3rd Exercise Sheet: Elektrodynamics, Summer Term '06

Prof. M. G. Schmidt, J. Braun

May 12, 2006

Submission on 19th May, 2006 during the lecture
3. 1. (Präsenzübung: Legendre-Polynomials, $\mathbf{1}+\mathbf{1}$ marks) The expansion of $\frac{1}{\left|\vec{r}-r^{\prime}\right|}$ can be written in terms of Legendre-Polynomials as

$$
\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\frac{1}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}(\cos (\Theta))
$$

for $r>r^{\prime}$, where Θ denotes the angle between \vec{r} and \vec{r}^{\prime}.
(a) Expand the following expression up to third order for $r>r^{\prime}$ and compare the result with the above specified representation in terms of Legendre-Polynomials:

$$
\frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}=\frac{1}{r \sqrt{1+\left(\frac{r^{\prime}}{r}\right)^{2}-2\left(\frac{r^{\prime}}{r}\right) \cos (\Theta)}}
$$

(b) First, write the vectors \vec{r} and \vec{r}^{\prime} in terms of spherical coordinates (r, ϑ, φ) and $\left(r^{\prime}, \vartheta^{\prime}, \varphi^{\prime}\right)$, respecitvely. Then, calculate $\cos (\Theta)$ as a function of ϑ, φ und $\vartheta^{\prime}, \varphi^{\prime}$.
3. 2. (homogeneously charged balls, 5 marks)
(a) ($\mathbf{3}$ marks) Consider two homogeneously charged balls with charges q_{1} and q_{2} and radii R_{1} and R_{2}. The distance between the centres of the balls is given by $\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|=r_{12}>R_{1}+R_{2}$. Calculate the electrostatic self-energy.
(b) (2 marks) Calculate the electrostatic self-energy of the arrangement, if only the surfaces of the balls are charged. (Assume that the surfaces are charged homogeneously.)
3. 3. (Charge distribution, $\mathbf{5}$ marks) The z-axis of a cartesian coordinate system is charged between $z=-a$ und $z=a$. The line charge density is given by λ.
(a) (3 marks) Calculate the potential $\phi(\vec{r})$.
(b) (2 marks) Calculate the potential $\phi(\vec{r})$ and the electric field $\vec{E}(\vec{r})$ for $a \gg r$. Compare the result for $\phi(\vec{r})$ to the results that you have obtained in exercise 2.3.!
3. 4. (dipole moment and δ-distribution, 4 marks)
(a) (3 marks) Calculate the electrostatic potential ϕ and the electric field \vec{E} for the following charge distribution $\rho(\vec{r}):(\vec{p}$ is an arbitrary constant vector)

$$
\rho(\vec{r})=\vec{p} \cdot \vec{\nabla} \delta(\vec{r})
$$

(b) (1 mark) Is there a condition such that the dipole moment does not depend on the choice of the origin of the coordinate system? Prove your answer!
3. 5. (electric multipole, 4 marks) Expand the electrostatic potential $\phi(\vec{r})$ given by the charge distribtion

$$
\begin{aligned}
\rho(\vec{r})= & q\left[\delta^{(3)}(\vec{r}-(a, a, 0))+\delta^{(3)}(\vec{r}-(-a,-a, 0))\right. \\
& \left.-\delta^{(3)}(\vec{r}-(a,-a, 0))-\delta^{(3)}(\vec{r}-(-a, a, 0))\right]
\end{aligned}
$$

up to the first non-vanishing order for $|\vec{r}| \gg a$.

ALESSANDRO VOLTA

Aleasandro Voita wurde am 18. Februar 1745 in der italienischen Stadt Comu in einer Adelsfamilie getoren. Noeh auf der Schulbanik gewamn er die Naturwissenschatten lieb; ala Seunundzwanzigjatiriger wurde er Pbysiklehrer in seiner Heimatstadt. Finf Jahre spêter erhielit er einen Ruf als Profeesor an die Eniversitat in Pavia.
Als Student gah er seine erste wissenschaftiche Arbeit .. Cber die Anziehungskraft des elektriechen Feners und die damit zusammenhảggenden Erscheinungen" heraus, In den ersten Julren scines Wirkens in Como und Pavia entwickelte er cinc ganzs Reile von Geraten, von denen wenigatens das Elektroskop mit den Strohhsimen gensanat sei, das er durch Anlringen eines Kondensatora verbesserte.
Als in Jahre 1591 Luigi Galvani seine Arbeiten und Veraschsergebnisse mit prāparierten Froschnerven mod -muskeln veruffentlichte, nahm Volta zuerst seine Hypothese von der ,.tierischen Elektrizitatt" auf, Als er aber die Galvanisehen Tersuche selbst wiederholte, vertrat er die Auffussung, dab der Grund fur das Fatstehen des elektrischen Stromes in den Muakeln und Nerven eines praparierten Frosches in zwei miteinander verbundenen untersehicdichen Metallen zn suchen ist, die pleichreitig elektrisch uber die leitfăhige Fluesigkeit des tierischen Gewehes rerbunden sind.
Der mehrjahrige wisecnschuftliehe Streit zwischen Galvani und Volta endete mit Voltus Sieg and mündete gleichzeitig in die Erfindung der galvanischen Batterie, der sogemmnten Voltaschen Saule, die Weltruf criaugte.
Der Entdeckung gingen die Entwioklung der sogenantiten Kontakttheorie und Versuche voraus, deren Grundlage der Kontakt zweier unterechiedicher Mealle war, die Voltu so in einer Reihe anordnete (Voltasehe Spannungareihe), daß zwei Metalle stets eine um so grölere Potentialdifferenz aufwiesen, je weiter sie in der Reihe voneinander entfernt lagen.
Diese Erkenntnisse wie auch die Ergebnisse einer analogen Entersachung der Flüssigkeiten wurden Grundlage der Voltaschen Säule, die sich irspriunglich aus mehreren Paaren Kupfer-und Zinhringen, die in Salzwasser getaucht waren, zusarmmensetzte.
Später fertigte er noch cinc andere Abwandlung der "Sinule"

7. November 1800: Alessandro Volta demonstriert seine newerfundene S:ule den Pariser Akademikern, in ihrer Mitte der erste Konsul Napoloon Bonaparte.

Kontaktelektrizitat und Voltasänle. Diese Abbildung entstand aus Voltas Vortrag in Paris 1801, in dem er seine Theoric der Voltaszule schillderte.
an, bel der stch Ier Flussigkeitaleiter in zwei GefaBen befindet und in jedes Gefis B cine Kupfer- und eine Zinkplatte getaucht sind. Die Platten berubhren sioh in der Flissigkeit nicht, sind aber anferhafth leitend verbundon. Das einzelne Gefaß stellt eigentlich ein Element der ursprimglichen „Saule* dar und wird heute als das Voltasche Element hezeichnet.
Volta reiste viel und unterhielt personliche Kontahte mit den hervorragenden zeitgenôssischen Gelehrten. In1 Jalire 178, war er auch in der Slowakei, wo ur die Hachschuie für Berghau in Bunská Śtiaynica hesuchte.
In Jahre 1791 ermanite ihn die Londoner Royal Society zum Mitglied und verlich ilm itire Goldmedaille. Mit einer Vielzahl vou Ehrungen und Auszeichnungen wurde er ciberhäuft. Es war ihm vergönnt, über seinc Entdeckungen im Juher 1801 yor der Franzoisischen Akademie in Anwesentheit dea eraten Konsuls, Napoleon Bonaparte, Vorlesungen 20 halten. 1810 erhielt er das Adelspradikat eines Grafon und wurde Senator von Italien.
1815 wurde er Direktor der Philosophischen Fakuttat in Pavia, vier Juhre sputer roge er sich jedoch ins heimatliche Couso zarick, um sich zar Rube zu metzen und endlich mehr seiner Familie zu widmen. Dort starb er auch am 5. März 1827 in Alter von 82 Jahren.
aus BDREC: Guten Zag, Herz Ampara:
Mí Hilfe der von Volta angegebenen Bauvorschrife war es seht lciche möglich, sich eme = Säule- selbsr herzustellen. Man branchre nur blankgeriebene Kupfermünzen, Zinkplätchen und (in Saizwaver jetrankres) Loschpapief, und mufte diese regeimäßig und forgesetzt autemanderschichten. Damit hatte man erstmals die Muglichkeit, cimgermakisen konstanie elekerische Strome ku erzeugen und mie thaen zu expecimentieren. Die Voltashte Saule offnete das Tor in eine neve physikalische Welt, in den Bereich der Phänomene, die man hetue unter ceem Begriff -stevmeride Efektriziłät- zusammenfaft.
Dit Voltasche Säule war ein physikalischer Apparat, die Erfindung hatte also mut *Technik= im engeren Sinne (zunachst) nichts zu' tun. Heute freilich gehoren Batterien zu den selbstverstandlichsten rechnischen Erzeugnissen: Die Ausfuhrung wurde villfach verbessert und dee Apparation Milliarden Stückzahler von der Industric produzien. .
aus GERAMANNI Weltrelch dor Phyelk

