Exercise sheet 3, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in and class exercises discussed in the tutorials of Week 4 (9.11.07)

Class exercise P3: Hermite Polynomials

The Hermite Polynomials H_{n} are defined by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

a) Give the explicit forms of $H_{n}(x)$ for $0 \leq n \leq 3$.
b) Show that the Hermite polynomials fulfil

$$
\left.\frac{\partial^{n}}{\partial t^{n}} e^{2 x t-t^{2}}\right|_{t=0}=H_{n}(x)
$$

or equivalently

$$
e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
$$

Ex. H4: Hermite Functions

The Hermite functions Ψ_{n} are defined with the help of the Hermite polynomials from Ex. P3:

$$
\Psi_{n}(x)=\left(n!2^{n} \sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{n}(x)
$$

a) Show that the Hermite polynomials H_{n} solve the Hermite differential equation

$$
H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}(x)+2 n H_{n}(x)=0
$$

Hint: Apply the operator $\frac{\partial^{2}}{\partial x^{2}}-2 x \frac{\partial}{\partial x}+2 t \frac{\partial}{\partial t}$ to both sides of Equation \odot.
b) Thus, show that the wavefunction $\psi_{n}(x) \equiv \Psi_{n}(\sqrt{m \omega / \hbar} x)$ fulfils the Schrödinger equation for the simple harmonic oscillator:

$$
-\frac{\hbar^{2}}{2 m} \psi_{n}^{\prime \prime}(x)+\frac{m \omega^{2}}{2} x^{2} \psi_{n}(x)=E_{n} \psi_{n}(x) \quad \text { with } E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

Consider the one-dimensional simple harmonic oscillator of frequency ω from the lecture. We denote the n-th excited state by $|n\rangle$.
a) Show that for $\alpha \in \mathbb{C}$ the state

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

is a normalized eigenstate of the lowering operator a with eigenvalue α. Such states are called coherent or quasiclassical states.
b) Calculate the expectation values $\langle X\rangle,\left\langle X^{2}\right\rangle,\langle P\rangle,\left\langle P^{2}\right\rangle$ und $\langle H\rangle$ in the state $|\alpha\rangle$. Calculate the squared fluctuations $(\Delta X)^{2}$ und $(\Delta P)^{2}$, and show that $(\Delta X)(\Delta P)=\hbar / 2$.
Hint: Express the operators X, P and H in terms of the raising and lowering operators a^{\dagger} and a.
c) Suppose that the oscillator is at time $t=0$ in the state $\left|\alpha_{0}\right\rangle$ with $\alpha_{0}=\rho e^{i \phi}$ (where $\phi \in \mathbb{R}, \rho \in \mathbb{R}_{+}$). Show that at any subsequent time t the state is also a coherent state, that can be written as $e^{-i \omega t / 2}|\alpha(t)\rangle$. Determine the dependence of $\alpha(t)$ on ρ, ϕ, ω and t.
d) Calculate the time evolution of the expectation values $\langle X\rangle$ und $\langle P\rangle$. Thus, explain the description "quasiclassical state".

