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EXERCISE SHEET 10, THEORETICAL PHYSICS 111 (QUANTUM
MECHANICS)

Solutions to be handed in and class exercises discussed
in the tutorials of Week 11 (11th Jan. '08)

Class exercise P10: Free path integral (3 points)

Consider a free particle in one dimension. The action between the times ¢, and %, is
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The amplitude for propagation between x, (at t = t,) and z}, (at t = ¢;) is thus
given by the path integral
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where € = (t, — t,)/n.

a) Show by using the result of Ex. H19 b) (for the special case of one dimension)
that
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b) Show also that
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¢) Deduce that the amplitude is given by
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Ex. H19: Gaussian and Fresnelic integrals (6 points)
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Let M be a real symmetric positive definite n x n matrix. Prove that:
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Ex. H20: Spins in a magnetic field (6 points)

An electron beam enters a magnetic field at time ¢ = 0. The magnetic field is
homogeneous with field strength B pointing in the z-direction. The Hamiltonian is

H = ,UBBo-Sa

where up = % denotes the Bohr magneton and o? is, as usual, the third Pauli

matrix. The electron spins are initially, at time ¢ = 0, polarized in the positive
a-direction (i.e. all the electrons are in an eigenstate of S, with eigenvalue +%/2).

a) Calculate the expectation value of the spin in the z-direction at time ¢ (¢t > 0).

Now suppose that half the electron spins at time ¢t = 0 are polarized in the positive
x-direction and the other half in the positive y-direction.

b) State the density matrix at time ¢ = 0.

c¢) Calculate the density matrix in the Schrodinger picture at arbitrary time ¢
(t >0).

d) Calculate once more the time evolution of (S,).

Ex. H21: Preparation measurements (2 points)

Suppose that we are given a quantum statistical system with a k-fold degenerate
energy level E,,. We denote the pure states of energy E, with |n,a) (o =1,...,k).
The projection operator onto states with energy E, is thus

k
Pg, :Z|H,Oz> (n,a|,
a=1

and the density matrix in the micro-canonical ensemble is p = Pg, /k.

Now a further observable is measured that commutes with the Hamiltonian. As a
result of the measurement the equipartition passes over onto the subspace of states
with the measured eigenvalue; suppose that these are only &’-fold degenerate (where
k' < k), and the projection operator onto this space is

kl

Py =Y "|n,B)(n.B].

p=1
Show that after the measurement the density matrix is given by
Py
k-
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