# Quantum simulation of real-time dynamics in gauge theories

Collaborators: Michael Bögli, Pascal Stebler, Uwe-Jens Wiese (Bern) Markus Müller (Madrid);

Enrique Rico-Ortega, Marcello Dalmonte, Peter Zoller (Innsbruck)

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Bern

Based on: Phys. Rev. Lett. (109), 175302 (2012) and arXiv: 1211.2242 Δ-Meeting 2013, HEIDELBERG January 11, 2013

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

| Introduction | Abelian Model | Realization in optical lattices | Non-Abelian | Conclusions |
|--------------|---------------|---------------------------------|-------------|-------------|
|              |               |                                 |             |             |
|              |               |                                 |             |             |

## Outline

#### Introduction

**Abelian Model** 

**Realization in optical lattices** 

**Non-Abelian** 

Conclusions

- 《日》《聞》《臣》《臣》 - 臣 - ろんの

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

#### When classical simulation fails for strongly coupled systems ····

... there's usually a sign problem around the corner. Various incarnations: Finite baryon density (QCD), fermions (repulsive Hubbard model, doping), non-zero  $\theta$  angle, geometrically frustrated anti-ferromagnets, Real-time evolution

$$\langle \Phi_0 | \mathcal{O}(t) | \Phi_0 \rangle = \frac{1}{\mathcal{Z}} \sum_{m,n} \langle \Phi_0 | n \rangle \langle m | \Phi_0 \rangle \mathcal{O}_{mn} \mathrm{e}^{-i(E_m - E_n)t}$$

MC evaluation is not possible

- In it's most general form sign problem is exponentially hard Troyer, Wiese (2005). General solution applicable to all problems unlikely.
- Use "quantum" degrees of freedom (atoms/molecules/ions) to represent the field variables and design the Hamiltonian dynamics to study the real time dynamics Feynman (1982).
- (here) Abelian and Non-Abelian Gauge theories with fermionic matter.

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Berr

**Realization in optical lattices** 

# **Quantum Simulation: Analog vs Digital**

Adjust parameters such that atoms in optical traps act as d.o.f

cold atoms in optical lattices realize

#### Bosonic and Fermionic Hubbard type

#### models.

lons confined in ion-trap with interactions between individual ions can be controlled.



#### Advantage: Much more control over

interactions; Challenge: Scalability.

Prepare the "quantum" system and let it evolve. Make measurements at times  $t_i$  on

identically prepared systems. Achievement: observation of Mott-insulator (disordered)

to superfluid (ordered) phase. Greiner et. al. (2002)

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Bern

# What to see in real time?

Confinement in QCD is phenomenologically described by a "string" String breaking from a study of the spectrum:



G.S. Bali, K. Schilling (1992); Bali et. al. (2005).

Possibility of seeing string breaking in real time ...? Chiral dynamics at finite density in U(N)/SU(N) gauge theories.

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

| Introduction | Abelian Model | Realization in optical lattices | Non-Abelian | Conclusions |
|--------------|---------------|---------------------------------|-------------|-------------|
|              |               |                                 |             |             |
|              |               |                                 |             |             |

### Outline

Introduction

#### **Abelian Model**

**Realization in optical lattices** 

Non-Abelian

Conclusions

- ・ロ・・団・・団・・ロ・・

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# Abelian Quantum Link model

$$H = -t_F \sum_{\langle xy \rangle} \left( \psi_x^{\dagger} U_{xy} \psi_y + \text{h.c.} \right) + \frac{g^2}{2} \sum_{\langle xy \rangle} E_{xy}^2 - \frac{1}{4g^2} \sum_{\Box} \left( U_{\Box} + \text{h.c.} \right).$$

- ► Anti-commuting fermions; Gauge fields: [E<sub>xy</sub>, U<sub>xy</sub>] = U<sub>xy</sub>
- $G_x |\Psi\rangle = 0, \ G_x = \psi_x^{\dagger} \psi_x \sum_i \left( E_{x,x+\hat{i}} E_{x-\hat{i},x} \right);$  $G_x$  generates Gauge transformations and  $[H, G_x] = 0$
- Wilson: U<sub>xy</sub> = exp(iφ<sub>xy</sub>) ∈ U(1), infinite dimensional Hilbert space at each link → unsuitable for realization on optical lattices
- Generalized LGTs have discrete Hilbert spaces at each link, but generate continuous gauge transformations

Horn (1981); Orland(1990); Chandrasekharan, Wiese (1996)

- Finite Hilbert space for each link field: 2S + 1 states of an integer or half-integer quantum spin  $\vec{S}_{xy}$  on each link
- Electric field:  $E_{xy} = S_{xy}^3$  with eigenvalues  $-S, \ldots, S$ ,

$$U_{xy}=S^+_{xy}=S^1_{xy}+iS^2_{xy}, \quad U^\dagger_{xy}=S^-_{xy}=S^1_{xy}$$
 , is a to be solution

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

## Schwinger model with staggered fermions

Stick to simple models in 1-d having the same qualitative features for **validating** the quantum simulator. Schwinger model with QL in spin-1 representation and staggered fermions:

$$H_{s} = -\sum_{x} t_{F} \left[ \psi_{x}^{\dagger} U_{x,x+1} \psi_{x+1} + h.c. \right] + m \sum_{x} (-1)^{x} \psi_{x}^{\dagger} \psi_{x} + \frac{g^{2}}{2} \sum_{x} E_{x,x+1}^{2} + V \sum_{x} (\psi_{x}^{\dagger} \psi_{x})^{2}$$



Symmetries: Translation symmetry by even number of lattice spacings; **Gauss' Law:**  $[H, G_x] = 0$ ; Parity; Charge Conjugation; Discrete **Chiral Symmetry:** for m = 0

broken by Gauss law.

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

**Realization in optical lattices** 

# The String and its breaking



Energetics in  $t \rightarrow 0$ limit easy to analyze:  $E_0 = -m\frac{L}{2}$ 

 $E_{\text{string}} - E_0 = \frac{g^2}{2}(L-1)$ 

 $E_{\rm mesons} - E_0 = 2(\frac{g^2}{2} + m)$ 

 $E_{\text{string}} - E_{\text{mesons}} = \frac{g^2}{2}(L-3) - 2m$ 

 $E_{\text{string}} - E_{\text{mesons}} = 0$  $\implies L = \frac{4m}{g^2} + 3$ 

・ロット語マネヨマネヨ かんの

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Berr

Introduction

Realization in optical lattices

#### **Static Properties**



**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

## **Static Properties**



**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# String breaking



- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

| Introduction | Abelian Model | Realization in optical lattices | Non-Abelian | Conclusions |
|--------------|---------------|---------------------------------|-------------|-------------|
|              |               |                                 |             |             |
|              |               |                                 |             |             |

### Outline

Introduction

**Abelian Model** 

#### **Realization in optical lattices**

Non-Abelian

Conclusions

- ・ロ・・聞・・言・・言・ うへの

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# Microscopic Model and effective gauge invariance

Schwinger model acts as an **effective** theory  $\mathcal{H}_{ph}$ , induced at low-energies by a microscopic **Hubbard** type model *H*.

Express dynamical gauge fields in terms of rishons ("Schwinger" bosons for U(1)):

 $U_{2x,2x+1} = S_{2x+1,2x}^+ = b_{2x+1}^{\sigma\dagger} b_{2x}^{\sigma}; \ E_{2x,2x+1} = S_{2x+1,2x}^z = (n_{2x+1}^{\sigma} - n_{2x}^{\sigma})/2; \ n_{2x}^{\sigma} + n_{2x+1}^{\sigma} = 2S = N$ 



Rishon for spin-1; S = 1;  $\mathcal{N} = 2$ 

Impose Gauss law by the Hamiltonian:

$$H_{\mathcal{U}} = \mathcal{U} \sum_{x} (G_{x})^{2} = \mathcal{U} \{ \sum_{x,\sigma=1,2} \left[ (n_{x}^{\sigma})^{2} + 2n_{x}^{F}n_{x}^{\sigma} + (-1)^{x}(n_{x}^{F} + n_{x}^{\sigma}) \right] + 2\sum_{x} n_{x}^{1}n_{x}^{2} \}$$

 $\mathcal{U} \gg$  all other scales in the system  $\implies$  ground states have  $G_x |\psi\rangle = 0$ Violating gauge invariance costs energy  $\mathcal{O}(\mathcal{U})$ ; limit  $\mathcal{U} \to \infty$  Gauss law exact! Gauss Law satisfied in the low-energy sector.

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# Low energy physics

Low energy physics induced by H<sub>pert</sub>:

$$H_{\text{pert}} = -t_F \sum_{x} (\psi_x^{\dagger} \psi_{x+1} + \psi_{x+1}^{\dagger} \psi_x) + m \sum_{x} (-1)^x n_x + \frac{g^2}{4} \sum_{x,\sigma} (n_x^{\sigma})^2 - \frac{t_B}{2} \sum_{x,\sigma} (b_x^{\sigma\dagger} b_{x+1}^{\sigma} + b_{x+1}^{\sigma\dagger} b_x^{\sigma})$$

Fermion-gauge coupling generated in 2<sup>nd</sup>-order perturbation theory



Four-fermi interaction is also generated (suppressed by  $O(t_F/t_B)$ )!



one-to-one correspondence between states in  $\mathcal{H}_{ph}$  and the physical Hilbert space of  $H_s$ .

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# Schematic representation

Each term of the Schwinger model can be implemented via a Bose-Fermi Hubbard model and using superlattices (optical potential created by superposition of different harmonics)



Debasish Banerjee

Albert Einstein Center for Fundamental Physics, University of Bern

# How good is the approximation?

**Static properties**: Agreement of the ground state spectra to per-cent level for  $U \simeq 10t_F$ 

**Gauss law**: Probability of remaining in the gauge invariant subspace about 90% for  $U = 10t_F$  and about 98% for  $U = 20t_F$  even for  $\tau \simeq 5000t^{-1}$ Note: perturbative violation of gauge invariance is unimportant when taking the continuum limit Foerster, Nielsen, Ninomiya (1980)

#### Time evolution:



**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

### Outline

Introduction

**Abelian Model** 

**Realization in optical lattices** 

**Non-Abelian** 

Conclusions

- ・ロト・(部ト・モト・モト・モー のへの

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

# Non-Abelian Quantum Link Models

The Hamiltonian with staggered fermions are given by:

$$H = -t \sum_{\langle xy \rangle} \left( s_{xy} \psi_x^{i\dagger} U_{xy}^{ij} \psi_y^{j} + \text{h.c.} \right) + m \sum_x s_x \psi_x^{i\dagger} \psi_x^{i} + V \sum_x (\psi_x^{i\dagger} \psi_x^{i})^2$$

where  $s_x = (-1)^{x_1 + \dots + x_d}$  and  $s_{xy} = (-1)^{x_1 + \dots + x_{k-1}}$ , with  $y = x + \hat{k}$ . The non-Abelian Gauss law:

$$G_x^a = \psi_x^{i\dagger} \lambda_{ij}^a \psi_x^j + \sum_k \left( L_{x,x+\hat{k}}^a + R_{x-\hat{k},x}^a \right), \quad G_x = \psi_x^{i\dagger} \psi_x^i - \sum_k \left( E_{x,x+\hat{k}} - E_{x-\hat{k},x} \right),$$

 $\lambda^a$ : Gell-Mann matrices;  $L_{xy}^a$ ,  $R_{xy}^a$ ; SU(N) electric fluxes,  $E_{xy}$ : Abelian U(1) flux. Other possible terms in the Hamiltonian:  $\frac{g^2}{2} \sum_{\langle xy \rangle} \left( L_{xy}^a L_{xy}^a + R_{xy}^a R_{xy}^a \right), \frac{g'^2}{2} \sum_{\langle xy \rangle} E_{xy}^2$ ,  $\frac{1}{4g^2} \sum_{\Box} \left( U_{\Box} + \text{h.c.} \right)$ . Not included in our study. U(N) gauge invariance requires:

 $[L^{a}, L^{b}] = 2if_{abc}L^{c}, [R^{a}, R^{b}] = 2if_{abc}R^{c}, \quad [L^{a}, R^{b}] = [E, L^{a}] = [E, R^{a}] = 0,$  $[L^{a}, U] = -\lambda^{a}U, \quad [R^{a}, U] = U\lambda^{a}, \quad [E, U] = U$ 

To study SU(N) theories, we must include the term  $\gamma \sum_{(xy)} (\det U_{xy} + h.c.)$ 

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Berr

## **Rishons: the magic of the QLMs**

Non-Abelian link fields can be represented by a finite-dimensional fermionic representation:

$$L_{xy}^{a} = c_{x,+}^{i\dagger} \lambda_{ij}^{a} c_{x,+}^{j}, \ R_{xy}^{a} = c_{y,-}^{i\dagger} \lambda_{ij}^{a} c_{y,-}^{j}, \ E_{xy} = \frac{1}{2} (c_{y,-}^{i\dagger} c_{y,-}^{i} - c_{x,+}^{i\dagger} c_{x,+}^{j}), \ U_{x,y}^{ij} = c_{x,+}^{i} c_{y,-}^{j\dagger}.$$

 $c_{x,\pm k}^{i}$ ,  $c_{x,\pm k}^{i\dagger}$ , with color index  $i \in \{1, 2, ..., N\}$  are rishon operators. They anti-commute:

 $\{c_{x,\pm k}^{i}, c_{y,\pm l}^{j\dagger}\} = \delta_{xy}\delta_{\pm k,\pm l}\delta_{ij}, \ \{c_{x,\pm k}^{i}, c_{y,\pm l}^{j}\} = \{c_{x,\pm k}^{i\dagger}, c_{y,\pm l}^{j\dagger}\} = 0.$ 

By fixing the no of rishons on a link, the Hilbert space can be truncated in a completely gauge-invariant manner:  $\mathcal{N}_{xy} = c_{y,-}^{i\dagger} c_{y,-}^i + c_{x,+}^{i\dagger} c_{x,+}^i$ .



Action of the plaquette and the determinant on a SU(3) theory with  $N_{xy} = 3$  rishons per link.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ - のへの

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Berr

# **Chiral Dynamics**

| dimension | group           | $\mathcal{N}$ | С                 | flavor       | baryon                        | phenomena            |
|-----------|-----------------|---------------|-------------------|--------------|-------------------------------|----------------------|
| (1+1)D    | U(2)            | 1             | no                | no           | no                            | $\chi$ SB, $T_c = 0$ |
| (2+1)D    | U(2)            | 2             | yes               | ℤ(2)         | no                            | $\chi$ SB, $T_c > 0$ |
| (2+1)D    | <i>SU</i> (2) 2 | 2             | 2 1/00            | 77(2)        | <i>U</i> (1)                  | $\chi$ SB, $T_c > 0$ |
|           |                 | 2 yes         | <i>∞</i> (∠)      | boson        | $\chi$ SR, $n_B > 0$          |                      |
| (3+1)D    | <i>SU</i> (3) 3 | yes           | $\mathbb{Z}(2)^2$ | <i>U</i> (1) | $\chi$ SB, $T_c > 0$          |                      |
|           |                 |               |                   | fermion      | χSR, <i>n<sub>B</sub></i> > 0 |                      |

Table: Symmetries and phenomena in some QLMs.



Top: Chiral symmetry breaking in a U(2) QLM with m = 0 and V = -6t.

Bottom: Real-time evolution of the order

parameter profile

 $(\overline{\psi}\psi)_{X}(\tau) = s_{X}\langle \psi_{X}^{i\dagger}\psi_{X}^{i} - \frac{N}{2}\rangle$  for L = 12,

mimicking the expansion of a hot quark-gluon

plasma.

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Berr

| Introduction | Abelian Model | Realization in optical lattices | Non-Abelian | Conclusions |
|--------------|---------------|---------------------------------|-------------|-------------|
|              |               |                                 |             |             |
|              |               |                                 |             |             |

### Outline

Introduction

**Abelian Model** 

**Realization in optical lattices** 

Non-Abelian

Conclusions

- 《日》《聞》《臣》《臣》 - 臣 - ろんの

**Debasish Banerjee** 

Albert Einstein Center for Fundamental Physics, University of Bern

 Introduction
 Abelian Model
 Realization in optical lattices
 Non-Abelian
 Conclusions

 Outlook
 Although guantum simulating QCD is still far away, many of the

- Although quantum simulating QCD is still far away, many of the simpler models have similar physical phenomena. Very useful for insight into the physics of QCD.
- Necessiates analytical and numerical developments understanding real-time dynamics in quantum systems to complete the picture with data from quantum simulation
- It is very important to validate quantum simulators. At present, mostly exact-diagonalization and DMRG techniques are used in 1-d for this purpose. Interesting to consider developing classical simulation algorithms to validate quantum simulators.
- The way to QCD involves adding extra flavor degrees of freedom, and multi-component Dirac fermions with appropriate symmetries.

Debasish Banerjee

Albert Einstein Center for Fundamental Physics, University of Berr

#### Backup: Implementation of the non-Abelian models

Lattice with quark and rishon sites as a physical optical lattice for fermionic atoms.



- Force the rishon number constraint per link by the term:  $U \sum_{(xy)} (N_{xy} n)^2$ .
- Hopping is induced perturbatively with a Hubbard-type Hamiltonian.
- Color d.o.f are encoded in the internal states (the 21 + 1 Zeeman levels of the electronic ground state <sup>1</sup>S<sub>0</sub>) of fermionic alkaline-earth atoms.
- Remarkable property: scattering is almost exactly 21 + 1 symmetric.
- Since the hopping process between quarks and rishon sites is gauge invariant, the induced effective theory is also gauge invariant.

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Berr

#### Backup: An example of real-time evolution

Use the Trotter-Suzuki decomposition

 $\mathrm{e}^{-i\mathcal{H}t}\simeq\mathrm{e}^{-i\mathcal{H}_{1}t}\mathrm{e}^{-i\mathcal{H}_{2}t}\mathrm{e}^{[\mathcal{H}_{1},\mathcal{H}_{2}]t^{2}/2}$ 

to study the real time evolution of 2-quantum spins

Time-dependent variation of parameters possible Trotter errors known and bounded; gate errors under control; Implementation with upto 6 ions/spins Lanyon et. al. 2011



#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Bern

#### **Backup: Classical vs Quantum Simulation**

Example of a quantum quench in a strongly correlated Bose gas.

S. Trotzky et. al., Nature Physics (2012).

$$H = \sum_{j} \left[ -J(a_{j}^{\dagger}a_{j+1} + \text{h.c.}) + \frac{U}{2}n_{j}(n_{j} - 1) + \frac{K}{2}n_{j}j^{2} \right]$$

Start the system in the state  $|\psi(t = 0)\rangle = |\cdots, 1, 0, 1, 0, 1, \cdots\rangle$  and then study the evolution by the Hamiltonian



Measured: no of bosons on odd lattices. Solid curves are from DMRG results.

#### **Debasish Banerjee**

Albert Einstein Center for Fundamental Physics, University of Bern