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History

1931 F. Sauter: Dirac’s theory of the electron predicts that an electric
field of sufficient strength and extent can induce spontaneous creation of
electron – positron pairs from the vacuum.
By a statistical fluctuation, a virtual pair separates out far enough to
draw its rest mass energy from the field (vacuum tunneling).
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FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e h̄
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2mE

3/2
b

eEh̄

]
. (1.5)

Taking as a representative atomic energy scale the binding energy of hydrogen, Eb = me4

2h̄2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E h̄4

]
. (1.6)

This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the

quantum vacuum. For example, the polarization tensor Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect
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Schwinger’s approach

1951 F. Schwinger: For constant and not too strong fields, the total pair production probability P (probability of

the decay of the vacuum) relates to the effective action Γ[E ]:

P = 1− e
−2ImΓ ≈ 2ImΓ

ImLspin(E) =
m4

8π3
β

2
∞∑
n=1

1

n2
exp

[
−
πn

β

]
(SpinorQED)

ImLscal(E) = −
m4

16π3
β

2
∞∑
n=1

(−1)n

n2
exp

[
−
πn

β

]
(ScalarQED)

(β = eE
m2 ).

ImL(E) depends on E nonperturbatively, which is a confirmation of the tunneling picture.
The pair creation rate is exponentially small for

E � Ecrit ≈ 1016
V/cm

Lasers are now getting close (POLARIS, ELI, XFEL. . . )
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Realistic laser fields are far from constant, and could have a
substantially lower pair creation threshold. Many proposals have
been made:

Counterpropagating two laser beams
(M. Ruf et al., PRL 102, 080402, 2009).

Superimposing a plane-wave X-ray beam with a strongly
focused optical laser pulse
(G.V. Dunne et al., PRD 80:111301, 2009).

. . . (many more).

However, the calculation of pair creation rates for generic electric
fields requires approximative methods. Until recently, almost all
such results were obtained using WKB (Keldysh 1965, Brezin and
Itzykson 1970, Narozhnyi and Nikishov 1970, Popov 1972, Popov
and Marinov 1972, . . . ).
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E (t)

Here, I will consider the simplest non-constant field: a purely
time-dependent field E (t), using two alternatives to WKB:

1 The worldline instanton formalism.
I.K. Affleck, O. Alvarez, N.S. Manton, Nucl. Phys. B 197
509, 1982,
G. V. Dunne and C. S., Phys. Rev. D 72 105004 (2005),
G. V. Dunne, H. Gies, Q.-h. Wang and C. S., Phys. Rev. D
73 065028 (2006).

2 A quantum Vlasov evolution equation.
S. P. Kim and C. S., PRD 84, 125028 (2011),
S. P. Kim, arXiv:1110.4684 [hep-th].
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1. Worldline instantons

Feynman’s worldline representation of the scalar QED effective action
R.P. Feynman, Phys. Rev. 80 (1950) 440.

Γscal[A] =

∫ ∞

0

dT

T
e−m

2T

∫
Dx(τ) e−

∫ T
0

dτ
(

ẋ2

4 +ieA·ẋ
)

Here m and T are the mass and proper time of the loop scalar, and the
path integral

∫
Dx(τ) is over closed trajectories in Euclidean spacetime.

Rescaling τ = Tu, this becomes

Γscal[A] =

∫ ∞

0

dT

T
e−m

2T

∫
Dx e

−
(

1
T

∫ 1
0
du ẋ2+ie

∫ 1
0
duA·ẋ

)

The T integral has a stationary point at Tstat =
√∫ 1

0
du ẋ2/m.
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If we are only interested in the imaginary part of the effective action at large mass, we can use this stationary point
to eliminate the T integral, giving

ImΓscal[A] ≈
1

m

√
2π

Tstat
Im

∫
Dx e

−
(
m
√∫

du ẋ2+ie
∫ 1

0 duA·ẋ
)

The new worldline action,

S = m

√∫ 1

0
du ẋ2 + ie

∫ 1

0
duA · ẋ

is stationary if

m
ẍµ√∫ 1

0 du ẋ2
= ieFµν ẋν

Contracting this equation with ẋµ shows that ẋ2 = const. ≡ a2, so that mẍµ = ieaFµν ẋν . Thus the extremal

action trajectory xcl(u), to be called worldline instanton, is simply a periodic solution of the Lorentz force
equation.
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The constant field case

For a constant field
E = (0, 0,E )

the worldline instanton turns out to be a circle in the x3 − x4

plane, of radius m/eE and winding number n:

xcl(u) =
m

eE

(
x1, x2, cos(2nπu), sin(2nπu)

)

S [xcl] = nπ
m2

eE

Thus the instanton action for winding number n reproduces the
nth exponent in Schwinger’s representation of ImLscal(E ).
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E (t)
For a time-dependent field E(t) = (0, 0, E(t)) we choose the gauge

A3 = A3(x4) ; Aµ = 0 for µ 6= 3 (1)

Since Fµ1 = Fµ2 = 0, the stationarity conditions imply that

ẍ1 = ẍ2 = 0 ⇒ ẋ1 = constant , ẋ2 = constant

For x1(u) and x2(u) to be periodic, we require ẋ1 = ẋ2 = 0.

Using (1) the Lorentz force equation

ẍ3 =
iea

m
F34 ẋ4

ẍ4 = −
iea

m
F34 ẋ3

can be simplified to a first-order ordinary DGL,

ẋ3 = −
iea

m
A3(x4)

ẋ4 = a

√
1 +

(
e A3(x4)

m

)2
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At least numerically, this DGL can always be solved easily. Then

ImL(E (t))
m large≈ N e−S[xcl]

The prefactor N involves a fluctuation determinant that is much
harder to calculate, but there is a systematic procedure (based on
the Gelfand-Yaglom theorem).
All this applies to Spinor QED unchanged (but for a factor of 2).
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Sauter-like field
Example: E(t) = E sech2(ω t).

x3(u) = −
1

ω

1√
1 + γ2

arcsinh [γ cos (2nπu)]

x4(u) =
1

ω
arcsin

[
γ√

1 + γ2
sin (2nπ u)

]

γ ≡
mω

eE

a =
γ

ω
√

1 + γ2
2πn , n ∈ Z+

Stationary action:

S0 = n
m2π

eE

(
2

1 +
√

1 + γ2

)
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parameter,’’ !, (motivated by Keldysh’s pioneering work
on ionization in time-dependent fields [30]), defined by

! ! m!
eE

: (29)

Then the stationary x4"u# is determined by integrating (18),

du $ 1
a

dx4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1% 1

!2 tan2"!x4#
q ; (30)

which has the solution

x4 $
1
!

arcsin

"
!!!!!!!!!!!!!!!!

1& !2
p sin

 !!!!!!!!!!!!!!!
1& !2

p

!
!au

!#
: (31)

Then, given this solution for x4"u#, the stationary x3"u# is
determined by integrating (17)

dx3
du

$ %a
sin"

!!!!!!!!!
1&!2

p
! !au#

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1& !2cos2"

!!!!!!!!!
1&!2

p
! !au#

r : (32)

This has the solution

x3 $
1
!

1
!!!!!!!!!!!!!!!
1& !2

p arcsinh

"
! cos

 !!!!!!!!!!!!!!!
1& !2

p

!
!au

!#
: (33)

It is easy to verify that _x23 & _x24 $ a2 is satisfied.
Demanding that the solutions (31) and (32) be periodic in
u, with period 1, fixes the constant a to be

a $ !

!
!!!!!!!!!!!!!!!
1& !2

p 2"n; n 2 Z&: (34)

In this inhomogeneous case, the approximation condition
(6) becomes

m2

eE

1
!!!!!!!!!!!!!!!
1& !2

p 2"n ' 1: (35)

As in the constant field case (25), this is a weak-field
condition, although it also includes the adiabaticity pa-
rameter !, which cannot be too large for a given peak field
E.

The periodic stationary worldline instanton paths are

x3"u# $
m
eE

1

!
!!!!!!!!!!!!!!!
1& !2

p arcsinh(! cos"2n"u#);

x4"u# $
m
eE

1
!
arcsin

"
!

!!!!!!!!!!!!!!!
1& !2

p sin"2n"u#
#
:

(36)

These instanton paths are plotted in Fig. 2 for various
values of the adiabaticity parameter !. In the static limit,
when ! ! 0 with !

! ! m
eE fixed, we recover the circular

stationary paths of the constant field case. In the short-
pulse limit, ! ! 1 with m

eE fixed, the paths become nar-
rower in the x3 direction and shrink in size.

FIG. 2. Parametric plot of the stationary worldline instanton
paths (36) in the "x3; x4# plane for the case of a time-dependent
electric field E"t# $ E sech2"!t#. The paths are shown for vari-
ous values of the adiabaticity parameter ! $ m!

eE defined in (29),
and x3 and x4 have been expressed in units of m

eE . Note that in the
static limit, ! ! 0, the instanton paths reduce to the circular
ones of the constant field case shown in Fig. 1.
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FIG. 1. Parametric plot of the stationary worldline instanton
paths in the "x3; x4# plane for the case of a constant electric field
of strength E. The paths are circular and the radius has been
expressed in units of m

eE .
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To evaluate the stationary action S0 we need _x4:

_x 4!u" # a
cos!2n!u"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1$ "2

1%"2 sin2!2n!u"
q : (37)

Thus the stationary action S0 is

S0 # ma
Z 1

0
du

cos2!2n!u"
1$ "2

1%"2 sin2!2n!u"

# n
m2!
eE

"
2

1%
!!!!!!!!!!!!!!!
1% "2

p
#

(38)

&
$
n m2!

eE !1$ "2

4 % "4

8 % . . ."; " ' 1
n 2m!

! !1$ 1
" % 1

2"2 % . . ."; " ( 1:
(39)

This instanton action (38) is plotted in Fig. 3, in units of
n m2

eE , as a function of the adiabaticity parameter ". Note
that as " ! 0, we recover the familiar instanton action of
the constant field case. But as " increases, S0 decreases,
which means that the pair production rate is locally en-
hanced, relative to the locally constant field approximation
with a field of the same peak magnitude. This is in full
agreement with the WKB results [29].

C. Sinusoidal time-dependent electric background:
E!t" # E cos!!t"

The Minkowski space time-dependent electric field
E!t" # E cos!!t" corresponds to the Euclidean space
gauge field

A3!x4" # $i
E
!

sinh!!x4": (40)

Then the stationary x4!u" is determined by integrating (18),
using the adiabaticity parameter " as defined in (29),

du # 1
a

dx4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1$ 1

"2 sinh2!!x4"
q : (41)

This has the solution

x4 #
1
!

arcsinh

"
"

!!!!!!!!!!!!!!!
1% "2

p sd

 !!!!!!!!!!!!!!!
1% "2

p

"
!au

%%%%%%%%%
"2

1% "2

!#
:

(42)

Here sd!xj#" is the Jacobi elliptic function [35] with real
elliptic parameter 0 ) # ) 1. Then the stationary x3!u" is
determined by integrating (17):

dx3
du

# $a
1!!!!!!!!!!!!!!!

1% "2
p sd

 !!!!!!!!!!!!!!!
1% "2

p

"
!auj "2

1% "2

!
: (43)

This has the solution

x3 #
1
!

arcsin

"
"!!!!!!!!!!!!!!!

1% "2
p cd

 !!!!!!!!!!!!!!!
1% "2

p

"
!au

%%%%%%%%%
"2

1% "2

!#
:

(44)

It is straightforward to verify that _x23 % _x24 # a2 is satisfied.
Demanding that the solutions be periodic in u with period 1
fixes the constant a to be

a # "

!
!!!!!!!!!!!!!!!
1% "2

p 4K
"

"2

1% "2

#
n; n 2 Z%; (45)

where K!#" is the complete elliptic integral, which is the
real quarter-period of the Jacobi elliptic functions [35]. In
this inhomogeneous case, the approximation condition (6)
becomes

m2

eE

4K! "2

1%"2"n
!!!!!!!!!!!!!!!
1% "2

p ( 1: (46)

As in the constant field case (25), this is a weak-field
condition, although it also includes the adiabaticity pa-
rameter ", which cannot be too large for a given peak field
E.

The periodic stationary worldline instanton paths are

x3!u" #
1
!

arcsin
&

"
!!!!!!!!!!!!!!
1%"2

p cd
"
4nK

"
"2

1%"2

#
u
%%%%%%%%

"2

1%"2

#'
;

(47)

x4!u" #
1
!

arcsinh
&

"
!!!!!!!!!!!!!!
1%"2

p sd
"
4nK

"
"2

1%"2

#
u
%%%%%%%%

"2

1%"2

#'
:

(48)

These stationary instanton paths are plotted in Fig. 4 for
various values of the adiabaticity parameter ". In the static
limit, when " ! 0 with "

! * m
eE fixed, we recover the

circular stationary paths of the constant field case. In the
high frequency limit, the instanton paths shrink in size and

5 10 15 20
γ

π
2

π
S0

FIG. 3. Plot of the instanton action S0, in units of n m2

eE , in (38)
for the time-dependent electric field E!t" # E sech2!!t", plotted
as a function of the adiabaticity parameter ". Contrast this plot
with the behavior in Fig. 7 for a spatial inhomogeneity of the
same form.
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Figure: Worldline instanton and its action (in units of nm2/eE )

General rule: time dependence lowers the worldline action and thus
increases the pair production rate.
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2. The Quantum Vlasov Equation

For a purely time-dependent field the spatial momentum k is a
good quantum number, so that one has a mode decomposition
(for a scalar particle at one loop)

2ImL(t) =
∑

k

ln
(
1 +Nk(t)

)

The Nk(t) are densities of created pairs of momentum k.
Using the in-out formalism and a standard Bogoliubov
transformation, one can show that they obey a Quantum Vlasov
Equation
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Quantum Vlasov Equation

d

dt
(1 + 2N (t)) = Ω(−)(t)

∫ t

t0

dt ′
[
Ω(−)(t ′)(1 + 2N (t ′))

× cos(

∫ t

t′
dt ′′Ω(+)(t ′′))

]

(t0 is the initital time, usually −∞).

Ω
(±)
k (t) =

ω2
k(t)± ω2

k(t0)

ωk(t0)

ω2
k(t) = (k‖ − qA‖(t))2 + k2

⊥ + m2
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Open question

This is a nasty integro-differential equation, but quite suitable to
numerical evaluation.

Open question: Strictly speaking the interpretation of Nk(t) as the
actual density of created pairs is valid only asymptotically for
t →∞. Numerical evaluation in some cases shows a Nk(t) at
intermediate times that is much larger than the asymptotic value.
What would happen if we could make a measurement at
intermediate times? Is this an artefact?
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Solitonic gauge fields
Try to find closed-form solutions to the Vlasov equation: Inspection shows, that its general solution can be
parameterized by a function f (t) fulfilling the integral equation (we now omit the index k).

ḟ (t) =
Ω(−)(t)

ω0

− 2

∫ t

t0

dt′f (t′)
(
ω

2(t) + ω
2(t′)

)
(2)

with the initial condition f (t0) = ḟ (t0) = 0.
Knowing f (t), N (t) can be recovered as

1 + 2N = 1 + ω0

∫ t

t0

dt′f (t′)Ω(−)(t′)

Ansatz:

f (t) =
(ω2)˙(t)

8ω4
0

, F (t) =
ω2(t)− ω2

0

8ω4
0

Defining r(t) := ω2(t)/ω2
0 and then u(x, t) := −r(x − 10t), one can show that for (2) to be fulfilled u must

solve the Korteweg-de Vries equation,

uxxx − 6uux + ut = 0

Thus we can use certain solutions of the KdV equation to calculate pair creation rates for the corresponding
electric fields.
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Solitonic example

Example: choose the following soliton-type solution of the KdV equation

u(x , t) = −1− 2

cosh2(x − 10t)

which corresponds to

r(t) =
ω2(t)

ω2
0

= 1 +
2

cosh2(ω0t)
, F (t) =

1

4ω2
0 cosh2(ω0t)

The gauge potential is

qA(t) = k‖ −
√

k2
‖ +

2ω2
0

cosh2(ω0t)
.
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Pair non-creation

The exact pair creation rate:

N (t) =
1

8 cosh4(ω0t)

-2 -1 1 2
t Ω0

0.02

0.04

0.06

0.08

0.10

0.12

N

No pair creation for t →∞. Would we find something at finite time?

Thank You!


