Exercise Sheet 8, Theoretical Physics III (Quantum Mechanics)

Class exercises discussed in the tutorials of Week 9 (14/12/07)

Class exercise P8: More linear algebra

(3 points)

Let A and B be Hermitian operators on a Hilbert space, and $|a\rangle$ be an eigenstate of A with eigenvalue a.

- a) Give a condition for AB to be Hermitian.
- b) What is the adjoint of the commutator [A, B]? Find $c \in \mathbb{C}$ such that c[A, B] is Hermitian.
- c) Compute the expectation value of [A, B] in the state $|a\rangle$.
- d) Assume A is invertible. Show that $|a\rangle$ is an eigenstate of A^{-1} , and compute the eigenvalue.
- e) Is the projector $|a\rangle\langle a|$ invertible?

Class exercise P9: Three-dimensional Hilbert space

(2 points)

Let $|\rho\rangle = (1, 1, 0)^T$ and $|\psi\rangle = (1, 0, 1)^T$ be vectors in the Hilbert space \mathbb{C}^3 , for which an orthonormal basis is given by $|e_1\rangle = (1, 0, 0)^T$, $|e_2\rangle = (0, 1, 0)^T$, $|e_3\rangle = (0, 0, 1)^T$.

- a) Find the matrix elements of $A \equiv |\rho\rangle \langle \psi|$ in this basis.
- b) Compute A^{\dagger} . Is A Hermitian?
- c) Determine the eigenvalues of A.