Exercise Sheet 10, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in and class exercises discussed in the tutorials of Week 11 (11th Jan. '08)

Class exercise P10: Free path integral

Consider a free particle in one dimension. The action between the times t_{a} and t_{b} is

$$
S=\int_{t_{a}}^{t_{b}} d t \frac{1}{2} m \dot{x}^{2} .
$$

The amplitude for propagation between x_{a} (at $t=t_{a}$) and x_{b} (at $t=t_{b}$) is thus given by the path integral

$$
\begin{aligned}
\left\langle x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle & =\int_{x_{a}}^{x_{b}} D x \exp \left(\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t \frac{m}{2} \dot{x}^{2}\right) \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{m}{2 \pi i \hbar \epsilon}} \int \prod_{i=1}^{n}\left\{\frac{d x_{i}}{\sqrt{2 \pi i \hbar \epsilon / m}}\right\} \exp \left(\frac{i}{\hbar} \epsilon \sum_{i=1}^{n+1} \frac{m}{2} \frac{\left(x_{i}-x_{i-1}\right)^{2}}{\epsilon^{2}}\right)
\end{aligned}
$$

where $\epsilon=\left(t_{b}-t_{a}\right) / n$.
a) Show by using the result of Ex. H19 b) (for the special case of one dimension) that

$$
\int d x_{1} \exp \left(\frac{i m}{2 \hbar \epsilon}\left[\left(x_{2}-x_{1}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}\right]\right)=\left(\frac{\pi \hbar \epsilon}{i m}\right)^{1 / 2} \exp \left(\frac{i m}{2 \cdot 2 \hbar \epsilon}\left(x_{2}-x_{0}\right)^{2}\right) .
$$

b) Show also that

$$
\int d x_{2} \exp \left(\frac{i m}{2 \hbar \epsilon}\left[\left(x_{3}-x_{2}\right)^{2}+\frac{\left(x_{2}-x_{0}\right)^{2}}{2}\right]\right)=\left(\frac{4 \pi \hbar \epsilon}{3 i m}\right)^{1 / 2} \exp \left(\frac{i m}{2 \cdot 3 \hbar \epsilon}\left(x_{3}-x_{0}\right)^{2}\right) .
$$

c) Deduce that the amplitude is given by

$$
\begin{aligned}
& \left\langle x_{b}, t_{b} \mid x_{a}, t_{a}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left(\frac{m}{2 \pi i \hbar \epsilon}\right)^{(n+1) / 2} \prod_{j=1}^{n}\left(\frac{j}{j+1} \frac{2 \pi \epsilon \hbar}{i m}\right)^{1 / 2} \exp \left(\frac{i m}{2(n+1) \epsilon \hbar}\left(x_{b}-x_{a}\right)^{2}\right) \\
& =\sqrt{\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}} \exp \left(\frac{i m}{2 \hbar} \frac{\left(x_{b}-x_{a}\right)^{2}}{t_{b}-t_{a}}\right) .
\end{aligned}
$$

Ex. H19: Gaussian and Fresnelic integrals

Let M be a real symmetric positive definite $n \times n$ matrix. Prove that:
a)

$$
\int d^{n} x \exp \left(-\frac{1}{2} \mathbf{x}^{T} M \mathbf{x}\right)=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} M}}
$$

b)

$$
\int d^{n} x \exp \left(\frac{i}{2} \mathbf{x}^{T} M \mathbf{x}\right)=e^{i n \pi / 4} \sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} M}}
$$

Ex. H20: Spins in a magnetic field

An electron beam enters a magnetic field at time $t=0$. The magnetic field is homogeneous with field strength B pointing in the z-direction. The Hamiltonian is

$$
H=\mu_{B} B \sigma^{3}
$$

where $\mu_{B}=\frac{\hbar e}{2 m_{e c}}$ denotes the Bohr magneton and σ^{3} is, as usual, the third Pauli matrix. The electron spins are initially, at time $t=0$, polarized in the positive x-direction (i.e. all the electrons are in an eigenstate of S_{x} with eigenvalue $+\hbar / 2$).
a) Calculate the expectation value of the spin in the x-direction at time $t(t>0)$.

Now suppose that half the electron spins at time $t=0$ are polarized in the positive x-direction and the other half in the positive y-direction.
b) State the density matrix at time $t=0$.
c) Calculate the density matrix in the Schrödinger picture at arbitrary time t $(t>0)$.
d) Calculate once more the time evolution of $\left\langle S_{x}\right\rangle$.

Ex. H21: Preparation measurements

Suppose that we are given a quantum statistical system with a k-fold degenerate energy level E_{n}. We denote the pure states of energy E_{n} with $|n, \alpha\rangle(\alpha=1, \ldots, k)$. The projection operator onto states with energy E_{n} is thus

$$
P_{E_{n}}=\sum_{\alpha=1}^{k}|n, \alpha\rangle\langle n, \alpha|,
$$

and the density matrix in the micro-canonical ensemble is $\rho=P_{E_{n}} / k$.
Now a further observable is measured that commutes with the Hamiltonian. As a result of the measurement the equipartition passes over onto the subspace of states with the measured eigenvalue; suppose that these are only k^{\prime}-fold degenerate (where $k^{\prime}<k$), and the projection operator onto this space is

$$
P_{E_{n}}^{\prime}=\sum_{\beta=1}^{k^{\prime}}|n, \beta\rangle\langle n, \beta| .
$$

Show that after the measurement the density matrix is given by

$$
\rho^{\prime}=\frac{P_{E_{n}}^{\prime}}{k^{\prime}}
$$

