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1931 F. Sauter: Dirac’s theory of the electron predicts that an electric
field of sufficient strength and extent can induce spontaneous creation of
electron — positron pairs from the vacuum.

By a statistical fluctuation, a virtual pair separates out far enough to
draw its rest mass energy from the field (vacuum tunneling).




Schwinger’s approach

1951 F. Schwinger: For constant and not too strong fields, the total pair production probability P (probability of
the decay of the vacuum) relates to the effective action [[E]:
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ImL(E) depends on E nonperturbatively, which is a confirmation of the tunneling picture.
The pair creation rate is exponentially small for

E < Ecpig ~ 10°V /cm

Lasers are now getting close (POLARIS, ELI, XFEL...)



Realistic laser fields are far from constant, and could have a
substantially lower pair creation threshold. Many proposals have
been made:

m Counterpropagating two laser beams
(M. Ruf et al., PRL 102, 080402, 2009).

m Superimposing a plane-wave X-ray beam with a strongly
focused optical laser pulse
(G.V. Dunne et al., PRD 80:111301, 2009).

m ... (many more).

However, the calculation of pair creation rates for generic electric
fields requires approximative methods. Until recently, almost all
such results were obtained using WKB (

)-



E(t)

Here, | will consider the simplest non-constant field: a purely
time-dependent field E(t), using two alternatives to WKB:

The worldline instanton formalism.
[.K. Affleck, O. Alvarez, N.S. Manton, Nucl. Phys. B 197
509, 1982,
G. V. Dunne and C. S., Phys. Rev. D 72 105004 (2005),
G. V. Dunne, H. Gies, Q.-h. Wang and C. S., Phys. Rev. D
73 065028 (2006).

A quantum Vlasov evolution equation.
S. P. Kim and C. S., PRD 84, 125028 (2011),
S. P. Kim, arXiv:1110.4684 [hep-th].
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1. Worldline instantons

Feynman'’s worldline representation of the scalar QED effective action
R.P. Feynman, Phys. Rev. 80 (1950) 440.

> dT 2
Fscal[A] = / Ed eisz/'Dx(T) o= I dT(T""eA'X)
0

Here m and T are the mass and proper time of the loop scalar, and the
path integral [ Dx(7) is over closed trajectories in Euclidean spacetime.
Rescaling 7 = Tu, this becomes

rscal[A] — / ﬂ —m T/DX fO du x* +ie fo duA- X)

The T integral has a stationary point at Typay = W/fol dux?/m



If we are only interested in the imaginary part of the effective action at large mass, we can use this stationary point
to eliminate the T integral, giving
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The new worldline action,

1 1
S = m,// du>'<2+ie/ duA - x
0 0

is stationary if

ieF %

=2
action trajectory XCI(U), to be called worldline instanton, is simply a periodic solution of the Lorentz force
equation.

Contracting this equation with x* shows that %% = const.

, so that mX,, = ieaF,,, %,,. Thus the extremal
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The constant field case

For a constant field
E=(0,0,E)

the worldline instanton turns out to be a circle in the x3 — xs
plane, of radius m/eE and winding number n:

xMNu) = eﬂE (xl,x2,cos(2n7ru),sin(2n7ru))
2
m
S cl —
[x“] nm g

Thus the instanton action for winding number n reproduces the
nth exponent in Schwinger's representation of ImLgc,1(E).



E(t)

For a time-dependent field E(t) = (0, 0, E(t)) we choose the gauge

A3 = A3(xq) ; Au =0 for p#3 (1)
Since Fy1 = Fy2 = 0, the stationarity conditions imply that
X1 =% =0 = X = constant , X = constant

For x1(u) and xp(u) to be periodic, we require x; = X = 0.

Using (1) the Lorentz force equation

X3 = —Fux
m
. iea .
X = ——Fux
m
can be simplified to a first-order ordinary DGL,
. iea
30 0= —— A3(q)
m
e Az(x 2

W = a1 3( 4))
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At least numerically, this DGL can always be solved easily. Then

mlarge

ImL(E(t)) = N e~k

The prefactor N involves a fluctuation determinant that is much

harder to calculate, but there is a systematic procedure (based on
the Gelfand-Yaglom theorem).

All this applies to Spinor QED unchanged (but for a factor of 2).
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Sauter-like field

Example: E(t) = E sech?(w t).

1 1
x3(u) = - - T»y? arcsinh [y cos (2nmu)]
1 . .
xa(u) = " arcsin T sin (2n7 u)
v
_omw
7= eE
il 2tn , neg zt

Stationary action:

s m?r 2
0o = n— | ————
eE \1+1+1~2
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Figure: Worldline instanton and its action (in units of nm?/eE)

General rule: time dependence lowers the worldline action and thus

increases the pair production rate.
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2. The Quantum Vlasov Equation

For a purely time-dependent field the spatial momentum k is a
good quantum number, so that one has a mode decomposition
(for a scalar particle at one loop)

2mL(t) = > In(1 + Ni(t))
k

The N(t) are densities of created pairs of momentum k.

Using the in-out formalism and a standard Bogoliubov
transformation, one can show that they obey a Quantum Vlasov
Equation
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Quantum Vlasov Equation

%(1 LoN() = QO /t: dt' [0 () (1 + 2(1))

t
% cos( / dt”Q(+)(t”))]
t/
(to is the initital time, usually —o0).
Q) (1) = wi(t) £ wi(to)

k wk(to)

wi(t) = (kj—qA (1)) + ki + m?



15

This is a nasty integro-differential equation, but quite suitable to
numerical evaluation.

Open question: Strictly speaking the interpretation of Ni(t) as the
actual density of created pairs is valid only asymptotically for

t — oo. Numerical evaluation in some cases shows a N(t) at
intermediate times that is much larger than the asymptotic value.
What would happen if we could make a measurement at
intermediate times? Is this an artefact?
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Solitonic gauge fields

Try to find closed-form solutions to the Vlasov equation: Inspection shows, that its general solution can be
parameterized by a function f(t) fulfilling the integral equation (we now omit the index k).

oy = — B, /[t dt’ £(t') (w2(1) + 3()) )
<10

with the initial condition f(tg) = f(tp) = 0.
Knowing f(t), NV(t) can be recovered as

142N = 1+ wp /t @' F(# )2 ) ()

Jtg
Ansatz:
2 2
t t) —
R G LR Ot
Swo 8wy
Defining r(t) := wz(t)/wg and then u(x, t) := —r(x — 10t), one can show that for (2) to be fulfilled u must

solve the Korteweg-de Vries equation,
Usxx — buuyx + up =0

Thus we can use certain solutions of the KdV equation to calculate pair creation rates for the corresponding
electric fields.
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Solitonic example

Example: choose the following soliton-type solution of the KdV equation

2

t)=-1-—0 =
ulx. ) cosh?(x — 10t)

which corresponds to

2(t 2 1
=y 2 F(t)= —5—5——
wy cosh”(wot) 4w cosh”(wot)

The gauge potential is

2w3
cosh?(wot)’

gA(t) = k| — kﬁ +
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Pair non-creation

The exact pair creation rate:

1

N(E) = 8 cosh*(wot)

No pair creation for t — co. Would we find something at finite time?

Thank Youl



