4th Exercise Sheet: Electrodynamics, Summer Term '06

Prof. M. G. Schmidt, J. Braun

May 19, 2006

Submission on May 26, 2006 during the lecture
4. 1. (Präsenzübung: Poisson's equation, photon mass and complex function theory, $\mathbf{1}+\mathbf{1}$ marks) The Poisson's equation was introduced in the lecture. In the following, you have to discuss a modified version of the Poisson's equation:

$$
\left(\Delta-m^{2}\right) \phi(\vec{x})=-4 \pi \delta(\vec{x}),
$$

where $m \in \mathbb{R}$.
(a) Prove that

$$
\phi(\vec{x})=4 \pi \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\mathrm{e}^{i \vec{p} \cdot \vec{x}}}{p^{2}+m^{2}}
$$

is a solution of the modified Poisson's equation. Note that $p^{2}=\vec{p} \cdot \vec{p}$. In order to solve this exercise, it is convenient to use the representation of the Dirac delta distribution in Fourier space:

$$
\delta(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \mathrm{e}^{i \vec{p} \cdot \vec{x}} .
$$

(b) Perform the integration for $\phi(\vec{x})$ by means of the residue theorem! Discuss the result: What do you get for $\phi(\vec{x})$ in the limit $m \rightarrow 0$? What would be the consequences if the photons were massive?
Instructions: In order to calculate the integral, it is convenient to use spherical coordinates: Choose the z-axis of the coordinate system to be in the direction of the vector \vec{x} and then perform the integration over the angles. Finally, you need the residue theorem to perform the integration in radial direction. The residue theorem is given by

$$
\oint d z f(z)=2 \pi i \sum_{i} \operatorname{Res}_{z=z_{i}} f(z) \quad \text { with } \quad \operatorname{Res}_{z=z_{i}} f(z)=\lim _{z \rightarrow z_{i}}\left(z-z_{i}\right) f(z)
$$

where the integration is performed over a closed line (in the counterclockwise direction) in the complex plane, and the sum is over the residues of $f(z)$ inside that line. The formula for the calculation of the residue is only valid if $f(z)$ has a pole of first order (simple pole) at $z=z_{i}$.
4. 2. (multipole expansion, 5 marks) Consider the charge density distribution

$$
\rho(\vec{r})=\frac{q}{64 \pi a_{B}^{3}}\left(\frac{r}{a_{B}}\right)^{2} \sin ^{2}(\theta) \mathrm{e}^{-r / a_{B}} .
$$

The atomic length scale is given by the constant a_{B}. Calculate the potential by means of a (spherical) multipole expansion!
Remarks: You only have to use the formula for the multipole expansion which is valid outside of the charge distribution, i. e. for $r>r^{\prime}$. But note that you have to calculate all terms of the series!

4. 3. (Green's law and Earnshaw's theorem, 6 marks)

(a) (3 marks) Prove that the value of the electrostatic potential at a test point \vec{r} is equal to the average of a potential taken over any spherical surface with central point \vec{r}. Instructions: Use Green's law with $\psi_{1}=\phi$ and $\psi_{2}=\frac{1}{\left|\overrightarrow{r^{\prime}}-\vec{r}\right|}$.
(b) (3 marks) Prove Earnshaw's theorem: There is no stable configuration of a finite number of point charges. Hint: Consider one arbitrary point charge $Q_{k}(k \in\{1, \ldots, N\})$ of a configuration of all point charges and prove by means of the result of 4.3 .(a) that the assumption that the point charge Q_{k} is located in a (local) minimum is wrong!
4. 4. (mirror charges $\mathrm{I}, 7$ marks) Consider a charged grounded ball with radius R. The central point of this ball is located at the origin of the coordinate system. A point charge q is located outside of the ball with distance a ($a>R$) from the origin of the coordinate system.
(a) (3 marks) Calculate the electrostatic potential of this test arrangement! Hints: Which value does the potential take on the surface of the ball? Put another point charge q^{\prime} on the symmetry axis of the test arrangement with distance $a^{\prime}<R$ from the origin of the coordinate system? Can you choose q^{\prime} and a^{\prime} such that the boundary condition for potential on the surface of the ball is fulfilled?
(b) (2 marks) Calculate the charge density distribution of surface of the ball!
(c) (2 marks) Calculate the force between the point charge and the ball!
(including radiant heat, and other radiation if any) is an electromagnetic disturbance in the form of
wave propagated through the electromagnetic field according to electromagnetic laws,"
1873 legte Maxwell in dem zweibilndigen 'Treatise' cine Zusammenfassung aller bishorigen Arbeiton Hertz und Oliver Heaviside griffen auf die urspröngliche Fassung zurick. Es dauene Jahrzehnte bis die Maxwellschen Gleichungen voll verstanden und anerkannt wurden. Dann aber bildete 'Maxwellsche Elektrodynamik' zusammen mit der 'Newtonschen Mechanik' das stolze Gebaude der klnssischen stelle in hoher Anerkennung der Leistung Maxwells seiner 'Vorlesungen tiber Maxwells Theorie' als Motto das Goethe-Wort voran:
"War es ein Gott, der diese Zeichen schrieb ?"
Auch auf dem Gebiete der kinetischen Gastheorie leistete Maxwell Bahnbrechendes. Er griff die
Ansătze von August Karl König und Rudolf Clausius auf; whrend diese nur die minlerc Ansätze von August Karl König und Rudolf Clausius auf; whrend diese nur die mittlere Geschwindigkeit der Molekule betrachtet hatten, stelte Maxwell die Frage nach der individuellen
Geschwindigkeit des einzelnen Teilchens. Er fand die heute sogenannte Maxwellsche Geschwindigkeitsverteilung und begrilndete damit zugleich die statistische Physik. Anf Ludwig durch Parallelarbeit, cinander anregend und kritisierend das neue Gebiet aufgebaut. Als Wegbereiter der kinetischen Gastheorie war Maxwell auch cin biberzeugter Anhdnger der Atomistik. In einer seine Uberzeugung, daB dic Atome absolut unveranderliche Gegebenheiten darstellen, und leitete daraus
die Forderung nach atomaren Standards fur die Girundeinheit der Masse, der Länge und der Zeit ab. 865 legte Maxwell aus gesundheitlichen Grilnden sein Lehramt am King's College nieder. Sein Gutsbesitz in Schottland sicherte ihm finanzielle Unabhängigkeit. Frei von den akademischen Verpflichtungen setzte er seine Forschungen als Privatgelehrter fort und verfaßte die umfangreichen
Manuskripte seiner Anfang der siebziger Jahre erschienenen Werke, Eine Berufung nach St.Andrews, an die alteste schottische Universitat, lehnte er ab. Als aber die Universitat Cambridge einen Lehrstuhl fur Experimentalphysik neu grindete und, ersimalig for England, mit einem groken Unterrichtslaboratorium ausstattete, nahm Maxwell diese auch filr die britische Wissenschaft insgesamt wichtige Aufgabe an. In
GroBbritannien hatte es bis dat nur ein physikalisches Unterichtslaboratorium gegeben, das von William Thomson (Lord Kelvin) im schottischen Glasgow. Der Bau und die Einrichtung des nach dem Hauptgeldgeber benannten Cavendish Laboratory nahm viel Zeit in Anspruch; mit ihm begriundete aber
Maxwell eine moderne Ausbildung und die berahmte Experimentalphysik in Cambridge.
Quelle: Armin Hermann 'Lexikon - Geschichte der Physik A-Z', Aulis-Verlag Deubner \& Co KG: 1978 Maxwell wurde am 13.Juni 1831 in Edinburg geboren und stari am 5. November 1879 in Cambridge,
Sein Vater war cin Gutsbesitzer und Sonderling, an dem Maxwell mit großer Liebe hing.; er lieB dem Knaben nach dem Tod der Mutter, deren Familie den Namen Maxwell trug, die beste Schulbildung zutell werden. Maswell studiente drei Jahre Mathematik und Physik in Edinburgh und schloß 1854 in Cambridge sein Studium ab. Ein Jahr später legte er hier seine erste Arbeit vor, die schon auf die
späteren Maxwellschen Gleichungen zielte.
1856 erhiclt Maxwell cine Professur in Aberdeen; von 1860 an wirkte er fur fünf Jahre am King's Collcge in London. Ahnlich wie Hermann von Helmholtz bescliaftigte Maxwell sich mit der
Physiologie des Farbensehens und baute die Dreifarbentheoric von Thomas Young weiter aus.俍 Michael Faradays in eine mathematisch strenge Form brachte und dic Feldphysik begründete.
Vollendet wurden die Maxwellschen Gleichungen 1862 im Philosophical Magazine unter dem Titel On Physical Lines of Force' veroftentlicht. In der Einfuhrung des Verschicbnungsstromes ging Maxwell uber Faraday hinaus; nach Maxwell muB ein sich ändemdes clektrisches Feld in einem
Kondensator wie ein elektrischer Strom magnetische Wirkungen zeigen. Gerade diese Annahme fuhrt zur Moglichkeit transversaler elektromagnetischer Wellen. Uber die mathematisch errechnete
"This velocity is so nearly that of ligh, shat it seems we have strong reason fo conclude that light itself

