Exercise Sheet 8, Theoretical Physics III (Quantum Mechanics)

Class exercises discussed in the tutorials of Week 9 (14/12/07)

Class exercise P8: More linear algebra

Let A and B be Hermitian operators on a Hilbert space, and $|a\rangle$ be an eigenstate of A with eigenvalue a.
a) Give a condition for $A B$ to be Hermitian.
b) What is the adjoint of the commutator $[A, B]$? Find $c \in \mathbb{C}$ such that $c[A, B]$ is Hermitian.
c) Compute the expectation value of $[A, B]$ in the state $|a\rangle$.
d) Assume A is invertible. Show that $|a\rangle$ is an eigenstate of A^{-1}, and compute the eigenvalue.
e) Is the projector $|a\rangle\langle a|$ invertible?

Class exercise P9: Three-dimensional Hilbert space

Let $|\rho\rangle=(1,1,0)^{T}$ and $|\psi\rangle=(1,0,1)^{T}$ be vectors in the Hilbert space \mathbb{C}^{3}, for which an orthonormal basis is given by $\left|e_{1}\right\rangle=(1,0,0)^{T},\left|e_{2}\right\rangle=(0,1,0)^{T},\left|e_{3}\right\rangle=(0,0,1)^{T}$.
a) Find the matrix elements of $A \equiv|\rho\rangle\langle\psi|$ in this basis.
b) Compute A^{\dagger}. Is A Hermitian?
c) Determine the eigenvalues of A.

