6th Exercise Sheet: Electrodynamics, Summer Term '06

Prof. M. G. Schmidt, J. Braun

June 2, 2006

Submission on June 9, 2006 during the lecture
6. 1. (Präsenzübung: infinite long cylinder and magnetic fields, $\mathbf{1}+\mathbf{1}$ marks) Consider an infinite long conducting cylinder of radius R with a homogenous current flow \vec{j}. (homogenous current flow means that \vec{j} is constant in the entire cross section of the conductor)
(a) Calculate the vector potential $\vec{A}(\vec{x})$ inside and outside of the conductor.
(b) Calculate the magnetic induction $\vec{B}(\vec{x})$ inside and outside of the conductor.
6. 2. (point charge and dielectric matter, $\mathbf{5}$ marks) Consider a point charge q that is located in the vacuum at the origin $r=0$ with distance a from a dielectric half-space (dielectric constant ϵ).
(a) (3 marks) Prove that the potential in the vacuum can be written as

$$
\phi_{1}=\frac{q}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{q^{\prime}}{\sqrt{(x+b)^{2}+y^{2}+z^{2}}}
$$

and in the dielektric half-space as

$$
\phi_{2}=\frac{q^{\prime \prime}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Calculate the parameter b and the charges $q^{\prime}, q^{\prime \prime}$.
(b) (2 marks) Calculate and sketch the electric field of the arrangement for $\epsilon>1$ and $\epsilon<1$.
6. 3. (vector potentials and gauge transformations, 4 marks) Consider a homogenous magnetic field in z direction. Construct this magnetic field by two vector potentials, one of them pointing in the x-direction and the other one pointing in the y-direction. Find a gauge transformation that connects both potentials.
6. 4. (rotating ball and Coulomb-gauge, $\mathbf{9}$ marks) Consider a rotating charged ball of radius R. The charge Q of the ball is distributed homogenously on the surface of the ball. The ball rotates with a constant angular velocity ω and the rotation axis is passing through the centre of the ball. (Hints: It is convenient to use spherical coordinates!)
(a) (2 marks) Write the charge density ρ and the current density vector \vec{j} by means of Delta-distributions and verify that $\vec{\nabla} \cdot \vec{j}=0$.
(b) (4 marks) Calculate the vector potential $\vec{A}(\vec{x})$ such that $\vec{\nabla} \cdot \vec{A}=0$ (Coulomb-gauge).
(c) (3 marks) Calculate the magnetic induction $\vec{B}(\vec{x})$ and prove by an explicit calculation that the field equations

$$
\vec{\nabla} \cdot \vec{B}=0 \quad \text { and } \quad \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{j}
$$

are fulfilled.
conference looked at the problems of having two approaches, namely that of classical physics and of quantum theory. However Lorentz never fully accepted quantum theory and always hoped that it would opening ceremony of the conference:-

In this stage of affairs there appeared to us like a wonderful ray of light the beautifat hypothesis of encrgy elements which was first expounded by Planck and then extended by
Einstein and Nerns, and others to many phenomena it has opened for us umeopecied vistas, Einstein and Nerns, and obhers to many phenomenat It hos opened for is tomexpectan who consider it with a certain suspicion, must admit its importance and fruitfuiness.

Some of Lorentz's numerous publications are highlighted in [3]:-
In an early memoir, which became famous. Lorentz applied for the first time considerations relating to discrete molecules to electric propagation in material bodies, and incidentalty arrived at a rational reflection-equivalent for each substance independens of its density. In ligh. His "Théorie Electromagnétigue de Mawwell et son application auz Corps Mouvants" and his "Versuch einer Theorie der Elektrischen und Optischen Erscheinungen in bewegten Korpern" were published in 1892 and 1895 respectively. They embodied the first systematic appearance of the electrodynamic principle of relativity, and in 1920 he brought out "The Einstein Theory of Relativity: A Concise Statement", In 1909 he published his "Theory of Electrons", based on a series of lectures ar Columbia Universiny, and in 1916 he published in French at Leipzig an account of statistical thermodynamic theories, based on lectures
delivered at the College de France in 1912 . An edltion of his University lectures, entitled delivered at the College de France in 1912 . An edition of his University lectures, entitled Lessons on Theorefical Physics", began to appear, under his supervision, in 1999 In nas Movements", 1901; and "Clert Maswell's Eleciromagnetic Theory", 1924.

In [7] O W Richardson describes Lorentz as:-

Hendrik Lorentz attended Mr Timmer's Primary School in Amhem until he was 13 years of age when he entered the new High School there. He entered the University of Leiden in 1870 but, in 1872, he retumed to Arnhem to take up teaching evening classes. He worked for his doctorate while holding the ceaching post.

Lorentz refined Maxwell's electromagnetic theory in his doctoral thesis The theory of the reflection and refruction of light presented in 1875. He was appointed professor of mathematical physics at Leiden University in 1878. He remained in this post until he retired in 1912 when Ehrenfest was appointed to Instutute. Haarlem. However, he retained an honorary position at Leiden, where he continued to lecture. Before the existence of electrons was proved, Lorentz proposed that light waves were due to oscillations of an electric charge in the atom. Lorentz developed his mathematical theory of the electron for which he received the Nobel Prize in 1902. The Nobel prize was awarded jointly to Lorentz and Pieter Zeeman, structure, demonstrating the effect of a strong magnetic field on the oseillations by measuring the change structure, demonstrating the effect of a

Lorentz is also famed for his work on the FitzGerald-Lonentz contraction, which is a contraction in the ength of an object at relativistic speeds. Lotentz transformations, which he introduced in 1904, form ef length, and the time dilation of a boody moving at speeds close to the velocity of light.

Lorentz was chairman of the first Solvay Conference held in Brussels in the autumn of 1911. This

Hendrik Antoon Lorentz

Born: 18 July 1853 in Arnhem, Netherlands
Died: 4 Feb 1928 in Haarlem, Netherlands

7 20 20

Chick the picture alkove to sec eight larger pictures

Show birthplace location

Previous (Chronologically) Next Biographics Index Previous (Alphabetically) Next

