Ëxercise sheet 9, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in in the tutorials of Week 10 (21st December '07)

Ex. H16: Translation operator

The translation operator $T(\mathbf{a})$ is defined by

$$
T(\mathbf{a})=\exp \left(-\frac{i}{\hbar} \mathbf{a} \cdot \mathbf{P}\right),
$$

where $\mathbf{a} \in \mathbb{R}^{3}$ and $\mathbf{P}=\left(P_{1}, P_{2}, P_{3}\right)$ is the momentum operator in three dimensions.
a) Show that $T(\mathbf{a}) T(\mathbf{b})=T(\mathbf{a}+\mathbf{b})$.
b) Show that, given the position operator $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)$, the following holds:

$$
T(\mathbf{a})^{\dagger} \mathbf{X} T(\mathbf{a})=\mathbf{X}+\mathbf{a} \mathbb{1} .
$$

Ex. H17: Optical theorem

Prove the optical theorem of scattering theory:

$$
\sigma_{\mathrm{tot}}=\left.\frac{4 \pi}{k} \operatorname{Im} f(\theta, \phi)\right|_{\cos \theta=1} .
$$

Here $\sigma_{\text {tot }}$ is the total (integrated) cross-section, k is the wavenumber and f is the scattering amplitude.
Instructions: Integrate the continuity equation for the probability current over a sphere of radius r around the scattering centre, and consider the limit $r \rightarrow \infty$. Note furthermore that $f(\theta, \phi)$ is not dependent on ϕ for $\cos \theta=1$.

Ex. H18: Partial wave expansion

Consider the scattering of an incident plane wave travelling in the positive z-direction on a spherically symmetric, short-ranged potential. The aim of the exercise is to expand the scattering amplitude $f(\theta)$ in spherical harmonics (due to the spherical symmetry f is not dependent on ϕ) and to represent it in the following form:

$$
f(\theta)=\sum_{l=0}^{\infty}(2 l+1) f_{l} P_{l}(\cos \theta) .
$$

Here P_{l} is the l th Legendre polynomial given by $P_{l}=P_{l}^{0}$ with the associated Legendre function P_{l}^{m} already familiar from Ex. P4. The coefficient f_{l} (the so-called partial wave amplitude) may be calculated from the phase shift δ_{l} between the incident plane wave and the outgoing spherical wave.
a) Start by considering the expansion of a general ϕ-independent solution of the Schrödinger equation:

$$
\psi(r, \theta)=\sum_{l=0}^{\infty} c_{l} \frac{u_{l}(r)}{r} Y_{l}^{0}(\theta) \equiv \sum_{l=0}^{\infty}(2 l+1) a_{l} \frac{u_{l}(r)}{r} P_{l}(\cos \theta)
$$

Show that, for $r \rightarrow \infty$, the radial part of the wavefunction $u_{l}(r)$ can be written in the following form:

$$
u_{l}(r)=\frac{1}{k} \sin \left(k r-\frac{l \pi}{2}+\delta_{l}\right) .
$$

Here the value of δ_{l} depends on l, and we have chosen to split off the constant $\frac{l \pi}{2}$ from each of the terms (without loss of generality).
b) Show that $\delta_{l}=0$ for an incident plane wave travelling in the positive z direction with wavenumber k, und determine the corresponding coefficients a_{l}.
Hint: The following identity holds

$$
e^{i k r \cos \theta}=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \theta)
$$

with the spherical Bessel functions $j_{l}(x)$, that are related to the usual Bessel functions by $j_{l}(x)=\sqrt{\pi / 2 x} J_{l+1 / 2}(x)$. The asymptotic behaviour of J_{α} is

$$
J_{\alpha}(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\alpha \pi}{2}-\frac{\pi}{4}\right) \quad(x \rightarrow \infty)
$$

c) Show that, for the complete scattering solution, the partial wave amplitudes in the decomposition - are given by

$$
f_{l}=\frac{1}{2 i k}\left(e^{2 i \delta_{l}}-1\right) .
$$

d) Show that the total cross-section $\sigma_{\text {tot }}$ can be described as follows:

$$
\sigma_{\mathrm{tot}}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l} .
$$

Hint: Use the orthogonality of the Legendre polynomials:

$$
\int_{-1}^{1} d x P_{l}(x) P_{l^{\prime}}(x)=\frac{2 \delta_{l, l^{\prime}}}{2 l+1}
$$

