Exercise Sheet 5, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in and class exercises discussed
in the tutorials of Week $6(23 / 11 / 07)$

Class exercise P5: Cross products and operators
a) Show that the angular momentum operators $L_{i}=(\mathbf{X} \times \mathbf{P})_{i}(i=1,2,3)$ are Hermitian.
b) Let \mathbf{A} and \mathbf{B} be vectors whose components A_{i} und B_{i} are Hermitian operators. Which condition must the A_{i} und B_{i} fulfil for the components of the cross product $(\mathbf{A} \times \mathbf{B})_{i}$ to be Hermitian?
c) The classical Runge-Lenz vector of the Coulomb potential is

$$
\mathbf{a}=\mathbf{p} \times \mathbf{l}-m e^{2} \frac{\mathbf{x}}{|\mathbf{x}|}
$$

where the angular momentum is $\mathbf{l}=\mathbf{x} \times \mathbf{p}$. Show that a non-Hermitian operator arises from a under the substitution $\mathbf{x} \rightarrow \mathbf{X}, \mathbf{p} \rightarrow \mathbf{P}$. Find a Hermitian operator A that represents a sensible quantum mechanical substitute for \mathbf{a} (i.e. that goes to a under the substitution $\mathbf{X} \rightarrow \mathbf{x}, \mathbf{P} \rightarrow \mathbf{p}$).
d) Express $\mathbf{L} \cdot \mathbf{L}$ and $\mathbf{l} \cdot \mathbf{l}$ by means of scalar products of \mathbf{X} and \mathbf{P} and \mathbf{x} und \mathbf{p} respectively.

Ex. H8: Commutators

Let A, B, C be operators acting on a Hilbert space. Show that the following identities hold:
a)

$$
[A B, C]=A[B, C]+[A, C] B
$$

b)

$$
[[A, B], C]+[[C, A], B]+[[B, C], A]=0 \quad \text { ("Jacobi identity"). }
$$

Suppose that $[A, B]=c \mathbb{1}$, where $\mathbb{1}$ is the unity operator and $c \in \mathbb{C}$. Let $f(A)$ be defined by a power series:

$$
f(A)=\sum_{n=0}^{\infty} c_{n} A^{n}, \quad c_{n} \in \mathbb{C} .
$$

c) Show that

$$
[f(A), B]=c f^{\prime}(A)
$$

d) Let $\mathbf{P}=\left(P_{i}\right)$ and $\mathbf{X}=\left(X_{i}\right)$ be the momentum and position operators in three dimensions (with $i=1,2,3$). Calculated the commutator $\left[X_{i}, \mathbf{P}^{2}\right]$. Calculate in addition $\left\{x_{i}, \mathbf{p}^{2}\right\}$, where the Poisson bracket $\{\cdot, \cdot\}$ of two functions of position and momentum is defined by

$$
\{f, g\}=\sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial x_{i}} \frac{\partial f}{\partial p_{i}}
$$

Ex. H9: Two-state system

Consider a NH_{3} molecule. The measured position of the N atom may be above or below the plane defined by the three H atoms. We represent the measured quantity "Position of the N atom" by the operator Σ acting on the Hilbert space \mathbb{C}^{2}. In the Schrödinger picture this operator is

$$
\Sigma=\sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The measured quantity can take the values 1 (N atom upstairs) or -1 (N atom downstairs). The corresponding eigenstates are

$$
\psi_{u}=\binom{1}{0}, \quad \psi_{d}=\binom{0}{1}
$$

Since the Hamiltonian should be symmetrical under exchange of ψ_{u} und ψ_{d}, it has the form

$$
H=\left(\begin{array}{cc}
E & W \\
W & E
\end{array}\right)
$$

with real E and W.
a) Determine the (normalized) energy eigenstates and the corresponding energies.
b) Suppose that the molecule is in the state ψ_{u} at time $t=0$. Calculate the time evolution of the system and the expectation value of H at arbitrary $t>0$.
c) Determine the respective probabilities for the N atom to be found upstairs or downstairs at a measurement at time t. State the time evolution of the expectation value of Σ.

Now consider the same system in the Heisenberg picture.
d) Determine the operator Σ in the Heisenberg picture, and calculate the time evolution of its expectation value in the state ψ_{u}.
Hint: Write $H=E \mathbb{1}+W \sigma^{1}$ with

$$
\mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and then consider the matrix entries of $e^{-i H t / \hbar}$, exploiting the fact that $\left(\sigma^{1}\right)^{2}=\mathbb{1}$.

