Scalar QED on the lattice in a dual representation
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FEuclidean path integral, complex action problem and dual representation

e Vacuum expectation values with Feynman's path integral:
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e In a Monte Carlo simulation observables are computed as averages over
field configurations ¢ distributed according to

Ply) = e

e For finite chemical potential x the action S[¢] is complex and the Boltz-
mann factor cannot be used as probability weight in a stochastic process.

Rewriting a system in terms of new variables where only real and positive
terms appear in the partition sum could overcome the complex action problem.



Charged scalar in a background field

e Continuum action:
S = d%{ — $(x) [ay + z'A,,(xﬂ [ay + z‘AV(x)] ()
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e Action on the lattice:
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Dual representation — I

e Expand the individual nearest neighbor terms:
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e |dea: Use the j,, and jx’l, as the new degrees of freedom.

e Remaining ¢-integrals at a site x :
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F.(j,7), F.(j,7) € Ny are linear combinations of the j and j variables
attached to the site . They correspond to the total j, j-flux at x.



Dual representation — I

e Using ¢, = re' the integrals at a site = read:
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e At every site there is a weight factor Z(F, + F,) and a constraint.
e The constraint §(F, — I, forces the total flux F, — F, at x to vanish.

e The structure can be simplified by using linear combinations k,, € Z
and [, € Ny of the original variables j,, and j,,,.

e Only the k, , are subject to constraints.



Dual representation — III (final form)

e The original partition function is mapped exactly to a sum over
configurations of the dual variables k,, € Z and [, € INy :
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e Weight factor (real and positive):

1
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e Constraint (only for k-variables):

ck) = I] 5(2 [k — kxa,y])



Admissible configurations are loops:

e Constraint from the integration over the U(1) phases:
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e Admissible configurations of dual variables are oriented loops of flux:
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e The loops are dressed with link variables U, ,. Chemical potential gives
different weight to forward and backward temporal flux.



Scalar QED / U(1) gauge Higgs model with 2 flavors

Continuum action:
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Adding gauge d.o.f. in the dual representation

e Two copies of the loop sum integrated over gauge fields:
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e Expansion of the Boltzmann factor ..
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. leads to new integer valued dual variables p, ,, on the plaquettes.

e Integrating the gauge fields dU, , gives rise to new constraints that con-
nect p; s,k and &, , at each link.



Dual form of the partition function:

The original partition sum is mapped exactly to a sum over loop and surface
configurations:

Z = ) Walp) Wk, ) Wy (k1) Cr(p, k. k) Cs(k) Cs(k)
{p.k Lk}

We(p) : plaquette-based weight factor for gauge variables p
Wy (k, 1), W (k,1), : link-based weight factor for matter variables k, 1, k, [

CL(p, ,k) : link-based constraint = gauge surfaces
Cs(k),Cs(k) : site-based constraint = matter loops
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An admissible configuration:
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Chemical potential favors flux forward in time.



Generalized worm algorithm for gauge Higgs systems:

Worm starts by inserting a unit of matter flux. Adding segments transports
both the site and link defects across the lattice ....




Generalized worm algorithm for gauge Higgs systems
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Algorithm was tested (arXiv:1211.3436) in the 1-flavor U(1) model and in
Z.3 gauge Higgs model at finite p. Clearly outperforms local dual update.



Bulk observables

e Bulk observables are obtained as derivatives of the free energy with
respect to the parameters.

e They have the form of averages and fluctuations of the dual variables.

e Observables related to the particle number:
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e Observables related to field expectation values:
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e Dual forms:
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Checks - 1

Simulation with dual variables can be checked with high precision:

(here for 3 = o0)
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Checks - 11

Comparison to conventional simulation:
(,u¢ = My = O,IQ¢ = Ry = 9.0,>\¢ = )‘X = 00)
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Phase diagram at p =0

Using: K¢ = Ky, Ay = A, = 0.0




Turning on chemical potential

Using: k¢ = Ky = 6.4, Ay = A, =0.0,5=10.6
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Silver blaze region that ends in a strong first order transition.



Summary:

e Considerable progress was made towards rewriting several systems in rep-
resentations where the partition sum has only real and positive terms.

e Dual degrees of freedom are surfaces for gauge fields and loops for matter.
e Constraints for dual variables can be handled with worm-type algorithms.
e Interesting new algorithmic options when surfaces have boundaries.

e Spectroscopy is under control.

e Systems may serve as solved test cases for other approaches.



Spectroscopy at finite density ....

... in case there is time left (unlikely).



Spectroscopy at finite density = Dual spectroscopy

e /ero momentum propagator

C(t) = Z (60 05,) o e

(9,60) = 5 [ Dol 0,0

e Dual representation of the partition sum Z, . with two insertions:
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e Admissible configurations in Z, . :

Closed loops of flux plus an open string of flux connecting v and z.



Worm strategy for correlators

e Since Z, . consists of closed loop plus a single open string, every step of
the worm corresponds to an admissible configuration for some Z,, .

e In our propagators we project to zero momentum, i.e., the spatial lattice
indices are summed.

e To compute C(t) one simply evaluates the temporal distance ¢ of head
and tail of the worm at every step and C(t) is obtained as a histogram.



What do we expect? Analysis of the free case in the continuum.
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e Propagator in the continuum: Rep,
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e Asymmetry between forward and backward propagation:
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Test of free propagators against (lattice) Fourier transformation
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Excellent agreement indicates that the finite density propagators computed
from the dual representation are under control. (16% x 100, m = 1, A = 0)



Propagators at non zero coupling
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Asymmetric propagation for u < p. ~ 0.17. Condensation (= constant
propagator) for u above p.. (16% x 100, K = 7.44, A = 1)



