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Exercise sheet 7, Theoretical Physics III (Quantum
Mechanics)

Solutions to be handed in and class exercises discussed
in the tutorials of Week 9 (7/12/07)

Class exercise P7: Dirac notation, position and momentum space (2
points)

Consider a quantum particle moving in one dimension.

a) Let | p〉 be an eigenstate of the momentum operator with eigenvalue p. State
the (unnormalised) representation in position space.

b) Let |ψ〉 be a state with wavefunction ψ(x) in position space. Express the
Fourier transform of ψ(x) in Dirac notation.

c) Let A be a self-adjoint (and in general nonlocal) operator and |ψ′〉 = A |ψ〉.
Show that the Fourier transform of ψ′(x) is given by the action of A (in its
momentum space representation) on the Fourier transform of ψ(x).

Ex. H13: Baker-Campbell-Hausdorff formula (5 points)

a) Verify the Baker-Campbell-Hausdorff formula for operators A and B,

eABe−A =
∞∑

n=0

1

n!
[nA,B] .

where [nA,B] is recursively defined by [0A,B] ≡ B and [k+1A,B] ≡
[A, [kA,B]], thus [nA,B] = [A, . . . [A, [A,B]] . . .] with n brackets.

Hint: Consider f(t) = etABe−tA with t ∈ R.

b) Check the BCH-formula with A = X and B = P , the position and momentum
operators in one dimension, in the position space representation.

c) Suppose that [A,B] = c1 with c ∈ C. Show that

eAeB = eBeAec.

Ex. H14: Pauli matrices (5 points)

a) Show that a general Hermitian 2×2 matrix Σ can be written as Σ = a ·σ+b1.
Here a ∈ R3, b ∈ R, and σ = (σ1, σ2, σ3) are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)
.



b) Show that:

eia·σ = cos |a| 1+ i sin |a| a · σ
|a|

.

c) Find a unitary matrix that diagonalises σ2, and describe it as eia·σ.

Ex. H15: Ramsauer effect (5 points)

In 1921 Ramsauer investigated the penetrability of noble gases for low-energy elec-
tron beams. Classically one would expect that the collision probability falls monoto-
nically with increasing energy of the electrons. But it transpired that, for particular
values of the beam energy, the gas became practically completely transparent to the
electrons. This is a quantum effect, which will be illustrated by means of a simple
one-dimensional model.
In Ex. H2 you investigated tunnelling through a rectangular potential barrier. The
result for the tunneling probability was

T (E) =
4k2q2

(k2 + q2)2 sinh2(qa) + 4k2q2
.

where k =
√

2mE/~ is the wavenumber of the incident plane wave arriving from
the negative x-direction and q =

√
2m(V0 − E)/~, and where V0 is the height and

a the width of the barrier.
Now consider scattering states for the “inverted” potential

V =

{
−V0, 0 ≤ x ≤ a

0, otherwise

with V0 > 0.

a) State the transmission probability T (E), and determine the energies En for
which the potential becomes “transparent”.

b) Approximate T (E) for energies close to En by resonances of the form

T (E) ≈ (Γn/2)2

(E − En)2 + (Γn/2)2

and determine the resonance widths Γn as functions of En, V0, a and m.


