How to climb Mount Everest:
the sign problem at finite density

Gert Aarts

Swansea University
Prifysgol Abertawe

Delta Meeting, January 2013 —p. 1



QCD phase diagram

partition function, after integrating out the quarks,
7 = / DU e *¥™ det D

at nonzero quark chemical potential
det D(p)]" = det D(—p7)
o fermion determinant is complex
# straightforward importance sampling not possible

# sign problem

phase diagram has not yet been determined
non-perturbatively
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Outline

# sign/overlap/Silver Blaze problems

# going complex ...
s complex Langevin dynamics
o distributions
s SU(3) vs XY
s stability of real manifold

® conclusion
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Sign/overlap/Silver Blaze problems

integrate out the quarks: complex det D(;) = | det D(u)|e®

# sign problem due to complexity, not due to Grassmann
nature: also appears in bosonic theories with ;. # 0

® ignore the phase: |det D(u)|, phase quenching (pq)
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Sign/overlap/Silver Blaze problems

integrate out the quarks: complex det D(;) = | det D(u)|e®

# sign problem due to complexity, not due to Grassmann
nature: also appears in bosonic theories with ;. # 0

® ignore the phase: |det D(u)|, phase quenching (pq)
If pg # full, e.9. ppq(onset) < ppp(onset)
# overlap problem: average sign
<€i9>pq = Z[Zpq = e Af =1 = Joq

vanishes exponentially with 4-volume 2

# Silver Blaze problem: many cancelations to ensure that
onset happens at the right critical Cohen 03
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Sign/overlap/Silver Blaze problems

example: N; = 2 QCD with [det D(u)]?

» phase-quenched: | det D(u)|? = det D(u) det D(—pu)
= Isospin chemical potential
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Sign/overlap/Silver Blaze problems

example: N; = 2 QCD with [det D(u)]?

» phase-quenched: | det D(u)|? = det D(u) det D(—pu)
= Isospin chemical potential
at’l’'= 0:

® isospin: onset at y = m, /2
full: onset at ;1 ~ my /3 (- binding energy)

# Silver Blaze region: m,/2 < u < my/3

# Intricate cancelations, e.g. eigenvalue density of Dirac
operator is complex, highly oscillatory, with exp. large
amplitude in thermodynamic limit

# precise integration to get correct cancelations
Osborn, Splittorff & Verbaarschot 05
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg

# Uuse standard approaches: may not get to the top
(reweighting, small 1?: Taylor series, analytical continuation, .. .)
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg

# Uuse standard approaches: may not get to the top

# solve related theories: may end up on the wrong top
(two-color QCD, strong-coupling QCD, effective models, .. .)
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg

use standard approaches: may not get to the top
solve related theories: may end up on the wrong top

use complex Langevin dynamics: climb without any
ropes or guidance ...
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg

#® use complex Langevin dynamics: climb without any
ropes or guidance ...

starting point is below sea level!
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Sign problem

Solving the sign problem ~ climbing Mount Everest
Philippe de Forcrand — Sign 2012, Regensburg

#® use complex Langevin dynamics: climb without any
ropes or guidance ...

at least some height was tackled ....
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Complex integrals

# consider simple integral
Z(a,b) = / dz e 5@ S(x) = ax® + ibx

#® complete the square/saddle point approximation:
Into complex plane
# lesson: don'’t be real(istic), be more imaginative

radically different approach:

o complexify all degrees of freedom z — z = = + 1y
# enlarged complexified space
#® new directions to explore
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Complexified field space

complex weight p(x)
dominant configurations in the path integral?

Rep(x)

|

” |
[T

real and positive distribution P(z,y): how to obtain it?

1

Il

= solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83
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Complex Langevin dynamics

does it work?
o for real actions: stochastic quantization  parisi & wu 81
# equivalent to path integral quantization
Damgaard & Huffel, Phys Rep 87
# for complex actions: no formal proof
# troubled past: “disasters of various degrees”

Ambjgrn et al 86

why keep talking about it? recent examples in which CL

# can solve Silver Blaze problem

# can handle severe sign problems
# gives the correct result (!)

# analytical understanding improving
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Complex Langevin dynamics

various scattered results since mid 1980s
here: review finite density results obtained with

Nucu Stamatescu, Erhard Seiler, Frank James
Denes Sexty, Jan Pawlowski, . ..

0807.1597 [GA & 10S] ... 12125231 [GA, FJ, JP, ES, DS & 10S]
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Real Langevin dynamics

partition function Z = [ dz e 5@ S(z) € R
# Langevin equation
= —0,5(x) + 1), (n(®)n(t")) = 20(t — t')
# associated distribution p(x, t)
O(®)y = [ dr pla.0)0)
# Langevineqforz(t) <« Fokker-Planck eq for p(z,1)
pla,t) = 0y (0 + S'(x)) plx, 1)

® stationary solution:  p(z) ~ e~ 5®)
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Fokker-Planck equation

# stationary solution typically reached exponentially fast
pla.t) = 0, (8, + 5'(x)) pla, 1)

® write  p(z,t) = ¥z, t)e”25@)

Y(xz,t) = —Hppt(x, )

® Fokker-Planck hamiltonian:

Hyp = QTQ = [—&B + %S’(x)] [&U + %S/(CIZ) > 0

Qu(z)=0 & @) ~e 5@

U(z,t) = Coe_%s(@ + Z cAe_At — c()e_%s(x)
A>0
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Complex Langevin dynamics

partition function Z = [ dz e 5@ S(x) € C
#® complex Langevin equation: complexify r — z = = + iy

= —Red,S(z)+n (n(t)n(t")) = 26(t —t')
y=—Ima,S(z) S(z) = S(x +1y)

# associated distribution P(x,y;1)
OG+in)®) = [ dudyPla,yi )0 + i
# Langevin eq for x(t),y(t) < FPeqfor P(x,y;t)

P(z,y;t) = [0x (0 + Re 0.5) + 9,Im 0,5] P(z,y;t)

# (generic solutions? semi-positive FP hamiltonian?
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Field theory

scalar fields:
# (discretized) Langevin dynamics in “fifth” time direction

¢a:(n + 1) — Cbx(n) + EKx(n) + \Eﬁx(”)
o driftt K, = —0S[6]/66,

® Gaussian noise: (1;(n)) =0 (ng(n)nw(n')) = 2042 0nw

gauge/matrix theories:
Un+1)=Rn)U(n)  R=exp il (eKq+ Veng)]
Gell-mann matrices A\, (a = 1,...N? — 1)

& drift: K,=—D,(Sp+ Sr) Sr=—Indet M
® complex action: KT # K < U € SL(, C)
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Distributions

crucial role played by distribution P(z,y)

# does it exist?
usually yes, constructed by brute force by solving the CL process
direct solution of FP equation extremely hard
see e.gJ. GA, ES & I0S 0912.3360 Duncan & Niedermaier 1205.0307

# what are its properties?
localization in x — y space, fast/slow decay at large |y|
essential for mathematical justification of approach
GA, ES, I0S (& FJ) 0912.3360, 1101.3270

# smooth connection with original distribution when
(e~ 07?
GA, FJ, JP, ES, DS & I0S 1212.5231

study with histograms, scatter plots, flow
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Distributions

GA & 10S 0807.1597
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SU(3) spin model vs XY model

contrast two three-dimensional spin models:
SU(3) and XY models GA & FJ 1005.3468, 1112.4655

# Dboth can also be solved with worldline/flux methods
Banerjee & Chandrasekharan 1001.3648

Gattringer (& Mercado) 1104.2503, 1204.6074
SU(3) spin model:

# earlier solved with complex Langevin
Karsch & Wyld 85 Bilic, Gausterer & Sanielevici 88

e

effective Polyakov loop model for heavy quarks

# paradigm for strong-coupling/hopping expansions
Philipsen, Langelage et al 09-12
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SU(3) spin model

3-dimensional SU(3) spin model: S =S+ Sp

Sp=—BY [P:P;+ PP
<zy>

Sp = —hz [G’LLP;,; + e_“P;}

SU(3) matrices: P, =TrU,, P} =Tr Ul = Tr Ut
gauge action: nearest neighbour Polyakov loops
(static) quarks represented by Polyakov loops

e o o o

complex action S*(u) = S(—u*)

justification of complex Langevin:
out of many criteria: analyticity in 1, imag — real x
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SU(3) spin model

# phase structure

<P>small

<P>large

o effective model for QCD with static quarks
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SU(3) spin model

real and imaginary potential:
first-order transition in 3 — p? plane, (P + P*)/2

2 I I | ' | ' |
o B=0.135 B=0.128 ' h=0.02, 10
o [=0.134 p=0.126
o [=0.132 B=0.124
15~ & p=0.130 + [(=0.120 o
. _e———e - o
C/\\l _,_-o-—-""—.———::—--“ ST
~ e es” =7 ---*
+ 1 F e |
) / > x
= / ; ’ 7
l: AL = ///
/ =
0.5 f & & N
% =
I;IE ;a:"“m{-‘f 5 f*'*“f
EEPE P et SR et -
LT | | '
-1 0.5 0 0.5 1
2
vl

negative ;°: real Langevin — positive 12 complex Langevin
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XY model

3D XY model [U(1) model] at nonzero u

S=—BY cos(¢r — Gprp — ifi01,0)

- _% BY [l oUUs,y + e MUk Upss)

T,V

#® 1 couples to the conserved Noether charge
& symmetry S*(u) = S(—u*)

phase structure as in SU(3) model:

# disordered phase at small 3, i
o ordered phase at large 5, i
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& analyticity in p?:

-1.4

XY model

action density around p? ~ 0

-1.45
<
15
0p]
vV B=0.7, 8
— complex Langevin
-1.55 — real La_ngevin
- - world line
16 \ ! \ \ \

# = 0.7 ordered phase

-0.14
-0.16 |
<
Ao il
vV B=0.3, 8
-0.18— — complex Langevin N
— real Langevin
—-— world line
0.2 ‘ ‘ ‘ ‘ ‘
- 02 0.1 0 01 02

5 = 0.3 disordered phase

# fallure in disordered phase: non-analytic

# aside: “Roberge-Weiss” transition at y; = 7/N-
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XY model

#® comparison with world line formulation

phase diagram:

0.7

relative deviation:

<S>Cl — <S>W1
<S>W1

high 3. ordered

0.6 -

0.5

AS =

B 04

0.3

0.2

o N Wb~ o1 o0 N

0.1

low 3 disordered

0 0.5 1 1.5 2 2.5 3 3.5

N

#® phase boundary from Banerjee & Chandrasekharan
» failure highly correlated with ordered/disordered phase
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XY model

# Incorrect result in the disordered/transition region

diagnostics: T | a0
b0
B=0.6 1

<+—a 3=0.7

0.1

width of distribution
IN ¢; direction

(Adr)?)

jumps discontinuously

<(0))>>

0.05—

# distribution P|¢R, ¢1] at 4 ~ 0 not smoothly connected
to distribution p|¢| at =0

# aside: independent of strength of the sign problem
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U(1) versus SU(N)

compare 3D spin models: reduce to effective one-link models

® example: SU(3)

S=-BY [P.P+ PP, —hz e Py + e Py ]

<zy>
# nearest neighbours represent complex couplings
effective one-link model: S = —p1(u)P — Bo(p) P
#® complex couplings
B1(p) = |Berle™ + he” B2(p) = b1 (=)

with Bog = 68P, = 68ule? € C
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U(1) versus SU(N)

effective complex couplings:  fS.g = 63P* = 65|ule’? € C

1 | | | | 0.03
0.8 _
06 L 1 0.025
04 TEH 0.02
02 L _

yim 0 | R 0.015
0.2 | 10
04 L 1 0.01
0.6 Tk 0.005
08 -

-1 | | | | —1 0
0 0.5 1 15 2 25

6p|ul

8=0.125,0.13,0.135  ©=0.5,1,2,3,4  h=0.02  12°
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U(1) versus SU(N)

compare effective one-link models: integration over angles

s U(1): U = e / d¢
® SU(N):
U = diag ("%, "%, ..., e""V) b1+do+. . 4+dn =0

/Wdgm...dqsmm+¢2+...+¢N>H<{¢z-}>

—7T

Haar measure:  H({¢;}) = ] [ sin® <¢i 2 ¢j>

oy 2
1<)J

role of reduced Haar measure?
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U(1) versus SU(N)
compare U(1) and SU(2) one-link models

& oneangle¢o == [SU(3) two angles, same conclusions]

® SU(2) reduced Haar measure H(z) = sin® z

# partition function (complex p)

2y = / dx eP 5% Zsu(2) = / dz sin? x e €%

°

differ only in reduced Haar measure
# effective action

S =—0Fcosx —2dInsinx BeC

® d=1:SU(2) d=0: U(1)
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Flow: U(1) versus SU(N)
# singular at origin, use adaptive stepsize

reduced Haar measure only (8 =0,d = 1)
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Flow: U(1) versus SU(N)

- ——— -

—
—_—

\
\ /
\

-~

SN
N

| /]
N2

A A R S L R S SO0 R LN
2

B # 0: small imaginary fluctuations

Ul): 3=1,d=0

SUQ2): s=1,d=1

4d
1 — cos2x

A= [fcosx +

y=—Ay

# linear stability

#® SU(2): real manifold linearly stable if Re g < 5.19
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U(1) versus SU(N)

role of reduced Haar measure in SU(XV)

#® dynamics due to reduced Haar measure drives
towards real manifold: attractive

# stable against small complex fluctuations
U(1)/XY model

# real manifold unstable against small complex
fluctuations

simulations at 4« — 0 and ;. = 0 do not agree
# Indeed observed in disordered phase of 3D XY model

e

In ordered phase, nearest neighbours are correlated and one-link
model is not applicable: XY model is effectively Gaussian
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Stabilizing drift

# Haar measure contribution to complex drift restoring
# controlled exploration of the complex field space

employ this: generate Jacobian by field redefinition

7 - / di e 5@ r = o(u) J(u) =

- / due 5 Sei(u) = S(u) —In J (u)

drift: K(u) = —=Sle(u) = =5"(u) + J'(u)/J(u)

which field redefinition?

singular at J(u) = 0 but restoring in complex plane
GA, FJ, JP, ES, DS & IOS 1212.5231
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Field redefinitions: Gaussian

a >0

Gaussian example: defined when Re(o)

o=a-+1b

L:

what if a < 0? flow in complex space fora = —1,b

N

117 \WW\\MMJW,/WN/U

NN
E NS
W//////M/W///Ww \\J/////MM//M/J//M

NS =

u

right: after transformation z(u) = u?

attractive fixed points

left: highly unstable
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Field redefinitions: Gaussian

do CLE in the u formulation and compute (z?) = (u")

0.5 | | | | | | | o ...... L._
" Re &> atib, b=1,x=u" o -
Mo ) .
0 ,9"‘.‘ _ o
A _e_,-"“' <,CC2> — l — aé Zb2
R+ o 1 o a*+Db
-0.5—"--...,-;,','-0"""9' =
. o take also negative a
1 ™ _
I | | | |
1 0.5 0 05 1
a

CLE finds the analytically continued answer to negative a!
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Field redefinitions: from U(1) to SU(2)

2y = / dx eP o5 Z3u(2) = / dx sin? e 57
# transform U(1) model: r(u) = u — sin(2u) /2
® generate SU(2) jacobian (!): J(u) = 2/ (u) = 2sin’ u

<COos>
<COos>

iy . | im <cosc> iy i
Be'cos, x=u-sin(u)/2, =0.3 Be’'cosx, x=u-sin(2)/2, =1.0
Il ‘ Il Il ‘ Il

| | | | | | |
-0.2 -0.
0 1 2 3 06 0 1 2 3

Y Y

» stabilizes CLE at small complex 3 = |3|e"”
#® some but very limited success in 3D XY model
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Summary

complex Langevin can handle

# sign problem # phase transition
# Silver Blaze problem o thermodynamic limit
however

# convergence: correct result not guaranteed
Important

o stability of real manifold under complex fluctuations

o exploit freedom under field redefinitions and
non-uniqueness of CLE

see Denes’ talk for SU(3) gauge theory
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