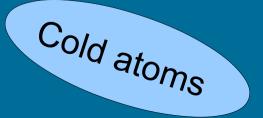
Equation of state of the unitary Fermi gas

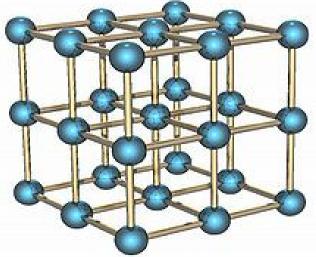
Igor Boettcher

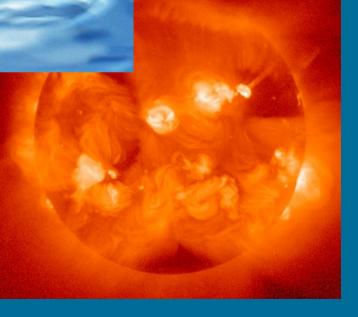
Institute for Theoretical Physics, University of Heidelberg

with S. Diehl, J. M. Pawlowski, and C. Wetterich



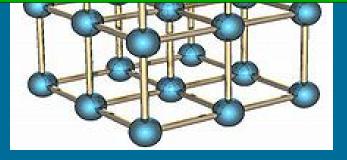
Δ13, 11. 1. 2013





possibility of a statistical description

collective degrees of freedom



1st step: Find the right Hamiltonian H

2nd step: Determine the partition function Z $Z(\mu, T) = \text{Tr}\left(e^{-\beta(H-\mu N)}\right)$

1st step: Find the right Hamiltonian H

H is known for cold atoms and QCD!

2nd step: Determine the partition function Z $Z(\mu, T) = \text{Tr}\left(e^{-\beta(H-\mu N)}\right)$

1st step: Find the right Hamiltonian H

H is known for cold atoms and QCD!

2nd step: Determine the partition function Z $Z(\mu, T) = \text{Tr}\left(e^{-\beta(H-\mu N)}\right) = \int D\phi e^{-S[\phi]}$

path integral

Euclidean quantum field theory

What are the generic features of quantum many-body systems?

What are reliable theoretical methods to describe such systems?

What observables reveal advancements and short-comings of theory?

neutron stars

What are the generic features of quantum many-body systems? high-Tc superconductors what are renaple theoretical methods to describe such systems?

What observables reveal advancements and short-comings of theory?

heavy ion collisions

nuclear matter

cold atoms

quark gluon plasma

Theory

Phase diagram and Equation of state

$$P(\mu, T) = \frac{k_{\rm B}T}{V} \log Z(\mu, T)$$

Momentum distribution

Transport coefficients $\eta(\mu, T)$

Experiments with cold atoms

Density images

Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

Theory

Phase diagram and Equation of state $P(\mu, T) = \frac{k_{\rm B}T}{V} \log Z(\mu, T)$ Momentum distribution

Transport coefficients $\eta(\mu, T)$

Experiments with cold atoms

Density images

Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

The equation of state

Classical ideal gas: $P(n, T) = nk_BT$

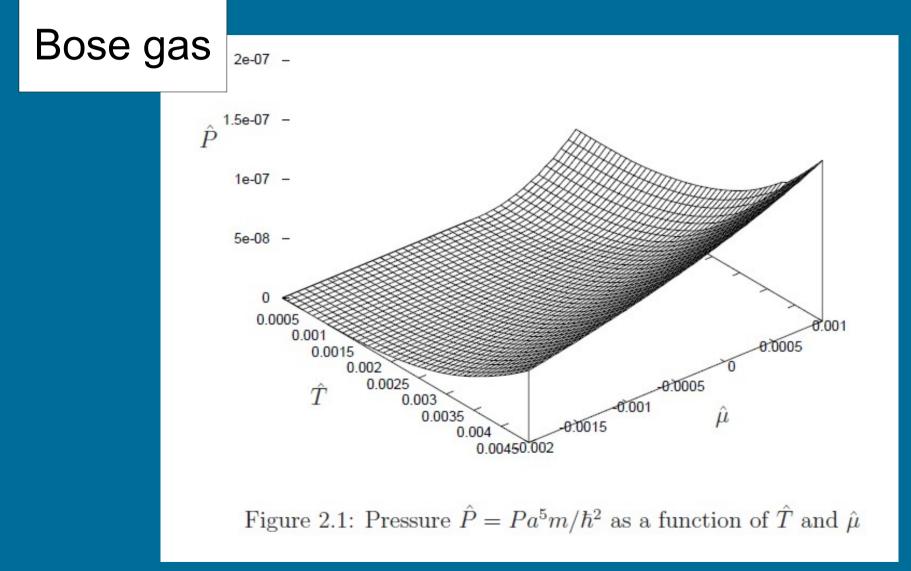
Virial expansion for interacting gas:

$$P(n, T) = nk_BT(1 + B_2(T)n + \dots)$$

Van-der-Waals equation of state:

$$P(n,T) = \frac{nk_BT}{1-bn} - an^2 \simeq nk_BT\left(1 + (b - \frac{a}{k_BT})n + \dots\right)$$

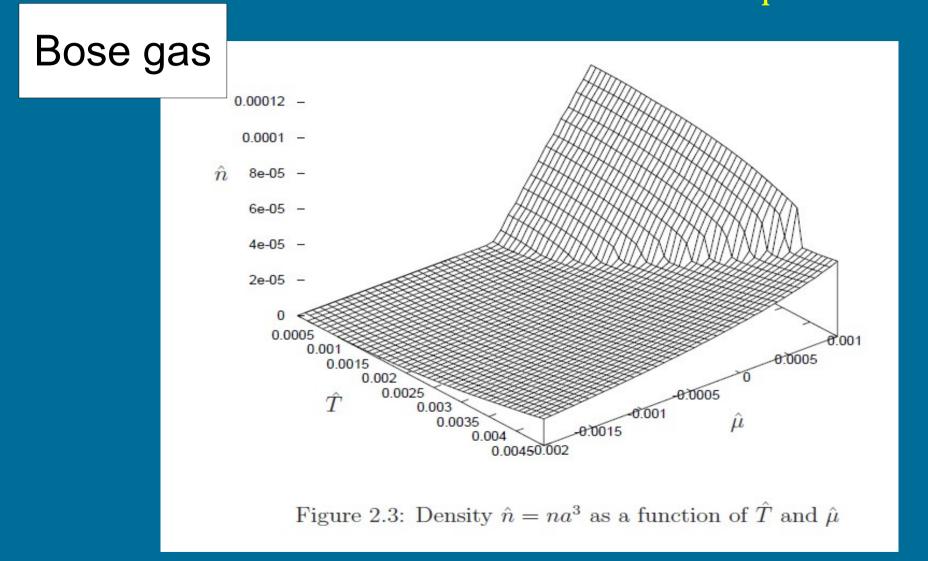
Pressure $P(\mu,T)$



 $\hat{T} = Ta^2 m k_B / \hbar^2$

 $\hat{\mu} = \mu a^2 m / \hbar^2$

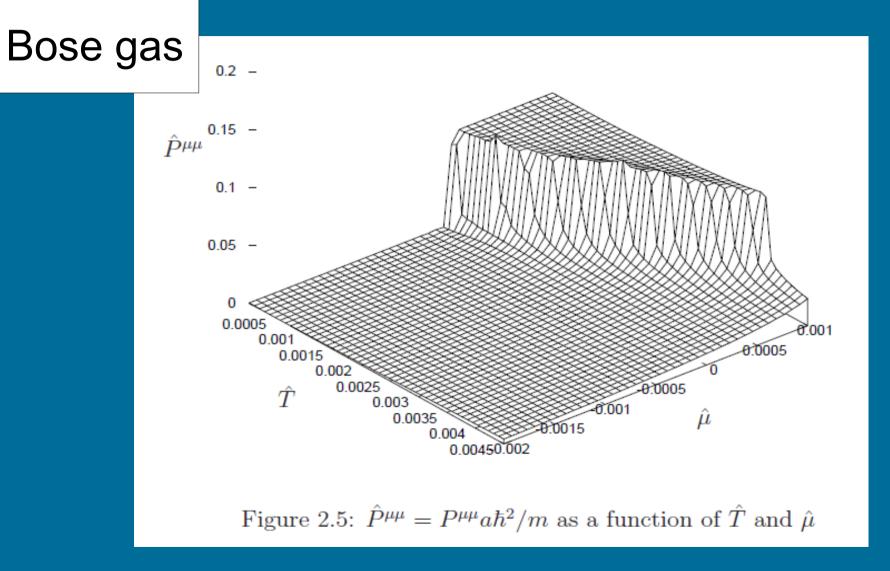
Density $n = (\partial P / \partial \mu)_{T}$



 $\hat{T} = Ta^2 m k_B / \hbar^2$

$$\hat{\mu} = \mu a^2 m / \hbar^2$$

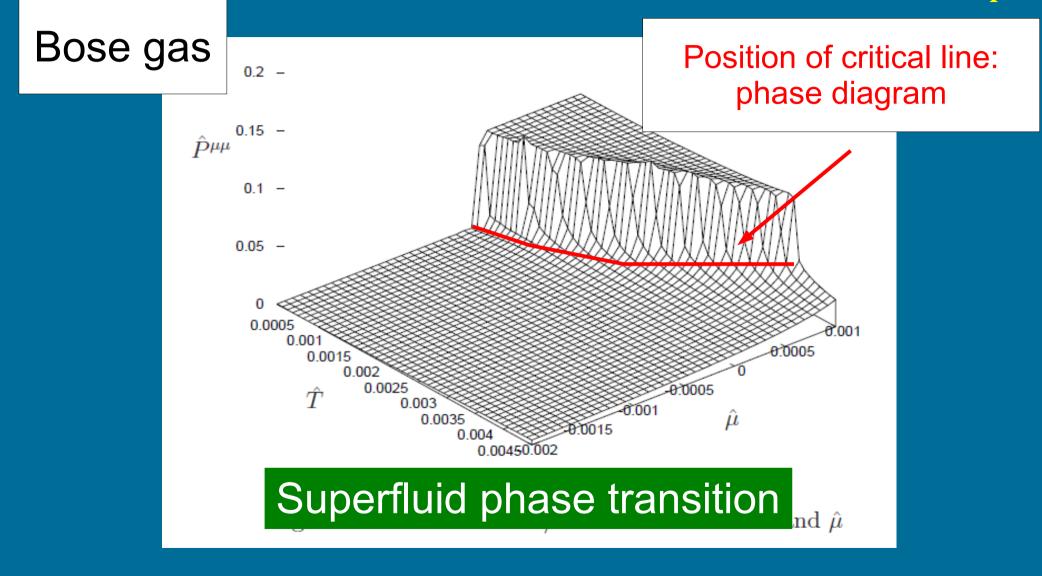
Isothermal compressibility $(\partial^2 P / \partial \mu^2)_{T}$



 $\hat{T} = Ta^2 m k_B / \hbar^2$

$$\hat{\mu} = \mu a^2 m / \hbar^2$$

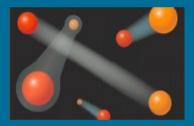
Isothermal compressibility $(\partial^2 P / \partial \mu^2)_{T}$



 $\hat{T} = Ta^2 m k_B / \hbar^2$

 $\hat{\mu} = \mu a^2 m / \hbar^2$

Two cornerstones of quantum condensation:

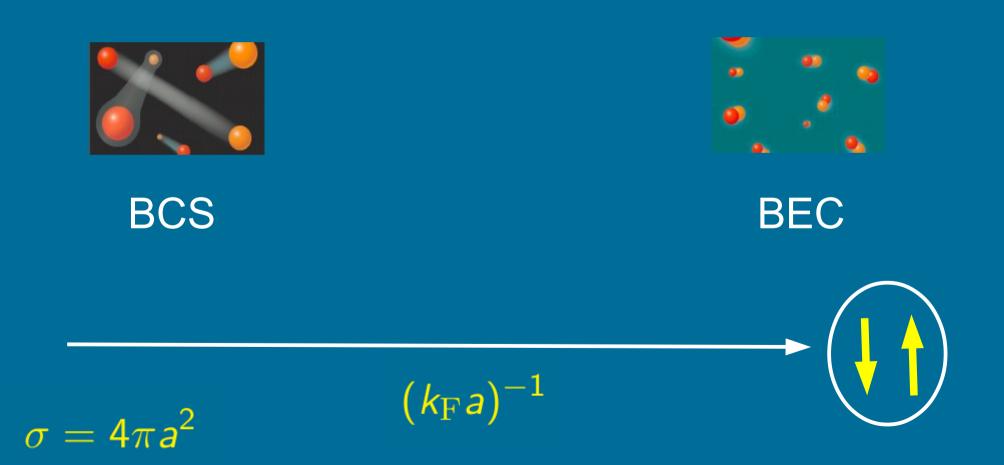


BCS

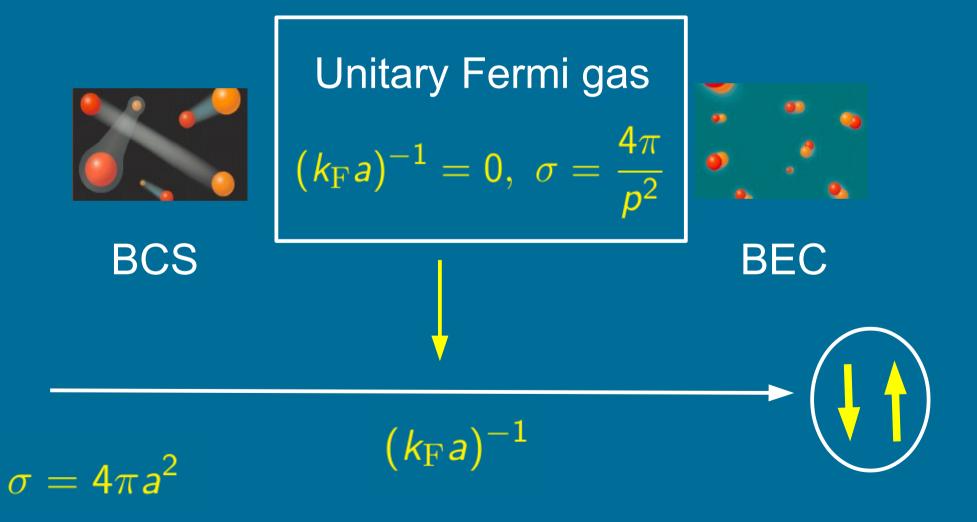
Cooper pairing of weakly attractive fermions

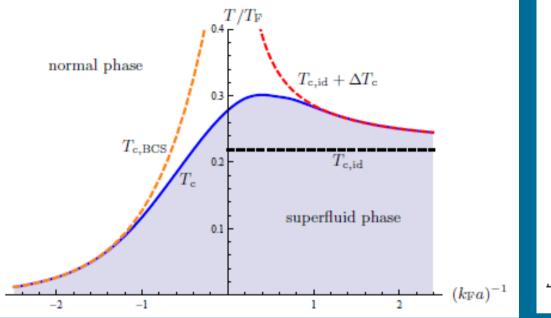
BEC

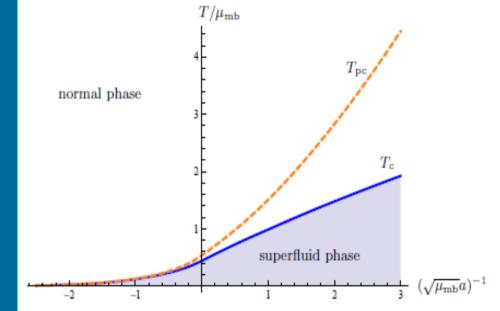
Two cornerstones of quantum condensation:

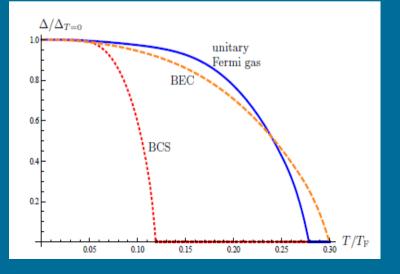


Two cornerstones of quantum condensation:



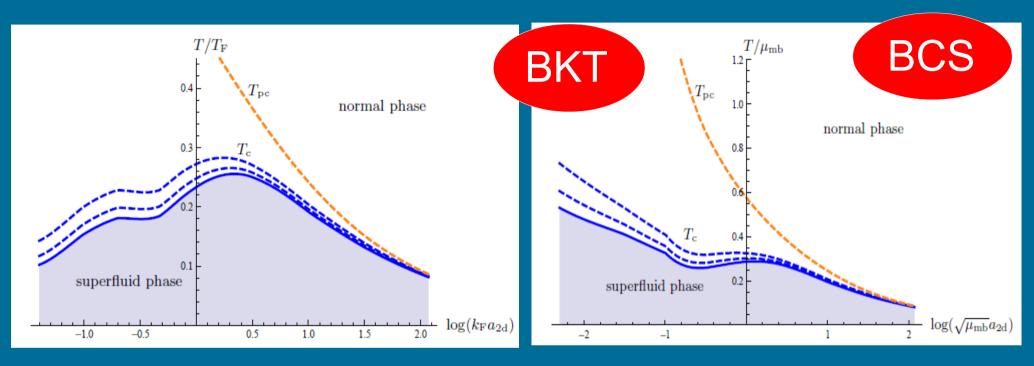




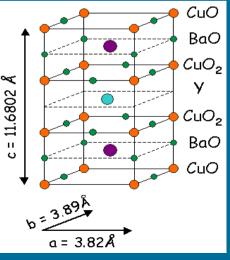


3D BCS-BEC crossover

(results from Functional Renormalization Group)

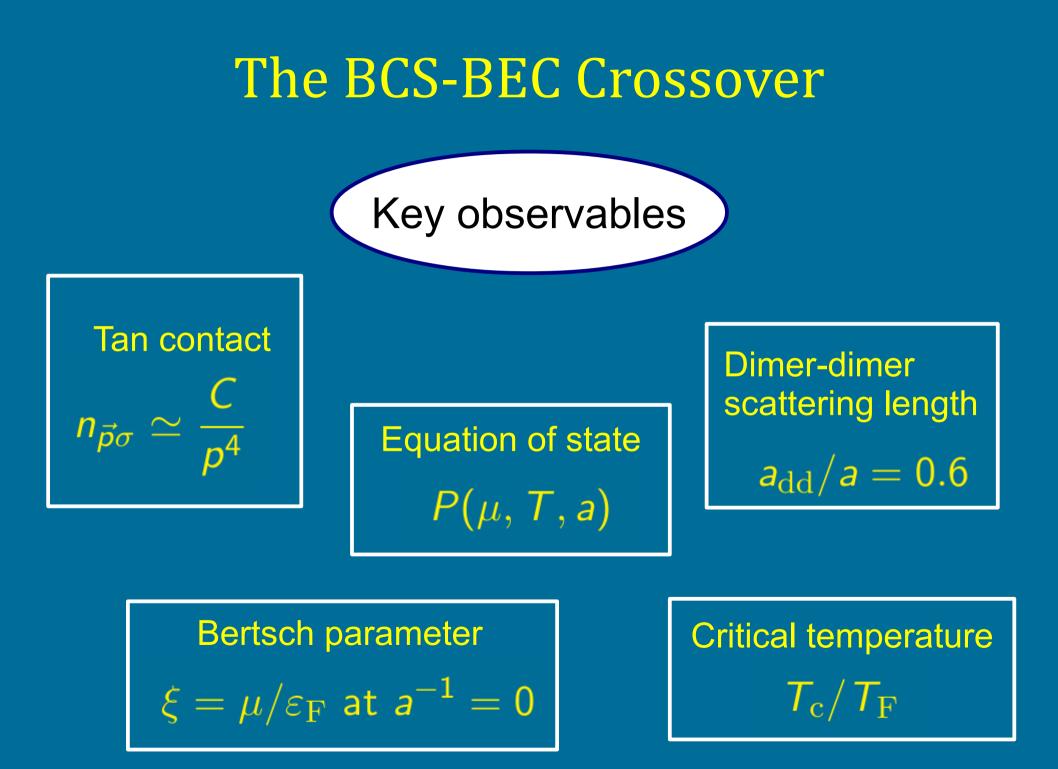


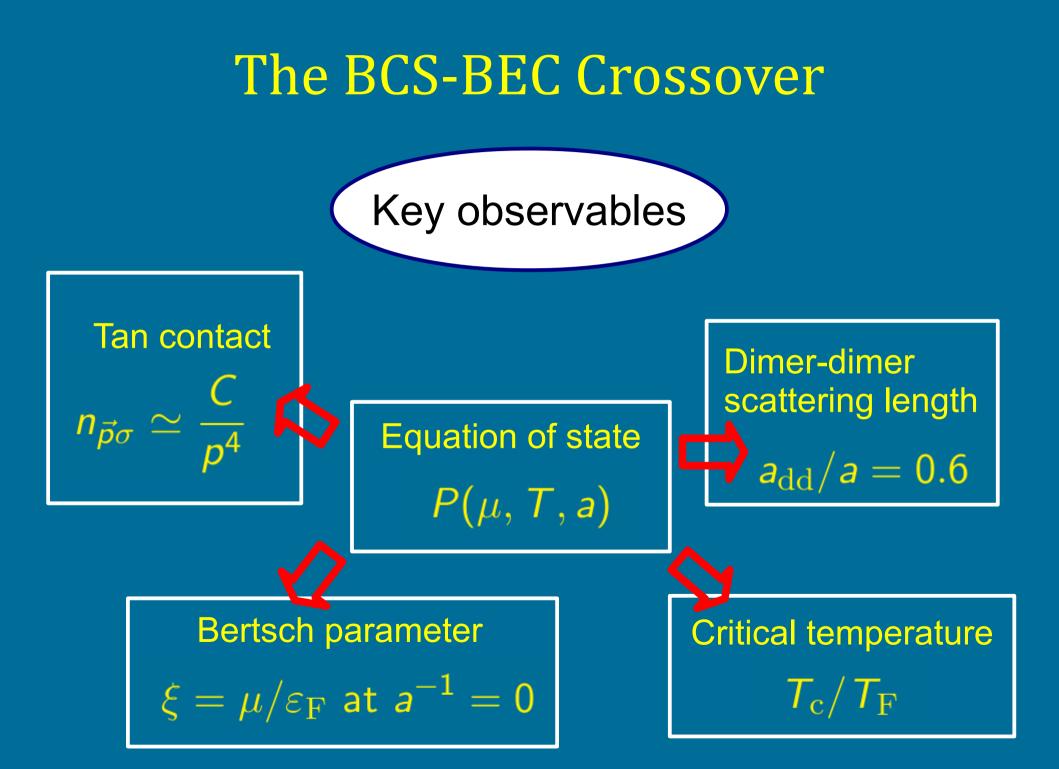
High Tc superconductors!?

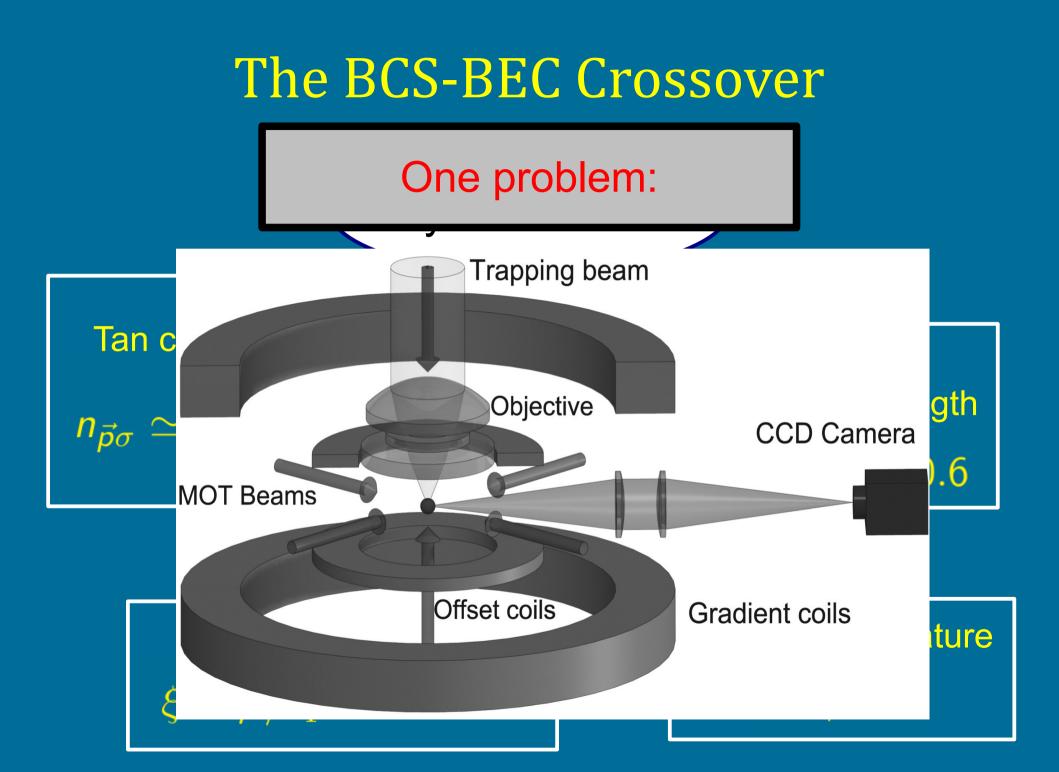


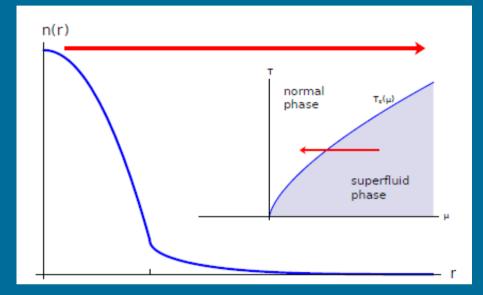
2D BCS-BEC crossover

(results from Functional Renormalization Group)



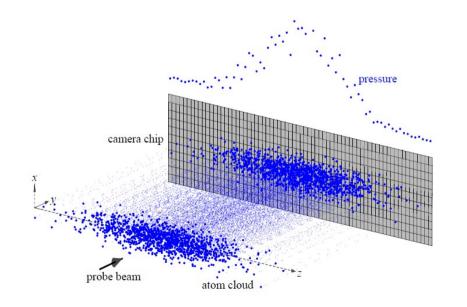






$$P(\mu, T) \rightarrow P(\mu - V_{\text{ext}}(\vec{x}), T)$$

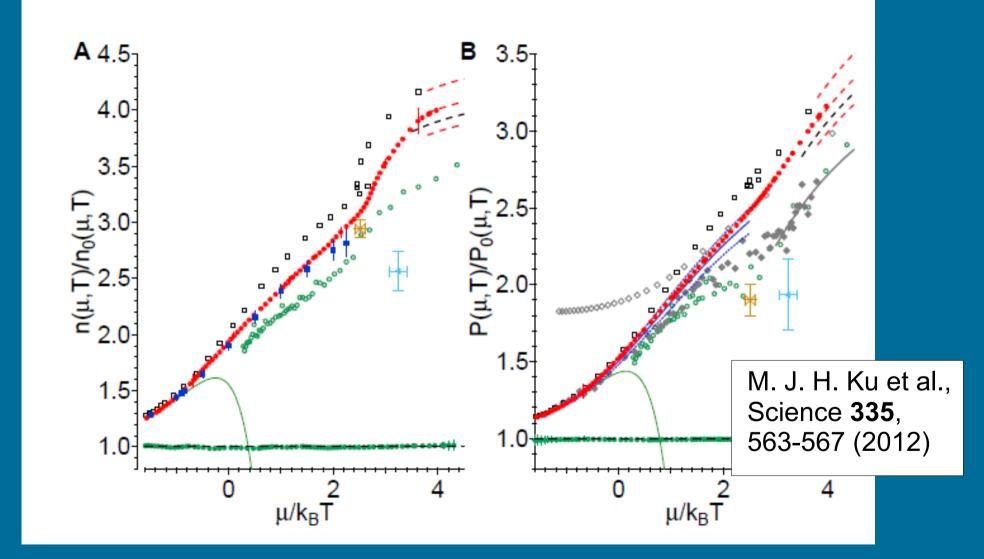
local density approximation

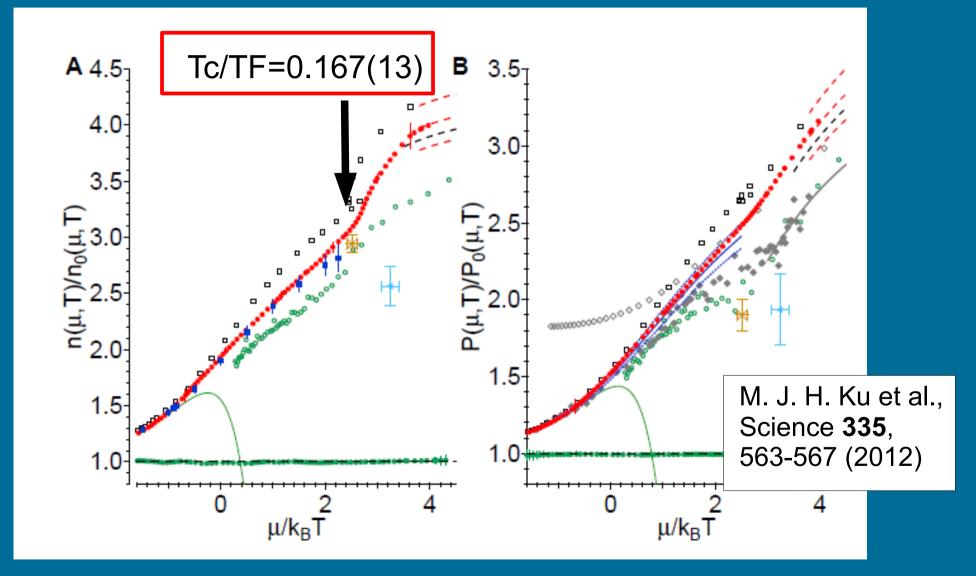


$$P(\mu_z, T) = \frac{m\omega_r^2}{2\pi}\overline{n}(z),$$

Ho, Zhou

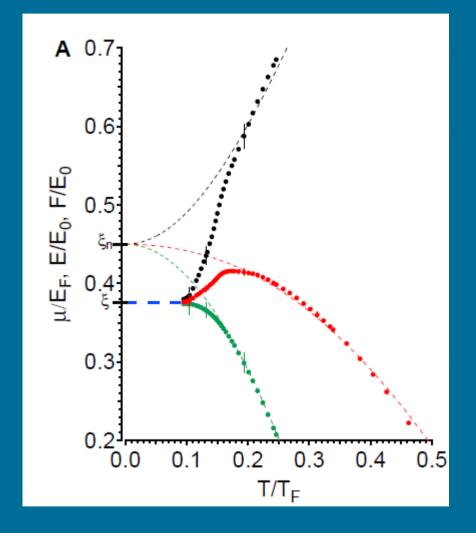
S. Nascimbène et al.





Bertsch parameter ξ: EoS at T=0

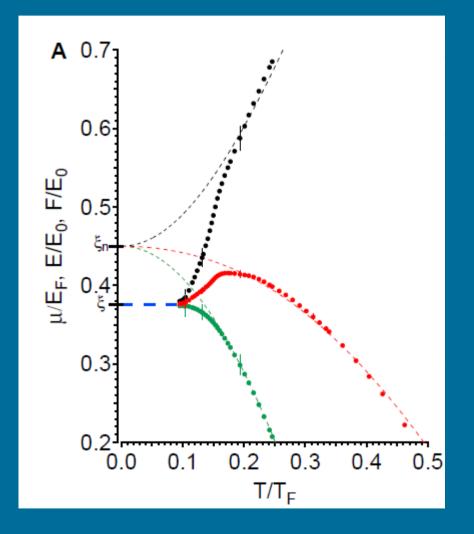
$$E(0) = \xi rac{3}{5} N arepsilon_{
m F}$$



Bertsch parameter ξ: EoS at T=0

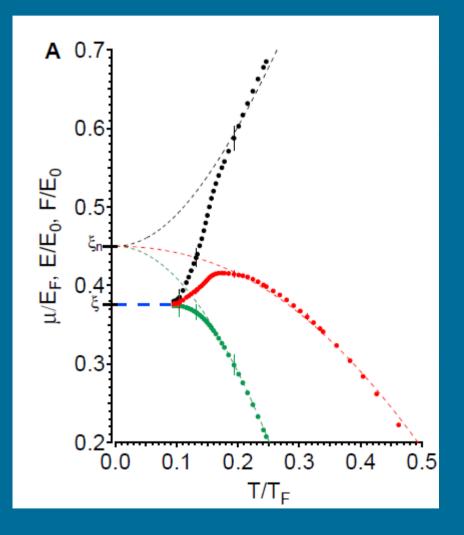
$$E(0) = \xi \frac{3}{5} N \varepsilon_{\mathrm{F}}$$

F(0)=E(0)



$$E(0) = \xi rac{3}{5} N arepsilon_{
m F}$$

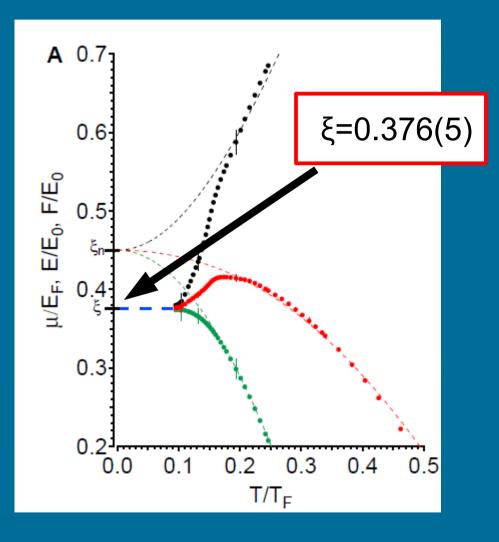
$F(T) \leq F(0) = E(0) \leq E(T)$

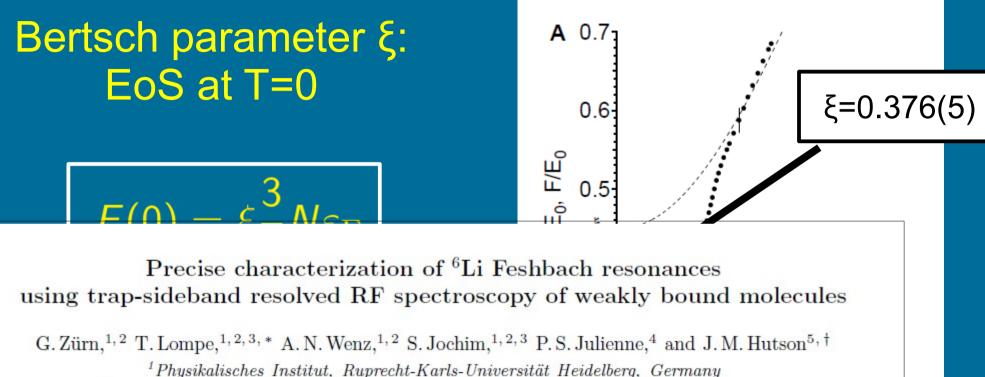


Bertsch parameter ξ: EoS at T=0

$$E(0) = \xi \frac{3}{5} N \varepsilon_{\mathrm{F}}$$

 $F(T) \leq F(0) = E(0) \leq E(T)$





²Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ³ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ⁴ Joint Quantum Institute, NIST and the University of Maryland, Gaithersburg, Maryland 20899-8423, USA ⁵ Joint Quantum Centre (JQC) Durham/Newcastle, Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom (Dated: November 8, 2012) ξ=0.370(5)(8)

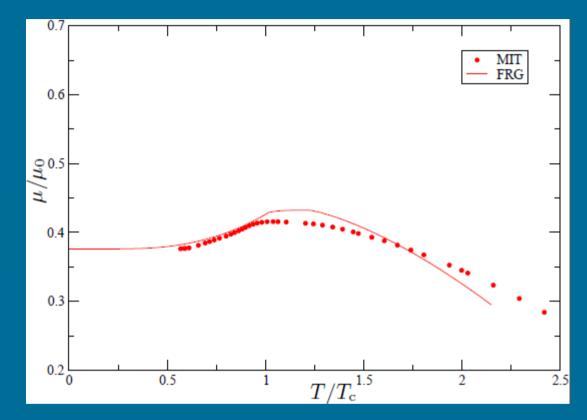
Unitary Fermi gas at MIT by Zwierlein group

0.5

Experiment:

 $\xi_{
m exp} = 0.370(5)(8)$ $(T_{
m c}/T_{
m F})_{
m exp} = 0.167(13)$

Latest FRG: (Floerchinger, Scherer, Wetterich)

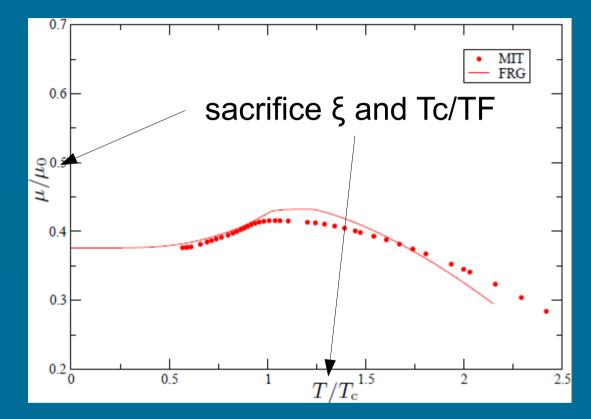


 $\xi_{
m FRG} = 0.51$ $(T_{
m c}/T_{
m F})_{
m FRG} = 0.248$

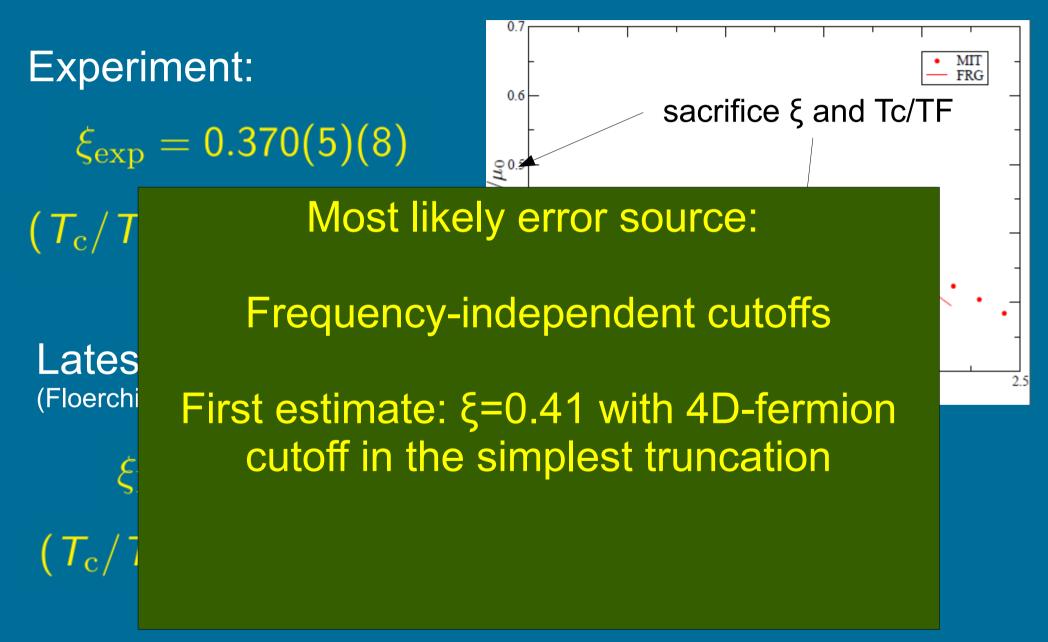
Experiment:

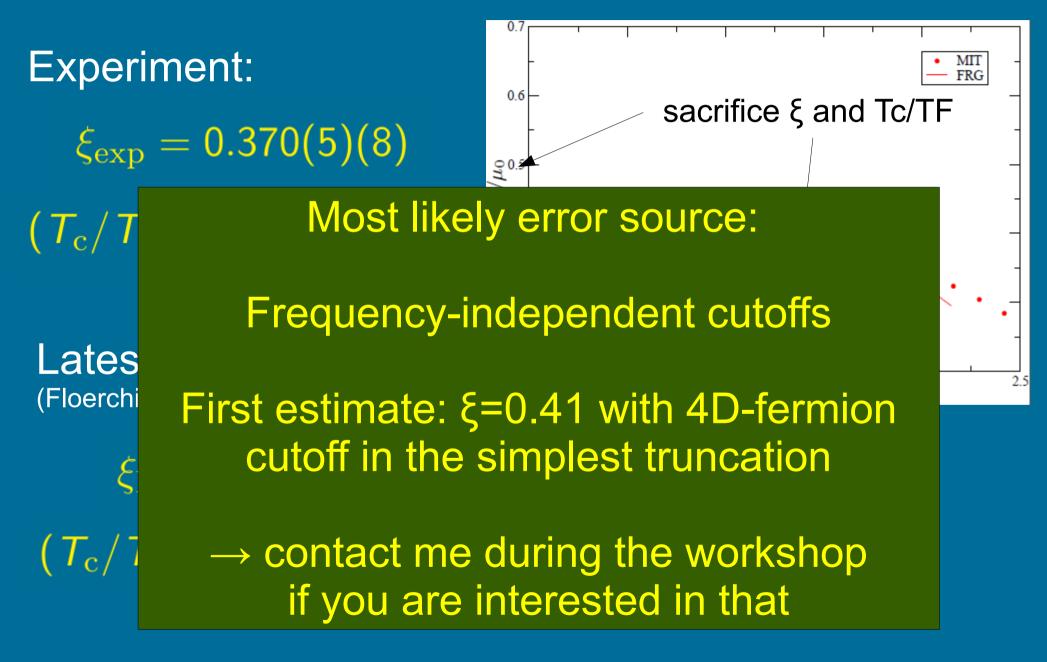
 $\xi_{
m exp} = 0.370(5)(8)$ $(T_{
m c}/T_{
m F})_{
m exp} = 0.167(13)$

Latest FRG: (Floerchinger, Scherer, Wetterich)



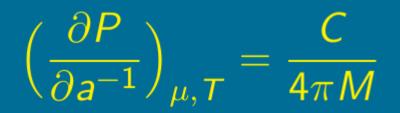
 $\xi_{
m FRG} = 0.51$ $(T_{
m c}/T_{
m F})_{
m FRG} = 0.248$





Tan contact

$$n_{\vec{p}\sigma}\simeq rac{C}{p^4}$$



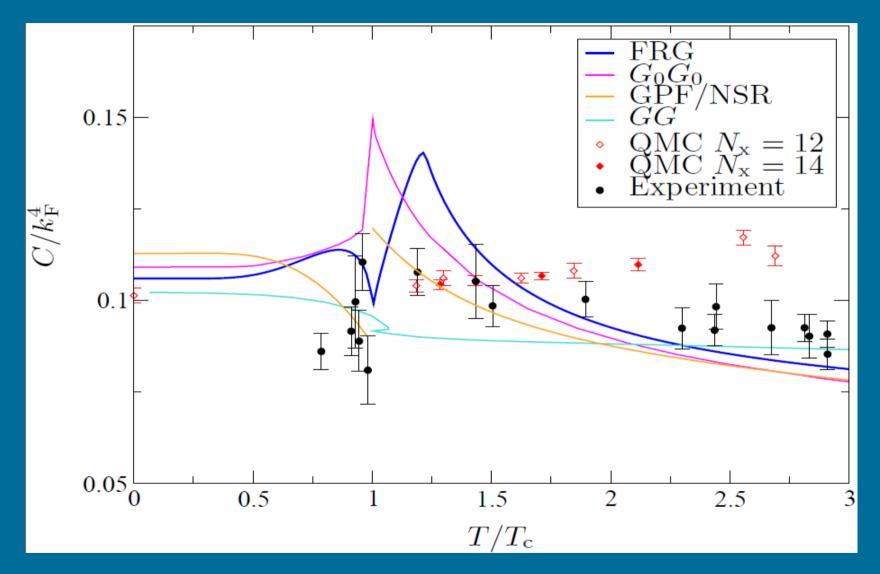
Momentum distribution

Tan relation

$$\Sigma_{\psi}(P) \simeq rac{4C}{-\mathrm{i}p_0 + p^2 - \mu} - \delta\mu$$

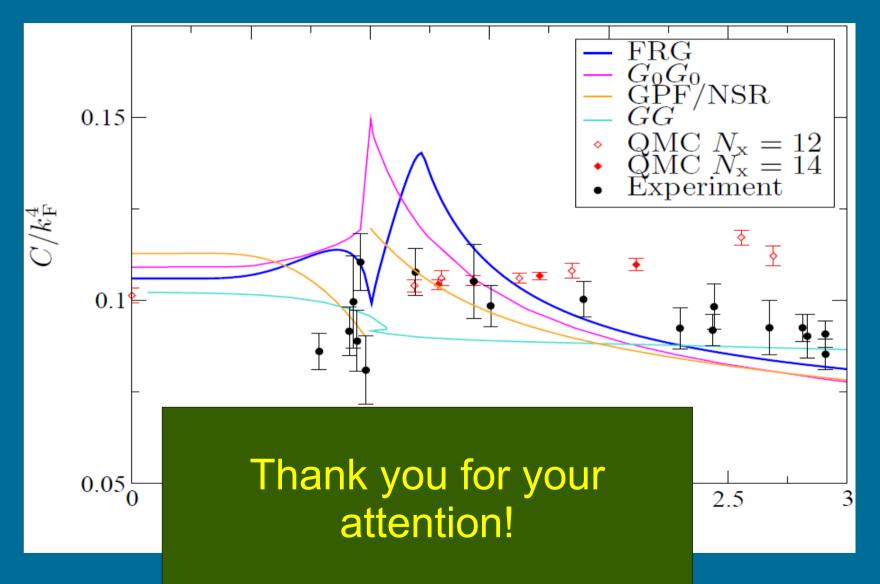
Asymptotic fermion self-energy

Tan contact



FRG: IB, S. Diehl, J. M. Pawlowski, C. Wetterich

Tan contact



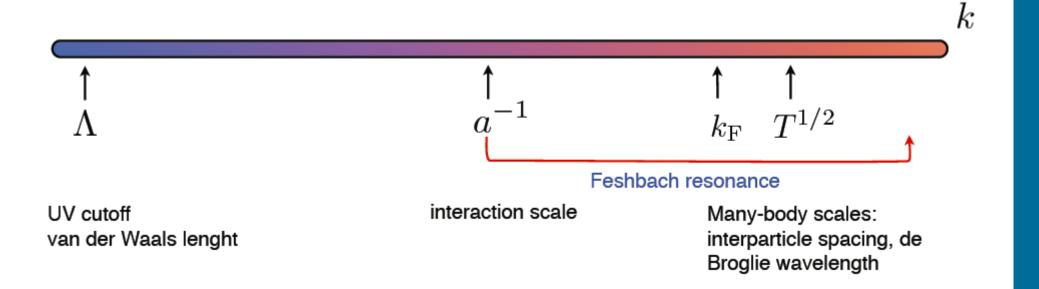
FRG: IB, S. Diehl, J. M. Pawlowski, C. Wetterich

Additional slides

Microscopic Model

Many-body Hamiltonian

$$\hat{H} = \int d^3x \left(\sum_{\sigma=1,2} \hat{\psi}^{\dagger}_{\sigma} (-\nabla^2) \hat{\psi}_{\sigma} + \lambda_{\psi,\Lambda} \hat{\psi}^{\dagger}_1 \hat{\psi}^{\dagger}_2 \hat{\psi}_2 \hat{\psi}_1 \right)$$



Microscopic Model

Many-body Hamiltonian

$$\hat{H} = \int d^3x \left(\sum_{\sigma=1,2} \hat{\psi}^{\dagger}_{\sigma} (-\nabla^2) \hat{\psi}_{\sigma} + \lambda_{\psi,\Lambda} \hat{\psi}^{\dagger}_{1} \hat{\psi}^{\dagger}_{2} \hat{\psi}_{2} \hat{\psi}_{1} \right)$$

Microscopic action

$$\mathcal{S}[\varphi,\psi] = \int_X igg(\sum_{\sigma=1,2} \psi^*_\sigma (\partial_ au -
abla^2 - \mu) \psi_\sigma + m^2_{arphi,\Lambda} arphi^* arphi$$

$$-h_{\varphi}(\varphi^*\psi_1\psi_2-\varphi\psi_1^*\psi_2^*)$$

Macroscopic physics

How to compute the partition function?

$$Z(\mu, T) = \int D\varphi D\psi e^{-S[\varphi, \psi]}$$
 Integration

Macroscopic physics

How to compute the partition function?

$$Z_{k}(\mu, T) = \int \mathsf{D}\varphi \mathsf{D}\psi e^{-S[\varphi, \psi] + \Delta S_{k}}$$

scale dependent partition function

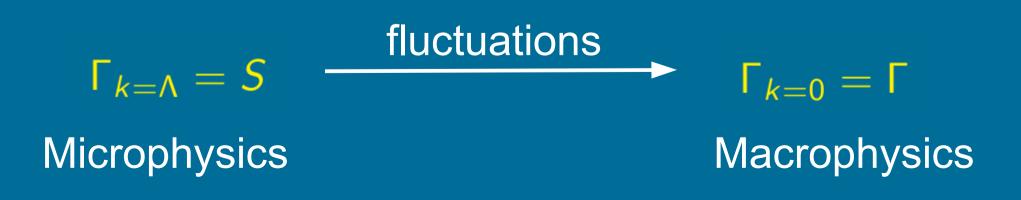
$$\partial_k Z_k(\mu, T) = \dots$$

Solve flow equation

Wetterich equation

 $\Gamma[\Phi] = J \cdot \Phi - \log Z[J] \qquad \text{effective action}$

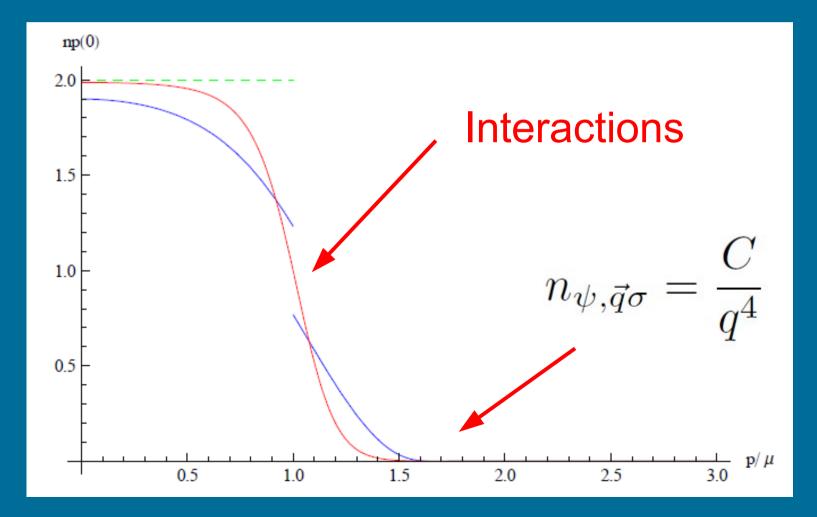
$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left(\frac{1}{\Gamma_k^{(2)} + R_k} \partial_k R_k \right)$$



Contact in the BCS-BEC Crossover

Momentum distribution

Ideal Fermi gas: Fermi-Dirac distribution



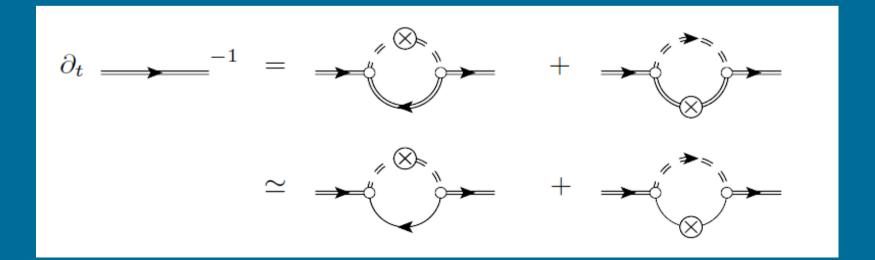
Momentum distribution

Several exact relations, e.g.:

 $\frac{1}{V}\frac{\mathrm{d}E}{\mathrm{d}(-1/a)} = \frac{C}{4\pi M}$ $E = \frac{C}{4\pi Ma} + \sum_{\sigma=1,2}\int\frac{\mathrm{d}^3p}{(2\pi)^3}\frac{p^2}{2M}\left(n_{\vec{p}\sigma} - \frac{C}{p^4}\right)$

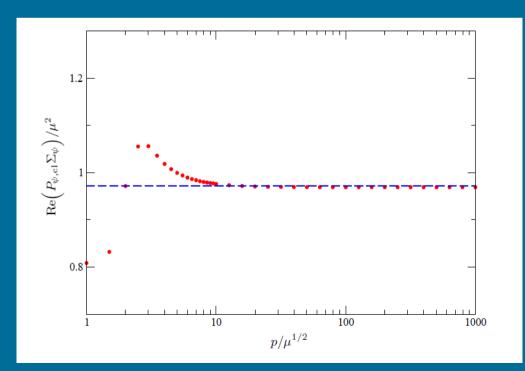
$$n_{\vec{p}\sigma} = -\int_{p_0} G_{\psi\sigma}(p_0,\vec{p})$$

full macroscopic propagator



Factorization of the RG flow for large p:

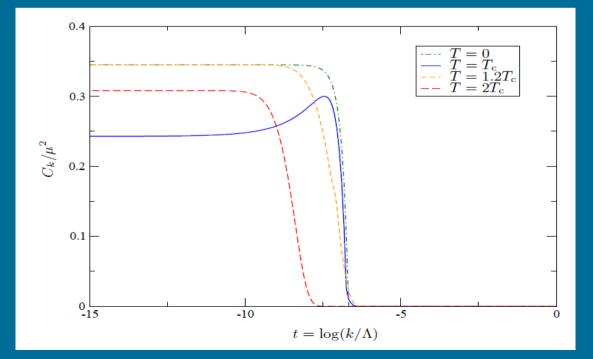
$$\partial_k G_{\psi,k}^{-1}(P) \simeq \frac{4}{-\mathrm{i}p_0 + p^2 - \mu} \partial_k C_k$$



Factorization of the RG flow for large p:

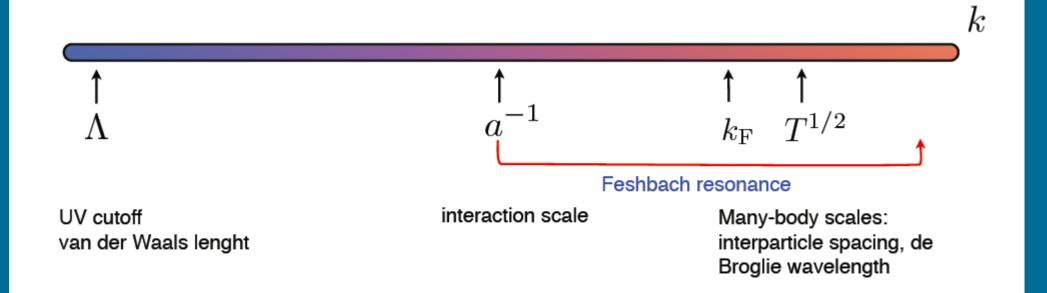
$$\partial_k G_{\psi,k}^{-1}(P) \simeq \frac{4}{-\mathrm{i}\rho_0 + \rho^2 - \mu} \partial_k C_k$$

Flowing contact $\partial_k C_k = \dots$



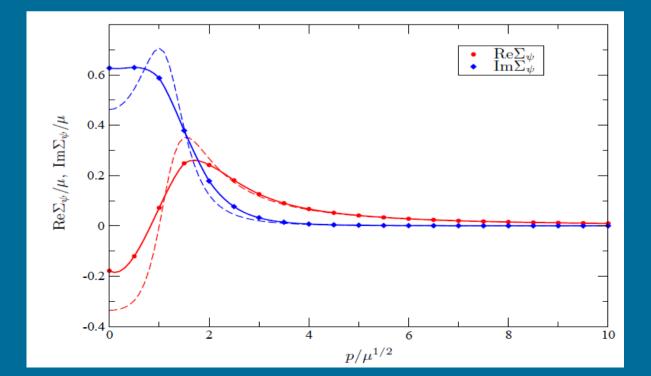
Universal regime is enhanced for the Unitary Fermi gas

$$\Sigma_{\psi}(P) \simeq rac{4C}{-\mathrm{i}p_0 + p^2 - \mu} - \delta\mu$$

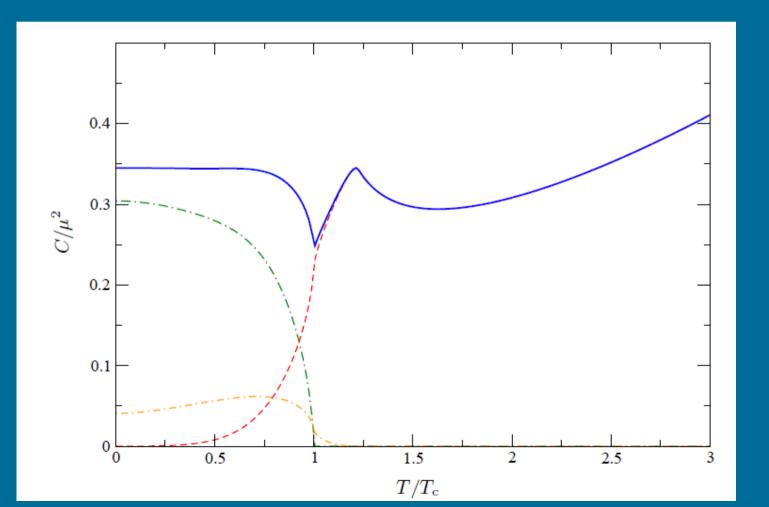


Universal regime is enhanced for the Unitary Fermi gas

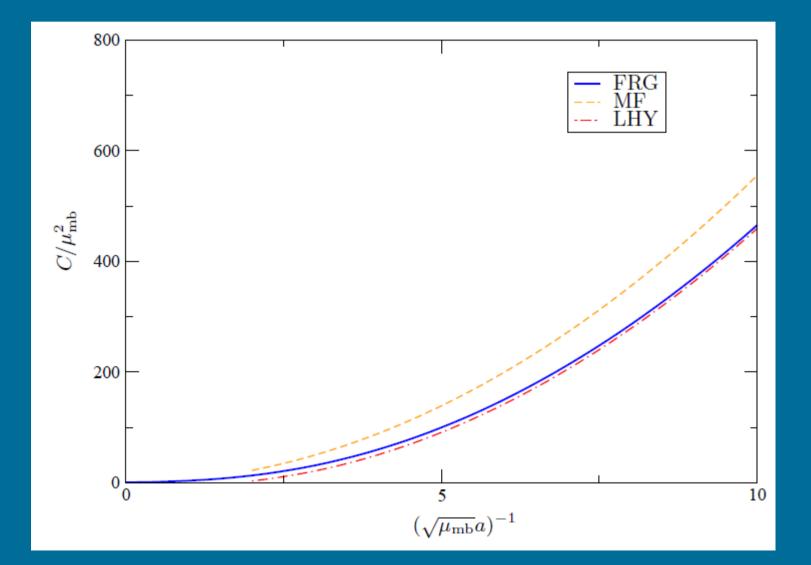
 $\Sigma_{\psi}(P) \simeq rac{4C}{-\mathrm{i}p_0 + p^2 - \mu} - \delta\mu$



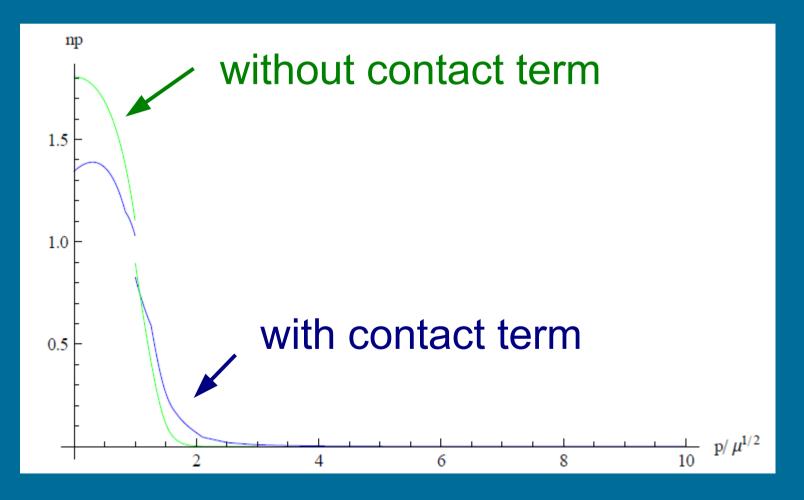
Temperature dependent contact of the Unitary Fermi gas



Contact at T=0 in the BCS-BEC crossover



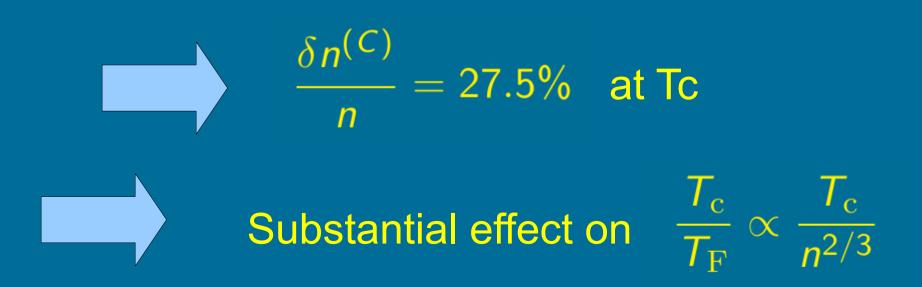
Momentum distribution of the Unitary Fermi Gas at the critical temperature



Increase of density

Contribution from high energetic particles to the density

$$n = 2 \int \frac{\mathrm{d}^3 p}{(2\pi)^3} n_{\vec{p}\sigma}$$



Two-dimensional BCS-BEC Crossover

Two-dimensional BCS-BEC Crossover

Why two dimensions?

Enhanced effects of quantum fluctuations

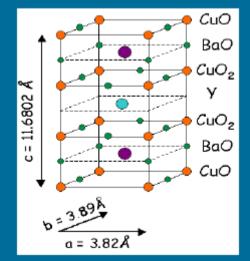
 → test and improve elaborate methods

 Understand pairing in two dimensions

 → high temperature superconductors

How?

Highly anisotropic traps!



What is different?

Scattering physics in two dimensions

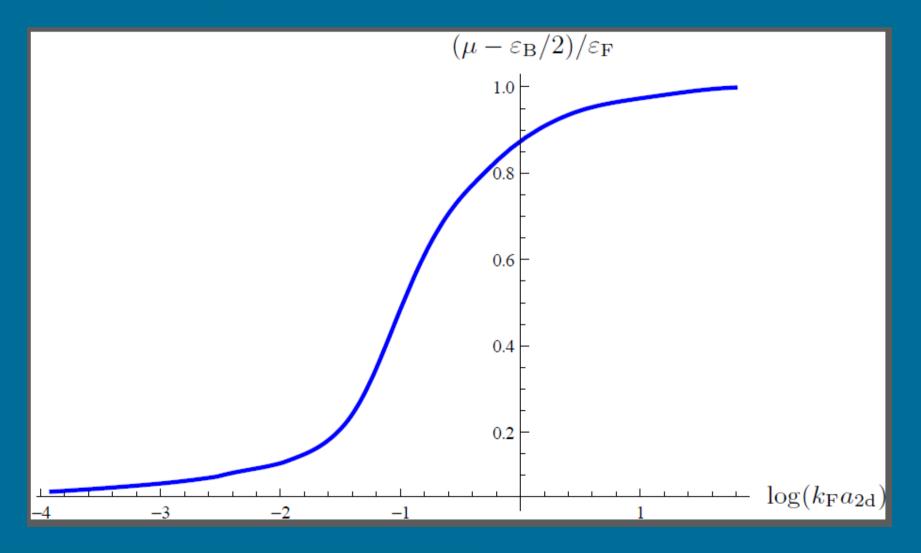
$$f_{
m 2d}(q) \sim rac{1}{\log(1/q^2 a_{
m 2d}^2) + {
m i}\pi + \dots} \ f_{
m 3d}(q) \sim rac{1}{-rac{1}{a} + rac{1}{2}r_{
m e}q^2 - {
m i}q + \dots}$$

Scattering amplitude

Crossover parameter $\log(k_{\rm F}a_{\rm 2d})$

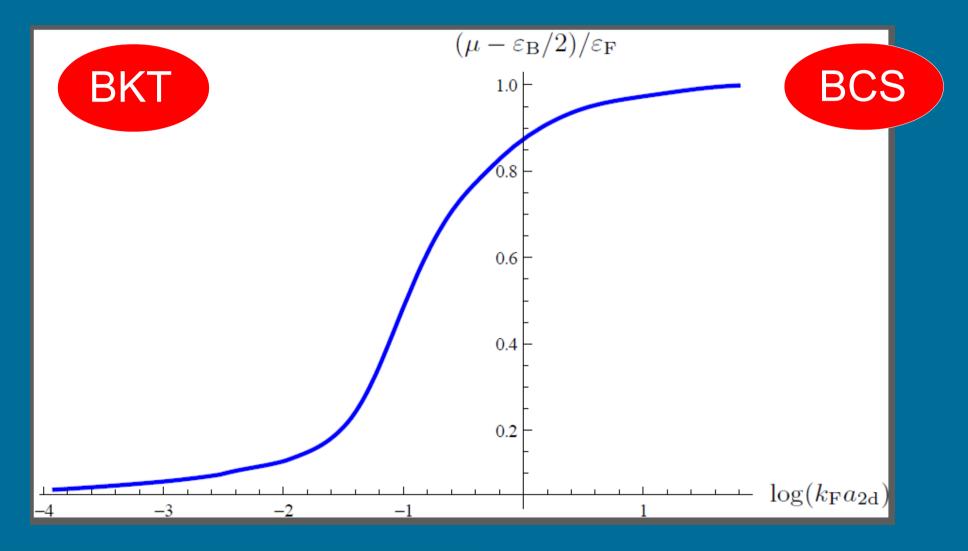
No scale invariance, but $k_{\rm F} \sim \frac{1}{a_2}$ strong correlations for $k_{\rm F} \sim \frac{1}{a_2}$

Equation of state at T=0



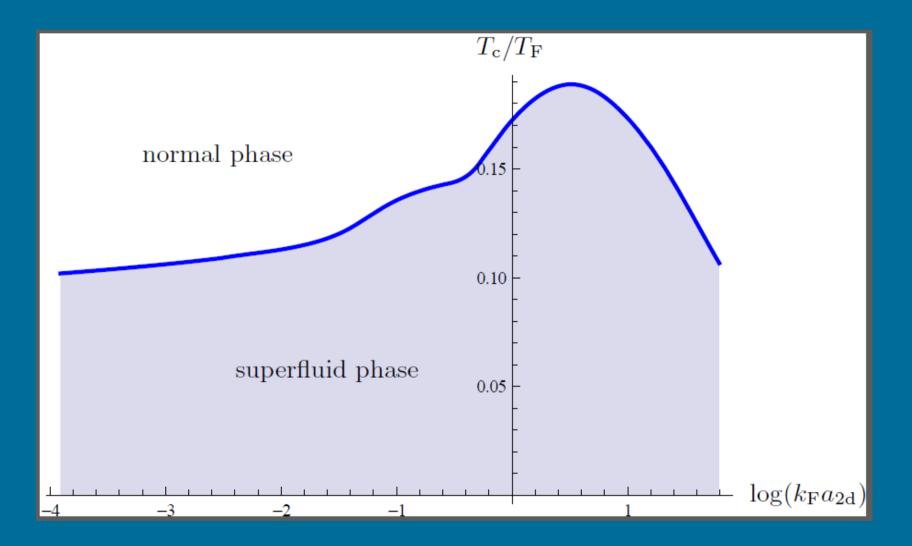
 $(\mu - \varepsilon_{\rm B}/2)/\varepsilon_{\rm F} = 0.874$ for $\log(k_{\rm F}a_{\rm 2d}) = 0$

Equation of state at T=0



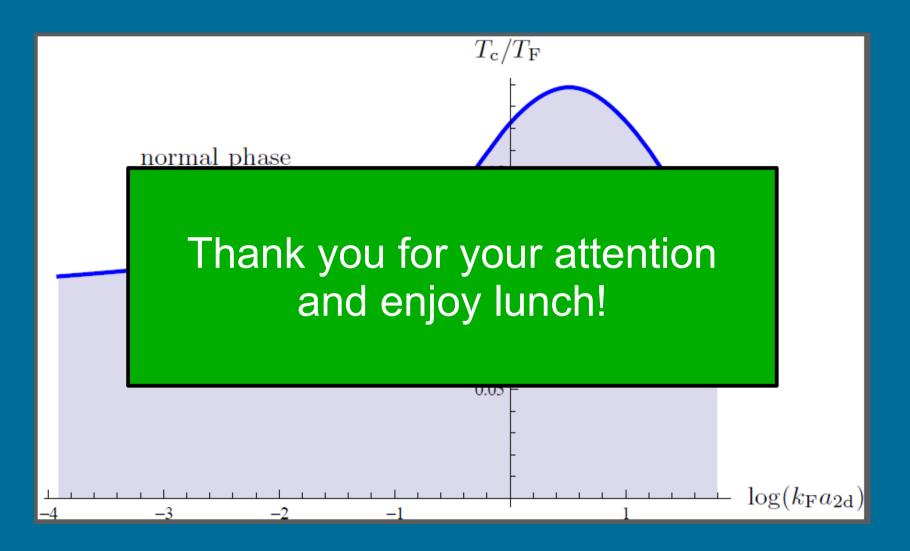
 $(\mu - \varepsilon_{\rm B}/2)/\varepsilon_{\rm F} = 0.874$ for $\log(k_{\rm F}a_{\rm 2d}) = 0$

Superfluid phase transition



 $T_{\rm c}/T_{\rm F} = 0.172$ for $\log(k_{\rm F}a_{
m 2d}) = 0$

Superfluid phase transition



 $T_{\rm c}/T_{\rm F} = 0.172$ for $\log(k_{\rm F}a_{
m 2d}) = 0$