pulling oneself over the fence... a bootstrap for quantum gravity

Daniel F Litim University of Sussex

with Kevin Falls, Kostas Nikolakopoulos, and Christoph Rahmede

1301.4191.pdf

DELTA '13, U Heidelberg 10 Jan 2013

question

is metric quantum gravity fundamental

gravitation

physics of classical gravity

Einstein's theory $G_N = 6.7 \times 10^{-11} \frac{m^3}{\text{kg} s^2}$ classical action

$$S_{\rm EH} = \frac{1}{16\pi G_N} \int \sqrt{\det g} (-R(g_{\mu\nu}) + 2\Lambda)$$

long distances

gravity not tested beyond $10^{28} \mathrm{cm}$

short distances

gravity not tested below 10^{-2} cm

gravitation

physics of classical gravity

Einstein's theory $G_N = 6.7 \times 10^{-11} \frac{m^3}{\log s^2}$

physics of quantum gravity

Planck length $\ell_{\rm Pl} = \left(\frac{\hbar G_N}{c^3}\right)^{1/2} \approx 10^{-33} \, {\rm cm}$ Planck mass $M_{\rm Pl} \approx 10^{19} {\rm GeV}$ Planck time $t_{\rm Pl} \approx 10^{-44} \, {\rm s}$ Planck temperature $T_{\rm Pl} \approx 10^{32} \, {\rm K}$

expect quantum modifications at energy scales $M_{
m Pl}$

perturbation theory

structure of UV divergences

gravity: $[g_{\mu\nu}] = 0$, [Ricci] = 2, $[G_N] = 2 - d$ effective expansion parameter: $g_{\text{eff}} \equiv G_N E^2 \sim \frac{E^2}{M_{\text{Pl}}^2}$

N-loop Feynman diagram $\sim \int dp \, p^{A - [G]N}$

- [G] > 0: superrenormalisable
- [G] = 0: renormalisable
- [G] < 0: dangerous interactions

• perturbative non-renormalisability

gravity with matter interactions pure gravity (Goroff-Sagnotti term)

perturbation theory

• effective theory for gravity (Donoghue '94)

quantum corrections computable for energies $E^2/M_{\rm Pl}^2 \ll 1$ knowledge of UV completion not required

• higher derivative gravity I (Stelle '77)

 R^2 gravity perturbatively renormalisable unitarity issues at high energies

• higher derivative gravity II (Gomis, Weinberg '96)

all higher derivative operators gravity 'weakly' perturbatively renormalisable no unitarity issues at high energies

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

$$S_{\rm YM} = \frac{1}{4g_s^2} \int F^2$$

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

strong nuclear force (QCD)

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

strong nuclear force (QCD)

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

quantum gravity

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

coupling
$$X = G(\mu) \mu^2$$

 $\beta_X \equiv \frac{dX}{d \ln \mu}$

non-trivial UV fixed point

quantum gravity

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

quantum gravity

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

asymptotic safety

effective action for gravity

$$\Gamma_k = \sum_i \bar{\lambda}_i \int d^4 x \ \mathcal{O}_i$$

high-energy limit

$$\Gamma_k \to \Gamma_*$$
 UV fixed point

low energy limit

$$\Gamma \approx \int d^4 x \sqrt{g} \left[\frac{\Lambda}{8\pi G} - \frac{R}{16\pi G} \right]$$

classical GR

asymptotic safety

running couplings

$$k\partial_k \lambda_i = \sum_j \mathbb{B}_{ij} (\lambda_j - \lambda_j^*) + \text{subleading}$$

vicinity of fixed point

$$\lambda_i(k) = \lambda_i^* + \sum_n c_n V_i^n k^{\vartheta_n} + \text{subleading}$$

scaling exponents $\begin{cases} \vartheta_n > 0 & \text{irrelevant} \\ \vartheta_n < 0 & \text{relevant} \end{cases}$

power counting

$$[g_{\mu\nu}] = 0$$
 $[D_{\mu}] = 1$ $\Box = g^{\mu\nu}D_{\mu}D_{\nu}$

invariants
$$\lambda_i \int d^4x \sqrt{\det g_{\mu\nu}} \mathcal{O}_i(D_\rho, g_{\sigma\tau})$$

RG flow

 $\frac{d\lambda_i}{d\ln k} = -d_i \,\lambda_i + \text{quantum corrections}$

canonical dim.

$$d_i = 4 - 2n$$

n=2:
$$\Box R$$
, $R_{\mu\nu}R^{\mu\nu}$, $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$
n=3: $R_{\mu\nu}^{\ \rho\sigma}R_{\rho\sigma}^{\ \lambda\tau}R_{\lambda\tau}^{\ \mu\nu}$

power counting

$$[g_{\mu\nu}] = 0$$
 $[D_{\mu}] = 1$ $\Box = g^{\mu\nu}D_{\mu}D_{\nu}$

invariants
$$\lambda_i \int d^4x \sqrt{\det g_{\mu\nu}} \mathcal{O}_i(D_\rho, g_{\sigma\tau})$$

RG flow $\frac{d\lambda_i}{d\ln k} = -d_i \lambda_i +$ **quantum corrections**

canonical dim.

$$d_i = 4 - 2n$$

classical scaling $\vartheta_{\mathrm{G},n} = 2n-4$

knowns and unknowns

asymptotic freedom

 $g_* = 0$

anomalous dimensions

 $\eta_A = 0$

canonical power counting

 $\{artheta_{\mathrm{G},n}\}$ are known

knowns and unknowns

asymptotic freedom

 $g_{*} = 0$

anomalous dimensions

 $\eta_A = 0$

canonical power counting

 $\{artheta_{\mathrm{G},n}\}$ are known

$$F^{256}$$
 irrelevant !

go and climb Mount Everest

knowns and unknowns

asymptotic freedom

 $g_{*} = 0$

anomalous dimensions

 $\eta_A = 0$

canonical power counting

 $\{artheta_{\mathrm{G},n}\}$ are known

$$F^{256}$$
 irrelevant !

asymptotic safety

 $g_* \neq 0$

anomalous dimensions

 $\eta_N \neq 0$

non-canonical power counting

 $\{\vartheta_n\}$

are <mark>not</mark> known

 R^{256}

bootstrap

hypothesis ordering follows canonical dimension strategy

Step 1retain invariants up to mass dimension DStep 2compute $\{\vartheta_n\}$ (eg. RG, lattice, holography)Step 3enhance D, and iterate

convergence (no convergence) of the iteration:

hypothesis supported (refuted)

bootstrap

hypothesis ordering follows canonical dimension strategy

Step 1retain invariants up to mass dimension DStep 2compute $\{\vartheta_n\}$ (eg. RG, lattice, holography)

Step 3 enhance D, and iterate

testing ground

f(R) quantum gravity

Step 1

$$\Gamma_k = \sum_{n=0}^{N-1} \lambda_n \, k^{d_n} \, \int d^4 x \sqrt{g} \, R^n$$

invariants up to D = 2(N-1)

Step 2

RG flow fixed point scaling exponents

Step 3

enhance $N \rightarrow N+1$ & iterate

Step 1

$$\Gamma_k = \sum_{n=0}^{N-1} \lambda_n \, k^{d_n} \, \int d^4 x \sqrt{g} \, R^n$$

invariants up to D = 2(N-1)

Step 2

RG flow fixed point scaling exponents

Step 3

enhance $N \rightarrow N+1$ & iterate

iterate Step 1, 2 and 3

how often is enough?

well, it depends...

here: 34 consecutive orders

$$\Gamma_k = \sum_{n=0}^{N-1} \lambda_n \, k^{d_n} \, \int d^4 x \sqrt{g} \, R^n$$

invariants up to D = 2(N-1)

Step 2

RG flow fixed point scaling exponents

Step 3

enhance $N \rightarrow N+1$ & iterate

UV fixed point

Step 1

$$\Gamma_k = \sum_{n=0}^{N-1} \lambda_n \, k^{d_n} \, \int d^4 x \sqrt{g} \, R^n$$

invariants up to D = 2(N-1)

Step 2

RG flow fixed point scaling exponents

Step 3

enhance $N \rightarrow N+1$ & iterate

$\langle \lambda_0 angle \; = \;$	0.25574	$\pm 0.015\%$
$\langle \lambda_1 angle \; = \;$	-1.02747	$\pm~0.026\%$
$\langle \lambda_2 angle \; = \;$	0.01557	$\pm 0.9\%$
$\langle \lambda_3 angle \;=\;$	-0.4454	$\pm 0.70\%$
$\langle \lambda_4 angle \; = \;$	-0.3668	$\pm 0.51\%$
$\langle \lambda_5 angle \;=\;$	-0.2342	$\pm~2.5\%$

fixed point coordinates become independent of the approximation order

radius of convergence

 $\rho_c \approx 0.82 \pm 5\%$

evaluate sets of eigenvalues

$$\{\vartheta_n(N), 0 \le n \le N-1\}$$

evaluate sets of eigenvalues

$$\{\vartheta_n(N), 0 \le n \le N-1\}$$

linear least-square fit

$$\vartheta_n \approx a \cdot n - b$$

with

$$a_{\rm UV} = 2.17 \pm 5\%$$

 $b_{\rm UV} = 4.06 \pm 10\%$

Ndata sets critical exponents at order N: $\nabla \mathbf{X}$ $\vartheta_n(N)$ **UV** irrelevant **UV** relevant \mathcal{N}

distance from Gaussianity

 \mathcal{N}

is metric quantum gravity fundamental

answer

perhaps.

systematic search strategy available very encouraging results from model studies

conclusions

systematic bootstrap strategy justifies canonical dimension as guiding principle

f(R) quantum gravity stability of asymptotic safety near-Gaussian scaling dimensions

irrelevant at self-consistent fixed point !

extendable to other asymptotically safe theories