Exercise sheet 11, Theoretical Physics III (Quantum Mechanics)

Solutions to be handed in and class exercises discussed
in the tutorials of Week $12(18 / 01 / 08)$

Ex. H22: Kronig-Penney model

A one-dimensional periodic potential is given with period l, thus $V(x)=V(x+l)$.
a) Prove Bloch's Theorem: there exists a basis of energy eigenstates, whose wavefunctions assume the form $\psi_{\kappa}(x)=e^{-i \kappa x} u_{\kappa}(x)$ with periodic functions $u_{\kappa}(x)=u_{\kappa}(x+l)$.
Hint: The law of simultaneous diagonalisability of commuting operators holds not only for Hermitian operators. Apply it here to the unitary translation operator $T(l)$ (see Ex. H16) and the Hamiltonian.

Consider now a particle with energy E in the range $0<E<V_{0}$, moving in the following potential with period $l=a+b$:

$$
V(x)= \begin{cases}0, & 0 \leq x \leq a \\ V_{0}, & a<x<a+b\end{cases}
$$

(periodically continued for all $x \in \mathbb{R}$). This is a simple one-dimensional model for an electron in a solid. The positively charged ions are located on a crystal lattice at a separation of $a+b$, separated by potential barriers of height V_{0} and width b. The energy spectrum shows a band structure, in which certain ranges of energy are allowed and others are forbidden.
b) Show that the following condition holds for the energy:

$$
-1 \leq \cos (k a) \cosh (q b)+\frac{q^{2}-k^{2}}{2 q k} \sin (k a) \sinh (q b) \leq 1
$$

where

$$
k=\frac{\sqrt{2 m E}}{\hbar}, \quad q=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar} .
$$

c) Consider the limiting case

$$
b \rightarrow 0, \quad V_{0} \rightarrow \infty, \quad V_{0} b=\text { const. }
$$

and energies $E \ll V_{0}$. Show that

$$
-1 \leq \cos (k a)+\gamma \frac{\sin (k a)}{k a} \leq 1
$$

where $\gamma=m a b V_{0} / \hbar^{2}$. Determine the allowed ranges for $k a$ graphically for $-4 \pi \leq k a \leq 4 \pi$ and $\gamma=5$.

Ex. H23: Three-dimensional harmonic oscillator

The potential of the three-dimensional harmonic oscillator is

$$
V=\frac{m \omega^{2}}{2} r^{2}, \quad \text { mit } r=|\mathbf{x}|
$$

a) The corresponding Schrödinger equation separates in Cartesian coordinaten. State the possible energy eigenvalues, and determine the degeneracy of the nth energy eigenstate.
b) Since we are dealing with a central potential, the Schrödinger equation also separates in spherical polar coordinates, for which the solutions of the angular part are already known to be the spherical harmonic functions $Y_{l}^{m}(\theta, \phi)$:

$$
\psi(r, \theta, \phi)=R(r) Y_{l}^{m}(\theta, \phi) .
$$

It now remains to determine the radial part $R(r)$. Set up the radial equation, and discuss the limits $r \rightarrow 0$ and $r \rightarrow \infty$ with the ansatz

$$
u(r)=r R(r)=r^{\delta} e^{-\gamma r^{2}} g(r)
$$

(where $g(0) \neq 0$ and $|g(r)|$ does not either grow or fall off too quickly for $r \rightarrow \infty)$. Determine δ and γ.
c) Set up an equation to determine $g(r)$.
d) Give a reason why, with the Ansatz

$$
g(r)=\sum_{n} a_{n} r^{n},
$$

the power series must terminate at a finite value of n. Determine thereby the energy spectrum and the degeneracies of energies, and compare with a).

Ex. H24: Landau levels

Consider an electron (whose spin is to be neglected) moving in a constant magnetic field pointing in the z-direction, $\mathbf{B}=(0,0, B)$.
a) Show that the vector potential can be chosen as $\mathbf{A}=(0, B x, 0)$.
b) Show that the Hamiltonian

$$
H=\frac{1}{2 m}\left(\mathbf{P}+\frac{e}{c} \mathbf{A}\right)^{2}
$$

commutes with both the y - and z-components of the momentum operators. The eigenstates of H can thus be determined with the separation of variables $\psi(x, y, z)=f(x) g(y) h(z)$. State g and h. We wish to choose $h(z)$ such that eigenvalue of P_{z} is precisely 0 .
c) Derive an eigenvalue equation for $f(x)$, and trace this back to the eigenvalue equation of the simple harmonic oscillator.
d) Read off the energy spectrum. The energy levels resulting from the equation for f are called Landau levels.

