11th Exercise Sheet: Electrodynamics, Summer Term '06

Prof. M. G. Schmidt, J. Braun

July 7, 2006

Submission on Friday 14, 2006 during the lecture
11. 1. (Präsenzübung: collider-energies, $\mathbf{1}+\mathbf{1}$ marks) Consider the reaction $p+p \rightarrow p+p+p+\bar{p}$, where an antiproton \bar{p} and a proton p with equal masses $m_{p}=m_{\bar{p}}=938 \mathrm{MeV} / c^{2}$ are produced.
(a) fixed target experiment: What is the minimal energy to make this reaction possible if a proton collides with another proton at rest?
(b) collider experiment: What is the minimal energy for the protons in a proton-proton-collider in order to make this reaction possible if the momenta of the both protons are given by $\overrightarrow{p_{1}}=\overrightarrow{p_{2}}$?

Notes:

- four-momenta: $p_{\mu}=\left(\frac{E}{c}, \vec{p}\right)$
- relativistic energy-momentum relation: $E=\sqrt{c^{2} \vec{p}^{2}+m^{2} c^{4}}$
- lorentz-invariant energy quantity s (square of the sum of the four-momenta of each particle of the system):

$$
s=c^{2}\left(\sum_{i} p_{\mu}^{(i)}\right)^{2}
$$

11. 2. (oscillating electric dipole, 7 marks) An electric dipole \vec{P} is oscillating with a frequency ω and amplitude P_{0}, i. e. $\vec{P}=\vec{P}_{0} \mathrm{e}^{i \omega t}$. The dipole is located at a distance $a / 2$ from an infinitely extended conducting plate. The dipole vector is parallel to the surface of the plate. Calculate the electromagnetic field and the time-averaged angular distribution of the emitted radiation $\frac{d P}{d \Omega}$ of the dipole, for distances $r \gg \lambda=\frac{2 \pi c}{\omega}$. How does the result reduce if you assume $\lambda \gg a$?
Hint: Assume that the conducting plate is represented by the y - z-plane. What is the effect of the conducting plane on the $x>0$ space? Think of the method of mirror charges! Neglect terms of higher order in $\frac{1}{r}$ in the calculation of the electric and magnetic fields.
1. 3. (special Lorentz transformations and Galilei transformations, 4 marks) A reference-frame I^{\prime} is moving with velocity v in x_{1}-direction relative to a reference-frame I. Give the (special) Lorentz transformations for the variables $t=\frac{x^{0}}{c}, x^{1}, x^{2}, x^{3}$ and $t^{\prime}=\frac{x^{\prime 0}}{c}, x^{\prime 1}, x^{\prime 2}, x^{\prime 3}$. Expand the transformation formulas for the coordinates in powers of $\frac{v}{c}$ and prove that, in leading order, the (special) Lorentz-transformations reduce to (special) Galilei transformations between the two reference frames.
1. 4. ('stick paradox', 7 marks) A stick of length 10 cm is moving along the x-axis with velocity $v_{s}=\frac{\sqrt{3}}{2} c$ parallel to a plate with a hole of length 10 cm . The plate is moving along the y-axis with velocity u, in such a way that the center of the stick and the center of the hole are lying on top of each other at time $t=0$, in the reference-frame K of the plate.
(a) ($\mathbf{1}$ mark) How long is the stick in the reference-frame K of the plate? Can the stick pass the hole?
(b) (6 marks) How big is the hole in the reference-frame K^{\prime} of the stick? Can the stick pass the hole in this reference-frame? If yes, do both ends of the stick pass the hole at the same time?
