EXERCISE SHEET 6, THEORETICAL PHYSICS III (QUANTUM MECHANICS)

Solutions to be handed in and class exercises discussed in the tutorials of Week 7 (30.11.07)

Class exercise P6: Linear Algebra (3 points)

Let $V \cong \mathbb{C}^n$ be a complex vector space and $\langle \cdot | \cdot \rangle$ be a scalar product, *i.e.* for $f, g, h \in$ V and $\alpha \in \mathbb{C}$ the following relations hold:

$$
\langle f|g\rangle = \langle g|f\rangle^* \tag{1}
$$

$$
\langle f|\alpha g+h\rangle = \alpha \langle f|g\rangle + \langle f|h\rangle \tag{2}
$$

 $\langle f | f \rangle > 0$ and $\langle f | f \rangle = 0$ if and only if $f = 0$. (3)

In the following we use Dirac notation, *i.e.* we write $|f\rangle$ instead of f, $\langle f |$ instead of f^{\dagger} and $| f \rangle \langle g |$ instead of $f \otimes g^{\dagger}$. Let $\{|e_1\rangle, \ldots, |e_n\rangle\}$ be an orthonormal basis of V.

- a) What is $\langle e_i | e_j \rangle$? What are the matrix entries of $| e_i \rangle \langle e_j |$ and $\sum_{i=1}^n | e_i \rangle \langle e_i |$ in this basis?
- b) Show that the components of an arbitrary vector $|x\rangle \in V$, $|x\rangle = \sum_{i=1}^{n} c_i |e_i\rangle$, are given by $c_i = \langle e_i | x \rangle$. Es gilt $\langle x | x \rangle = \sum_{i=1}^n c_i^* c_i$.
- c) Let $A: V \to V$ be a linear transformation. Show that, if A acting on the basis $\{|e_1\rangle, \ldots, |e_n\rangle\}$ has matrix elements (a_{ij}) , then the Hermitian conjugate transformation A^{\dagger} has matrix elements $(A^{\dagger})_{ij} = a_{ji}^*$.
- d) Let $|e'_i\rangle = U |e_i\rangle$ with a unitary transformation U. Show that $\{|e'_1\rangle, \ldots, |e'_n\rangle\}$ also form an orthonormal basis, and express U in terms of the $|e'_{i}\rangle$ and $\langle e_{i}|$.
- e) Let $A = A^{\dagger}$ be a Hermitian transformation. Show that $\exp(iA)$ is unitary. (The exponential function for matrices is here defined by means of its power series.)

Ex. H10: Angular momentum and uncertainty relation (4 points)

Consider again the angular momentum operator $\mathbf{L} = \mathbf{X} \times \mathbf{P}$.

- a) Show that $[L_i, L_j] = i\hbar \epsilon_{ijk} L_k$.
- b) State the uncertainty relation for simultaneous measurements of L_1 and L_2 . How large is the minimal uncertainty for bound states ψ_{nlm} of the hydrogen atom?

Ex. H11: Two-body problem (6 points)

Consider once more the hydrogen atom, this time taking account of the motion of the proton. Let X_1, X_2 and P_1, P_2 be the position and momentum operators for the proton and the electron respectively, and let m_1 (m_2) be the electron (proton) mass. The Hilbert space of the system is the product of the two single particle Hilbert spaces, $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$. We can understand X_1 as an operator on \mathcal{H} by identifying \mathbf{X}_1 with $\mathbf{X}_1 \otimes \mathbb{1}$, and correspondingly for the other operators.

- a) State the Hamiltonian.
- b) Determine the position operators \mathbf{X}_s and \mathbf{X}_r for the centre-of-mass and relative coordinates respectively. Calculate the corresponding momentum operators P_s and P_r .
- c) Express the Hamiltonian in terms of the new position and momentum operators. Determine the general form of a solution of the Schrödinger equation in this basis, and state the corresponding energy.

Hint: Use the known solutions for the Coulomb problem and the free particle.

Aufgabe H12: Dirac delta-function potential (6 points)

Consider a particle moving in one dimension under the potential

$$
V(x) = -\frac{D\,\hbar^2}{m}\,\delta(x) \qquad (D > 0).
$$

This potential has one bound state (with negative energy). Find its normalized wavefunction in position space and the energy eigenvalue.

Hints: The wavefunction should be continuous at $x = 0$. You can determine the energy by integrating the Schrödinger equation from $-\epsilon$ to ϵ and then considering the limit $\epsilon \to 0$.