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Non-zero chemical potential

Euclidean gauge theory with fermions: Z=∫dUexp−SEdet M

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naïve Monte-Carlo breaks down

Multi parameter reweighting

Analytic continuation of results obtained at imaginary  

Taylor expansion in 

Stochastic quantisation

Fodor, Katz '02

Methods going around the problem work for  =B/3T

Aarts and Stamatescu '08 
Bose Gas, Spin model, etc.  Aarts '08, Aarts, James '10 Aarts, James '11 
QCD with heavy quarks: Seiler, Sexty, Stamatescu '12

(μ/T )2

de Forcrand et al. '99; Hart, Laine, Philipsen  '00; Gavai and Gupta '08; 
de Forcrand, Philipsen '08 
 

Lombardo '00; de Forcrand, Philipsen  '02; D'Elia and Sanfilippo '09 
μ



Weighted, normalized  average:

Stochastic process for  x:
d x
d
=−

∂S
∂ x
 

〈   '〉=2− 'Gaussian noise

Averages are calculated along the trajectories:

〈O〉=
1
T∫0

T

Ox d

Fokker-Planck equation for the probability distribution of P(x):

∂P
∂
= ∂
∂ x

∂P
∂ x
P

∂ S
∂ x
=−HFPP Real action         positive eigenvalues

for real action the Langevin method is 
convergent

Stochastic Quantization Parisi, Wu (1981)

〈 〉=0

〈O 〉=
∫e−S x Ox dx
∫e−Sx dx



Stochastic quantisation on the group manifold 

Updating must respect the group structure:

U'i=exp ( i λa(ϵ i Di ,aS [U ]+√ϵηi ,a))U i

Da f U =  ∂∂ f e i aU  
=0

〈ηi a〉=0

〈ηi aη j b〉=2δ ij δab

Left derivative:

complexifed link variables

SU(N)             SL(N,C)

compact              non-compact

det (U )=1, U +≠ U−1

λa Gellmann matrices

Distance from SU(N)

Unitarity Norms:

Tr (U U + )+Tr (U−1(U−1) + )≥2N

∑ij
∣(U U +−1)ij∣

2

Tr (U U + )≥N

For SU(2): ( I m Tr U )2



Gaugefixing in SU(2) one plaquette model

SU(2) one plaquette model: S=i Tr U U∈SU 2 

U=exp  i  n 2 = cos2 1i sin2  n parametrized with Pauli matrices

Langevin updating U'=exp  i a i DaS[U ]a U

“gauge” symmetry: UWUW−1 complexified theory:U ,W ∈SL2,ℂ

After each Langevin timestep: fix gauge condition

U=a1i b i i a2
b ib i=1

U=a1i 1−a23 bi=0,0,1−a
2


〈f (U)〉=
1
Z∫0

2π

d φ∫dΩsin2 φ

2
e
iβcos

φ

2 f (U(φ , n̂))
exact averages by 
  numerical integration:

Berges, Sexty '08



SU(2) one-plaquette model 
Distributions of Tr(U) on the complex plane

Without gaugefixing With gaugefixing

〈Tr U〉=i0.2611

−0.02±0.02i −0.01±0.02 −0.004±0.006i 0.260±0.001

Exact result from integration:

From simulation:

With gauge fixing, all averages are correctly reproduced



SU(2) field theory
 on real time contour

Without gauge fixing

non-physical averages

Gauge fixing on
maximal  axial tree             

Correct result stabilizes

ImTr U2
measures size 
of distribution

However:

Lattice coupling g=0 . 5

(Scaling region               )g≥1



Gauge cooling

complexified distribution with slow decay            convergence wrong results

Minimize unitarity norm: ∑i
Tr (U iU i

+ )

Using gauge transformations in SL(N,C)

U μ( x )→V (x )U μ( x )V
−1( x+aμ) V ( x )=exp(i λa va( x))

va( x)is imaginary  (for real           , unitarity norm is not changed) 

Ga( x )=2Tr [λa(U μ( x)U μ
+ ( x )−U μ

+ ( x−aμ)Uμ ( x−aμ))]

Gradient of the unitarity norm gives steepest descent

va( x)



U μ( x−aμ)→U μ( x−aμ)exp(αϵλaGa( x ))

Gauge transformation at      changes 2d link variables 

U μ( x )→exp(−αϵλaGa( x ))U μ( x )

Dynamical steps are interspersed with several gauge cooling steps

The strength of the cooling is determined by 
      cooling steps
      gauge cooling parameter 

x

α

Possible extension: adaptive cooling with 

During cooling, unitarity norm decays to a minimum 
     with a power law behaviour 

α= f (∣G∣)



Polyakov chain model

S=−β1Tr U 1 ...U N−β2TrU N
−1 ...U 1

−1 U i∈SU (3)

exactly solvable toy model with gauge symmetry

β1=β+κe
μ β2=β

∗ +κ e−μ

κ ,μ>0Complex action for 

Averages independent of     

Calculated with numerical integration at 

Observables: Tr Pk with P=U 1 ...U N

N

N=1

Gauge symmetry

U i→V iU iV i+1
−1



Check for “real” simulation

Without cooling, the SU(3) manifold is unstable

(e.g. μ=0)



With enough cooling, exact results are recovered
Longer chaing requires more cooling 

Turning on the chemical potential...



Smaller cooling           excursions

“Skirt” develops

small skirt gives correct result



Heavy Quark QCD

DetM (μ)=∏x
Det (1+C P x)

2 Det (1+C ' P x
−1)2

P x=∏τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped

S=SW [U μ]+ln DetM (μ)

Studied with reweighting De Pietri, Feo, Seiler, Stamatescu '07



Gauge cooling stabilizes the distribution
 SU(3) manifold instable even at  μ=0



average phase:

〈exp(2 iϕ)〉= 〈det M (μ)
det M (−μ) 〉

Reweigthing is impossible at 1≤μ≤2 CLE works all the way to saturation

Fermion density:

n=
1
N τ

∂ ln Z
∂μ

det (1+C P )2=1+C 3+C Tr P+C 2 Tr P−1 Sign problem is absent at  
  small or large μ



Comparison to reweighting 

64  lattice , β=5.9, α=1, 12  gaugecooling steps

Reweighting errors start to blow up at μ≈1.1



Comparison to reweighting 

64  lattice , μ=0.85, α=1, adaptive step size

Discrepancy of plaquettes at              
   a skirted distribution  develops  

β≤5.6



Nonzero  value  when:
colorless bound states 
formed with P or P'  

1 quark:
 meson with P'

2 quark:
 Barion with P

P' has a peak before P

Large chemical potential: all quark states are filled
   No colorless state can be formed 

P and P' decays again



Conclusions

New algorithm for Complex Langevin of gauge theories:
   Gauge cooling

Tested on exactly solvable toy model
   Polyakov chain

Results for QCD with heavy quarks with chemical potential
   No sign or overlap problem
   CLE works all the way into the saturation region
   Validated with reweighting
   Phase transition line at nonzero chemical potential is visible    


