Quantum Mechanics, Problem Sheet 1

Homework solutions to be handed in and class exercises to be discussed in the tutorials of the 2nd week (26.10.)

Class exercise P1: Fourier transformation

We define the Fourier transformed function $F[f]$ for a suitable function $f: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
F[f](k)=\int_{-\infty}^{\infty} d x f(x) e^{-i k x} .
$$

a) Show that

$$
\begin{aligned}
F[\lambda f+g] & =\lambda F[f]+F[g] \quad(\lambda \in \mathbb{C}) ; \\
F\left[f^{\prime}\right](k) & =i k F[f](k) ; \\
f(x) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi} F[f](k) e^{i k x} ; \\
\int_{-\infty}^{\infty} d x f(x) \bar{g}(x) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi} F[f](k) \overline{F[g]}(k) .
\end{aligned}
$$

Hint: Use the following, extremely useful representation of the Dirac deltafunction:

$$
\int_{-\infty}^{\infty} d k e^{i k(x-y)}=2 \pi \delta(x-y) .
$$

b) Calculate $F[f]$ for

$$
f(x)=e^{-\alpha x^{2}+\beta x} \quad(\operatorname{Re} \alpha>0) ; \quad f(x)=\Theta(y-x) \Theta(y+x) ; \quad f(x)=\delta(x-y),
$$

where $\Theta(x)$ is the Heaviside step function:

$$
\Theta(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

c) Derive the equation \odot by showing, that for all suitable test functions g the following equation holds:

$$
\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d k e^{i k x} g(x)=2 \pi g(0) .
$$

Instructions for a "Physicist's Proof": Assume that the ordering of integrations and limits can be freely interchanged. Use the result of Part b) for the integral over k, with the range of integration from $-K$ to K. Then substitute $t=K x$ and finally calculate the integral over t in the limit $K \rightarrow \infty$, with the help of

$$
\int_{-\infty}^{\infty} d t \frac{\sin t}{t}=\pi
$$

d) Use the results of a) and b) to find an alternative solution method for Ex. H1 d) via Fourier transformation.

Instructions: Write $\psi_{0}(x)$ as an integral over the Fourier modes $F\left[\psi_{0}\right](q)$, and consider their time evolution. In order to carry out the integration over q and to compare with the result of the homework, it is best to substitute $\kappa \equiv q-k$.

Homework exercise H1: Gaussian Wavepacket

Consider a Gaussian wavepacket in one dimension. The wavefunction at time $t=0$ is

$$
\psi_{0}(x)=N \exp \left(-\frac{x^{2}}{b^{2}}+i k x\right)
$$

where N, b, k are positive real constants.
a) State the probability density in position space, and determine the normalisation factor N, so that the total probability is 1 .
b) Calculate the expectation values $\langle X\rangle,\left\langle X^{2}\right\rangle,\langle P\rangle$ und $\left\langle P^{2}\right\rangle$. Here, P and X are the momentum and position operators, represented by

$$
P=-i \hbar \frac{\partial}{\partial x}, \quad X=x
$$

c) Calculate $(\Delta P)^{2}=\left\langle P^{2}\right\rangle-\langle P\rangle^{2}$ and $(\Delta X)^{2}=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}$. Show then that the uncertainty relation $\Delta P \Delta X \geq \hbar / 2$ is saturated by a Gaussian wavepacket.
d) Calculate the wavefunction $\psi_{t}(x)$ at time t, given the Hamiltonian $H=$ $P^{2} / 2 m$.
Hint: Make the ansatz

$$
\psi_{t}(x)=N(t) \exp \left(-\frac{(x-a(t))^{2}}{b(t)^{2}}+i k x\right)
$$

with (in general) complex functions $a(t), b(t), N(t)$, which you can determine from the Schrödinger equation..
e) Show that the resulting probability density at time t is also a Gaussian distribution. How does its width behave in the limit $t \rightarrow \infty$? What does this physically mean for a particle that is tightly localized at time $t=0$ (i.e.ã wavepacket with small b)? Comment in view of the dispersion relation for the wave that you can obtain from part b).

