How to climb Mount Everest: the sign problem at finite density

Gert Aarts

Swansea University
Prifysgol Abertawe

QCD phase diagram

partition function, after integrating out the quarks,

$$
Z=\int D U e^{-S_{\mathrm{YM}}} \operatorname{det} D
$$

at nonzero quark chemical potential

$$
[\operatorname{det} D(\mu)]^{*}=\operatorname{det} D\left(-\mu^{*}\right)
$$

- fermion determinant is complex
- straightforward importance sampling not possible
- sign problem
phase diagram has not yet been determined non-perturbatively

Many QCD phase diagrams

Outline

- sign/overlap/Silver Blaze problems
- going complex ...
- complex Langevin dynamics
- distributions
- $\mathrm{SU}(3)$ vs $X Y$
- stability of real manifold
- conclusion

Sign/overlap/Silver Blaze problems

integrate out the quarks: complex $\operatorname{det} D(\mu)=|\operatorname{det} D(\mu)| e^{i \theta}$

- sign problem due to complexity, not due to Grassmann nature: also appears in bosonic theories with $\mu \neq 0$
- ignore the phase: $|\operatorname{det} D(\mu)|$, phase quenching (pq)

Sign/overlap/Silver Blaze problems

integrate out the quarks: complex $\operatorname{det} D(\mu)=|\operatorname{det} D(\mu)| e^{i \theta}$

- sign problem due to complexity, not due to Grassmann nature: also appears in bosonic theories with $\mu \neq 0$
- ignore the phase: $|\operatorname{det} D(\mu)|$, phase quenching (pq)
if $\mathrm{pq} \neq$ full, e.g. $\quad \mu_{\mathrm{pq}}$ (onset) $<\mu_{\text {full }}$ (onset)
- overlap problem: average sign

$$
\left\langle e^{i \theta}\right\rangle_{\mathrm{pq}}=Z / Z_{\mathrm{pq}}=e^{-\Omega \Delta f} \quad \Delta f=f-f_{\mathrm{pq}}
$$

vanishes exponentially with 4 -volume Ω

- Silver Blaze problem: many cancelations to ensure that onset happens at the right critical μ

Sign/overlap/Silver Blaze problems

example: $N_{f}=2$ QCD with $[\operatorname{det} D(\mu)]^{2}$

- phase-quenched: $|\operatorname{det} D(\mu)|^{2}=\operatorname{det} D(\mu) \operatorname{det} D(-\mu)$
\Rightarrow isospin chemical potential

Sign/overlap/Silver Blaze problems

example: $N_{f}=2$ QCD with $[\operatorname{det} D(\mu)]^{2}$

- phase-quenched: $|\operatorname{det} D(\mu)|^{2}=\operatorname{det} D(\mu) \operatorname{det} D(-\mu)$
\Rightarrow isospin chemical potential
at $T=0$:
- isospin: onset at $\mu=m_{\pi} / 2$ full: onset at $\mu \sim m_{N} / 3$ (- binding energy)
- Silver Blaze region: $m_{\pi} / 2<\mu \lesssim m_{N} / 3$
- intricate cancelations, e.g. eigenvalue density of Dirac operator is complex, highly oscillatory, with exp. large amplitude in thermodynamic limit
- precise integration to get correct cancelations

Sign problem

Solving the sign problem ~ climbing Mount Everest

Philippe de Forcrand - Sign 2012, Regensburg

Sign problem

Solving the sign problem ~ climbing Mount Everest

```
Philippe de Forcrand - Sign 2012, Regensburg
```

- use standard approaches: may not get to the top (reweighting, small μ^{2} : Taylor series, analytical continuation, . . .)

Sign problem

Solving the sign problem ~ climbing Mount Everest

```
Philippe de Forcrand - Sign 2012, Regensburg
```

- use standard approaches: may not get to the top
- solve related theories: may end up on the wrong top (two-color QCD, strong-coupling QCD, effective models, ...)

Sign problem

Solving the sign problem ~ climbing Mount Everest

```
Philippe de Forcrand - Sign 2012, Regensburg
```

- use standard approaches: may not get to the top
- solve related theories: may end up on the wrong top
- use complex Langevin dynamics: climb without any ropes or guidance ...

Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand - Sign 2012, Regensburg

- use complex Langevin dynamics: climb without any ropes or guidance ...

starting point is below sea level!

Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand - Sign 2012, Regensburg

- use complex Langevin dynamics: climb without any ropes or guidance ...

at least some height was tackled

Complex integrals

- consider simple integral

$$
Z(a, b)=\int_{-\infty}^{\infty} d x e^{-S(x)} \quad S(x)=a x^{2}+i b x
$$

- complete the square/saddle point approximation: into complex plane
- lesson: don't be real(istic), be more imaginative
radically different approach:
- complexify all degrees of freedom $x \rightarrow z=x+i y$
- enlarged complexified space
- new directions to explore

Complexified field space

complex weight $\rho(x)$
dominant configurations in the path integral?

real and positive distribution $P(x, y)$: how to obtain it?
\Rightarrow solution of stochastic process complex Langevin dynamics

Complex Langevin dynamics

does it work?

- for real actions: stochastic quantization Parisi \& Wu 81
- equivalent to path integral quantization
- for complex actions: no formal proof
e troubled past: "disasters of various degrees"

```
Ambjørn et al 86
```

why keep talking about it? recent examples in which CL

- can solve Silver Blaze problem
- can handle severe sign problems
- gives the correct result (!)
- analytical understanding improving

Complex Langevin dynamics

various scattered results since mid 1980s
here: review finite density results obtained with

Nucu Stamatescu, Erhard Seiler, Frank James Denes Sexty, Jan Pawlowski, ...

Real Langevin dynamics

partition function $Z=\int d x e^{-S(x)} \quad S(x) \in \mathbb{R}$

- Langevin equation

$$
\dot{x}=-\partial_{x} S(x)+\eta, \quad\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=2 \delta\left(t-t^{\prime}\right)
$$

- associated distribution $\rho(x, t)$

$$
\left\langle O(x(t)\rangle_{\eta}=\int d x \rho(x, t) O(x)\right.
$$

- Langevin eq for $x(t) \quad \Leftrightarrow \quad$ Fokker-Planck eq for $\rho(x, t)$

$$
\dot{\rho}(x, t)=\partial_{x}\left(\partial_{x}+S^{\prime}(x)\right) \rho(x, t)
$$

- stationary solution: $\rho(x) \sim e^{-S(x)}$

Fokker-Planck equation

- stationary solution typically reached exponentially fast

$$
\dot{\rho}(x, t)=\partial_{x}\left(\partial_{x}+S^{\prime}(x)\right) \rho(x, t)
$$

- write $\rho(x, t)=\psi(x, t) e^{-\frac{1}{2} S(x)}$

$$
\dot{\psi}(x, t)=-H_{\mathrm{FP}} \psi(x, t)
$$

- Fokker-Planck hamiltonian:

$$
\begin{gathered}
H_{\mathrm{FP}}=Q^{\dagger} Q=\left[-\partial_{x}+\frac{1}{2} S^{\prime}(x)\right]\left[\partial_{x}+\frac{1}{2} S^{\prime}(x)\right] \geq 0 \\
Q \psi(x)=0 \quad \Leftrightarrow \quad \psi(x) \sim e^{-\frac{1}{2} S(x)} \\
\psi(x, t)=c_{0} e^{-\frac{1}{2} S(x)}+\sum_{\lambda>0} c_{\lambda} e^{-\lambda t} \rightarrow c_{0} e^{-\frac{1}{2} S(x)}
\end{gathered}
$$

Complex Langevin dynamics

partition function $Z=\int d x e^{-S(x)} \quad S(x) \in \mathbb{C}$

- complex Langevin equation: complexify $x \rightarrow z=x+i y$

$$
\begin{array}{ll}
\dot{x}=-\operatorname{Re} \partial_{z} S(z)+\eta & \left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=2 \delta\left(t-t^{\prime}\right) \\
\dot{y}=-\operatorname{Im} \partial_{z} S(z) & S(z)=S(x+i y)
\end{array}
$$

- associated distribution $P(x, y ; t)$

$$
\langle O(x+i y)(t)\rangle=\int d x d y P(x, y ; t) O(x+i y)
$$

- Langevin eq for $x(t), y(t) \quad \Leftrightarrow \quad$ FP eq for $P(x, y ; t)$

$$
\dot{P}(x, y ; t)=\left[\partial_{x}\left(\partial_{x}+\operatorname{Re} \partial_{z} S\right)+\partial_{y} \operatorname{Im} \partial_{z} S\right] P(x, y ; t)
$$

- generic solutions? semi-positive FP hamiltonian?

Field theory

scalar fields:

- (discretized) Langevin dynamics in "fifth" time direction

$$
\phi_{x}(n+1)=\phi_{x}(n)+\epsilon K_{x}(n)+\sqrt{\epsilon} \eta_{x}(n)
$$

อ drift: $K_{x}=-\delta S[\phi] / \delta \phi_{x}$

- Gaussian noise: $\left\langle\eta_{x}(n)\right\rangle=0 \quad\left\langle\eta_{x}(n) \eta_{x^{\prime}}\left(n^{\prime}\right)\right\rangle=2 \delta_{x x^{\prime}} \delta_{n n^{\prime}}$
gauge/matrix theories:

$$
U(n+1)=R(n) U(n) \quad R=\exp \left[i \lambda_{a}\left(\epsilon K_{a}+\sqrt{\epsilon} \eta_{a}\right)\right]
$$

Gell-mann matrices $\lambda_{a}\left(a=1, \ldots N^{2}-1\right)$

- drift:

$$
K_{a}=-D_{a}\left(S_{B}+S_{F}\right) \quad S_{F}=-\ln \operatorname{det} M
$$

- complex action: $K^{\dagger} \neq K \Leftrightarrow U \in \operatorname{SL}(N, \mathbb{C})$

Distributions

crucial role played by distribution $P(x, y)$

- does it exist?
usually yes, constructed by brute force by solving the CL process direct solution of FP equation extremely hard
see e.g. GA, ES \& IOS 0912.3360 Duncan \& Niedermaier 1205.0307
- what are its properties?
localization in $x-y$ space, fast/slow decay at large $|y|$ essential for mathematical justification of approach

GA, ES, IOS (\& FJ) 0912.3360, 1101.3270

- smooth connection with original distribution when $\mu \sim 0$?
GA, FJ, JP, ES, DS \& IOS 1212.5231
study with histograms, scatter plots, flow

Distributions

distribution in well-behaved example

SU(3) spin model vs XY model

contrast two three-dimensional spin models:
SU(3) and XY models GA \& FJ 1005.3468, 1112.4655

- both can also be solved with worldline/flux methods

Banerjee \& Chandrasekharan 1001.3648
Gattringer (\& Mercado) 1104.2503, 1204.6074
SU(3) spin model:

- earlier solved with complex Langevin

Karsch \& Wyld 85 Bilic, Gausterer \& Sanielevici 88

- effective Polyakov loop model for heavy quarks
- paradigm for strong-coupling/hopping expansions

Philipsen, Langelage et al 09-12

SU(3) spin model

3-dimensional SU (3) spin model: $\quad S=S_{B}+S_{F}$

$$
\begin{aligned}
& S_{B}=-\beta \sum_{<x y>}\left[P_{x} P_{y}^{*}+P_{x}^{*} P_{y}\right] \\
& S_{F}=-h \sum_{x}\left[e^{\mu} P_{x}+e^{-\mu} P_{x}^{*}\right]
\end{aligned}
$$

- $\mathrm{SU}(3)$ matrices: $P_{x}=\operatorname{Tr} U_{x}, P_{x}^{*}=\operatorname{Tr} U_{x}^{\dagger}=\operatorname{Tr} U_{x}^{-1}$
- gauge action: nearest neighbour Polyakov loops
- (static) quarks represented by Polyakov loops
- complex action $S^{*}(\mu)=S\left(-\mu^{*}\right)$
justification of complex Langevin: out of many criteria: analyticity in μ^{2}, imag \rightarrow real μ

$\mathrm{SU}(3)$ spin model

- phase structure

- effective model for QCD with static quarks

$\mathrm{SU}(3)$ spin model

real and imaginary potential:

first-order transition in $\beta-\mu^{2}$ plane, $\left\langle P+P^{*}\right\rangle / 2$

negative μ^{2} : real Langevin — positive μ^{2} : complex Langevin

XY model

3D XY model [U(1) model] at nonzero μ

$$
\begin{aligned}
S & =-\beta \sum_{x, \nu} \cos \left(\phi_{x}-\phi_{x+\hat{\nu}}-i \mu \delta_{\nu, 0}\right) \\
& =-\frac{1}{2} \beta \sum_{x, \nu}\left[e^{\mu \delta_{\nu, 0}} U_{x} U_{x+\hat{\nu}}^{*}+e^{-\mu \delta_{\nu, 0}} U_{x}^{*} U_{x+\hat{\nu}}\right]
\end{aligned}
$$

- μ couples to the conserved Noether charge
- symmetry $S^{*}(\mu)=S\left(-\mu^{*}\right)$
phase structure as in $\mathrm{SU}(3)$ model:
- disordered phase at small β, μ
- ordered phase at large β, μ

XY model

- analyticity in μ^{2} : action density around $\mu^{2} \sim 0$

$\beta=0.7$ ordered phase

$\beta=0.3$ disordered phase
- failure in disordered phase: non-analytic
- aside: "Roberge-Weiss" transition at $\mu_{\mathrm{I}}=\pi / N_{\tau}$

XY model

- comparison with world line formulation
phase diagram:

relative deviation:

$$
\Delta S=\frac{\langle S\rangle_{\mathrm{cl}}-\langle S\rangle_{\mathrm{wl}}}{\langle S\rangle_{\mathrm{wl}}}
$$

high β : ordered
low β : disordered

- phase boundary from Banerjee \& Chandrasekharan
- failure highly correlated with ordered/disordered phase

XY model

- incorrect result in the disordered/transition region
diagnostics:
width of distribution in ϕ_{I} direction $\left\langle\left(\Delta \phi_{\mathrm{I}}\right)^{2}\right\rangle$
jumps discontinuously

- distribution $P\left[\phi_{\mathrm{R}}, \phi_{\mathrm{I}}\right]$ at $\mu \sim 0$ not smoothly connected to distribution $\rho[\phi]$ at $\mu=0$
- aside: independent of strength of the sign problem

$\mathrm{U}(1)$ versus $\mathrm{SU}(\mathrm{N})$

compare 3D spin models: reduce to effective one-link models

- example: $\operatorname{SU}(3)$

$$
S=-\beta \sum_{<x y>}\left[P_{x} P_{y}^{*}+P_{x}^{*} P_{y}\right]-h \sum_{x}\left[e^{\mu} P_{x}+e^{-\mu} P_{x}^{*}\right]
$$

- nearest neighbours represent complex couplings
effective one-link model: $\quad S=-\beta_{1}(\mu) P-\beta_{2}(\mu) P^{*}$
- complex couplings

$$
\beta_{1}(\mu)=\left|\beta_{\mathrm{eff}}\right| e^{i \gamma}+h e^{\mu} \quad \beta_{2}(\mu)=\beta_{1}^{*}(-\mu)
$$

with $\beta_{\text {eff }}=6 \beta P_{ \pm \hat{\nu}}^{*}=6 \beta|u| e^{i \gamma} \in \mathbb{C}$

$\mathrm{U}(1)$ versus $\mathrm{SU}(\mathrm{N})$

effective complex couplings: $\quad \beta_{\text {eff }}=6 \beta P^{*}=6 \beta|u| e^{i \gamma} \in \mathbb{C}$

$$
\beta=0.125,0.13,0.135 \quad \mu=0.5,1,2,3,4 \quad h=0.02 \quad 12^{3}
$$

$\mathrm{U}(1)$ versus $\mathrm{SU}(\mathrm{N})$

compare effective one-link models: integration over angles

- $U(1)$:

$$
U=e^{i \phi} \quad \int_{-\pi}^{\pi} d \phi
$$

- $\mathrm{SU}(N)$:
$U=\operatorname{diag}\left(e^{i \phi_{1}}, e^{i \phi_{2}}, \ldots, e^{i \phi_{N}}\right) \quad \phi_{1}+\phi_{2}+\ldots+\phi_{N}=0$

$$
\int_{-\pi}^{\pi} d \phi_{1} \ldots d \phi_{N} \delta\left(\phi_{1}+\phi_{2}+\ldots+\phi_{N}\right) H\left(\left\{\phi_{i}\right\}\right)
$$

Haar measure:

$$
H\left(\left\{\phi_{i}\right\}\right)=\prod_{i<j} \sin ^{2}\left(\frac{\phi_{i}-\phi_{j}}{2}\right)
$$

role of reduced Haar measure?

$\mathrm{U}(1)$ versus $\mathrm{SU}(\mathrm{N})$

compare $\mathrm{U}(1)$ and $\mathrm{SU}(2)$ one-link models

- one angle $\phi=x$ [$\mathrm{SU}(3)$ two angles, same conclusions]
- SU(2) reduced Haar measure $H(x)=\sin ^{2} x$
- partition function (complex β)

$$
Z_{\mathrm{U}(1)}=\int_{-\pi}^{\pi} d x e^{\beta \cos x} \quad Z_{\mathrm{SU}(2)}=\int_{-\pi}^{\pi} d x \sin ^{2} x e^{\beta \cos x}
$$

- differ only in reduced Haar measure
- effective action

$$
S=-\beta \cos x-2 d \ln \sin x \quad \beta \in \mathbb{C}
$$

- $d=1: \mathrm{SU}(2) \quad d=0: \mathrm{U}(1)$

Flow: U(1) versus $\mathrm{SU}(\mathrm{N})$

reduced Haar measure only ($\beta=0, d=1$)

- singular at origin, use adaptive stepsize

- always restoring! dynamics attracted to real manifold

Flow: U(1) versus $\mathrm{SU}(\mathrm{N})$

$\beta \neq 0$: small imaginary fluctuations

$\operatorname{SU}(2): \beta=1, d=1$

$\mathbf{U}(1): \beta=1, d=0$
$\lambda=\beta \cos x+\frac{4 d}{1-\cos 2 x}$

- $\mathbf{S U}(2)$: real manifold linearly stable if $\operatorname{Re} \beta \lesssim 5.19$

$\mathrm{U}(1)$ versus $\mathrm{SU}(\mathrm{N})$

role of reduced Haar measure in $\mathrm{SU}(N)$

- dynamics due to reduced Haar measure drives towards real manifold: attractive
- stable against small complex fluctuations
$\mathrm{U}(1) / \mathrm{XY}$ model
- real manifold unstable against small complex fluctuations
- simulations at $\mu \rightarrow 0$ and $\mu=0$ do not agree
- indeed observed in disordered phase of 3D XY model in ordered phase, nearest neighbours are correlated and one-link model is not applicable: XY model is effectively Gaussian

Stabilizing drift

- Haar measure contribution to complex drift restoring
- controlled exploration of the complex field space
employ this: generate Jacobian by field redefinition

$$
\begin{aligned}
Z & =\int d x e^{-S(x)}
\end{aligned} \quad x=x(u) \quad J(u)=\frac{\partial x(u)}{\partial u}
$$

which field redefinition?
singular at $J(u)=0$ but restoring in complex plane

Field redefinitions: Gaussian

Gaussian example: defined when $\operatorname{Re}(\sigma)=a>0$

$$
Z=\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} \sigma x^{2}} \quad \sigma=a+i b \quad\left\langle x^{2}\right\rangle=\frac{1}{\sigma}
$$

what if $a<0$? flow in complex space for $a=-1, b=1$:

left: highly unstable
right: after transformation $x(u)=u^{3}$ attractive fixed points

Field redefinitions: Gaussian

 do CLE in the u formulation and compute $\left\langle x^{2}\right\rangle=\left\langle u^{6}\right\rangle$

$$
\left\langle x^{2}\right\rangle=\frac{1}{\sigma}=\frac{a-i b}{a^{2}+b^{2}}
$$

take also negative a

CLE finds the analytically continued answer to negative a !

Field redefinitions: from $\mathrm{U}(1)$ to $\mathrm{SU}(2)$

$$
Z_{\mathrm{U}(1)}=\int_{-\pi}^{\pi} d x e^{\beta \cos x} \quad Z_{\mathrm{SU}(2)}=\int_{-\pi}^{\pi} d x \sin ^{2} x e^{\beta \cos x}
$$

- transform U(1) model:

$$
x(u)=u-\sin (2 u) / 2
$$

- generate SU(2) jacobian (!): $\quad J(u)=x^{\prime}(u)=2 \sin ^{2} u$

- stabilizes CLE at small complex $\beta=|\beta| e^{i \gamma}$
- some but very limited success in 3D XY model

Summary

complex Langevin can handle

- sign problem
- Silver Blaze problem
- phase transition
- thermodynamic limit
however
- convergence: correct result not guaranteed
important
- stability of real manifold under complex fluctuations
- exploit freedom under field redefinitions and non-uniqueness of CLE
see Denes' talk for $S U(3)$ gauge theory

