QCD phase diagram with functional methods

Christian S. Fischer

Justus Liebig Universität Gießen

12. Januar 2013

Strauss, CF, Kellermann, Phys. Rev. Lett. 109, (2012) 252001 CF, Luecker, Phys. Lett. B 718 (2013) 1036-1043

Saturday, January 12, 2013

QCD phase diagram

I.Introduction

2.Gluons at zero and finite temperature

3. Quarks and the QCD phase diagram

Christian Fischer (University of Gießen)

QCD phase diagram

QCD phase diagram

Interesting open questions:

- Details of phase transitions
- Existence and location of critical point
- Properties of quarks and gluons in different phases
- Consequences for astrophysics

QCD phase diagram

Interesting open questions:

- Details of phase transitions
- Existence and location of critical point
- Properties of quarks and gluons in different phases
- Consequences for astrophysics

QCD phase transitions I

Phase transitions:

• Chiral limit ($M_{weak} \rightarrow 0$): order parameter chiral condensate

$$\langle \bar{\psi}\psi \rangle = Z_2 N_c Tr_D \int \frac{d^4 p}{(2\pi)^4} S(p)$$

• Static quarks ($M_{weak} \rightarrow \infty$): order parameter Polyakov-loop

$$\Phi \sim e^{-F_q/T}$$

Christian Fischer (University of Gießen)

QCD phase transitions II

Christian Fischer (University of Gießen)

QCD phase transitions II

QCD phase transitions II

Christian Fischer (University of Gießen)

QCD phase diagram

$$\begin{aligned} \mathcal{Z}_{QCD} &= \int \mathcal{D}[\Psi, A, c] \exp\left\{-\int_{0}^{1/T} dt \int d^{3}x \left(\bar{\Psi} \left(i \not\!\!D - m\right) \Psi - \frac{1}{4} \left(F_{\mu\nu}^{a}\right)^{2} + \text{gauge fixing}\right)\right\} \end{aligned}$$

Landau gauge propagators in momentum space, $p = (\vec{p}, \omega_p)$:

$$D_{\mu\nu}^{\text{Gluon}}(p) = \frac{Z_T(p)}{p^2} P_{\mu\nu}^T(p) + \frac{Z_L(p)}{p^2} P_{\mu\nu}^L(p)$$

$$S^{\text{Quark}}(p) = Z_f(p) \left[-i \vec{\gamma} \vec{p} - i \gamma_4 \omega_n Z_c(p) + M(p)\right]^{-1}$$

The Goal: Gauge invariant information from gauge fixed functional approach

Christian Fischer (University of Gießen)

Lattice QCD vs. DSE/FRG: Complementary!

- Lattice simulations
 - Ab initio
 - Gauge invariant Fodor, Karsch, Phillipsen...
- Functional approaches: Dyson-Schwinger equations (DSE) Functional renormalisation group (FRG)
 - Analytic solutions at small momenta
 - CF, J. Pawlowski, PRD 80 (2009) 025023
 - Space-Time-Continuum
 - Chiral symmetry: light quarks and mesons
 - Multi-scale problems feasible: e.g. (g-2)_µ

T. Goecke, C.F., R. Williams, PLB 704 (2011); PRD 83 (2011)

Chemical potential: no sign problem

- Models: PNJL, PQM
 - Technically easier
 - Exploratory

Weise, Schaefer,...

I.Introduction

2.Gluons at zero and finite temperature

3. Quarks and the QCD phase diagram

Christian Fischer (University of Gießen)

QCD phase diagram

8 / 28

DSE vs. Lattice (T=0)

CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408.

• Small momenta: $Z(p^2) \sim p^2$, i.e. gluon mass generation

Cornwall PRD 26 (1982) 1453; Cucchieri, Mendes, PoS LAT2007 (2007) 297. Aguilar, Binosi, Papavassiliou, PRD 78, 025010 (2008); Boucaud, et al. JHEP 0806 (2008) 099

Deep infrared: subtle questions related to gauge fixing...

Maas, PLB 689 (2010) 107; Sternbeck, Smekal, EPJC 68 (2010) 487

Section 2 Timelike momenta: Positivity violations → gluon screening

Alkofer, Detmold, C.F. and Maris, PRD 70 (2004) 014014

Gluon: positivity violation

▶ Violation of positivity ⇒ no physical asymptotic gluons
▶ Cut on the timelike momentum axis ?

R. Alkofer, W. Detmold, C. F., P. Maris, Phys. Rev. D 70 (2004) 014014

C.F., A. Maas and J. M. Pawlowski, Annals Phys. 324 (2009) 2408-2437.

Saturday, January 12, 2013

A D > A D > A D

Gluon: analytic structure

Strauss, CF, Kellermann, Phys. Rev. Lett. 109, (2012) 252001

- Ghost and Gluon DSE solved in the complex p²-plane
- No non-analytic structure outside real axis
- Cut for timelike real momenta $p^2 < 0$
- Spectral function: Oehme-Zimmermann relation satisfied

Glue at finite temperature $(T \neq 0)$

T-dependent gluon propagator from lattice simulations:

Difference between electric and magnetic gluon
Maximum of electric gluon around T_c

Gluon screening mass: SU(2) vs. SU(3)

$$t = (T - T_c)/T_c$$

Maas, Pawlowski, Smekal, Spielmann, arXiv:1110.6340.

C.F., Maas and Mueller, EPJC 68 (2010)

 phase transition of second and first order clearly visible in electric screening mass

Christian Fischer (University of Gießen)

Saturday, January 12, 2013

QCD phase diagram

13 / 28

I.Introduction

2.Gluons at zero and finite temperature

3.Quarks and the QCD phase diagram

QCD phase diagram

Properties of QCD: Dynamical mass generation

The ordinary chiral condensate

- quenched lattice gluon propagator + DSE-quark-loop
- T = 0: quark-gluon vertex studied via DSEs

Alkofer, C.F., Llanes-Estrada, Schwenzer, Annals Phys.324:106-172,2009. C.F, R. Williams, PRL **103** (2009) 122001

 $T \neq 0$: ansatz, T, μ and mass dependent (STI)

Order parameter for chiral symmetry breaking:

$$\langle \bar{\psi}\psi\rangle = Z_2 N_c T \sum_{n_p} \int \frac{d^3 p}{(2\pi)^3} Tr_D S(\vec{p},\omega_p)$$

DQA

The dual condensate/dressed Polyakov loop

Then define dual condensate Σ_n :

$$\Sigma_n = -\int_0^{2\pi} \frac{d\varphi}{2\pi} e^{-i\varphi n} \langle \overline{\psi}\psi \rangle_{\varphi}$$

• n = 1 projects out loops with n(I) = 1: dressed Polyakov loop

- transforms under center transformation exactly like ordinary Polyakov loop: order parameter for center symmetry breaking
- Σ₁ is accessible with functional methods
 - C.F., PRL 103 (2009) 052003
- C. Gattringer, PRL 97, 032003 (2006)
- F. Synatschke, A. Wipf and C. Wozar, PRD 75, 114003 (2007).
- E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, PRD 77 094007 (2008).
- F. Synatschke, A. Wipf and K. Langfeld, PRD 77, 114018 (2008).
- J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski, PRL 106 (2011)

QCD phase transition: heavy quark limit/quenched

- Expect: Transitions controlled by deconfinement
- SU(2) second order, SU(3) first order

Transition temperatures, quenched

Luecker, C.F., arXiv:1111.0180; C.F., Maas, Mueller, EPJC 68 (2010).

SU(2): *T_c* ≈ 305 MeV SU(3): *T_c* ≈ 270 MeV

• $T \leq T_c$: increasing condensate due to electric part of gluon

cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.

cf. Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.

Transition temperatures, quenched

Luecker, C.F., arXiv:1111.0180; C.F., Maas, Mueller, EPJC 68 (2010).

SU(2): *T_c* ≈ 305 MeV SU(3): *T_c* ≈ 270 MeV

• $T \leq T_c$: increasing condensate due to electric part of gluon

cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.

cf. Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.

Transition temperatures, quenched

Luecker, C.F., arXiv:1111.0180; C.F., Maas, Mueller, EPJC 68 (2010).

SU(2): *T_c* ≈ 305 MeV SU(3): *T_c* ≈ 270 MeV

• $T \leq T_c$: increasing condensate due to electric part of gluon

cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.

cf. Braun, Gies, Pawlowski, PLB 684 (2010) 262-267.

QCD phase transitions: N_f=2

Quark mass dependence:

N_f = 2, physical up/down quark masses
Transition controlled by chiral dynamics

$N_f=2$: Transition temperatures at $\mu=0$

CF, Luecker, Mueller, PLB 702 (2011) 438-44 CF, Luecker, PLB 718 (2013) 1036.

- $T_{\chi} \approx 203 \text{ MeV}$ • $T_{\text{conf}} \approx 205 \text{ MeV}$
- similar results in FRG-approach

Braun, Haas, Marhauser, Pawlowski, PRL 106 (2011) 022002

N_f=2: QCD phase diagram

CF., Luecker, PLB 718 (2013) 1036

chiral CEP

crucial: backreaction of quark onto gluon

• qualitative agreement with RG-improved PQM model

Herbst, Pawlowski, Schaefer, PLB 696 (2011)

QCD phase transitions: $N_f=2+1$

Physical up/down and strange quark masses
Transition controlled by chiral dynamics
at μ=0: compare to available lattice results

Christian Fischer (University of Gießen)

DSEs with $N_f=2+1$

solve coupled system of three equations

Christian Fischer (University of Gießen)

QCD phase diagram

$N_f=2+1$, zero chemical potential

Lattice: Borsanyi *et al.* [Wuppertal-Budapest Collaboration], JHEP 1009(2010) 073 DSE: CF, Luecker, PLB 718 (2013) 1036

semi-quantitative agreement

Christian Fischer (University of Gießen)

$N_f=2+1$, zero chemical potential

Lattice: Borsanyi *et al.* [Wuppertal-Budapest Collaboration], JHEP 1009(2010) 073 DSE: CF, Luecker, PLB 718 (2013) 1036

semi-quantitative agreement

Christian Fischer (University of Gießen)

Nf=2+1: thermal electric gluon mass

large temperatures: behavior as expected from HTL
first order transition at large chemical potential

Christian Fischer (University of Gießen)

N_f=2+1: phase diagram

- Gluon spectral functions at T=0: positivity violation
- Temperature dependent gluon propagator
 - characteristic behavior of electric gluon
 - 'melting' of magnetic gluon with temperature
- Deconfinement T_c from dressed Polyakov-loop via DSEs
- QCD with finite chemical potential (beyond mean field)
 - backreaction of quarks onto gluons important
 - $N_f=2+I: CEP \text{ at } \mu_c/T_c > I$