2. Exercise Sheet, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in and class exercises to be discussed in the tutorials of the 3rd. week (2.11.07)

P2: Hamilton-Jacobi Equation

Consider a system with N degrees of freedom in classical mechanics. The generalised coordinates are $\mathbf{q}=\left(q_{1}, \ldots, q_{N}\right)$ and the canonical momenta are $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$. The Hamiltonian is $H(\mathbf{q}, \mathbf{p}, t)$. A canonical transformation is a mapping $(\mathbf{q}, \mathbf{p}) \rightarrow$ (\mathbf{Q}, \mathbf{P}) onto a new system of generalised coordinates and momenta, that fulfil Hamilton's principle (principle of stationary action) with the transformed Hamiltonian $K(\mathbf{Q}, \mathbf{P}, t):$

$$
0=\delta \int d t(\mathbf{p} \cdot \dot{\mathbf{q}}-H(\mathbf{q}, \mathbf{p}, t))=\delta \int d t(\mathbf{P} \cdot \dot{\mathbf{Q}}-K(\mathbf{Q}, \mathbf{P}, t))
$$

a) Show that a function $F(\mathbf{q}, \mathbf{P}, t)$ (a generating function) defines a canonical transformation through the relations

$$
\mathbf{p}=\frac{\partial F}{\partial \mathbf{q}}, \quad \mathbf{Q}=\frac{\partial F}{\partial \mathbf{P}}, \quad K=H+\frac{\partial F}{\partial t}
$$

Now given that $S(\mathbf{q}, \mathbf{P}, t)$ is a solution of the differential equation

$$
H\left(\mathbf{q}, \frac{\partial S}{\partial \mathbf{q}}, t\right)+\frac{\partial S}{\partial t}=0 \quad \text { (Hamilton-Jacobi equation) }
$$

then the Hamiltonian K which is obtained by taking S as generating function is identically zero. Thus the equations of motion are trivial: \mathbf{P} und \mathbf{Q} are constant.
b) Show that the following holds for the Lagrangian L :

$$
\frac{d S(\mathbf{q}(t), \mathbf{P}, t)}{d t}=L(\mathbf{q}(t), \dot{\mathbf{q}}(t), t)
$$

So that, as shown in the lecture, S is (up to a constant) equal to the action:

$$
S(\mathbf{q}(t), \mathbf{P}, t)=\int^{t} d t^{\prime} L\left(\mathbf{q}\left(t^{\prime}\right), \dot{\mathbf{q}}\left(t^{\prime}\right), t^{\prime}\right)
$$

c) Consider a solution $\psi(\mathbf{x}, t)$ of the time-dependent Schrödinger equation with an arbitrary potential in three dimensions. We define the real functions $S(\mathbf{x}, t)$ and $A(\mathrm{x}, t)$ by

$$
\psi(\mathbf{x}, t)=A(\mathbf{x}, t) \exp \left(\frac{i}{\hbar} S(\mathbf{x}, t)\right)
$$

Show that, on domains where A does not vanish, S satisfies the HamiltonJacobi equation for the corresponding classical Hamiltonian, up to terms of order \hbar^{2} (compare the eikonal approximation from the lecture).

H2: Tunnelling effect

Consider a one-dimensional potential

$$
V(x)= \begin{cases}V_{0}, & 0 \leq x \leq a \\ 0, & \text { otherwise }\end{cases}
$$

with $V_{0}>0$. Now consider a plane wave incident from the left (x negative) with energy $E<V_{0}$. Determine the wavefunction in the three regions (I) $x<0$, (II) $0 \leq$ $x \leq a$ and (III) $x>a$ taking into account the boundary conditions, as demonstrated in the lecture for the potential step. How large is the probability of tunnelling? What is the result in the classical limit $\hbar \rightarrow 0$?

H3: Infinite potential well

Consider a one-dimensional potential

$$
V(x)= \begin{cases}0, & 0 \leq x \leq a \\ \infty, & \text { otherwise }\end{cases}
$$

Find all (correctly normalized) solutions of the Schrödinger equation. Consider initially what are the boundary conditions that the wavefunction must fulfil at $x=0$ und $x=a$. Which energies are possible?

