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Higgs sector

What is non-perturbative?

* Strong interactions are non-perturbative
* Like QCD
* But not always: Asymptotic freedom
* Weak interactions can be non-perturbative

* QED is weakly interacting, but has non-
perturbative features like atoms, molecules,
matter with phase structure,...

* Bound states, phase transitions,...

* Are there (relevant) non-perturbative effects
in the weak interactions and the Higgs?

* Bound states?
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The task at hand

* Describe W and the Higgs

* Higgs sector alone well understood icaiaway, erss:

* So-called sigma model
* Only with a cutoff well-defined

* W sector alone more complicated wass, ers;
* Yang-Mills theory

* Gauge theory
* Strongly interacting

* Next stop: Higgs+W sector

[Lang et al., Miinster et al., ALPHA collaboration, Wittig et al., Jansen et al., Rummukainen et al,,...]

* Also investigations of Higgs+Yukawa

[Gerhold et al. PLB'11,...]
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The Higgs sector as a gauge theory

* The Higgs sector is a gauge theory
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» Higgs 4,
* No QED: Ws and Zs are degenerate
» Couplings g, v, A and some numbers f“* and ¢
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Symmetries

L= Wi WD) Db+ h(hh," =)

a a a a b c
Wi =0, W =0, Wi+ gf . W W,
D;=08"0,—igW .t.

* Local SU(2) gauge symmetry
» Invariant under arbitrary gauge transformations ¢°(x)
W W (80, —gfeW)o" h—h+gt o' h,
* Global SU(2) Higgs flavor symmetry

* Acts as right-transformation on the Higgs field only
Wi-sWe h—h+a"h+b"h/
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Higgs sector

Parameters

L:—i W W+ (D) DY+ h (T =)
W =0, W =0, Wi+gf s W, W\
D;=06"0,—igh ,t,
* Tree-level setup Higgs+W (non-aligned Landau)
« v=246 GeV
e 2=0.125 (411=3)
» g=0.325 (¢=0.00815)
* Tree-level W mass: 0 GeV
* Tree-level Higgs mass: 87.0i GeV, Higgs vev: 0 GeV

* Non-perturbative: Simulate Higgs+W
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Elementary particles

W boson

Schwinger function
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Elementary particles

W boson

Schwinger function W propagator
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Elementary particles

Higgs boson

« Renormalization scheme with D(u)=D"(u)
D(u)'=D"(u)’
D"(p)=1/(p*+(123GeV )’)
u=123GeV



Elementary particles

Higgs boson

Schwinger function Higgs propagator

=
>10 « Lattice data

A(t) [Ge

e

I TTI1 Illll._

D,(p) [GeV?)
)

-
=
&

-
=
in

T ] 107

| w 11 1 | | 1 | | 1 | | | 1 | | 1 | | | 1 | | 1 1 | 1
0.014 0.016 0 100 200 300 400 500
t [GeV p [GeV]

* Normal propagator — normal mass

IIIII|
s

—

=

&

T T TTTT]
]

—
=
-.‘
= II|

1 | |
0.012

oL
o
=1
raF



Elementary particles

Higgs boson

Schwinger function
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Elementary particles

Higgs boson

Schwinger function Higgs propagator
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Elementary particles

Scheme dependent!

Schwinger function Higgs propagator
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{ Physical states

* Elementary particles depend on scheme,
gauge, scale...not satisfactory for a physical
observable

* App

« A

* Only
Invari
iInvari

ies also to full standard model
so fermions, except for right-handed neutrinos

pound states and cross sections gauge-
ant, scheme-invariant, and scale-
ant

* Higgs-Higgs, W-W, Higgs-Higgs-W etc.

00
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Higgsonium
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» Simpelst 0** bound state h ™ (x)h(x)

» Same quantum numbers as the Higgs
* No weak or flavor charge

* Mass is about 123 GeV
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Bound states

Mass relation - Higgs

* Higgsonium: 123 GeV, Higgs at tree-level: 123 GeV
* Scheme exists to shift Higgs mass always to 123 GeV
* Coincidence? No.

* Duality between elementary states and bound states
X . h=v+n ) 3
((h" h)(x)(h" h)(y)) ~ const.+(h™ (x)h(y))+O(n)

« Same poles to leading order

* Deeply-bound relativistic state

* Mass defect~constituent mass
* Cannot describe with quantum mechanics
* Very different from QCD bound states
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Isovector-vector state
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* Vector state with operator ¢ h D, h+
vh  h h  h

* Only in a Higgs phase close to a simple particle
* Higgs-flavor triplet
* Mass about 80 GeV
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e W at tree-level: 80 GeV

* W not scale or scheme dependent
* Same mechanism

((h™ D,h)(x)(h™ D,h)(y))
h=v+n
~ const.+(W (x)W (y))+0O(n)

ov=0
 Same poles at leading order

* Remains true beyond leading order



Bound states

Mass relation - W

 \Vector state: 80 GeV
e W at tree-level: 80 GeV

* W not scale or scheme dependent
* Same mechanism

((h™ D,h)(x)(h™ D,h)(y))
h=v+n
~ const.+(W (x)W (y))+0O(n)

ov=0
 Same poles at leading order
* Remains true beyond leading order
At least for a light Higgs
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Consequences I — W and Higgs

* Bound state and elementary particles are
equivalent to leading order

* At tree-level same resonances in cross section

ﬂﬁh&h} <
- ﬂf

ViT ==1

* Beyond tree-level: Resonances in cross
sections remain scheme, scale, and gauge
iInvariant

* At least Higgs mass is not
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* Similar to quarkonium resonances
 No large differences for light Higgs
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Summary

* Higgs sector with light Higgs successfully described
by perturbation theory around classical physics

* Bound-state/elementary state duality

* Highly relativistic bound states

e Unusual structure

* Permits physical interpretation of resonances in cross
sections

* Predicts new excitations of bound states

* Background for new physics searches
* Likely accessible at LHC/ILC

* New experimental perspective/program
* Non-perturbatively interesting even for a light Higgs



