f‖=1
〈a†(f)a(f)〉β,µ

︸ ︷︷ ︸
largest eigenvalue of γ

> 0.
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For translation invariant systems, γ is also translation invariant and
hence has an integral kernel of the form

γ(x − y) =
1

L3

∑

p∈( 2π
L

Z)3
γp e

ip(x−y)

where γp denote the eigenvalues of γ. Moreover, for a Hamiltonian of
the form

H =
N∑

i=1

p2i + V (x1, . . . , xN )

it is also true that γ is positivity improving, meaning that it has a
strictly positive integral kernel γ(x − y), and hence γ0 > γp for all
p *= 0. Hence the largest eigenvalue is always associated to the constant
eigenfunction, and BEC can only occur in the zero momentum mode.

BEC is extremely hard to establish rigorously. In fact, the only
known case of an interacting, translation invariant Bose gas where
BEC has been proved in the standard thermodynamic limit is the
hard-core lattice gas. For completeness, we shall briefly describe it
in the following section.

2.2 The Hard-Core Lattice Gas

For a lattice gas, one replaces the continuous configuration space R3 of
a particle by the cubic lattice Z3. I.e., the one-particle Hilbert spaceH1

becomes +2(Z3) instead of L2(R3). Other types of lattices are possible,
of course, but we restrict our attention to the simple cubic one for
simplicity. The appropriate generalization of the Laplacian operator
on R3 is the discrete Laplacian

(∆ψ)(x) =
∑

e

(ψ(x+ e) − ψ(x)).

where the sum is over unit vectors e pointing to the nearest neighbors
on the lattice.

We assume that the interaction between particles takes place only
on a single site, and that it is sufficiently strong to prevent any two
particles from occupying the same site. In this sense, these are hard-
core particles. I.e., the interaction energy is zero if all particles occupy
different sites, and +∞ otherwise.

Since there is at most one particle at a site x, we can represent the
creation and annihilation operators of a particle at a site x as 2 × 2
matrices

a†x =

(
0 1
0 0

)
, ax =

(
0 0
1 0

)
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where the vector
(1
0

)
x
refers to the state where x is occupied, and

(0
1

)
x

to the state where x is empty. Also

nx = a†xax =

(
1 0
0 0

)

In other words, the appropriate Fock space for this system becomes

F =
⊗

x∈[0,L)3∩Z3

C
2
x

and the Hamiltonian (minus the chemical potential times N) equals
with

H = −
∑

〈x,y〉

a†xay − µ
∑

a†xax.

Here, 〈x, y〉 stands for nearest neighbor pairs on the lattice. The diag-
onal terms in the discrete Laplacian have been dropped for simplicity,
as they can be absorbed into the chemical potential µ.

Note that Fock space is finite dimensional! Moreover, the Hamil-
tonian looks extremely simple, as it is quadratic in the a†x and ax.
However, these are not the usual creation and annihilation operators
anymore, as they do not satisfy the canonical commutation relations.
In fact,

[ax, a
†
x] = 1− 2nx

and
axa

†
x + a†xax = 1

Therefore, at a given site, the system looks like it is fermionic, but for
different sites the operators still commute, as appropriate for bosons.

To gain some intuition about the behavior of the system, it is in-
structive to rewrite the Hamiltonian H in terms of spin operators.
Recall that for a spin 1/2 particle, the three components of the spin
are represented by the 1/2 times the Pauli matrices, i.e., by

S1 =
1

2

(
0 1
1 0

)
, S2 =

1

2

(
0 −i
i 0

)
, S3 =

1

2

(
1 0
0 −1

)

If we define, as usual, the spin raising and lowering operators by S± =
S1± iS2, we see that a† corresponds to S+, a to S−, and n to S+S− =
S3 + 1/2. Hence, up to an irrelevant constant

H = −
∑

〈x,y〉

S+
x S−

y − µ
∑

x

S3
x,

This is known as the (spin 1/2) XY model. The chemical potential
plays the role of an external magnetic field (in the 3-direction).

The following theorem establishes the existence of BEC in this sys-
tem at small enough temperature, for a particular value of the chemical
potential.
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Theorem 1 (Dyson, Lieb, Simon (1978) [4]). For µ = 0 and T small
enough,

lim
L→∞

1

L3

〈(
L−3/2

∑

x

S+
x

︸ ︷︷ ︸
a†
p=0

)(
L−3/2

∑

x

S−
x

︸ ︷︷ ︸
ap=0

)〉

> 0 (5)

We note that µ = 0 corresponds to half-filling, i.e., 〈N〉 = L3/2,
and there is a particle-hole symmetry, implying there are half as many
particles as there are lattice sites, on average. The result has only
been proved in this special case and it is not known how to extend it
to µ *= 0.

Eq. (5) can be rewritten as

lim
L→∞

1

L6

∑

x,y



〈S+
x Sy−〉 − 〈S+

x 〉〈S−
y 〉

︸ ︷︷ ︸
=0



 > 0

since 〈S+
x 〉 = 〈S−

y 〉 = 0 by rotation symmetry of H in the 1–2 plane.
What this says is that, on average, 〈S+

x Sy−〉 − 〈S+
x 〉〈S−

y 〉 > 0 even
though x and y are macroscopically separated. This property is known
as long-range order, and is equivalent to ferromagnetism of the spin
system. On average, the value of a spin is zero, but the spins tend
to align in the sense that if a spin at some point x points in some
directions, all other spins tend to align in the same direction.

The proof of Theorem 1 relies crucially on a special property of
the system known as reflection positivity. It extends earlier results
by Fröhlich, Simon and Spencer [5] on classical spin systems, where
this property was first used to proof the existence of phase transitions.
Reflection positivity holds only in the case of particle-hole symmetry,
i.e., µ = 0, and hence the proof is restricted to this particular case.

3 Dilute Bose Gases

3.1 The Model

In this section, we return to the description of Bose gases in continuous
space. For simplicity, let us consider a system of just one species of
particles, with pairwise interaction potential. In practice, the gas will
consist of atoms, but we can treat them as point particles as long as
the temperature and the density are low enough so that excitations of
the atoms are rare. The atoms will behave like bosons if the number of
neutrons in their nucleus is even, since then they will have an integer
total spin.
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The Hamiltonian for such a system is

HN =
N∑

i=1

−∆i +
∑

1≤i<j≤N

v (|xi − xj |) (6)

where we again choose units such that ! = 1 and m = 1/2. The par-
ticles are confined to a cubic box of side length L, and appropriate
boundary conditions have to be chosen to make −∆ a self-adjoint op-
erator. Usually these are Dirichlet boundary conditions (rigid walls)
or periodic boundary conditions (torus).

We assume that the interaction is of short range, by which we mean
that ∫

|x|≥R
v(|x|)dx < ∞

for some R ≥ 0. In other words, v should be integrable at infinity.
Locally it can be very strong, however. A typical example is a system
of hard spheres of diameter R0, where

v(|x|) =
{

+∞ if |x| ≤ R0

0 if |x| > R0

The interaction has to be sufficiently repulsive to ensure that the sys-
tem is a gas for low temperatures and densities. In particular, there
should be no bound states of any kind. This is certainly the case if
v(|x|) ≥ 0 for all particle separations |x|, which we shall assume hence-
forth.

So far it has not been possible to prove the existence of BEC (in
the usual thermodynamic limit) for such a system, even at low density
and for weak interaction v.1 So our goals have to be more modest here.
Let us first investigate the ground state energy of the system, i.e.,

E0(N) = inf specHN

We will be particularly interested in large systems, i.e., in the thermo-
dynamic limit

L → ∞
N → ∞

}
with # =

N

L3
fixed

At low density, one might expect that the ground state energy is
mainly determined by two-particle collisions, and hence

E0(N) ≈
N(N − 1)

2
E0(2)

That is, the energy should approximately equal the energy of just 2
particles in a large box, multiplied by the total number of pairs of
particles. We shall compute E0(2) in the following.

1It is possible to prove an upper bound on the critical temperature, however. That is,
once can establish the absence of BEC for large enough temperature, see [21].
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3.2 The Two-Particle Case

Consider now two particles in a large cubic box of side length L. Ig-
noring boundary conditions, the two-particle wave function will be of
the form ψ(x1, x2) = φ(x1 − x2). Hence

〈ψ|H2|ψ〉
〈ψ|ψ〉

=

∫ (
2|∇φ(x)|2 + v(|x|)|φ(x)|2

)
dx∫

|φ(x)|2dx

since the center-of-mass integration yields L3 both in the numerator
and the denominator. Moreover, since the interaction is short range
we can assume that φ(x) tends to a constant for large |x|, and we can
take the constant to be 1 without loss of generality. Hence

∫
|φ|2 = L3

to leading order in L.

Definition 1. The scattering length a is defined to be

a =
1

8π
inf
φ

{∫

R3

(
2|∇φ(x)|2 + v(|x|)|φ(x)|2

)
dx : lim

|x|→∞
φ(x) = 1

}

(7)

Note that integrability of v(|x|) at infinity is equivalent to the scatter-
ing length a being finite.

With this definition and the preceding arguments, we see that

E0(2) ≈
8πa

L3

for large L. Hence we expect that

E0(N) ≈
N(N − 1)

2
E0(2) ≈ 4πNa# for small # = N/L3

We will investigate the validity of this formula in the next subsection.
We note that the Euler-Lagrange equation for the minimization

problem (7) is
−2∆φ(x) + v(|x|)φ(x) = 0.

This is the zero-energy scattering equation. Asymptotically, as |x| →
∞, the solution is of the form

φ(x) ≈ 1−
a

|x|

with a the scattering length of v. This is easily seen to be an equivalent
definition of a, but we shall find the variational characterization (7) to
be more useful in the following.
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3.3 The Ground State Energy of a Dilute Gas

Consider the ground state energy per particle, E0(N)/N , of the Hamil-
tonian (6) in the thermodynamic limit

e0(#) = lim
N→∞

1

N
E0(N) with L3 = N/#

Based on the discussion above, we expect that

e0(#) ≈ 4πa#

for small density #. This is in fact true.

Theorem 2 (Dyson 1957, Lieb and Yngvason 1998).

e0(#) = 4πa#(1 + o(1))

with o(1) going to zero as # → 0.

The upper bound was proved by Dyson in 1957 [3] using a varia-
tional calculation. He also proved a lower bound, which was 14 times
too small, however. The correct lower bound was finally shown in 1998
by Lieb and Yngvason [15].

We remark that the low density limit is very different from the
perturbative weak-coupling limit. In fact, at low density the energy is
of a particle is very small compared with the the strength of v. The
interaction potential is hence very strong but short range. First order
perturbation theory, in fact, would predict a ground state energy of
the form

e0(#) =
#

2

∫
v(|x|)dx

This is strictly bigger than 4πa#, as can be seen from the variational
principle (7); (8π)−1

∫
v is the first order Born approximation to the

scattering length a.
The proof of Theorem 2 is too lengthy to be given here in full detail,

but we shall explain the main ideas. For the upper bound, one can use
the variational principle, which says that

E0(N) ≤
〈Ψ|HN |Ψ〉

〈Ψ|Ψ〉
(8)

for any Ψ. As a trial function that captures the right two-body physics,
one could try a function of the form

Ψ(x1, . . . , xN ) =
∏

1≤i<j≤N

φ(xi − xj).

The computation of the corresponding energy turns out to be rather
tricky, however. One of the reasons for this is that both numerator
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and denominator on the right side of (8) are exponentially small in
the particle number N , and hence cancellations have to be taken into
account very carefully. Dyson in fact used a slightly different form of
the trial function, and his computation of the upper bound fills several
pages.

Before explaining the main ideas in the lower bound by Lieb and
Yngvason, let us give some intuition as to why this is a hard problem.
It is related to the relevant length scales in the system. Since the energy
particle is of the order of a#, the associated uncertainty principle length
+, obtained by setting this energy equal to +−2, equals

+ ∼
1

a#

At low density #, this is

+ ∼
1

√
a#

3 #−1/3

︸ ︷︷ ︸
mean interparticle separation

3 a︸︷︷︸
interaction length

.

Thus, the typical wave functions of a particle is necessarily spread
out over a region much bigger than the mean particle distance. The
particles hence completely lose their individuality, and behave very
quantum (i.e., non-classical) in this sense. Fermions, on the other
hand, behave much more classical, since for them + ∼ #−1/3.

The proof of the lower bound on E0(N) contains two main steps.
First, one would like to replace the hard interaction potential v by a
soft one, at the expense of kinetic energy. This softer interaction will
have a range R, with a 0 R 0 #−1/3. Specifically, consider x2, . . . , xN

to be fixed for the moment, and assume also that |xj − xk| ≥ 2R for
all j, k ≥ 2. I.e., assume that the balls BR(xj) of radius R centered at
xj are non-overlapping. Then

∫ 

|∇1ψ|2 + 1
2

∑

j≥2

v(|x1 − xj |)|ψ|2


 dx1

≥
∑

j≥2

∫

BR(xj)

(
|∇1ψ|2 + 1

2v(|x1 − xj |)|ψ|2
)
dx1

≥
∑

j≥2

∫
UR(x1 − xj)|ψ|2dx1, (9)

where

UR(x) =

{
e(a,R) |x| ≤ R

0 |x| > R
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and e(a,R) is the lowest eigenvalue of −∆+ 1
2v on BR, with Neumann

boundary conditions. The latter is easily seen to be

e(a,R) ≈
4πa

R3
for a 0 R (10)

as we have already argued in Subsection 3.2.
This is the desired replacing of v by the soft potential UR. Repeat-

ing the above argument for all other particles, we conclude that

HN ≥
∑

i,=j

UR(xi − xj)χ (11)

where χ is a characteristic function that makes sure that the balls
above do not intersect. I.e., χ removes three-body collisions. In other
words, when three particles come close together, we just drop part
of the interaction energy. Since v ≥ 0, this is legitimate for a lower
bound.

The soft potential UR now predicts the correct energy in first order
perturbation theory. In fact, for a constant wave function, the expected
value of the right side of (11) is approximately equal to 4πaN2/L3, with
small corrections coming from χ, the region close to the boundary of
the box [0, L]3, as well as the fact that (10) is only valid approximately.

To make this perturbative argument rigorous, one keeps a bit of
the kinetic energy, and uses

HN ≥ −ε
N∑

i=1

∆i + (1 − ε)
∑

i,=j

UR(xi − xj)χ (12)

(using positivity of v). First order perturbation theory can easily be
seen to be correct if the perturbation is small compared to the gap
above the ground state energy of the unperturbed operator. The gap
in the spectrum of −ε

∑N
i=1∆i above zero is of the order ε/L2, which

has to be compared with aN#. That is, if

L3a#2 0
ε

L2
, or L5 0

ε

a#2
(13)

then the second term in (12) is truly a small perturbation to the first
term and first order perturbation theory can be shown to yield the
correct result for the ground state energy.

Condition (13) is certainly not valid in the thermodynamic limit.
To get around this problem, one divides the large cube [0, L]3 into
many small cubes of side length +, with + satisfying

+5 0
ε

a#2
= #−5/3 ε

a#1/3
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For an appropriate choice of ε, the last fraction is big, hence + can be
chosen much larger than the mean particle spacing #−1/3.

Dividing up space and distributing particles optimally over the cells
gives a lower bound to the energy, due to the introduction of additional
Neumann boundary conditions on the boundary of the cells. I.e.,

E0(N,L) ≥ min
{ni}

∑

i

E0(ni, +)

where the minimum is over all distribution of the N =
∑

i ni particles
over the small boxes. Since the interaction is repulsive, it is best to
distribute the particles uniformly over the boxes. Hence

E0(N,L) ≥
(

+

L

)3
E0(#+

3, +)

For our choice of +, we have E0(#+3, +) ≈ 4πa#2+3, as explained above,
and hence

E0(N,L) ≈
(

+

L

)3
4πa#2+3 = 4πaN#

This concludes the proof, or at least the sketch of the main ideas.

3.4 Further Rigorous Results

Extending the method presented in the previous subsection, further
results about the low-density behavior of quantum gases have been
proved. These include

• Two-Dimensional Bose Gas. For a Bose gas in two spatial
dimensions, it turns out that [16]

e0(#) =
4π#

|ln(a2#)|
for a2# 0 1

An interesting feature of this formula is that it does not satisfy
E0(N) ≈ 1

2N(N − 1)E0(2), as it does in three dimensions. The
reason for the appearance of the logarithm is the fact that the
solution of the zero energy scattering equation

−∆φ(x) + 1
2v(|x|)φ(x) = 0

in two dimensions does not converge to a constant as |x| → ∞,
but rather goes like ln(|x|/a), with a the scattering length.

• Dilute Fermi Gases. For a (three-dimensional) Fermi gas at
low density #, one has [11]

e0(#) =
3

5

(
6π2

q

)2/3
#2/3 + 4πa

(
1 −

1

q

)
#+ higher order in #
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Here, q is the number of spin states, i.e., the fermions are con-
sidered to have spin 1

2 (q − 1). The first term is just the ground
state energy of an ideal Fermi gas. The leading order correction
due to the interaction is the same as for bosons, except for the
presence of the additional factor (1− q−1). Its presence is due to
the fact that the interaction between fermions in the same spin
states is suppressed, since for them the spatial part of the wave
function is antisymmetric and hence vanishes when the particles
are at the same location.

A similar result can also be obtained for a two-dimensional Fermi
gas [11].

• Bose Gas at Positive Temperature. For a dilute Bose gas at
positive temperature T = 1/β, the natural quantity to investigate
is the free energy. For an ideal Bose gas, the free energy per unit
volume is given by (3), and we shall denote this expression by
f0(β, #). For an interaction gas, one has

f(β, #) = f0(β, #)︸ ︷︷ ︸
ideal gas

+4πa
(
2#2 − [# − #c(β)]

2
+

)
+ higher order

(14)
and this formula is valid for a3# 0 1 but β#2/3 ! O(1). Here,
#c(β) is the critical density for BEC of the ideal gas, given in
(2), and [ · ]+ denotes the positive part. That is, [# − #c(β)]+ is
nothing but the condensate density (of the ideal gas).

Since #c(β) → 0 as β → ∞, (14) reproduces the ground state
energy formula 4πa#2 in the zero-temperature limit. Above the
critical temperature, i.e., for # < #c(β), the leading order cor-
rection is 8πa#2 instead of 4πa#2. The additional factor 2 can
be understood as arising from the symmetry requirement on the
wavefunctions. Because of symmetrization, the probability that
2 bosons are at the same locations is twice as big than on average.
This applies only to bosons in different modes, however, since if
they are in the same mode, symmetrization has no effect. Hence
the subtraction of the square of the condensate density, which
does not contribute to the factor 2.

The lower bound on f(β, #) of the form (14) was proved in [20],
and the corresponding upper bound in [24]. Both articles are
rather lengthy and involved, and there are lots of technicalities
to turn the above simple heuristics into rigorous bounds. A cor-
responding result can also be obtained for fermions, as was shown
in [19].

For further results and more details, we refer the interested reader
to [12].
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3.5 The Next Order Term

One of the main open problems concerning the ground state energy
of a dilute Bose gas concerns the next order term in an expansion for
small #. It is predicted to equal

e0(#) = 4πa#

(
1 +

128

15
√

π

(
a3#
)1/2

+ higher order

)
(15)

This formula was first derived by Lee-Huang-Yang [7], but is essen-
tially already contained in Bogoliubov’s famous 1947 paper [1]. The
correction term in (15) does not have a simple heuristic explanation,
but is a truly quantum-mechanical many-body correlation effect.

The way Bogoliubov arrived at this prediction is the following. The
starting point is the Hamiltonian on Fock space. We use plane waves
as a basis set, and assume periodic boundary conditions. Then

H =
∑

p

p2a†pap +
1

2V

∑

p,r,s

v̂(p)a†s+pa
†
r−paras

where V = L3 is the volume and

v̂(p) =

∫

R3

v(|x|)e−ip·xdx

denotes the Fourier transform of v. All sums are over (2π
L Z)3. Bogoli-

ubov introduced two approximations, based on the assumption that
in the ground state most particles occupy the zero momentum mode.
For this reason, one first neglects all terms in H that are higher than
quadratic in a†p and ap for p *= 0. Second, one replaces all a†0 and a0 by

a number
√
N0, since these operators are expected to have macroscopic

values, while there commutator is only one and hence negligible.
The resulting expression for H is the Bogoliubov Hamiltonian

HB =
N2 − (N − N0)2

2V
v̂(0)

+
∑

p ,=0

[(
p2 +

N0

V
v̂(p)

)
a†pap +

N0

2V

(
a†pa

†
−p + apa−p

)]
(16)

This Hamiltonian is now quadratic in creation and annihilation oper-
ators, and can be diagonalized easily with the help of a Bogoliubov
transformation. The resulting expression for the ground state energy
per particles in the thermodynamic limit is

4π#(a0 + a1) + 4π#a0
128

15
√

π

(
a30#
)1/2

+ higher order in # (17)
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where a0 and a1 are, respectively, the first and second order Born
approximation to the scattering length a. Explicitly,

a0 =
1

8π

∫

R3

v(|x|)dx

and

a1 = −
1

(8π)2

∫

R6

v(|x|)v(|y|)
|x − y|

dx dy

Moreover, in the ground state
〈
∑

p ,=0

a†pap

〉

≈ N
√
a3#

hence (N − N0)2 ≈ N2a3# is negligible to the order we are interested
in.

The expression (17) looks like an expansion of e0(#) simultaneously
in small density and weak coupling. It is hence reasonable to expect
the validity of (15) without the weak coupling assumption. The proof
of this fact is still an open problem, however. For smooth interaction
potentials, an upper bound of the correct form was recently proved
in [23]. There was also some recent progress in [6] concerning the
lower bound, where it was shown that Bogoliubov’s approximation is
correct, as far as the ground state energy is concerned, if one is allowed
to rescale the interaction potential v with # is a suitable way.

We remark that the Bogoliubov Hamiltonian (16) not only gives a
prediction about the ground state energy, but also about the excitation
spectrum. Diagonalizing HB leads to an excitation spectrum of the
form √

p4 + 2p2#v̂(p)

which is linear for small momentum p. The non-zero slope at p = 0 is
in fact extremely important physically and has many interesting con-
sequences, concerning superfluidity, for instance. It is also confirmed
experimentally. A rigorous proof that the Bogoliubov approximation
indeed predicts the correct low energy excitation spectrum is still lack-
ing, however.

4 Dilute Bose Gases in Traps

4.1 The Gross-Pitaevskii Energy Functional

Actual experiments on cold atomic gases concern inhomogeneous sys-
tems, since the particles are confined to a trap with soft walls. Let us
extend the analysis of the previous sections to see what happens in the
inhomogeneous case.
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Let V (x) denote the trap potential, and #(x) = |φ(x)|2 the particle
density at a point x ∈ R3. If V varies slowly, we can use a local density
approximation and assume the validity of the formula 4πa#2 for the
energy density of a dilute gas even locally. In this way, we arrive at
the expression

EGP(φ) =

∫

R3

|∇φ(x)|2dx+

∫

R3

V (x)|φ(x)|2dx+ 4πa

∫

R3

|φ(x)|4dx

(18)
which is known as the Gross-Pitaevskii (GP) functional. The last two
terms are simply the trap energy and the interaction energy density of
a dilute gas in the local density approximation. The first gradient term
is added to ensure accuracy even at weak or zero interaction. In fact,
for an ideal, a = 0 and hence (18) is certainly the correct description
of the energy of the system in this case.

Minimizing (18) under the normalization constraint
∫
|φ(x)|2dx =

N leads to the GP energy

EGP(N, a) = min

{
EGP(φ) :

∫
|φ(x)|2dx = N

}
(19)

Using standard techniques of functional analysis (see Appendix A of
[13]) one can show that there is a minimizer for this problem, which
is moreover unique up to a constant phase factor. This holds under
suitable assumptions on the trap potential V (x), e.g., if V is locally
bounded and tends to infinity as |x| → ∞. The minimizer satisfies the
corresponding Euler-Lagrange equation

−∆φ+ V φ+ 8πa|φ|2φ = µφ,

which is a nonlinear Schrödinger equation called the GP equation. The
chemical potential µ equals ∂EGP/∂N and is the appropriate Lagrange
parameter to take the normalization condition on φ into account.

Based on the discussion above, one would expect that

E0 ≈ EGP

and also
#0(x) ≈ |φGP(x)|2

where E0 and #0 are the ground state energy and corresponding particle
density, respectively. This approximation should be valid if V varies
slowly and the gas is sufficiently dilute.

Notice that the GP energy EGP(N, a) and the corresponding min-
imizer φGP

N,a satisfy the simple scaling relations

EGP(N, a) = NEGP(1, Na) and φGP
N,a(x) =

√
NφGP

1,Na(x)
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i.e., Na is the only relevant parameter for the GP theory. In partic-
ular, for the purpose of deriving the GP theory from the many-body
problem, it makes sense to take N large while Na is fixed. The latter
quantity should really be thought of as Na/L, where L is the length
scale of the trap V . Hence a/L ∼ N−1, i.e., V varies indeed much
slower that the interaction potential. We shall choose units to make
L = 1, which simplifies the notation.

Since V is now fixed, we have to rescale the interaction potential
v. The appropriate way to do this is to write

va(|x|) =
1

a2
w(|x|/a)

for some fixed w. It is then easy to see that va has scattering length a
if w has scattering length 1. The appropriate many-body Hamiltonian
under consideration is thus

HN =
N∑

i=1

(−∆i + V (xi)) +
∑

i<j

va(|xi − xj |) .

In this way, a enters as a parameter which can now be varied with
N . In particular, the ground state energy E0 = inf specHN is now a
function of N and a. We shall therefore write E0(N, a), but suppress
the dependence on N and a of the ground state density #0(x) in the
notation for simplicity.

Theorem 3 (Lieb-S-Yngvason ’00 [13]).

lim
N→∞

E0(N, g/N)

N
= EGP(1, g) for any g ≥ 0

In the same limit

lim
N→∞

1

N
#0(x) =

∣∣φGP
1,g (x)

∣∣2

Note that in the limit under consideration a3#̄ ∼ N−2, where #̄ ∼ N
denotes the average density. In particular, the gas is very dilute if
g = Na is fixed. The result of Theorem 3 is actually uniform in g as
long a3#̄ → 0 as N → ∞. I.e., g is allowed to go to ∞ with N at a
suitable rate, as long as the gas stays dilute.

The proof of Theorem 3 is similar to the homogeneous case, and
uses the same ideas in the lower bound. In particular, space is divided
up into small boxes and the particles are then distributed optimally
over these boxes. In the inhomogeneous case consider here, the distri-
bution will be non-uniform, of course.
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4.2 BEC of Dilute Trapped Gases

So far the discussion has focused on the ground state energy and the
corresponding particle density. But what about BEC? As discussed in
Section 2, BEC is a property of the reduced one-particle density matrix
of the system. Specifically, if Ψ0 is the ground state of HN , then the
one-particle density matrix γ is the operator on L2(R3) with integral
kernel

γ0(x, x
′) = N

∫
Ψ0(x, x2, . . . , xN )Ψ0(x

′, x2, . . . , xN )∗dx2 · · · dxN

Recall that γ is a positive trace-class operator, with Tr γ = N .

Theorem 4 (Lieb-S ’02 [9]). In the same limit as in Theorem 3

lim
N→∞

1

N
γ0 =
∣∣φGP

1,g

〉 〈
φGP
1,g

∣∣

What the theorem says is that there is complete BEC, in the sense
that the largest eigenvalue of γ0, divided by N , is not only non-zero
but actually equal to one in the dilute limit considered. I.e., the one-
particle density matrix becomes a rank-one projection in the limit, just
like for a non-interacting gas. The condensate wave function φGP

1,g still
depends on the interacting strength via g, however, and might have
very little overlap with the non-interacting state at g = 0 if g is large.

Theorem 4 represents the only known case of a continuous system
with genuine interactions where BEC has been proved. The proof is so
far restricted to zero temperature and to the very dilute limit where
a3#̄ ∼ N−2 as N → ∞.

Before discussing the proof of Theorem 4, we shall first generalize
the setting in a non-trivial way by allowing the system to rotate about
a fixed axis. Theorem 4 can thus be considered as a special case of a
more general result to be discussed next.

4.3 Rotating Bose Gases

An interesting property of dilute cold Bose gases is their response to
rotation. In fact, rotating Bose-Einstein condensates are nowadays
routinely created in the lab, by stirring the system much like coffee
with a spoon.

Even though the system under consideration is now rotating, we
can still think of it as being at equilibrium if we go to the rotating
frame of reference. Just like in classical mechanics, the only effect of
this transformation on the Hamiltonian is to add a term proportional
to the total angular momentum. More precisely,

HN −→ HN − Ω · L
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where Ω ∈ R3 denotes the angular velocity (having an axis and a

magnitude) and L =
∑N

i=1 Li denotes the total angular momentum of
the system.

In the experiments on rotating gases, one observes the appearance
of quantized vortices, related to the superfluid properties of the system.
This is schematically sketched in Figure 3.

Figure 3: Quantized vortices in a rotating Bose condensate, show-
ing up as holes in the density. More and more vortices appear as
the angular velocity is increased. For actual snapshots of experiments,
see http://jila.colorado.edu/bec/hi res pic album macromedia or
http://www.bec.nist.gov/gallery.html.

The quantized vortices can also be seen by minimizing the appro-
priate GP functional, which now reads

EGP(φ) = 〈φ |−∆+ V (x) − Ω · L|φ〉 + 4πa

∫

R3

|φ(x)|4dx

with L = −ix∧∇, as usual. In order for the confining force to overcome
the centrifugal force, we have to assume that

V (x) −
1

4
|Ω ∧ x|2 (20)

is bounded below and goes to infinity at infinity. Under this condition,
one can still prove the existence of a minimizer of the GP functional. In
general it will not be unique anymore, however. This non-uniqueness
is related to spontaneous symmetry breaking. In fact, if V is rotation
symmetric about the Ω axis, i.e, [V,Ω · L] = 0, then EGP is invariant
under rotations about this axis. In general, a minimizer φGP will not
have this symmetry, however, due to the appearance of quantized vor-
tices. If there are more than one, these obviously can not be arranged
in a symmetric way. I.e, in general we expect a whole continuum of
minimizers in the case the GP functional is rotation symmetric.

The N -body Hamiltonian under consideration now is

HN =
N∑

i=1

(−∆i + V (xi) − Ω · Li) +
∑

i<j

va(|xi − xj |) .
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It ground state energy will be denotes by E0(N, a,Ω).

Theorem 5 (Lieb-S ’06 [10]). For any g ≥ 0 and Ω ∈ R3 (subject to
the constraint that (20) in bounded from below and goes to infinity at
infinity)

lim
N→∞

E0(N, g/N,Ω)

N
= EGP(1, g,Ω)

Moreover, up to a subsequence, the one-particle density matrix of a
ground state (or any approximate ground state, in fact) satisfies

lim
N→∞

1

N
γ =

∫
dµ
∣∣φGP
〉 〈

φGP
∣∣ (21)

where dµ is a probability measure on the set of minimizers of EGP.

By an approximate minimizer we mean a state that has the same
energy as the ground state energy, to leading order. In other words, a
state with energy equal to

lim
1

N
〈HN 〉 = EGP(1, g,Ω)

in the limit N → ∞, Na → g.
Eq. (21) is the natural generalization of complete BEC in the case

of non-uniqueness of GP minimizers. Because of the linearity of quan-
tum mechanics, the best one can hope for is a convex combination of
completely condensed states. In fact, (21) can also be seen as estab-
lishing the spontaneous symmetry breaking mentioned earlier. Under
an infinitesimal perturbation, the GP functional will generically have
a unique minimizer, and Theorem 5 in this case implies that there is
then complete BEC in the usual sense.

We note the the bosonic symmetry requirement on the N -particle
wave functions is crucial for Theorem 5 to hold. In contrast, for the
discussion of the ground state of non-rotating systems, Bose symmetry
does not have to be enforced explicitly, it comes out automatically as
the ground state of an operator of the form −∆ + W (x) is always
unique and positive and hence can only be permutation symmetric.
For rotating systems, this is generally not the case, and Bose symmetry
can not be ignored.

4.4 Main Ideas in the Proof

We split the proof of Theorem 5 into three parts.
Step 1. The first step is again to try to replace the hard interaction

potential va(|x|) by a softer one, UR(|x|), at the expense of some kinetic
energy. We must not use up all the kinetic energy as we did in the
homogeneous case, however, since we still need to obtain the gradient
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term in the GP functional. The key idea is to split the kinetic energy
into a high momentum and a low momentum part. Only the high
momentum part |p| ≥ pc will be needed to achieve the replacement
va → UR, while the low momentum part |p| ≤ pc will kept as it is
needed in the GP functional. We will, in fact choose

1 0 pc 0
1

R
(22)

The first condition implies that only momentum irrelevant for the GP
functional are being used, while the second makes sure that all mo-
mentum relevant on the length scale of UR are actually employed. The
crucial Lemma that improves (9) is the following. Its proof is in [11].

Lemma 1. Let χBR(0) denote the characteristic function of the ball of
radius R centered at the origin. For any 0 < ε< 1,

−∇ · ξ(p)χBR(0)(x)ξ(p)∇ +
1

2
v(|x|) ≥ (1 − ε)UR(|x|) −

1

ε
wR(x) (23)

where

wR(x) =
2a

π2
fR(x)

∫

R3

fR(y)dy

and fR(x) = sup|y|≤R |h(x − y)− h(x)|, ĥ(p) = 1 − ξ(p).

The function ξ is chosen to be a smooth characteristic function of
the set {|p| ≥ pc}. Hence the first term in (23) is a version of the
Laplacian that has been restricted to high momentum and localized to
a Ball of radius R (centered at the origin). The price one has to pay
for the cut-off ξ is the error term wR, which is supported also outside
the ball but can be made to decay very fast by choose ξ smooth. For
our choice of pc in (22), it will be negligible compared to UR.

Lemma 1 implies the operator lower bound

HN ≥
N∑

i=1

(
−∆i(1 − ξ(pi)

2) + V (x) − Ω · Li

)

+
∑

i,=j

(
(1 − ε)UR(|xi − xj |) −

1

ε
wR(|xi − xj |)

)
χ (24)

where χ is again a characteristic function that excludes three- and more
particle collisions.

Step 2. In order to proceed, we want to get rid of both the wR

term and the characteristic function χ in (24). For this purpose, we
need some a priori bounds that tell us that the expected values of
wR and 1 − χ in the ground state of HN are not too big. For this
purpose, we obtained some rough bounds on the three-particle density
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of a ground state of HN , using path integrals. These bounds are of the
form 〈

f(x1, x2, x3)
〉
≤ Λ(α, f) eα(E0(N)−E0(N−3))

where 〈 ·〉 denotes expectation in the zero-temperature state, f is an
arbitrary positive bounded function, α > 0 is arbitrary and Λ(α, f)
denotes the largest eigenvalue of the operator

√
fe−α(−∆1−∆2−∆3+V (x1)+V (x2)+V (x3))

√
f

on L2(R9). This bound is certainly not optimal, but suffices to show
that the terms in question due not contribute to the ground state
energy to the order we are interested. I.e., we conclude that

inf specHN ≥ inf spec H̃N − δN

where δ → 0 in the limit considered. Moreover,

H̃N =
N∑

i=1

(
−∆i(1 − ξ(pi)

2) + V (x) − Ω · Li

)
+
∑

i,=j

UR(|xi−xj |) (25)

That is, we have managed to genuinely replace the hard interaction
potential va by the soft one UR, at the expense of the high-momentum
part of the kinetic energy, as well as a minor shift in the ground state
energy.

Step 3. Let us denote the one-particle part of the Hamiltonian
H̃N by h for simplicity, i.e.,

h = −∆(1 − ξ(p)2) + V (x) − Ω · L

In second quantized form, using as a basis the eigenstates of h, we have

H̃ =
∑

i

〈ϕi|h|ϕi〉a†iai +
∑

ijkl

〈ϕi ⊗ ϕj |UR|ϕk ⊗ ϕl〉a†ia
†
jakal (26)

Notice that if we ignore all commutators between the a†i and ai and
treat them as numbers, z∗i and zi, respectively, (26) becomes

〈Φ|h|Φ〉 +
∫

R6

|Φ(x)|2UR(|x − y|)|Φ(y)|2 dx dy

with
Φ(x) =

∑

i

ziϕi(x)

This is essentially the GP functional, except for the cutoff in the kinetic
energy, which is irrelevant for pc 3 1, and the fact that the interaction
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is UR instead of 4πaδ. Since R 0 1, however, and
∫
UR = 4πa, UR is

an approximate δ function with the correct coefficient.
In other words, the GP functional emerges from the many-body

Hamiltonian on Fock space in a classical limit, replacing all the creation
and annihilation operators by complex numbers. In this sense, GP
theory is a classical field approximation to the quantum field theory
defined by H̃. Note that this is only true for the low momentum part,
however. It is important that we have already completed Step 1 above
to replace the true interaction potential va by UR. If we had not done
so, the classical approximation would also look like a GP functional,
but with the wrong coefficient 1

2

∫
v instead of 4πa in front of the

quartic term.
What remains to be done is to investigate the validity of the re-

placement of the creation and annihilation operators by numbers. This
can be conveniently done using coherent states. We shall describe what
these are in the next subsection, and complete the sketch of the proof
of Theorem 5 there.

4.5 Coherent States

With |0〉 denoting the Fock space vacuum, and z ∈ C, consider the
state of Fock space

|z〉 = eza
†−z∗a|0〉

where a and a† are the annihilation and creation operators for one
particular mode. Since the exponent is anti-hermitian, |z〉 is a vector
of length one. Because of [a, a†] = 1, one can rewrite it also as

|z〉 = e−|z|2/2eza
†

|0〉

This state is a superposition of all states with different particle number
in the mode under consideration. As z varies over the complex plane
C, the states |z〉 span the whole Fock space associated with the mode
a. In fact, one can easily check the completeness relation

∫

C

dz

π
|z〉〈z| = 1

where dz stands for the standard Lebesgue measure dx dy, z = x+ iy.
States with different value of z are of course not orthogonal. One can
also check that

a|z〉 = z|z〉

i.e., |z〉 is an eigenstate of a with eigenvalue z.
For a general operator given in terms of a and a† (typically a poly-

nomial), define its lower symbol hl(z) by

hl(z) = 〈z|h|z〉
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Note that if h is normal ordered, i.e, all creation operators appear to
the left of all annihilation operators, then hl(z) is obtained from h
simply by replacing all a’s by z and all a†’s by z∗. Many operators
(in particular, all polynomials) also have upper symbols, which are
functions hu(z) such that

h =

∫

C

dz

π
hu(z)|z〉〈z|

In fact, hu(z) is obtained by replacing a by z and a† by z∗ in the
anti-normal ordered form of h.

Examples:

h hl(z) hu(z)
a z z
a† z∗ z∗

a†a |z|2 |z|2 − 1

In general, one can show that hl(z) and hu(z) are related by

hu(z) = e−∂z∗∂zhl(z)

(as long as the right side exists).
Note that for self-adjoint h

inf
z
hu(z) ≤ inf spech ≤ inf

z
hl(z)

The same is true for partition functions, namely the Berezin-Lieb in-
equalities ∫

C

dz

π
e−hl(z) ≤ Tr e−h ≤

∫

C

dz

π
e−hu(z)

hold. These inequalities are, in fact, the origin of the terminology
“upper” and “lower” symbols; Upper symbols give upper bounds to
the partition function, while lower symbols give lower bounds.

Effectively, coherent states replace a quantum problem by a clas-
sical problem with phase space C, replacing creation and annihilation
operators by numbers. Note that the difference in the upper and lower
bounds comes from the difference in the upper and lower symbols, in
particular the factor −1 for the quadratic operator a†a in the example
above.

Coherent states can be used for many modes at the same time,
simply using tensor products. One can not use them for all modes,
however. Even for the number operator, the upper and lower symbols
differ by a constant which is the number of modes, and we want to
avoid infinities.
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Let us split the Fock space into two parts,

F = F< ⊗ F>

corresponding to the splitting of the one-particle Hilbert space H1

into H< ⊕ H>, where H< is a finite dimensional space spanned by
the modes ϕ1, . . . ,ϕJ . Here, J ≥ 0 is some large finite number to
be determined later. On F<, we can use coherent states for all the
modes. In particular, for H̃, our Hamiltonian under consideration, we
can write

H̃ =

∫

CJ

J∏

j=1

dzj
π

|z1 ⊗ · · · ⊗ zJ〉〈z1 ⊗ · · · ⊗ zJ | ⊗ K(z1, . . . , zJ )

where the upper symbol K(z1, . . . , zJ ) is now an operator on F>, the
Fock space for the large modes. The key point of this decomposition
is that that

inf spec H̃ ≥ inf
z1,...,zJ

inf specK(z1, . . . , zJ )

One can show that, for J 3 1 appropriately chosen

K(z1, . . . , zJ ) = EGP(Φ) + error terms

where

Φ(x) =
J∑

j=1

zjϕj(x)

The error terms are still operators on F>, but they are small (at least
in expectation) for an appropriate choice of the interaction range R.
For these estimates, it is important that R 3 a ∼ N−1, hence the
necessity of Step 1. If fact, the larger R the better the control of
the error terms, but we can still get away with some R 0 N−1/3, as
required.

This completes the sketch of the proof of the lower bound to the
ground state energy in Theorem 5. For the details, we refer to [10]. An
appropriate upper bound can be derived using the variational principle
[18].

For the proof of BEC, one can proceed as above, but adding to the
one-particle Hamiltonian some perturbation S. The proof goes through
essentially without change, since the precise form of h has never been
used. The result is the validity of the GP theory for the ground state
energy, even with h replaced by h + S. One can now use standard
convexity theory, differentiation with respect to S. The key point is
this: If concave functions fn(x) converge pointwise to a function f ,
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then the right and left derivatives f ′
+ and f ′

− (which always exist for
concave functions) satisfy

f ′
+(x) ≤ lim inf

n→∞
f ′
n,+(x) ≤ lim sup

n→∞
f ′
n,−(x) ≤ f ′

−(x) (27)

In particular, if f is differentiable at a point x, then there is equality
everywhere in (27).

The left and right derivatives of

λ 6→ inf
φ

(
EGP(φ) + λ〈φ|S|φ〉

)

at λ = 0 are both of the form 〈φGP|S|φGP〉, with φGP a GP minimizer
(in the case λ = 0). They need not be the same, however. We thus
conclude that

min
φGP

〈φGP|S|φGP〉 ≤ lim
N→∞

1

N
TrSγ ≤ max

φGP

〈φGP|S|φGP〉 (28)

for the one-particle density matrix γ of a ground state of HN , where
the maximum and minimum, respectively, is over all minimizers of the
GP functional. Since (28) is valid for all (hermitian, bounded) S, the
statement about BEC follows now quite easily. For simplicity, just
consider the case of a unique GP minimizer, in which case there is
equality in (28). It is easy to see that this implies limN→∞ N−1γ =
|φGP〉〈φGP|. The more general case is discussed in detail in [10].

4.6 Rapidly Rotating Bose Gases

Consider now the special case of a harmonic trap potential

V (x) =
1

4
|x|2

This is of particular relevance for the experimental situation, where the
trap potential is typically close to being harmonic. The one-particle
part of the Hamiltonian can then be written as

h = −∆+ V (x) − Ω · L =
(
−i∇ − 1

2Ω ∧ x
)2

+ 1
4

(
|x|2 − |Ω ∧ x|2

)

The first part on the right side is the same as the kinetic energy of
a particle in a homogeneous magnetic field Ω and, in particular, is
translation invariant (up to a gauge transformation). It follows that h
is bounded from below only for |Ω| ≤ 1. The angular velocity has to
be less than one, otherwise the trapping force is not strong enough to
compensate the centrifugal force and the system flies apart.

What happens to a dilute Bose gas as |Ω| approaches 1? For e =
Ω/|Ω| the rotation axis, let us rewrite h as

h =
(
−i∇ − 1

2e ∧ x
)2

+ 1
4 |e · x|

2

︸ ︷︷ ︸
k

+(e − Ω) · L
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For Ω close to e, the last term can be considered as a perturba-
tion of the rest, which we denote by k. The spectrum of k equals
{3/2, 5/2, 7/2, . . . }, and each energy level is infinitely degenerate. These
energy levels are in fact just the Landau levels for a particle in a homo-
geneous magnetic field (for the motion perpendicular to Ω), combined
with a simple harmonic oscillator in the Ω direction.

For |e−Ω| 0 1, we can thus restrict the one-particle Hilbert space
to the lowest Landau level (LLL) when investigating the low energy
behavior of the system. This LLL consists of functions of the form

f(z)e−|x|2/4

where we use a complex variable z for the coordinates perpendicular
to Ω. In particular, |x|2 = |z|2 + |e · x|2. Moreover, the function f has
to be analytic, i.e., it is an entire function of z. The only freedom lies
in the choice of f , in fact, the Gaussian factor is fixed. In particular,
the motion in the Ω direction is frozen into the ground state of the
harmonic oscillator. Because of that, it is convenient to think of the
Hilbert space as the space of analytic functions f only, and absorb
the Gaussian into the measure. The resulting space is known as the
Bargmann space

B =

{
f : C → C analytic,

∫

C

|f(z)|2e−|z|2/2dz < ∞
}

On the space B, the angular momentum e · L simply acts as

L = z
∂

∂z

In particular, its eigenstates are zn, n = 0, 1, 2, . . . . These states form
an orthonormal bases of B. In particular, note that L ≥ 0 on B.

Having identified the relevant one-particle Hilbert space for the low
energy physics of a rapidly rotating Bose gas, what should the relevant
many-body Hamiltonian look like? The only term left from the one-
particle part of HN is (e−Ω) · L. If we assume that the interaction is
short range, i.e, a 0 1 (where 1 is the relevant “magnetic length” in
our units), in can be approximated by δ-function in the LLL. I.e., we
introduce as a many-body Hamiltonian on B⊗N

HLLL
N = ω

N∑

i=1

zi
∂

∂zi
+ 8πa

∑

1≤i<j≤N

δij (29)

where ω > 0 is short for 1 − |Ω| and δij is obtained from projecting
δ(xi − xj) onto the LLL level. Explicitly, we have

(
δ12f
)
(z1, z2) = (2π)−3/2f

(
1
2 (z1 + z2),

1
2 (z1 + z2)

)
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That is, δ12 symmetrizes the arguments z1 and z2. In particular, it
takes analytic functions into analytic functions. Except for the unim-
portant prefactor (2π)−3/2, δ12 is, in fact, a projection, projecting onto
relative angular momentum zero. The factor 8πa in front of the inter-
action term in (29) is chosen as to reproduce the correct expression for
the ground state energy of a homogeneous system.

The introduction of the effective many-body Hamiltonian HLLL
N

in the lowest Landau level raises interesting questions. First of all,
can one rigorously justify the approximations leading to HLLL

N ? In
other words, can it be rigorously derived from the full many-body
problem, defined by HN on the entire Hilbert space? This was indeed
achieved in [8], where it was shown that for small ω and small a, the
low energy spectrum and corresponding eigenstates of HN are indeed
well approximated by the corresponding ones of HLLL

N , and converge
to these in the limit ω → 0, a → 0 with a/ω fixed. Note that HLLL

N can
not be obtained by simply projecting HN onto the LLL, as this would
not reproduce the correct prefactor 8πa in front of the interaction. It
is important to first integrate out the high energy degrees of freedom,
associated with length scales much smaller than 1, as we have done
several times earlier. The projection onto the LLL is only a good
approximation for length scales of order one and larger.

Having rigorously derived HLLL
N from the full many-body prob-

lem, what have we learned? It still remains to investigate the relevant
properties of this effective model, in particular its spectrum and corre-
sponding eigenstates. Relatively little is known about these questions,
however, despite the apparent simplicity of the model. Interesting be-
havior reminiscent of the fractional quantum Hall effect in fermionic
systems is expected.

Note that HLLL
N is the sum of two terms

HLLL
N = ω

N∑

i=1

zi
∂

∂zi
︸ ︷︷ ︸

LN

+8πa
∑

1≤i<j≤N

δij

︸ ︷︷ ︸
∆N

(30)

that commute with each other, i.e., [LN ,∆N ] = 0. It therefore makes
sense to look at their joint spectrum. Of particular relevance is the
so-called “yrast curve”, which is the lowest energy of ∆N is a given
sector of angular momentum. That is,

∆N (L) = inf spec∆N "LN=L

It is known explicitly for small and large L. In fact, the known values
of ∆N (L) are

∆N (L) =
1

2(2π)3/2
×






N(N − 1) L ∈ {0, 1}
N(N − 1 − 1

2L) 2 ≤ L ≤ N
0 L ≥ N(N − 1)
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The minimizer for L = N(N − 1) is in fact the bosonic analogue for
the Laughlin state ∏

i<j

(zi − zj)
2

for which obviously the interaction energy is zero. Note the exponent
2, which has to be even since we are dealing with bosons.

Figure 4: Sketch of the joint spectrum of LN and ∆N . The GP approxima-
tion is valid in the shaded region on the left. The small dots show the yrast
curve, in black is its convex hull. The bold dots on the convex hull are, in
fact, the possible ground states of HLLL

N
as one varies ω/a.

A sketch of the joint spectrum of LN and ∆N is given in Figure 4.
The interesting part concerns angular momenta of order N2, in which
case ∆N is of order N . For L 0 N2, one can show that the GP
approximation becomes exact. I.e., for large N and L 0 N2, the
convex hull of ∆N (L) is given by

inf
φ∈B

{∫

C

|φ(z)|4e−|z|2dz : ‖φ‖2 = N, 〈φ|L|φ〉 = L

}

This was proved in [14] using coherent states. The condition L 0
N2 corresponds to the case when the number of particles is much
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larger than the number of vortices. Once these two numbers becomes
comparable, the GP approximation breaks down and interesting new
physics with highly correlated many-body states is expected to occur.

No rigorous bounds on ∆N (L) are available for L ∼ N2 (but L <
N(N − 1), of course). In fact, even to prove the existence of the limit

lim
N→∞

∆N (+N2)

N

is an open problem. Besides ∆N (L), one would also like to understand
the existence or non-existence of spectral gaps above the ground state
energy (uniformly in the particle number), and other quantities of this
type. A lot remains to be done.

Acknowledgment. Many thanks to Dana Mendelson, Alex Tomberg
and Daniel Ueltschi for allowing me to use their figures in these notes.
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