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When classical simulation fails for strongly coupled systems · · ·
· · · there’s usually a sign problem around the corner.
Various incarnations: Finite baryon density (QCD), fermions
(repulsive Hubbard model, doping), non-zero θ angle, geometrically
frustrated anti-ferromagnets, Real-time evolution

〈Φ0|O(t)|Φ0〉 =
1
Z

∑

m,n

〈Φ0|n〉〈m|Φ0〉Omne−i(Em−En)t

MC evaluation is not possible
I In it’s most general form sign problem is exponentially hard Troyer,

Wiese (2005). General solution applicable to all problems unlikely.
I Use ”quantum” degrees of freedom (atoms/molecules/ions) to

represent the field variables and design the Hamiltonian
dynamics to study the real time dynamics Feynman (1982).

I (here) Abelian and Non-Abelian Gauge theories with fermionic
matter.
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Quantum Simulation: Analog vs Digital
Adjust parameters such that atoms in

optical traps act as d.o.f

a

b

cold atoms in optical lattices realize

Bosonic and Fermionic Hubbard type

models.

Ions confined in ion-trap with interactions

between individual ions can be controlled.

single qubit gate 2-qubit gate 

array of qubits

time
0

...

t∆t1

multi-qubit gate 

desired time evolution
on a coarse-grained 

time scale

e−iHeff t

physical operations on quantum hardware 
(e.g. laser pulses)

Advantage: Much more control over

interactions; Challenge: Scalability.
Prepare the ”quantum” system and let it evolve. Make measurements at times ti on

identically prepared systems. Achievement: observation of Mott-insulator (disordered)

to superfluid (ordered) phase. Greiner et. al. (2002)
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What to see in real time?
Confinement in QCD is phenomenologically described by a “string”
String breaking from a study of the spectrum:
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SSEL, LIPPERT, AND SCHILLING PHYSICAL REVIEW D 71, 114513 (2005)

G.S. Bali, K. Schilling (1992); Bali et. al. (2005).

Possibility of seeing string breaking in real time ...?
Chiral dynamics at finite density in U(N)/SU(N) gauge theories.
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Abelian Quantum Link model

H = −tF
∑
〈xy〉

(
ψ†x Uxyψy + h.c.

)
+

g2

2

∑
〈xy〉

E2
xy −

1
4g2

∑
�

(U� + h.c.) .

I Anti-commuting fermions; Gauge fields: [Exy ,Uxy ] = Uxy

I Gx |Ψ〉 = 0, Gx = ψ†xψx −
∑

i

(
Ex,x+î − Ex−î,x

)
;

Gx generates Gauge transformations and [H,Gx ] = 0
I Wilson: Uxy = exp(iϕxy ) ∈ U(1), infinite dimensional Hilbert space at

each link→ unsuitable for realization on optical lattices
I Generalized LGTs have discrete Hilbert spaces at each link, but

generate continuous gauge transformations
Horn (1981); Orland(1990); Chandrasekharan, Wiese (1996)

I Finite Hilbert space for each link field: 2S + 1 states of an integer or
half-integer quantum spin ~Sxy on each link

I Electric field: Exy = S3
xy with eigenvalues −S, . . . ,S,

Uxy = S+
xy = S1

xy + iS2
xy , U†xy = S−xy = S1

xy − iS2
xy ,
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Schwinger model with staggered fermions
Stick to simple models in 1-d having the same qualitative features for
validating the quantum simulator. Schwinger model with QL in spin-1
representation and staggered fermions:

Hs = −
∑

x
tF
[
ψ†x Ux,x+1ψx+1 + h.c.

]
+m

∑
x
(−1)xψ†xψx+

g2

2

∑
x

E2
x,x+1+V

∑
x
(ψ†xψx )

2

1 2 3 4 5 6 7 8 9 10

1/2 −1/2

Symmetries: Translation symmetry by even number of lattice spacings;
Gauss’ Law: [H,Gx ] = 0; Parity; Charge Conjugation;
Discrete Chiral Symmetry: for m = 0

broken by Gauss law.
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The String and its breaking

t t t ta)

1
2 −1

2

t t t t� � � � � � �� � � � � � �b)
Q̄ Q

t t t t� � �� � � � � �� � �c)
Q̄ q q̄ Q

t t t t� � � �� � � �d)
Q̄ q q̄ q q̄ q q̄ Q

t t tt�� ��e)
Q̄ q q̄ Q

� !� �
meson

� !� �
vacuum

� !� �
meson

Energetics in t → 0
limit easy to analyze:
E0 = −m L

2

Estring − E0 = g2

2 (L− 1)

Emesons − E0 =

2( g2

2 + m)

Estring − Emesons =
g2

2 (L− 3)− 2m

Estring − Emesons = 0
=⇒ L = 4m

g2 + 3
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Static Properties
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Static Properties
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String breaking
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Microscopic Model and effective gauge invariance
Schwinger model acts as an effective theory Hph, induced at low-energies
by a microscopic Hubbard type model H.
Express dynamical gauge fields in terms of rishons (”Schwinger” bosons for U(1)):

U2x,2x+1 = S+
2x+1,2x = bσ†2x+1bσ2x ; E2x,2x+1 = Sz

2x+1,2x = (nσ2x+1−nσ2x )/2; nσ2x +nσ2x+1 = 2S = N

2x 2x + 1

E2x,2x+1 = (n1
2x+1 − n2

2x)/2

S+
2x+1,2x

S+
2x+1,2x

Rishon for spin-1;
S = 1; N = 2

Impose Gauss law by the Hamiltonian:

HU = U
∑

x

(Gx )2 = U{
∑

x,σ=1,2

[
(nσx )2 + 2nF

x nσx + (−1)x (nF
x + nσx )

]
+2
∑

x

n1
x n2

x}

U � all other scales in the system =⇒ ground states have Gx |ψ〉 = 0
Violating gauge invariance costs energy O(U); limit U → ∞ Gauss law exact!
Gauss Law satisfied in the low-energy sector.
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Low energy physics
Low energy physics induced by Hpert:

Hpert = −tF
∑

x
(ψ†xψx+1+ψ

†
x+1ψx )+m

∑
x
(−1)x nx+

g2

4

∑
x,σ

(nσx )
2−

tB
2

∑
x,σ

(bσ†x bσx+1+bσ†x+1bσx )

Fermion-gauge coupling generated in 2nd-order perturbation theory

2x− 1 2x2x− 1

O(U)

−tF tB
2U ψ

†
2xU2x−1,2xψ2x−1

2x 2x− 1 2x

Four-fermi interaction is also generated (suppressed by O(tF/tB))!

2x−1 2x2x−2 2x+1

∼ t2F
U (n

F
2x−1 − nF

2x−1n
F
2x)

one-to-one correspondence between states in Hph and the
physical Hilbert space of Hs.
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Schematic representation
Each term of the Schwinger model can be implemented via a Bose-Fermi
Hubbard model and using superlattices (optical potential created by
superposition of different harmonics)

b)

F

a)
b1

b2

tF

2U

tB

2U

2U
2 (U + m)

2

✓
U +

g2

4
� t2B

2U

◆

tF
tB
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How good is the approximation?
Static properties: Agreement of the ground state spectra to per-cent level
for U ' 10tF
Gauss law: Probability of remaining in the gauge invariant subspace about
90% for U = 10tF and about 98% for U = 20tF even for τ ' 5000t−1

Note: perturbative violation of gauge invariance is unimportant when taking
the continuum limit Foerster, Nielsen, Ninomiya (1980)

Time evolution:

a)

b)D⇣
 †

x x �  †
x+1 x+1

⌘
Ex,x+1

E
h †

x x �  †
x+1 x+1ihEx,x+1i

He↵ ⇠  †
x+1U

†
x,x+1 x + h.c.
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-1

0.1

Ut
0 5000

-1

0

Ut
Debasish Banerjee Albert Einstein Center for Fundamental Physics, University of Bern

Quantum simulation of real-time dynamics in gauge theories



Introduction Abelian Model Realization in optical lattices Non-Abelian Conclusions

Outline

Introduction

Abelian Model

Realization in optical lattices

Non-Abelian

Conclusions

Debasish Banerjee Albert Einstein Center for Fundamental Physics, University of Bern

Quantum simulation of real-time dynamics in gauge theories



Introduction Abelian Model Realization in optical lattices Non-Abelian Conclusions

Non-Abelian Quantum Link Models
The Hamiltonian with staggered fermions are given by:

H = −t
∑
〈xy〉

(
sxyψ

i†
x U ij

xyψ
j
y + h.c.

)
+ m

∑
x

sxψ
i†
x ψ

i
x + V

∑
x
(ψi†

x ψ
i
x )

2

where sx = (−1)x1+···+xd and sxy = (−1)x1+···+xk−1 , with y = x + k̂ .
The non-Abelian Gauss law:

Ga
x = ψi†

x λ
a
ijψ

j
x +

∑
k

(
La

x,x+k̂
+ Ra

x−k̂,x

)
, Gx = ψi†

x ψ
i
x −

∑
k

(
Ex,x+k̂ − Ex−k̂,x

)
,

λa: Gell-Mann matrices; La
xy ,Ra

xy : SU(N) electric fluxes, Exy : Abelian U(1) flux.

Other possible terms in the Hamiltonian: g2

2
∑
〈xy〉

(
La

xy La
xy + Ra

xy Ra
xy
)
, g′2

2
∑
〈xy〉 E2

xy ,
1

4g2

∑
2 (U2 + h.c.). Not included in our study.

U(N) gauge invariance requires:

[La, Lb] = 2ifabcLc , [Ra,Rb] = 2ifabcRc , [La,Rb] = [E , La] = [E ,Ra] = 0,

[La,U] = −λaU, [Ra,U] = Uλa, [E ,U] = U

To study SU(N) theories, we must include the term γ
∑
〈xy〉(detUxy + h.c.)
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Rishons: the magic of the QLMs
Non-Abelian link fields can be represented by a finite-dimensional fermionic
representation:

La
xy = c i†

x,+λ
a
ij c

j
x,+, Ra

xy = c i†
y,−λ

a
ij c

j
y,−, Exy =

1
2
(c i†

y,−c i
y,−−c i†

x,+c i
x,+), U ij

x,y = c i
x,+c j†

y,−.

c i
x,±k , c i†

x,±k with color index i ∈ {1, 2, ...,N} are rishon operators. They anti-commute:

{c i
x,±k , c

j†
y,±l} = δxyδ±k,±lδij , {c i

x,±k , c
j
y,±l} = {c

i†
x,±k , c

j†
y,±l} = 0.

By fixing the no of rishons on a link, the Hilbert space can be truncated in a completely

gauge-invariant manner: Nxy = c i†
y,−c i

y,− + c i†
x,+c i

x,+.

Action of the plaquette

and the determinant on a

SU(3) theory with

Nxy = 3 rishons per link.
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Chiral Dynamics
dimension group N C flavor baryon phenomena
(1 + 1)D U(2) 1 no no no χSB, Tc = 0
(2 + 1)D U(2) 2 yes Z(2) no χSB, Tc > 0

(2 + 1)D SU(2) 2 yes Z(2) U(1)
boson

χSB,Tc > 0
χSR, nB > 0

(3 + 1)D SU(3) 3 yes Z(2)2 U(1)
fermion

χSB,Tc > 0
χSR, nB > 0

Table: Symmetries and phenomena in some QLMs.
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Top: Chiral symmetry breaking in a U(2) QLM
with m = 0 and V = −6t .

Bottom: Real-time evolution of the order

parameter profile

(ψψ)x (τ) = sx 〈ψi†
x ψ

i
x −

N
2 〉 for L = 12,

mimicking the expansion of a hot quark-gluon

plasma.
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Outlook

I Although quantum simulating QCD is still far away, many of the
simpler models have similar physical phenomena. Very useful
for insight into the physics of QCD.

I Necessiates analytical and numerical developments
understanding real-time dynamics in quantum systems to
complete the picture with data from quantum simulation

I It is very important to validate quantum simulators. At present,
mostly exact-diagonalization and DMRG techniques are used in
1-d for this purpose. Interesting to consider developing classical
simulation algorithms to validate quantum simulators.

I The way to QCD involves adding extra flavor degrees of
freedom, and multi-component Dirac fermions with appropriate
symmetries.

Debasish Banerjee Albert Einstein Center for Fundamental Physics, University of Bern

Quantum simulation of real-time dynamics in gauge theories



Introduction Abelian Model Realization in optical lattices Non-Abelian Conclusions

Backup: Implementation of the non-Abelian models
Lattice with quark and rishon sites as a physical optical lattice for fermionic atoms.

x x + 1x − 1

−− ++− +

a)

U Ut̃ t̃t̃

ψi
x

ci
x,− ci

x,+

U ij
x,x+1ψi

x

d)c)

det Uxy

x + 1xb)a)

 †
xcx,+c†

x+1,� x+1

x + 1x

| "i| #i � | #i| "i

I Force the rishon number constraint per link by the term: U
∑
〈xy〉(Nxy − n)2.

I Hopping is induced perturbatively with a Hubbard-type Hamiltonian.
I Color d.o.f are encoded in the internal states ( the 2I + 1 Zeeman levels of

the electronic ground state 1S0) of fermionic alkaline-earth atoms.
I Remarkable property: scattering is almost exactly 2I + 1 symmetric.

I Since the hopping process between quarks and rishon sites is gauge

invariant, the induced effective theory is also gauge invariant.
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Backup: An example of real-time evolution

Use the Trotter-Suzuki
decomposition

e−iHt ' e−iH1t e−iH2t e[H1,H2]t
2/2

to study the real time evolution of

2-quantum spins

Time-dependent variation of
parameters possible

Trotter errors known and bounded;

gate errors under control;

Implementation with upto 6

ions/spins Lanyon et. al. 2011
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Backup: Classical vs Quantum Simulation
Example of a quantum quench in a strongly correlated Bose gas.
S. Trotzky et. al., Nature Physics (2012).

H =
∑

j

[
−J(a†j aj+1 + h.c.) +

U
2

nj (nj − 1) +
K
2

nj j2
]

Start the system in the state |ψ(t = 0)〉 = | · · · , 1, 0, 1, 0, 1, · · · 〉 and then study the

evolution by the Hamiltonian

U/J = 5.16(7)

K/J = 1.7 × 10¬2

4Jt/h

0

0.2

0.4

0.6

n
o

d
d

0 1 2 3 4 5

c d

© 2012 Macmillan Publishers Limited.  All rights reserved.

Measured: no of bosons

on odd lattices. Solid

curves are from DMRG

results.
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