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Introduction

QCD deconfined phase reproduced in high energy
colliders

experimental results well described by near-ideal
relativistic hydrodynamics

equilibrium description of the system is given by
the equation of state (EoS)

EoS relevant for heavy ion collisions, early Uni-
verse and neutron stars

high T': perturbation theory describes q, g degrees
of freedom

around 7,: lattice simulation of the E0OS is compu-
tationally very demanding + conceptual problems
with u #= 0

low T': surprisingly well described by HRG
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interacting hadrons, and sum up the individual
contributions to the free energy

e agreement with lattice T' < 130 — 150 MeV, both
at o= O and o> O [Borsanyi, GE et al '11, '12]



Role of magnetic fields

relevant state parameters: 7" and u, and also B

systems with strongly interacting matter and
magnetic fields

- dense neutron stars, magnetars
- non-central heavy ion collisions
- early universe cosmology

magnitudes: reaching up to eB ~ O(Acp)

B acts as a probe of the QCD vacuum:

- enhances chiral symmetry breaking at T'= 20
[Gusynin et al '96]

- B — T phase diagram structure
[Bali, Bruckmann, GE et al "11]
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e T > 0: modified by gluonic back-reaction

[talk by Bruckmann]

e result: TC(B) decreases [Bali, Bruckmann, GE et al '11, '12]



Thermodynamics for B > 0

free energy F = —T'logZ
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Free energy

e free particle (m,s,q) in @ magnetic field B || z has
energies

E(ps,k, 52) = /o2 +m2 +2¢B (k + 1/2 — s2),

e free energy density in terms of energy levels

f(S) _ :FZ Z /dpz E(pz,k 32)

Sz k=

+Tlog(1 £ e EWP=ks2) /Ty |
thermal

vacuum
e thermal part is finite, calculated numerically
e VvVacuum part
Y9 (s) = f(8)|r=0
IS divergent due to charge renormalization

e background field method [Abbott '81]
p-function using fermion propagator in B-field



Free energy, for spin-zero particle

e dimensional regularization (e, ) gives:

vac __ ( 13)2 m?
ageec = (107 [(——7 09 (?» +f<m2/qB>].

e include energy of the field itself and redefine B

BQ
Afvac r — Afvac _I_ - B2 — ZqB,,?, q2 — Zq—].qg,

note gB = q,Br

e WwWith the renormalization constant
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Free energy - mass dependence

e SO the renormalized expression is

2
—_ BT +O(B4)
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Afvac,r

how can this give a condensate of O(B2)?
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Free energy - mass dependence

e SO the renormalized expression is

vac,r Bg 4
Afrer ’ =7+O(B )

TM=T" %

how can this give a condensate of O(B2)?
e renormalization does not change with m!

BQ
A VST (m,my) = AFYC(m) + —2T Z;calar(m*),
qu?Z@b _ 0 vac,r _ 0 vac
> = _—8m2Af (m,my) = _—8mAf (m)

e this also implies that

quf(Zr(p _ 8 Bfg Sca|ar(m) — _5?C8|ar(q3)2 + O(B4>
m2 om 2 E v

magnetic catalysis < scalar QED is not asympt. free
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Contributions to pressure
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pion-dominance at T' =0 is lost as B grows

thermal contribution exp(—mesr/T)

- mgﬂc ~m?2 4+ ¢gB(1 — 25s)

- grows for pT= and decreases for n=+

now sum up the individual contributions
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Equation of state
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e mp > 0: suggests decreasing T.(B) [Fraga et al '12]
e speed of sound suggests decreasing T.(B)



Conclusions

HRG model for B > 0
pion dominance at T = 0 is lost if eB > 0.2 GeV?2
mp > 0 — paramagnetic QCD vacuum at T < T¢

c2(B,T) — decreasing T.(B), cf. lattice
[Bali, Bruckmann, GE et al '11]

relation between @(B2) magnetic catalysis and
scalar QED pg-function!

quﬂw — %chalar(qB)Q + 0(34)7 Bicalar > 0.

details in [arXiv:1301.1307]



Backup - Spin channels
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e model only works if m2/2¢gB+1/2—s>0
- pT: eB < m%, ATT: eB < m2A/4
e s = 3/2 channel gives negative pressure at T'= 20

- inconsistencies of s = 3/2 theory [Zwanziger et al "69]
— exclude A



