5. ÜBUNGSBLATT ZUR VORLESUNG THEORETISCHE PHYSIK III (QUANTENMECHANIK)

Abgabe der Lösungen und Besprechung der Präsenzaufgabe: in den Übungen der 6. Semesterwoche (23.11.07)

Präsenzaufgabe P5: Kreuzprodukte und Operatoren (3 Punkte)

- a) Zeigen Sie, dass die Drehimpulsoperatoren $L_i = (\mathbf{X} \times \mathbf{P})_i$ hermitesch sind (i = 1, 2, 3).
- b) Seien **A** und **B** Vektoren, deren Komponenten A_i und B_i hermitesche Operatoren sind. Welche Bedingung müssen die A_i und B_i erfüllen, damit die Komponenten des Kreuzproduktes $(\mathbf{A} \times \mathbf{B})_i$ hermitesch sind?
- c) Der klassische Runge-Lenz-Vektor des Coulombpotenzials ist

$$\mathbf{a} = \mathbf{p} \times \mathbf{l} - me^2 \frac{\mathbf{x}}{|\mathbf{x}|}$$

mit dem Drehimpuls $\mathbf{l} = \mathbf{x} \times \mathbf{p}$. Zeigen Sie, dass aus \mathbf{a} durch die Ersetzung $\mathbf{x} \to \mathbf{X}$, $\mathbf{p} \to \mathbf{P}$ ein nicht-hermitescher Operator entsteht. Finden Sie einen hermiteschen Operator \mathbf{A} , der ein sinnvolles quantenmechanisches Äquivalent zu \mathbf{a} darstellt (d.h. der durch Ersetzung $\mathbf{X} \to \mathbf{x}$, $\mathbf{P} \to \mathbf{p}$ in \mathbf{a} übergeht).

d) Drücken Sie $\mathbf{L} \cdot \mathbf{L}$ sowie $\mathbf{l} \cdot \mathbf{l}$ durch Skalarprodukte von \mathbf{X} und \mathbf{P} bzw. \mathbf{x} und \mathbf{p} aus.

Aufgabe H8: Kommutatoren

(6 Punkte)

Seien A, B, C Operatoren auf einem Hilbertraum. Zeigen Sie die folgenden nützlichen Identitäten:

a)
$$[AB, C] = A[B, C] + [A, C]B,$$

b)
$$[[A,B],C] + [[C,A],B] + [[B,C],A] = 0 \qquad \text{("Jacobi-Identität")}.$$

Angenommen, es gelte $[A, B] = c\mathbb{1}$ mit $\mathbb{1}$ dem Einheitsoperator und $c \in \mathbb{C}$. Sei f(A) gegeben durch eine Potenzreihe:

$$f(A) = \sum_{n=0}^{\infty} c_n A^n, \qquad c_n \in \mathbb{C}.$$

c) Zeigen Sie

$$[f(A), B] = cf'(A).$$

d) Seien $\mathbf{P} = (P_i)$ und $\mathbf{X} = (X_i)$ die Impuls- und Ortsoperatoren in drei Dimensionen (also i = 1, 2, 3). Berechnen Sie den Kommutator $[X_i, \mathbf{P}^2]$. Berechnen Sie außerdem $\{x_i, \mathbf{p}^2\}$, wobei die Poissonklammer $\{\cdot, \cdot\}$ zweier Funktionen des Ortes und Impulses definiert war durch

$$\{f,g\} = \sum_{i=1}^{3} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial x_i} \frac{\partial f}{\partial p_i}.$$

Aufgabe H9: Zwei-Zustands-System

(8 Punkte)

Betrachten Sie ein NH₃-Molekül: Bei einer Messung kann sich das N-Atom oberhalb oder unterhalb der von den drei H-Atomen aufgespannten Ebene befinden. Wir stellen die Messgröße "Position des N-Atoms" durch den Operator Σ dar, der auf dem Hilbertraum \mathbb{C}^2 operiert. Im Schrödingerbild ist

$$\Sigma = \sigma^3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Die Messgröße kann die Werte 1 (N-Atom oben) oder -1 (N-Atom unten) annehmen. Die entsprechenden Eigenzustände sind

$$\psi_u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \psi_d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Da der Hamiltonoperator symmetrisch unter Vertauschung von ψ_u und ψ_d sein sollte, hat er die Form

$$H = \left(\begin{array}{cc} E & W \\ W & E \end{array}\right)$$

mit reellen E und W.

- a) Bestimmen Sie die (normierten) Energieeigenzustände und die zugehörigen Energien.
- b) Sei das Molekül zum Zeitpunkt t=0 im Zustand ψ_u . Berechnen Sie die Zeitentwicklung des Systems und den Erwartungswert von H für beliebiges t.
- c) Bestimmen Sie die Wahrscheinlichkeiten dafür, das N-Atom bei einer Messung zum Zeitpunkt t oben bzw. unten zu finden. Geben Sie die Zeitentwicklung des Erwartungswertes von Σ an.

Betrachten Sie nun dasselbe System im Heisenbergbild.

d) Bestimmen Sie den Operator Σ im Heisenbergbild, und berechnen Sie die Zeitentwicklung seines Erwartungswerts im Zustand ψ_u .

 $\mathit{Hinweis} :$ Schreiben Sie $H = E \, \mathbbm{1} + W \sigma^1$ mit

$$\mathbb{1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \qquad \sigma^1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right),$$

und überlegen Sie sich dann die Matrixeinträge von $e^{-iHt/\hbar}$, indem Sie ausnutzen, dass $(\sigma^1)^2 = 1$.