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Motivation: QCD Phase Diagram

characteristic features at low energies
• dynamical chiral symmetry breaking
• confinement

non-perturbative computation of physical 
observables from microscopic dynamics

here:   study aspects of the phase diagram with 
  non-perturbative functional continuum methods

GSI Darmstadt

static quark confinement via the Polyakov loop potential

thermodynamics of pure gluodynamics (Yang–Mills theory)

‣ functional renormalisation group,
‣ Dyson–Schwinger equations,
‣ nPI-techniques

phase transition order, phase transition temperature, 
confinement criterion via infrared behaviour of propagators

pressure at temperatures around the phase transition



OUTLOOK

‣ Motivation

‣ (Thermal) Yang–Mills Propagators

‣ Quark Confinement

‣ Thermodynamics of  Yang–Mills Theory



FUNCTIONAL METHODS FOR YANG–MILLS 

▸ Dyson–Schwinger Equations (DSEs)

▸ Functional Renormalisation Group (FRG)
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C. Wetterich, Phys. Lett. B301 (1993) 90-94.

. . .  Both FRG and DSEs provide exact descriptions of the 
     full theory in terms of correlation functions.
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3.2. The Functional Renormalisation Group
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Figure 3.9.: Flow equation for the ghost-gluon vertex. Note that also the last two diagrams
are of one-loop order, the break in the wiggly line denotes that there is no
four-point interaction.
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Figure 3.10.: Flow equation for the trigluon vertex. Note that also the last two diagrams
are of one-loop order, the break in the wiggly line denotes that there is no
four-point interaction.

identities, see [278,279,405,406] and references therein. This situation is summarised in
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(Landau gauge) YANG–MILLS PROPAGATORS

Propagators have non-trivial temperature and momentum dependence,
both are indispensable(, in particular for thermodynamics).
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.... FRG equations,

   DSE equations see e.g.
R. Alkofer, L. von Smekal, 
  Phys.Rept. 353, 281 (2001).
C.S. Fischer, 
  J.Phys. G32, R253 (2006).

FRG 
DSE M.Q. Huber, L. von Smekal, arXiv: 1211.6092 [hep-th].

LF, J.M. Pawlowski, arXiv: 1112.5440 [hep-ph].
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FRG LF, J.M. Pawlowski, in preparation.

DSE C. Kellermann, C.S. Fischer,
     Phys.Rev.D78, 025015 (2008). 0 2 4 6 8 10 12 14 16 18
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THERMAL FRG
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temperature effects restricted
to infrared k . 2⇡T

D. Litim, J.M. Pawlowski, arXiv: hep-th/9901063.
D. Litim, J.M. Pawlowski, JHEP 11 (2006) 026.

��k,T = �k,T � �k,T=0

two-step procedure:

1. computation of quantum effects

2. add thermal fluctuations to quantum theory

practical advantages:
• quantum theory can be taken from any method, i.e. also from lattice gauge theory
• truncation errors affect only the infrared

purely thermal fluctuations



YANG–MILLS PROPAGATORS
momentum dependence at non-zero temperature

at finite temperature: the gluon propagator has two projections wrt the heatbath 

lattice data taken from:
A. Maas, J.M. Pawlowski, L. von Smekal, D. Spielmann, Phys. Rev. D85 (2011) 034037.

FRG results from:
LF, J.M. Pawlowski, arXiv: 1112.5440 [hep-ph].
LF, J.M. Pawlowski, PoS QCD-TNT-II2011 (2011) 021 [arXiv: 1112.5429 [hep-ph]].
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Quark Confinement



POLYAKOV LOOP POTENTIAL

in FRG, DSE, 2PI, ...

J. Braun, H. Gies, J.M. Pawlowski, 
        Phys. Lett. B684, 262 (2010).
F. Marhauser, J.M. Pawlowski, 
        arXiv: 0812.1144 [hep-ph].

The expectation value of the Polyakov loop,           , 
relates to the free energy      of a single quark.
   →  order parameter for static quark confinement
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Also                                             is an order parameter.
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POLYAKOV POTENTIAL - REPRESENTATIONS

eff. potential

FRG: 

DSEs:

2PI: for the purpose presented here it is equivalent to the DSE

J. Braun, H. Gies, J.M. Pawlowski, 
      Phys. Lett. B684, 262 (2010).
J. Braun, A. Eichhorn, H. Gies, J.M. Pawlowski, 
      Eur. Phys. J. C70, 689 (2010).
LF, J.M. Pawlowski, 
      arXiv: 1301.#### [hep-ph].

LF, J.M. Pawlowski, 
     arXiv: 1301.#### [hep-ph].

LF, J.M. Pawlowski, arXiv: 1301.#### [hep-ph].
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POLYAKOV POTENTIAL - SU(2)
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*Lattice data taken from  B. Lucini, M. Teper, U. Wenger, JHEP 01, 061 (2004).
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‣ minimum moves smoothly away from          
 second order phase transition for SU(2)

‣ implicit temperature dependence of 
propagators has a 10% effect

‣ not sensitive to scaling/decoupling
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POLYAKOV POTENTIAL - SU(3)

DSE / 2PI
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*Lattice data taken from  B. Lucini, M. Teper, U. Wenger, JHEP 01, 061 (2004).
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‣ minimum jumps away from conf. value         
 first order phase transition for SU(3)
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minima at integer values of
confining value of     at 1/2,
⤳ no confinement in perturbation theory

CONFINEMENT CRITERION
perturbation theory ➝ Weiss potential 
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N. Weiss, Phys. Rev. D24, 475 (1981).
D.J. Gross, R.D. Pisarski, L.G. Yaffe, 
        Rev. Mod. Phys. 53, 43 (1981).

two (transversal) gluonic modes, others cancel exactly
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non-perturbatively
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ghosts dominate at small temperatures
⤳ confinement at small temperatures
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Yang–Mills Thermodynamics



PRESSURE FROM OTHER METHODS

J.O. Andersen, M. Strickland, N. Su, 
Phys. Rev. Lett. 104 (2010).
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Figure 7. Comparison of LO, NLO, and NNLO predictions for the scaled pressure using the BN
mass prescription and one-loop running of αs. The points are lattice data for pure-glue with Nc = 3
from Boyd et al. [53]. Shaded bands show the result of varying the renormalization scale µ by a
factor of two around µ = 2πT .

Figure 8. Comparison of LO, NLO, and NNLO predictions for the scaled pressure using the BN
mass prescription and three-loop running of αs. The points are lattice data pure-glue with Nc = 3
from Boyd et al. [53]. Shaded bands show the result of varying the renormalization scale µ by a
factor of two around µ = 2πT .

disagrees with the lattice data anyway. For T > 3Tc, the prescription for the running

makes very little difference.

Until recently, lattice data for thermodynamic variables only existed for temperatures

– 20 –

 tricklandStrickland)

from a talk by M. Strickland



PRESSURE FROM THE FRG

projection onto physical subspace ‣ one chromoelectric +
‣ one chromomagnetic mode

The thermal pressure     is the effective action evaluated on the EoM,
normalised in the vacuum.
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Polyakov loop potential is crucial for the critical physics. 
Implicit temperature dependence of the propagators for quantitative accuracy.
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PRESSURE

Polyakov loop potential is crucial for the critical physics. 
Implicit temperature dependence of the propagators for quantitative accuracy.

FRG
Borsanyi et al.
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lattice data from 
S. Borsanyi, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, JHEP 1207, 056 (2012).



CONCLUSIONS

Functional methods allow to study the QCD phase diagram.
functional renormalisation group, Dyson–Schwinger equations (, 2PI-techniques)

▸  Thermal Propagators:
‣ Temperature dependence is crucial for confinement and thermodynamics.
‣ Chromomagnetic  gluon matches lattice data at all temperatures.
‣ Chromoelectric                         –––     ‘‘    –––                       , except around            .

▸  Confinement:
‣ second order phase transition for SU(2), first order for SU(3)
‣ critical temperatures 

‣ Criterion for confinement: gluons must be IR suppressed, while ghosts must not.

T SU(2)|SU(3)
c p

�
⇡

(
.55 .65 functional methods

.709 .646 lattice gauge theory

T ⇡ Tc

▸  Thermodynamics:
‣ Pressure at all temperatures, even for                .T . 3Tc
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T=0 Propagators

taken from: C.S. Fischer, A. Maas, J.M. Pawlowski, Annals Phys. 324 (2009).

16

we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for
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FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

gluon dressing function

ghost dressing function
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comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.
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Ghost Wave-Function Renormalisation
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Coupling at Vanishing Temperature

definition of the running coupling 
from the ghost-gluon vertex:

scaling solution
decoupling solution
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Coupling at Non-Vanishing Temperature

The coupling depends on 
the gluon propagator.
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Dyson–Schwinger Approximation for the Ghost

∂t
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The flow equation is the differential form of the Dyson–Schwinger equation. 

DSE:

total derivative wrt scale k
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Temperature Effects on the Ghost-Gluon Vertex



Gluonic Vertices –– Ansätze vs. Computation
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Polyakov Loop Potential –– Amplitude DSE/2PI/FRG
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Pressure with T=0 props

FRG
Borsanyi et al.
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Pressure without Polyakov Loop

FRG
Borsanyi et al.
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Polyakov loop potential crucial for critical physics.


