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QCD phase diagram

partition function, after integrating out the quarks,

Z =

∫

DU e−SYM detD

at nonzero quark chemical potential

[detD(µ)]∗ = detD(−µ∗)

fermion determinant is complex

straightforward importance sampling not possible

sign problem

⇒ phase diagram has not yet been determined
non-perturbatively
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Many QCD phase diagrams
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Outline

sign/overlap/Silver Blaze problems

going complex ...

complex Langevin dynamics
distributions
SU(3) vs XY
stability of real manifold

conclusion

Delta Meeting, January 2013 – p. 4



Sign/overlap/Silver Blaze problems

integrate out the quarks: complex detD(µ) = | detD(µ)|eiθ

sign problem due to complexity, not due to Grassmann
nature: also appears in bosonic theories with µ 6= 0

ignore the phase: | detD(µ)|, phase quenching (pq)
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Sign/overlap/Silver Blaze problems

integrate out the quarks: complex detD(µ) = | detD(µ)|eiθ

sign problem due to complexity, not due to Grassmann
nature: also appears in bosonic theories with µ 6= 0

ignore the phase: | detD(µ)|, phase quenching (pq)

if pq 6= full, e.g. µpq(onset) < µfull(onset)

overlap problem: average sign

〈eiθ〉pq = Z/Zpq = e−Ω∆f ∆f = f − fpq

vanishes exponentially with 4-volume Ω

Silver Blaze problem: many cancelations to ensure that
onset happens at the right critical µ Cohen 03
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Sign/overlap/Silver Blaze problems

example: Nf = 2 QCD with [detD(µ)]2

phase-quenched: | detD(µ)|2 = detD(µ) detD(−µ)
⇒ isospin chemical potential
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Sign/overlap/Silver Blaze problems

example: Nf = 2 QCD with [detD(µ)]2

phase-quenched: | detD(µ)|2 = detD(µ) detD(−µ)
⇒ isospin chemical potential

at T = 0:

isospin: onset at µ = mπ/2
full: onset at µ ∼ mN/3 (− binding energy)

Silver Blaze region: mπ/2 < µ . mN/3

intricate cancelations, e.g. eigenvalue density of Dirac
operator is complex, highly oscillatory, with exp. large
amplitude in thermodynamic limit

precise integration to get correct cancelations
Osborn, Splittorff & Verbaarschot 05
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg

use standard approaches: may not get to the top
(reweighting, small µ2: Taylor series, analytical continuation, . . .)
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg

use standard approaches: may not get to the top

solve related theories: may end up on the wrong top
(two-color QCD, strong-coupling QCD, effective models, . . .)
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg

use standard approaches: may not get to the top

solve related theories: may end up on the wrong top

use complex Langevin dynamics: climb without any
ropes or guidance ...
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg

use complex Langevin dynamics: climb without any
ropes or guidance ...

starting point is below sea level!
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Sign problem

Solving the sign problem ∼ climbing Mount Everest
Philippe de Forcrand − Sign 2012, Regensburg

use complex Langevin dynamics: climb without any
ropes or guidance ...

at least some height was tackled ....
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore

Delta Meeting, January 2013 – p. 9



Complexified field space

complex weight ρ(x)

dominant configurations in the path integral?

x

R
e 

ρ(
x)

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83
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Complex Langevin dynamics

does it work?

for real actions: stochastic quantization Parisi & Wu 81

equivalent to path integral quantization

Damgaard & Hüffel, Phys Rep 87

for complex actions: no formal proof

troubled past: “disasters of various degrees”

Ambjørn et al 86

why keep talking about it? recent examples in which CL

can solve Silver Blaze problem

can handle severe sign problems

gives the correct result (!)

analytical understanding improving
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Complex Langevin dynamics

various scattered results since mid 1980s

here: review finite density results obtained with

Nucu Stamatescu, Erhard Seiler, Frank James
Denes Sexty, Jan Pawlowski, . . .

0807.1597 [GA & IOS] . . . 1212.5231 [GA, FJ, JP, ES, DS & IOS]
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Real Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ R

Langevin equation

ẋ = −∂xS(x) + η, 〈η(t)η(t′)〉 = 2δ(t− t′)

associated distribution ρ(x, t)

〈O(x(t)〉η =

∫

dx ρ(x, t)O(x)

Langevin eq for x(t) ⇔ Fokker-Planck eq for ρ(x, t)

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

stationary solution: ρ(x) ∼ e−S(x)
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Fokker-Planck equation

stationary solution typically reached exponentially fast

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

write ρ(x, t) = ψ(x, t)e−
1

2
S(x)

ψ̇(x, t) = −HFPψ(x, t)

Fokker-Planck hamiltonian:

HFP = Q†Q =

[

−∂x +
1

2
S′(x)

] [

∂x +
1

2
S′(x)

]

≥ 0

Qψ(x) = 0 ⇔ ψ(x) ∼ e−
1

2
S(x)

ψ(x, t) = c0e
− 1

2
S(x) +

∑

λ>0

cλe
−λt → c0e

− 1

2
S(x)
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Complex Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ C

complex Langevin equation: complexify x→ z = x+ iy

ẋ = −Re ∂zS(z) + η 〈η(t)η(t′)〉 = 2δ(t− t′)

ẏ = −Im ∂zS(z) S(z) = S(x+ iy)

associated distribution P (x, y; t)

〈O(x+ iy)(t)〉 =

∫

dxdy P (x, y; t)O(x+ iy)

Langevin eq for x(t), y(t) ⇔ FP eq for P (x, y; t)

Ṗ (x, y; t) = [∂x (∂x +Re ∂zS) + ∂yIm ∂zS]P (x, y; t)

generic solutions? semi-positive FP hamiltonian?
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Field theory

scalar fields:

(discretized) Langevin dynamics in “fifth” time direction

φx(n+ 1) = φx(n) + ǫKx(n) +
√
ǫηx(n)

drift: Kx = −δS[φ]/δφx
Gaussian noise: 〈ηx(n)〉 = 0 〈ηx(n)ηx′(n′)〉 = 2δxx′δnn′

gauge/matrix theories:

U(n+ 1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . .N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM

complex action: K† 6= K ⇔ U ∈ SL(N,C)
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Distributions

crucial role played by distribution P (x, y)

does it exist?
usually yes, constructed by brute force by solving the CL process
direct solution of FP equation extremely hard
see e.g. GA, ES & IOS 0912.3360 Duncan & Niedermaier 1205.0307

what are its properties?
localization in x− y space, fast/slow decay at large |y|
essential for mathematical justification of approach
GA, ES, IOS (& FJ) 0912.3360, 1101.3270

smooth connection with original distribution when
µ ∼ 0?
GA, FJ, JP, ES, DS & IOS 1212.5231

study with histograms, scatter plots, flow
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Distributions

distribution in well-behaved example GA & IOS 0807.1597
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SU(3) spin model vs XY model

contrast two three-dimensional spin models:

SU(3) and XY models GA & FJ 1005.3468, 1112.4655

both can also be solved with worldline/flux methods
Banerjee & Chandrasekharan 1001.3648

Gattringer (& Mercado) 1104.2503, 1204.6074

SU(3) spin model:

earlier solved with complex Langevin
Karsch & Wyld 85 Bilic, Gausterer & Sanielevici 88

effective Polyakov loop model for heavy quarks

paradigm for strong-coupling/hopping expansions
Philipsen, Langelage et al 09-12
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SU(3) spin model

3-dimensional SU(3) spin model: S = SB + SF

SB = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

SF = −h
∑

x

[

eµPx + e−µP ∗
x

]

SU(3) matrices: Px = TrUx, P ∗
x = TrU †

x = TrU−1
x

gauge action: nearest neighbour Polyakov loops

(static) quarks represented by Polyakov loops

complex action S∗(µ) = S(−µ∗)

justification of complex Langevin:
out of many criteria: analyticity in µ2, imag → real µ
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SU(3) spin model

phase structure

effective model for QCD with static quarks
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SU(3) spin model

real and imaginary potential:

first-order transition in β − µ2 plane, 〈P + P ∗〉/2
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h=0.02, 10
3

negative µ2: real Langevin — positive µ2: complex Langevin
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XY model

3D XY model [U(1) model] at nonzero µ

S = −β
∑

x,ν

cos (φx − φx+ν̂ − iµδν,0)

= −1

2
β
∑

x,ν

[

eµδν,0UxU
∗
x+ν̂ + e−µδν,0U∗

xUx+ν̂

]

µ couples to the conserved Noether charge

symmetry S∗(µ) = S(−µ∗)

phase structure as in SU(3) model:

disordered phase at small β, µ

ordered phase at large β, µ
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XY model

analyticity in µ2: action density around µ2 ∼ 0
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β=0.7, 83
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β=0.3, 83

β = 0.7 ordered phase β = 0.3 disordered phase

failure in disordered phase: non-analytic

aside: “Roberge-Weiss” transition at µI = π/Nτ
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XY model

comparison with world line formulation

phase diagram:

 0  0.5  1  1.5  2  2.5  3  3.5  4
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 7 relative deviation:

∆S =
〈S〉cl − 〈S〉wl

〈S〉wl

high β: ordered

low β: disordered

phase boundary from Banerjee & Chandrasekharan

failure highly correlated with ordered/disordered phase
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XY model

incorrect result in the disordered/transition region

diagnostics:

width of distribution
in φI direction

〈(∆φI)2〉
jumps discontinuously
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I )2 >
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8
3

distribution P [φR, φI] at µ ∼ 0 not smoothly connected
to distribution ρ[φ] at µ = 0

aside: independent of strength of the sign problem
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U(1) versus SU(N)

compare 3D spin models: reduce to effective one-link models

example: SU(3)

S = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

− h
∑

x

[

eµPx + e−µP ∗
x

]

nearest neighbours represent complex couplings

effective one-link model: S = −β1(µ)P − β2(µ)P
∗

complex couplings

β1(µ) = |βeff |eiγ + heµ β2(µ) = β∗1(−µ)

with βeff = 6βP ∗
±ν̂ = 6β|u|eiγ ∈ C
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U(1) versus SU(N)

effective complex couplings: βeff = 6βP ∗ = 6β|u|eiγ ∈ C
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U(1) versus SU(N)

compare effective one-link models: integration over angles

U(1): U = eiφ
∫ π

−π

dφ

SU(N ):

U = diag
(

eiφ1, eiφ2 , . . . , eiφN
)

φ1+φ2+. . .+φN = 0

∫ π

−π

dφ1 . . . dφN δ (φ1 + φ2 + . . .+ φN )H({φi})

Haar measure: H({φi}) =
∏

i<j

sin2
(

φi − φj
2

)

role of reduced Haar measure?
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U(1) versus SU(N)

compare U(1) and SU(2) one-link models

one angle φ = x [SU(3) two angles, same conclusions]

SU(2) reduced Haar measure H(x) = sin2 x

partition function (complex β)

ZU(1) =

∫ π

−π

dx eβ cosx ZSU(2) =

∫ π

−π

dx sin2 x eβ cosx

differ only in reduced Haar measure

effective action

S = −β cosx− 2d ln sinx β ∈ C

d = 1: SU(2) d = 0: U(1)
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Flow: U(1) versus SU(N)

reduced Haar measure only (β = 0, d = 1)

singular at origin, use adaptive stepsize

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

x

y

always restoring! dynamics attracted to real manifold
Delta Meeting, January 2013 – p. 29



Flow: U(1) versus SU(N)

β 6= 0: small imaginary fluctuations
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SU(2): β = 1, d = 1 U(1): β = 1, d = 0

linear stability ẏ = −λy λ = β cosx+
4d

1− cos 2x

SU(2): real manifold linearly stable if Re β . 5.19
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U(1) versus SU(N)

role of reduced Haar measure in SU(N )

dynamics due to reduced Haar measure drives
towards real manifold: attractive

stable against small complex fluctuations

U(1)/XY model

real manifold unstable against small complex
fluctuations

simulations at µ→ 0 and µ = 0 do not agree

indeed observed in disordered phase of 3D XY model

in ordered phase, nearest neighbours are correlated and one-link
model is not applicable: XY model is effectively Gaussian
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Stabilizing drift

Haar measure contribution to complex drift restoring

controlled exploration of the complex field space

employ this: generate Jacobian by field redefinition

Z =

∫

dx e−S(x) x = x(u) J(u) =
∂x(u)

∂u

=

∫

du e−Seff(u) Seff(u) = S(u)− ln J(u)

drift: K(u) = −S′
eff(u) = −S′(u) + J ′(u)/J(u)

which field redefinition?

singular at J(u) = 0 but restoring in complex plane
GA, FJ, JP, ES, DS & IOS 1212.5231
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Field redefinitions: Gaussian

Gaussian example: defined when Re(σ) = a > 0

Z =

∫ ∞

−∞

dx e−
1

2
σx2

σ = a+ ib 〈x2〉 = 1

σ

what if a < 0? flow in complex space for a = −1, b = 1:
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x
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v

left: highly unstable right: after transformation x(u) = u3

attractive fixed points
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Field redefinitions: Gaussian

do CLE in the u formulation and compute 〈x2〉 = 〈u6〉

-1 -0.5 0 0.5 1
a

-1

-0.5

0

0.5

<
x2 >

Re <x
2
>

Im <x
2
>

a+ib, b=1, x=u
3

〈x2〉 = 1

σ
=

a− ib

a2 + b2

take also negative a

CLE finds the analytically continued answer to negative a!
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Field redefinitions: from U(1) to SU(2)

ZU(1) =

∫ π

−π

dx eβ cosx ZSU(2) =

∫ π

−π

dx sin2 x eβ cosx

transform U(1) model: x(u) = u− sin(2u)/2

generate SU(2) jacobian (!): J(u) = x′(u) = 2 sin2 u
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βe
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cosx, x=u-sin(2u)/2, β=1.0

stabilizes CLE at small complex β = |β|eiγ

some but very limited success in 3D XY model
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Summary

complex Langevin can handle

sign problem

Silver Blaze problem

phase transition

thermodynamic limit

however

convergence: correct result not guaranteed

important

stability of real manifold under complex fluctuations

exploit freedom under field redefinitions and
non-uniqueness of CLE

see Denes’ talk for SU(3) gauge theory
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