Heavy Quarks in Strongly Coupled Plasmas at Finite Chemical Potential via Holography

Andreas Samberg in collaboration with Carlo Ewerz

Institut für Theoretische Physik Universität Heidelberg

January 11, Δ_{2013} in Heidelberg

Andreas Samberg (Universität Heidelberg)

Heavy Quarks in Strongly Coupled Plasmas

Outline

1 Introduction

- Holography
- Many Different Applications

2 Applications to Strongly Coupled Plasmas

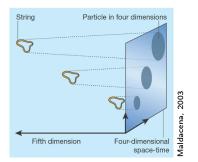
- Color Screening
- QQ
 Free Energy
- Running Coupling

3 Conclusion

Holography Many Different Applications

Holographic Principle

• Holographic principle: ['t Hooft, Susskind] QFT in D dimensions \longleftrightarrow Quantum gravity in D + 1dimensions



• Concrete realization: [Maldacena, Gubser, Klebanov, Polyakov, Witten, 1997/98] $\mathcal{N} = 4$ super Yang-Mills \longleftrightarrow Type IIB String Theory on AdS_5

Andreas Samberg (Universität Heidelberg)

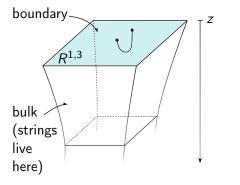
Heavy Quarks in Strongly Coupled Plasmas

Holography Many Different Applications

AdS/CFT Correspondence

• AdS₅: 5-dim. spacetime, negative curvature

$$\mathrm{d}s^2 = \frac{R^2}{z^2} \left(-\mathrm{d}t^2 + \mathrm{d}\vec{x}^2 + \mathrm{d}z^2 \right)$$



Holography Many Different Applications

AdS/CFT Correspondence

• AdS₅: 5-dim. spacetime, negative curvature with black hole

$$\mathrm{d}s^2 = \frac{R^2}{z^2} \left(-\frac{h(z)}{\mathrm{d}t^2} + \mathrm{d}\vec{x}^2 + \frac{1}{h(z)} \mathrm{d}z^2 \right)$$

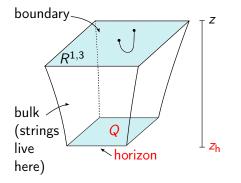


Holography Many Different Applications

AdS/CFT Correspondence

• AdS₅: 5-dim. spacetime, negative curvature with black hole

$$\mathrm{d}s^2 = \frac{R^2}{z^2} \left(-\frac{h(z)}{\mathrm{d}t^2} + \mathrm{d}\vec{x}^2 + \frac{1}{h(z)} \mathrm{d}z^2 \right)$$



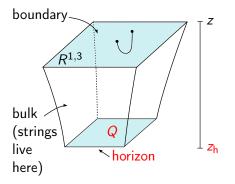
- Temperature: $T > 0 \iff Black hole$ $T \sim z_h^{-1}$
- Chemical potential: $\mu > 0 \longleftrightarrow$ Charged BH $\mu \sim Q$

Holography Many Different Applications

AdS/CFT Correspondence—And Beyond

• AdS₅: 5-dim. spacetime, negative curvature with black hole

$$\mathrm{d}s^2 = \frac{R^2}{z^2} \left(-\frac{h(z)}{\mathrm{d}t^2} + \mathrm{d}\vec{x}^2 + \frac{1}{h(z)} \mathrm{d}z^2 \right)$$



- Temperature: $\begin{array}{c} \mathcal{T} > 0 \longleftrightarrow \\ \mathcal{T} \sim z_{h}^{-1} \end{array}$ Black hole $\mathcal{T} \sim z_{h}^{-1}$
- Chemical potential: $\mu > 0 \leftrightarrow$ Charged BH $\mu \sim Q$ • don't want $\mathcal{N} = 4$ SYM
 - $\implies \text{Deform } AdS_5$

Holography Many Different Applications

Weak/Strong Duality

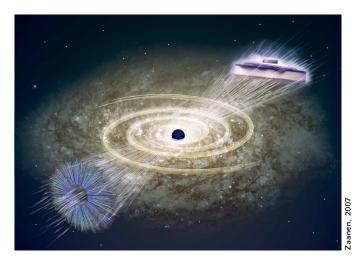
- String theory on $AdS_5 \times S^5$: Tough!
- But: The AdS/CFT duality is weak \longleftrightarrow strong

't Hooft coupling $\lambda \to \infty \quad \longleftrightarrow$ Strings are pointlike Number of colors $N_c \to \infty \quad \longleftrightarrow$ Strings behave classically

In limit of many colors & strong coupling: Strongly coupled QFT \longleftrightarrow Classical (super-)gravity

Holography Many Different Applications

Many Different Applications

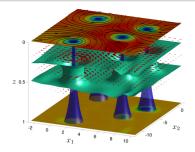


Holography Many Different Applications

AdS/Condensed Matter

- Holographic superconductors e.g. [Hartnoll, Herzog, Horowitz; Gubser; ...]
- Holographic non-Fermi liquids e.g. [Liu, McGreevy, Vegh; ...]
- Holographic superfluid turbulence

Holographic methods can help develop (new) intuition about (old) problems.



Holography Many Different Applications

AdS/Condensed Matter

- Holographic superconductors e.g. [Hartnoll, Herzog, Horowitz; Gubser; ...]
- Holographic non-Fermi liquids e.g. [Liu, McGreevy, Vegh; ...]
- Holographic superfluid turbulence

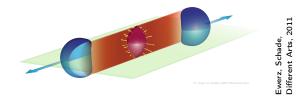
Holographic methods can help develop (new) intuition about (old) problems.

The video that was shown in the talk can be found here. Click this link.

Adams, Chesler, Liu, 2012

Holography Many Different Applications

Heavy Ion Collisions: Quark-Gluon Plasma



- Thermodynamics: energy density ε, pressure p, trace anomaly ε – 3p, etc.
- Transport coefficients: Shear viscosity, bulk viscosity, etc.
 - Famous conjecture:

 $\eta/s \geq rac{1}{4\pi}$ for all physical substances [Kovtun, Son, Starinets, 2005]

- Parton energy loss, jet quenching
- $Q\bar{Q}$ potential, color screening

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Apply AdS/CFT to QCD?

- In vacuo, $\mathcal{N}=4$ SYM very different from QCD:
 - Maximally supersymmetric
 - Conformal, constant coupling
 - No confinement, no chiral symmetry breaking
 - $N_{
 m c}
 ightarrow \infty$ for the duality
- But, at finite temperature *T*, differences are smaller:
 - Above $2T_c$, QCD almost conformal
 - No confinement in QCD above $T_{\rm c}$
 - Finite T breaks supersymmetry in $\mathcal{N}=4$ SYM
 - Also, we can go away from $\mathcal{N}=4$ SYM

We work on the *gravity side* (5D) of the duality and *deform* the AdS space, thereby deforming the dual field theory.

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Our Rationale

- One way: Try to mimic QCD. Difficult, as one does not exactly know what one is doing on the field theory side.
- Other way: Try to find *universal features* of strongly coupled systems.

For example:

- $\bullet~{\rm KSS}$ bound on η/s
- Screening distance conjecture and proof by Ewerz, Schade

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Simple Models at Finite Temperature and Chemical Potential

• Conformal: AdS-Reissner–Nordström $\longleftrightarrow \mathcal{N} = 4$ SYM

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-h(z)dt^{2} + d\vec{x}^{2} + \frac{1}{h(z)}dz^{2} \right)$$

$$h(z) = 1 - \left(1 + rac{\mu^2 z_{\mathsf{h}}^2}{3}
ight) rac{z^4}{z_{\mathsf{h}}^4} + rac{\mu^2 z_{\mathsf{h}}^2}{3} rac{z^6}{z_{\mathsf{h}}^6}$$

• Non-conformal: CGN model metric [Colangelo, Giannuzzi, Nicotri]

$$ds^{2} = e^{c^{2}z^{2}} \frac{R^{2}}{z^{2}} \left(-h(z)dt^{2} + d\vec{x}^{2} + \frac{1}{h(z)}dz^{2} \right)$$

- Ad hoc deformation à la 'soft wall' due to scale c
- Has its shortcomings at low μ and/or T

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

More Sophisticated Model

- Non-conformal: 1-parameter model
 - Action [DeWolfe, Gubser, Rosen]

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-G} \left(\mathcal{R} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{f(\phi)}{4} F_{\mu\nu} F^{\mu\nu} \right)$$

• Solve with ansatz

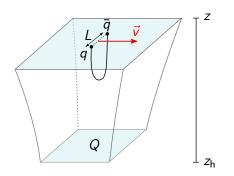
$$ds^{2} = e^{2A(z)} \left(-h(z)dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(z)}}{h(z)}dz^{2}$$

$$A(z) = \log\left(rac{R}{z}
ight)$$
 and $\phi(z) = \sqrt{rac{3}{2}\kappa z^2}$

- Solves 5d gravity action: Consistent deformation due to scale κ
- Evades problems of CGN model at low μ/T

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Screening Distance



- Consider heavy, moving QQ
 pair
- $Q\bar{Q}$ pair \longleftrightarrow endpoints of string

 \Rightarrow Nambu–Goto action

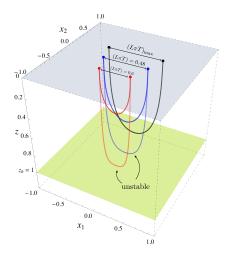
$$S_{\rm NG} = \int {\rm d}^2\sigma \sqrt{-\det g_{ab}}$$

 \Rightarrow string EOM from classical condition

$$0 \stackrel{!}{=} \delta S_{NG}$$

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

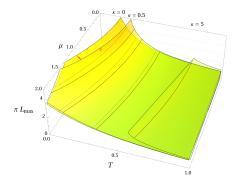
Screening Distance



- For *L* < *L*_{max}, two solutions, lower one unstable
- L_{max} is the screening distance
- No QQ bound state for larger distance

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Screening Distance in (μ, T) Plane

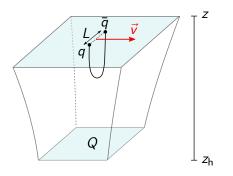


(1-parameter model string frame, v = 0)

- At finite μ and velocity: Screening distance in conformal theory *no longer* lower bound
- But: Deviations small ⇒ Screening distance is robust observable

Color Screening QQ Free Energy Running Coupling

Free Energy of Heavy Quark-Antiquark

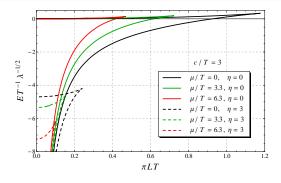


 Need on-shell Nambu–Goto action, *i. e.* extremal string action

$$E(L) \sim S_{\rm NG}$$

Applications to Strongly Coupled Plasmas Conclusion Color Screening $Q\bar{Q}$ Free Energy Running Coupling

$Q\bar{Q}$ Free Energy at Finite Chemical Potential

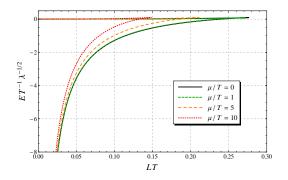


(CGN model)

- Lower branch is stable string configuration
- Increasing μ lowers binding energy
- Faster velocity decreases screening distance $\propto 1/\sqrt{\gamma} \propto ({
 m boosted\ energy\ dens.})^{-1/4}$ cf. [Caceres, Natsuume, Okamura]

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Running Coupling $\alpha_{Q\bar{Q}}$

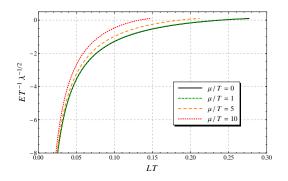


(AdS-Reissner–Nordström, v = 0)

• Restrict $Q\bar{Q}$ free energy to stable configurations

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Running Coupling $\alpha_{Q\bar{Q}}$

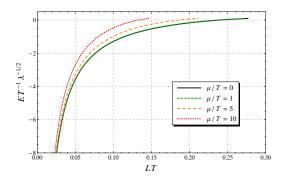


(AdS-Reissner–Nordström, v = 0)

• Restrict $Q\bar{Q}$ free energy to stable configurations

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Running Coupling $\alpha_{Q\bar{Q}}$



(AdS-Reissner–Nordström, v = 0)

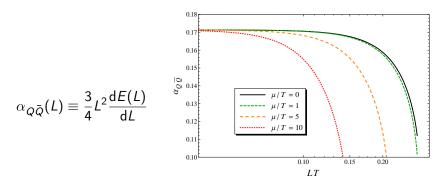
- Restrict $Q\bar{Q}$ free energy to stable configurations
- Define coupling $\alpha_{Q\bar{Q}}(L) \equiv \frac{3}{4}L^2 \frac{dE(L)}{dL}$ as in QCD

Andreas Samberg (Universität Heidelberg)

Heavy Quarks in Strongly Coupled Plasmas

Color Screening $Q\bar{Q}$ Free Energy Running Coupling

Running Coupling $\alpha_{Q\bar{Q}}$



(AdS-Reissner-Nordström)

- $\bullet\,$ Thermal scale ${\it L_{th}} \sim 1/{\it T}$ sets fall-off scale
- Analysis of $\alpha_{Q\bar{Q}}$ in non-conformal models at finite μ underway
- Comparison with lattice results

Summary

- Using gauge/gravity duality one can tackle strongly coupled problems in QFTs.
- We apply it to hot plasmas at finite chemical potential, and for moving probes.
- Find that screening distance and free energy are *robust* observables. Running coupling α_{QQ̄}(L) is work in progress.
- Many other more sophisticated models available which naturally reproduce many QCD features.

Summary

- Using gauge/gravity duality one can tackle strongly coupled problems in QFTs.
- We apply it to hot plasmas at finite chemical potential, and for moving probes.
- Find that screening distance and free energy are *robust* observables. Running coupling α_{QQ̄}(L) is work in progress.
- Many other more sophisticated models available which naturally reproduce many QCD features.

Thank you!

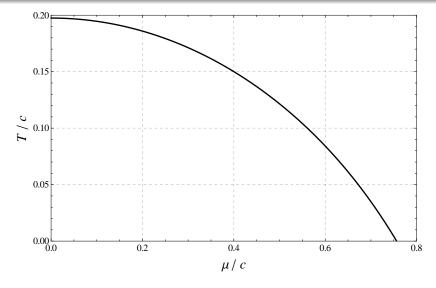


Figure: Phase diagram of the CGN model.

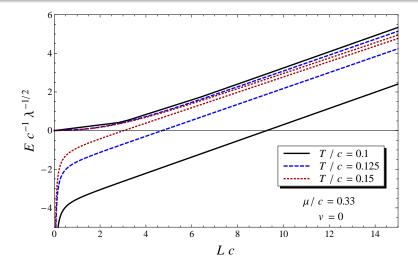


Figure: Free energy in 'confining' phase of CGN model.