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1. Motivation

• Thermodynamic simulations mostly with staggered fermions

(computationally least demanding !)

• Unsolved problems: rooting, locality, flavor symmetry ?

• Necessary to test/compare various fermion discretization schemes.

• Wilson fermions have a clear flavor interpretation !

• Wilson fermions break chiral symmetry explicitly.

• Wilson fermions have a subtle chiral behavior and a complicated

phase structure, both at T = 0 and at finite teperature.

• Wilson fermions are very sensitive to finite a effects.



2. Introduction: twisted mass

Improvement necessary. Two methods for Wilson fermions:

1. Clover improvement (for finite T , see DIK Collaboration)

2. Twisted mass improvement

What is twisted mass ?

Wilson twisted mass action for the fermion sector in the

twisted basis :

SF [ψ , ψ̄ , U ] = a4
∑

x

[
ψ̄(x)

(
DW +m0 + iµ0γ5τ

3
)
ψ(x)

]

where DW = γµ
1
2a

(
∇µ + ∇∗

µ

)
− ar

2 ∇µ∇∗
µ is the Wilson-Dirac operator.



Can be rewritten as

SF [Ψ , Ψ̄ , U ] = a4
∑

x

[
Ψ̄(x)

(
γµ

1

2a

(
∇µ + ∇∗

µ

)
− ar

2
e−iωγ5τ

3∇∗
µ∇µ +M0

)
Ψ(x)

]

in the physical basis Ψ̄, Ψ, which is related to the twisted basis ψ̄, ψ

by the non-anomalous chiral rotation

Ψ = exp
(
i
ω

2
γ5τ

3
)
ψ ,

Ψ̄ = ψ̄ exp
(
i
ω

2
γ5τ

3
)

with

M0 =
√
m2

0 + µ2
0 , tan(ω) = µ0/m0 ,

the bare polar quark mass and bare twist angle.

For maximal twist related through :

Ψ =
1√
2
(1 + iγ5τ

3)ψ and Ψ̄ = ψ̄
1√
2
(1 + iγ5τ

3)



Introducing Wilson’s hopping parameter κ = 1/(2am0 + 8r)

and rescaling as usual ψ →
√
a3/(2κ)ψ leads to the standard form

of twisted fermion action appearing in the simulation code :

SF [χ , χ̄ , U ] =
∑

x

[
χ̄(x)

(
1 + i2κaµ0γ5τ

3
)
χ(x)

− κ
∑

µ

χ̄(x)
(
(r − γµ)Ux,µχ(x + µ̂) + (r + γµ)U

†
x−µ̂,µχ(x− µ̂)

) ]

Due to the spin-flavour structure of the twisted mass term, iaµ0γ5τ
3,

parity is a symmetry only combined with a discrete flavour rotation,

while flavour symmetry is broken explicitly according to the pattern

SUV (2) → U(3)(1).

U(3)(1) is the subgroup of flavour rotations generated by τ 3.



Standard usage in conjunction with tree-level Symanzik improved

gauge action

SG[U ] = β

[
c0

∑

P

(
1 − 1

3
Re (tr [U (P )])

)
+ c1

∑

R

(
1 − 1

3
Re (tr [U (R)])

)]

where β = 6/g2
0 (with g0 the bare gauge coupling) and U (P ), U (R)

are plaquette and rectangle loops.

The weight coefficients satisfy c0 + 8 c1 = 1, and c1 = −1/12

(this is the tree-level improvement condition).

This choice corresponds to the conventions used for ETMC’s data

at T = 0 (needed for calibration of the lattices).



Algorithm:

• generalised hybrid Monte-Carlo algorithm,

• with even-odd preconditioning,

• with Hasenbusch trick,

• with multiple time scale integration according

to the Sexton-Weingarten scheme.

see: C. Urbach and K. Jansen, twisted mass programming suite.



Advantages of the twisted mass approach :

• prevents exceptional configurations

• twisted mass provides a natural infrared cutoff

• it should be easier to reach light PS masses

• at maximal twist, with κ set to κc(β),

the twisted mass term takes the role of the mass term,

while automatic O(a) improvement is guaranteed;

was observed first by R. Frezzotti, G. C. Rossi (2004)

Disadvantage :

• explicit flavor symmetry breaking (small effect on mπ0,

has to be checked, calibration by means of mπ± measurements)



Chiral limit ?

• For natural quark masses: crossover instead of phase transition.

• Nature of the phase transition with Nf = 2 flavors in the

chiral limit (not physical !) is however of principal interest;

not settled up to now :

Does it belong to the Z(2) or O(4) equivalence classes ?

Majority of previous results compatible with O(4).

Or is it even a first order transition (Pisa group) ?

• How is that realized for twisted mass fermions ?

How many flavors can be simulated ?

• Rotation in flavor space involves two flavors : Nf = 2

• Two (degenerate or non-degenerate) doublets : Nf = 2 + 1 + 1



First steps

Our activity (at Humboldt University) comes from two roots:

1. non-quenched study of the Aoki phase, mainly with respect

to its limits in β, as a lattice artefact (2003/2005):

an external source µ0 → 0 induces symmetry breaking with

an order parameter

lim
µ0→+0

lim
V→∞

〈ψ̄iγ5τ
3ψ〉 6= 0

that leads to spontaneous parity-flavor symmetry breaking

(remnant “magnetization” in the limit µ0 → +0)

2. entering finite-temperature studies in the twisted mass approach,

forming the tmfT (“twisted mass, finite T”) collaboration,

the “little brother” of the European Twisted Mass Collaboration



Now we are working much closer to the continuum limit,

at Nτ = 10 and 12.

Aoki phase in unquenched simulations was first discovered

with Nτ = 4 ! (cf. Ali Khan et al., PRD 63 (2001) 034502 )

Entangled with the physical finite-temperature transition !
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In fact, a whole sequence of discontinuities (phase transitions)

since then became discernible closer to the continuum limit :

• the Aoki phase (a discontinuity in µ0),

• a metastability region (a discontinuity in κ),

• an unphysical but finite-temperature transition became visible

at κT >> κc(β): of deconfining nature,

originating from the doubler structure.

Finally, the physically relevant finite-temperature region

(crossover line) has been identified :

• κT decouples (with µ0 = 0) from κc(β, T = 0) (chiral limit mπ → 0);

• is connected via a critical endpoint and a first order line to the

quenched endpoint at κ = 0.



3. Recalling the global phase structure

Hypothetical Aoki phase in the m0-g
2 and in the β-κ diagram

“A numerical reinvestigation of the Aoki phase with Nf = 2

Wilson fermions at zero temperature”, PRD 69 (2004) 074511

E.-M. I., W. Kerler, M. Müller-Preussker, A. Sternbeck, H. Stüben
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characteristic signal: degeneracy and splitting of π0 and π± masses
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”Predicting the Aoki phase using the chiral Lagrangian”,

Stephen R. Sharpe, Robert L. Singleton, Jr.,

Nucl. Phys. Proc. Suppl. 73 (1999) 234-236



First order signal (jump) along the h = µ0 direction
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cf. Ising model at T < TCurie with magnetic field H → ±0

• Aoki phase has a finite range in κ

• and has a finite range also in β !



Over a broad β range a complicated phase stucture is known by now, with

“unwanted” phase transitions, as non-physical artefacts of Wilson action

Improved gauge action becomes important here !

• First example: Aoki phase (see above), not existing for β > βcusp.

• Next, a first order transition extending in µ0 direction was found.
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First order signal now by hysteresis scans along the κ-direction
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“Phase structure of thermal lattice QCD with Nf = 2 twisted mass

Wilson fermions”, PRD 80 (2009) 094502

E.-M. I., K. Jansen, M.P. Lombardo, M. Müller-Preussker,

M. Petschlies, O. Philipsen, L. Zeidlewicz
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All this is summarized in

The full 3-dimensional phase diagram (Creutz’ conjecture)

0 ∞
Aoki phase

∞
confinement

deconfinement

κ thermal transition/crossover surface
(possibly curved)

from first doubler
κc(β, T = 0)

β
κc(β, T = 0)

µ

quenched limit

confinement

1st order



Some κ-scans at fixed µ0

have been used to localize the cone and estimate its width.

Confirmation of Creutz’ conjecture !



What is physically relevant here ?

• Only the lower cone connects with the quenched limit !

(varying the quark mass → ∞, a critical endpoint is passed,

connecting the crossover to a first order line ending in the

quenched endpoint at κ = 0.)

• How does a line of constant physics intersect the cone !

• The LCP should run at maximal twist !

• The LCP should not run at µ0 = const !

The analysis rests heavily on calibration simulations at T = 0

• by the ETM Collaboration

• and partly by the tmfT Collaboration.



4. Simulation setup for the crossover temperature(s)

• Evaluated: three families of ensembles : A12, B12, C12

(one more still in progress : Z12)

• populate the three-dimensional phase diagram β, κ, µ0

• a β scan fixes the position of the crossover line

• maximal twist: requires choice κ = κc(T = 0, β)

• fixed pion mass: requires choice aµ0 = aµ0(β) = C exp (−β/(12β0)),

fitted with β0 =
11−2Nf/3

(4π)2
, or by a two-loop formula

• these fits for various families of T = 0 simulations based on data

from the ETM-Collaboration [JHEP 08 097 (2010)]
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List of β-scans

• A12: 323 × 12, 3.84 ≤ β ≤ 3.99,

mπ = 316(16) MeV, r0mπ = 0.673(42)

βχ = 3.89(3), Tχ = 202(7) MeV

• B12: 323 × 12, 3.86 ≤ β ≤ 4.35,

mπ = 398(20) MeV, r0mπ = 0.847(53)

βχ = 3.93(2), Tχ = 217(5) MeV

βdeconf = 4.027(14), Tdeconf = 249(5) MeV

• C12: 323 × 12, 3.90 ≤ β ≤ 4.07,

mπ = 469(24) MeV, r0mπ = 0.998(62)

βχ = 3.97(3), Tχ = 229(5) MeV

βdeconf = 4.050(15), Tdeconf = 258(5) MeV



κc(T = 0, β) and lattice spacing a(β)
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One Tc or two Tc’s (chiral and deconfining ?) localized by considering:

• chiral susceptibility

χσ =
∂〈ψ̄ψ〉
∂mq

• disconnected part of it (looking for a Gaussian peak)

σ2
ψ̄ψ =

V

T

(
〈(ψ̄ψ)2〉 − 〈ψ̄ψ〉2

)

with 〈ψ̄ψ〉 evaluated as stochastic estimator

• renormalized (subtracted) chiral condensate (defined as the ratio)

R〈ψ̄ψ〉 =
〈ψ̄ψ〉(T, µ0) − 〈ψ̄ψ〉(0, µ0) + 〈ψ̄ψ〉(0, 0)

〈ψ̄ψ〉(0, 0)



• renormalized Polyakov loop (looking for an inflection point)

〈Re(L)〉R = 〈Re(L)〉 exp (V (r0)/2T )

• and its susceptibility (hardly showing a Gaussian peak)

χRe(L)

mπ-dependence and chiral extrapolations are discussed in papers :

• arXiv:1102.4530v2 (revised paper, December 2012)

• arXiv:1212.0982 (F. Burger at Lattice 2012)



Chiral susceptibility and Polyakov loop susceptibility for A12

Gaussian fit
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Chiral susceptibility and Polyakov loop susceptibility for B12

Gaussian fit
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Renormalized 〈ψ̄ψ〉 for B12 and B10
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Renormalized Polyakov loop 〈Re(L)〉R for B12 and B10
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5. Towards the chiral limit

Chiral extrapolations for Tχ(mπ) for various scenarios (χPT)

Tχ(mπ) = Tχ(mπ = 0) + A m2/(β̃δ)
π

with critical indices β̃, δ corresponding to the respective

equivalence classes of 3d spin models.

• O(4) : 2/(β̃δ) = 1.08 leads to Tχ(mπ = 0) = 152(26) MeV

• Z(2) : two cases mπ,c = 0 or mπ,c 6= 0;

lead to Tχ(mπ → 0) between O(4) and 1-st order scenario

• first order : in literature formally 2/(β̃δ) = 2 is taken;

leads to Tχ(mπ = 0) = 182(14) MeV

(applicability of these “critical indices” unclear !)



It is also possible to obtain for fixed Nτ a critical βc(h) from

the scaling relation

βc(h) = βchiral +B h1/(β̃δ) h = 2aµ0

(gives consistent results for Tχ)

We have also discussed the scaling of the “magnetic EoS”

〈ψ̄ψ〉 = h1/δcf(dτ/h1/(β̃δ))

τ = β − βchiral

fitting scaling violations due to quark mass.



Chiral extrapolations for Tχ(mπ) for various scenarios
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Summary: possible scenarios for the Nf = 2 chiral limit

1. first order transition:

fit gives Tχ(mπ = 0) = 182(14) MeV

2. O(4) second order transition down to mπ = 0:

fit gives Tχ(mπ = 0) = 152(26) MeV

3. second order Z(2) transition, fits give Tχ(mπ → 0) in between.

• either with a critical point separating second order (mπ > mπ,c)

from first order transition (mπ < mπ,c) with mπ,c 6= 0

• or as second order transition down to mπ,c = 0.

The Z12 results (mπ ≈ 280 MeV) will hopefully be able

to exclude (at least) the first order scenario !



1st order Z(2)

mπ,c

2nd order O(4)

mπ
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6. Gluon and ghost propagators:

unquenched with twisted mass quarks

Gauge fixing: Landau gauge

∇µAµ(x) =
∑

µ

(Aµ(x + µ̂/2) − Aµ(x− µ̂/2)) = 0

Aµ(x + µ̂/2) =
1

2iag0

(
Uxµ − U †

xµ

)
|traceless

established by maximization of

FU [g] =
1

3

∑

x,µ

Re tr
(
gxUxµg

†
x+µ

)

with respect to gauge transformations gx.



Gauge fixing is performed for relevant enembles of MC configurations,

irrespective of their origin.

Ghosts are not explicit, studied only algebraically,

by inversion of the Faddeev-Popov operator.

Problem of Gribov copies serious in IR limit !

Previous work : quenched propagator study at finite T

R. Aouane et al., PRD 85 (2012) 034501 arXiv:1108.1735 [hep-lat]

(with Wilson action, for various lattice sizes)

Gluon propagator in momentum space as ensemble average :

Dab
µν(q) =

〈
Ãa
µ(k)Ãb

ν(−k)
〉
,

qµ(kµ) =
2

a
sin

(
πkµ
Nµ

)



For non-zero temperature Euclidean invariance is broken,

useful to split Dab
µν(q) into two components,

the transversal DT (“chromomagnetic”) and the

longitudinal DL (“chromoelectric”) propagator, respectively,

Dab
µν(q) = δab

(
P T
µνDT (q2

4, ~q
2) + PL

µνDL(q2
4, ~q

2)
)
.

The fourth momentum component q4 conjugate to the Euclidean

time (Matsubara frequency) has been restricted to zero.

For the propagators DT,L (or their respective dimensionless dressing

functions ZT,L(q) = q2DT,L(q)) we find

DT (q) =
1

2Ng

〈
3∑

i=1

Ãa
i (k)Ãa

i (−k) − q2
4

~q 2
Ãa

4(k)Ãa
4(−k)

〉

and

DL(q) =
1

Ng

(
1 +

q2
4

~q 2

)〈
Ãa

4(k)Ãa
4(−k)

〉
,



where Ng = N 2
c − 1 and Nc = 3.

The Landau gauge ghost propagator is given by

Gab(q) = a2
∑

x,y

〈e−2πi(k/N)·(x−y)[M−1]abxy〉

= δab G(q) = δab J(q)/q2 ,

with the four-vector (k/N) ≡ (kµ/Nµ).

J(q) denotes the ghost dressing function.

The matrix M is the lattice Faddeev-Popov operator

Mab
xy =

∑

µ

[Aab
x,yδx,y −Bab

x,yδx+µ̂,y − Cab
x,µδx−µ̂,y]

Aab
x,y = Re tr [{T a, T b}(Ux,µ + Ux−µ̂,µ)],

Bab
x,y = 2 · Re tr [T bT aUx,µ],

Cab
x,y = 2 · Re tr [T aT bUx−µ̂,µ] ,



The corresponding renormalized functions, in momentum

subtraction (MOM) schemes, can be obtained from

Zren
T,L(q, µ) ≡ Z̃T,L(µ)ZT,L(q),

J ren(q, µ) ≡ Z̃J(µ)J(q)

with the Z̃-factors being defined such that Zren
T,L(µ, µ) = J ren(µ, µ) = 1.

For the gluon dressing function we employed the Gribov-Stingl

formula

Zfit(q) = q2 c (1 + d q2n)

(q2 + r2)2 + b2
,

For the ghost dressing function used a fit formula like

Jfit(q) =

(
f 2

q2

)k

+ h (10)



Our main emphasis: Finite-volume and discretization studies,

providing continuum parametrizations for various temperatures,

as input for finite-T for continuum studies

• Gribov copy and finite volume effects of minor importance

in the momentum range under study

• fits of the momentum dependence of the propagators

0.6 GeV < q < 3.0 GeV

• in the temperature range

0.65 < T/Tdeconf < 2.97



Temperature dependence studied at finite scale (β = 6.337)

T/Tc Nτ Nσ β a(GeV−1) a(fm) nconf ncopy

0.65 18 48 6.337 0.28 0.055 150 1

0.74 16 48 6.337 0.28 0.055 200 1

0.86 14 48 6.337 0.28 0.055 200 1

0.99 12 48 6.337 0.28 0.055 200 1

1.20 10 48 6.337 0.28 0.055 200 1

1.48 8 48 6.337 0.28 0.055 200 1

1.98 6 48 6.337 0.28 0.055 200 1

2.97 4 48 6.337 0.28 0.055 210 1

long simulated annealing chains, no copies !



Volume and discretization dependence at two fixed temperatures

T/Tc Nτ Nσ β a(GeV−1) a(fm) nconf ncopy

0.86 8 28 5.972 0.49 0.097 200 27

0.86 12 41 6.230 0.33 0.064 200 1

0.86 16 55 6.440 0.24 0.048 200 1

1.20 6 28 5.994 0.47 0.094 200 27

1.20 8 38 6.180 0.35 0.069 200 1

1.20 12 58 6.490 0.23 0.045 200 1

0.86 14 56 6.337 0.28 0.055 200 1

0.86 14 64 6.337 0.28 0.055 200 1

1.20 10 56 6.337 0.28 0.055 200 1

1.20 10 64 6.337 0.28 0.055 200 1

Gribov effect studied partly with 27 copies !



q dependence for various temperatures
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T dependence for various lattice momenta
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“Order parameters” constructed from the longitudinal

propagator DL

χ =
DL(0, T ) −DL(q, T )

DL(0, T )

α =
DL(0, T ) −DL(q, T )

DL(0, Tmin) −DL(q, Tmin

with Tmin = 0.65 Tc

for various fixed lattice momenta as function of T



T dependence of “order parameters” for various lattice momenta
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q and T dependence of the ghost dressing function
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Our finite-temperature results for pure Yang-Mills theory were used

by Kenji Fukushima and Kouji Kashiwa, arXiv:1206.0685 [hep-ph]

• in the effective potential for the Polyakov loop

• for reconstructing the Equation of State (EoS)

In leading order of the 2PI formalism, the thermodynamical

potential can be approximated as follows in terms of the gluon

and ghost propagators :

1

T
Ωglue ≃ −1

2
tr lnD−1

gl + tr lnD−1
gh

for example, the inverse gluon propagator has been extracted

from our data for T < 1.2 Tc

D−1
gl (p2) =

[
p2ZT (p2)Tµν + ξ−1p2ZL(p2)Lµν

]
δab



Order parameter and EoS of pure Yang-Mills

Success mainly in recovering the transition temperature !
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In the same paper, based on schematic lattice propagators,

the “order parameters” and EoS of full QCD have been presented :

Order parameters and EoS of full QCD
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Our recent paper : arXiv:1212.1102

“Landau gauge gluon and ghost propagators from lattice QCD

with Nf = 2 twisted mass fermions at finite temperature”

R. Aouane, F. Burger, E.-M. I., M. Müller-Preussker, A. Sternbeck

is an unquenched propagator study for twisted mass ensembles

of the tmfT collaboration, leading to continuum parametrizations

in the momentum ranges :

• 0.4 GeV < q < 3.0 GeV for the gluon propagators (perfect fit !)

fitting parameter b2 in the Grivov-Stingl fit compatible with zero

(no splitting in complex conjugate poles visible in this momentum

range !)

• 0.4 GeV < q < 4.0 GeV for the ghost propagator (less good,

fit correct within few percent, a mass term mgh would’t help),



Done for various temperatures in the range 180 MeV < T < 260 MeV .

Renormalized propagators for renormalization scale µ = 2.5 GeV



The unrenormalized dressing functions,

for the transverse gluon ZT (left panel),

for the longitudinal gluon ZL (middle panel)

and for the ghost J (right panel) for various temperatures,

B12 for mπ = 398 MeV
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To describe the T -dependence, ratios of the renormalized dressing

functions or propagators

RT,L(q, T ) = Dren
T,L(q, T )/Dren

T,L(q, Tmin),

RG(q, T ) = Gren(q, T )/Gren(q, Tmin)

are shown as functions of the temperature T for 6 fixed momentum

values q 6= 0, and for different pion masses. For better visibility,

ratios are taken with respect to the lowest temperature Tmin.



A12 with mπ = 316 MeV
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B12 with mπ = 398 MeV
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The ratio RT at zero momentum for the three pion mass values
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The inverse renormalized longitudinal gluon propagator (Dren
L )−1

at zero momentum
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7. Conclusions and Outlook

• The Nf = 2 crossover structure and the investigation of its

chiral limit are close to completion.

• The results are in fair agreement with other results with

Wilson fermions (DIK collaboration) and other lattice fermions.

• The EoS is will be presented soon in full detail (F. Burger).

First reliable results have been presented at Lattice 2012.

• Chiral and deconfinement crossover are not strictly coincident.

• The effect of the crossover on the gluon propagator is weak.

Masses too large ! Longitudinal gluon propagator most sensitive.

• Future orientation of the tmfT collaboration ?

Probably, we will turn to Nf = 2 + 1 + 1 simulations.


