
Functional RG for few-body systems

Michael C Birse

The University of Manchester

Work in progress, based on: arXiv:0801.2317



Background

Ideas of effective field theory and the renormalisation group
are now well-developed for few-body systems

• rely on separation of scales
• RG can be used to derive power counting
→ classify terms as perturbations around a fixed point

(Wilsonian approach, sharp cut-offs)



Background

Ideas of effective field theory and the renormalisation group
are now well-developed for few-body systems

• rely on separation of scales
• RG can be used to derive power counting
→ classify terms as perturbations around a fixed point

(Wilsonian approach, sharp cut-offs)

Two-body scattering by short-range forces → two fixed points

• trivial: no scattering
• nontrivial: zero-energy bound state (scale free)

[Birse, McGovern and Richardson, hep-ph/9807302]
→ can describe nuclear forces at low energies

or atomic systems with Feshbach resonance tuned to threshold



Perturbations around trivial fixed point

• RG eigenvalues ν = d + 1
d : naive dimension of operator (net power of low-energy scales)

• all irrelevant (vanish like Λν as cut-off Λ → 0)
• “Weinberg” power counting (like chiral pertubation theory)
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• “Weinberg” power counting (like chiral pertubation theory)

Perturbations around nontrivial fixed point

• energy-dependent: ν = d −1
→ fixed point is unstable (one relevant perturbation ∝ Λ−1)
• correspond to terms in effective-range expansion [Bethe, 1949]



Three particles with two-body bound states near zero energy

• noninteger RG eigenvalues for three-body forces
in general less relevant than in naive dimensional analysis
[Griesshammer, nucl-th/0502039; Birse, nucl-th/0509031]

→ low-energy three-body scattering determined by two-body
scattering length
spin-3/2 neutron-deuteron scattering
[Bedaque and van Kolck, nucl-th/9710073]
three identical spin-1/2 atoms
[Diehl, Krahl and Scherer, arXiv:0712:2846]



More interesting: more than two “species” of fermion, or three bosons
(spin-1/2 neutron-deuteron scattering, triton)

• RG flow tends to limit cycle
[Bedaque, Hammer and van Kolck, arXiv:nucl-th/9809025;
Głazek and Wilson, cond-mat/0303297; Barford and Birse,
nucl-th/0406008]

→ Efimov effect (infinite tower of bound states with constant ratio
between energies: ∼ scale-free) [Efimov, 1971]

• leading three-body force is marginal
(fixes starting point on cycle or energy of one bound state)

• two-body data relates three-body scattering length and bound
state energy (Phillips line)

→ one piece of three-body information required to fix low-energy
observables



Many unsuccessful attempts to extend to dense fermionic matter
(nuclear matter or cold trapped atoms)

• problem: no separation of scales
• only consistent EFT so far: weakly repulsive Fermi gas

(reproduces old results of Bishop and others)
[Hammer and Furnstahl, nucl-th/0004043]

Other EFT’s for interacting Fermi systems exist:

• Landau Fermi liquid, Ginsburg-Landau theory
• but parameters have no simple connection to underlying forces

(like ChPT and QCD)
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(reproduces old results of Bishop and others)
[Hammer and Furnstahl, nucl-th/0004043]

Other EFT’s for interacting Fermi systems exist:

• Landau Fermi liquid, Ginsburg-Landau theory
• but parameters have no simple connection to underlying forces

(like ChPT and QCD)

Look for some more heuristic approach

• based on field theory
• can be matched onto EFTs for few-body systems
• input from two-body (and 3- or 4-body) systems in vacuum



Promising approach: functional (“exact”) renormalisation group

• successfully applied to various systems in particle and
condensed-matter physics
[version due to Wetterich, Phys Lett B301 (1993) 90]

• interpolates between bare “classical” action
and full effective action
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Recent applications

• fermionic matter: Birse et al, hep-ph/0406249;
Diehl et al, cond-mat/0701198, cond-mat/0703366;
Krippa, nucl-th/0605071, arXiv:0706.4000

• two-body scattering: Harada et al, nucl-th/0702074
• three-body scattering: Diehl, Krahl and Scherer, arXiv:0712.2846
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Effective action

Nonrelativistic fermions, field ψ(x)

• spin-1/2 (two “species”)
• strong S-wave attraction → represented by pair boson field φ(x)

Ansatz for action in vacuum (ψ̃(q), ψ̃(q): Fourier transforms of fields)

Γ[ψ,ψ†,φ,φ†;k ]

=

Z

d4q

[
φ̃(q)† Π(q0,q;k) φ̃(q)+ ψ̃(q)†

(
q0 −

q2

2M

)
ψ̃(q)

]

−g
1

(2π)2

Z

d4q1 d4q2

(
i

2
φ̃(q1 + q2)

†ψ̃(q2)
Tσ2ψ̃(q1)

−
i

2
ψ̃(q1)

†σ2ψ̃(q2)
†Tφ̃(q1 + q2)

)



Same action as used in studies of fermionic matter, except

• boson self-energy Π(q0,q;k) not truncated in powers of energy,
momentum

• no renormalisation of fermion propagator or coupling constant g
in vacuum (only in superfluid—boson condensate)



Same action as used in studies of fermionic matter, except

• boson self-energy Π(q0,q;k) not truncated in powers of energy,
momentum

• no renormalisation of fermion propagator or coupling constant g
in vacuum (only in superfluid—boson condensate)

No two-body interaction between fermions

• expressed in terms of boson field
• auxiliary field, not dynamical at starting scale K

Π(q0,q;K ) = −u1(K )

• becomes dynamical as fluctuations are included

Π(q0,q;k) = −u1(k)+ Zφ(k)q0 −Zm(k)
q2

4M
+ · · ·



Regulator R(k)

• suppresses contributions of modes with low momenta, |q| . k
(“cut-off”)

→ action evolves with regulator scale k
becomes full effective action as k → 0

Legendre-transformed action Γ (generator for 1PI diagrams) evolves
according to “one-loop” RG equation

∂k Γ = +
i

2
Tr
[
(∂k RF )

(
(Γ(2)−R)−1

)
FF

]

−
i

2
Tr
[
(∂k RB)

(
(Γ(2) −R)−1

)
BB

]

Γ(2): matrix of second derivatives of the action



Convenient choice of regulator for fermions

• add term to single-particle energies

RF (q,k) =
k2 −q2

2M
θ(k −q)

• nonrelativistic (three-momentum) version of Litim’s “optimised”
cut-off [Litim, hep-th/0103195]

• sharp cut-off: no effect on states with q > k
• simple energies for q < k : constant



Boson self-energy and two-body scattering

Evolution given by

∂k Π(P0,P;k) =
δ2

δφ̃(P)δφ̃(P)†
∂k Γ

∣∣∣∣∣
φ̃=0

Vacuum: fermion loops only, energy integral straightforward

→ driving term: derivative with respect to k

δ2

δφ̃(P)δφ̃(P)†
∂k Γ

∣∣∣∣∣
φ̃=0

= g2∂k

Z

d3q

(2π)3

1

EFR(q−P/2,k)+ EFR(q + P/2,k)−P0 − iε

regulated single-particle energy: EFR(q,k) = q2/2M + RF (q,k)



Easy to integrate with respect to k
(solving two-body Schrödinger equation, piecewise)

Π(P0,P;k) = Π(P0,P;0)−
g2M

4π2

{
iπ
√

MP0 −P2/4

−
√

MP0 −P2/4 ln

(
k + P/2+

√
MP0 −P2/4

k + P/2−
√

MP0 −P2/4

)

+
1

k2 −MP0

[
7

3
k3 −4kMP0 −3k2P +

5

2
MP0P −

P3

24

]

+4
√

k2 −2MP0

[
arctan

(
k + P√

k2 −2MP0

)

−arctan

(
k√

k2 −2MP0

)]

−
k2 −P2−MP0

P
ln

[
k2 + kP + P2/2−MP0

k2 −MP0

]}



Fermion-fermion scattering amplitude T (p)

• related to physical boson self-energy (k → 0)

T (p) =
g2

Π(P0,P,0)

• on-shell relative momentum p =
√

MP0 −P2/4
• effective-range expansion

1

T (p)
= −

M

4π

(
−ip−

1

a
+

1

2
rep2 + · · ·

)

• shows that RG generates correct threshold cut (∝ ip)
→ Π(P0,P;k) real for large k

expandable in powers of energy and momentum



Issues:

• Galilean invariance violated at order Q3

and higher (regulator not invariant)
• unphysical nonanalytic term at order Q3

consequence of nonlocalities introduced by sharp cut-off
[Morris, hep-th/9308265]

→ will need to be addressed in matter calculations beyond current
level of truncation

Input at starting scale K → effective two-body potential

1

V (p,P;K )
=

1

g2
Π
(
(p2 + P2/4)/M,P;K

)

=
M

4π2

{
−

4

3
K +

π
a

+

(
8

3K
−

π
2

re

)
p2 −

1

24K 2
P3 + · · ·

}



To study scaling behaviour

• express all dimensioned quantities in units of K
→ define p̂ = p/K , P̂ = P/K

and rescaled potential V̂ = (MK/2π2)V

1

V̂(p̂, P̂;K )
=−

2

3
+

4

3
p̂2 −

1

48
P̂3 + · · ·+K−1 π

2a
−K

π
4

re p̂2 + · · ·

• nontrivial fixed point as found with Wilsonian RG
[Birse et al, hep-ph/9807302]

• perturbations from effective-range expansion
• leading one is unstable (eigenvalue ν = −1)



RG flow
Wilsonian version V̂ = b0 + b2p̂2 + · · ·
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• trivial and nontrivial fixed points
• critical line 1/a = ∞ (zero-energy bound state)
• finite a: flow eventually heads to trivial point



Effective-range expansion

• encoded in coefficients of energy-dependent terms
• example: effective range re in wave-function renormalisation

Zφ(K ) =
∂

∂P0
Π(P0,P;K )

∣∣∣∣
P0=P=0

=
g2M2

4π2

(
8

3K
−

π
2

re

)

(negative if re positive and starting K too large)
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Off-shell behaviour

• controlled by momentum-dependent terms
• (Wilsonian) RG eigenfunctions: “equation of motion” form
• near nontrivial fixed point:

less relevant than corresponding energy-dependent ones
• evidence for new highly unstable fixed points

[Harada, Kubo and Ninomiya, nucl-th/0702074]



More than two particles

Three-body systems Diehl et al, arXiv0712.2846

Four-body systems

• add boson-boson scattering term to action

−
1

2
u2

(
φ†φ
)2

(as in matter calculations)
• describes 2+ 2 part of Faddeev-Yakubowsky equations

(3+ 1 still missing)
• scaling analysis at two-body fixed point

→ stable nontrivial fixed point
[Diehl et al, cond-mat/0701198]



Finite two-body scattering length a

• RG flow never reaches these fixed points
→ either weakly interacting fermions
(energies near breakup threshold)
→ or tightly bound but weakly interacting bosons
(energies near two-body bound-state)
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• RG flow never reaches these fixed points
→ either weakly interacting fermions
(energies near breakup threshold)
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(energies near two-body bound-state)

To reach bosonic EFT

• need to integrate through region where Π(P0,P;k) develops
complicated nonanalytic dependence on P0, k

• no numerical implementation yet
• one suggestion: integrate out fermions first

then match onto purely bosonic theory [Diehl et al ]
but at what scale?



Summary

Functional RG equation (Legendre-transformed version)

• convenient tool for studying two-body systems
• can be solved exactly for two-body scattering

(boson self-energy)
→ reproduces fixed-points and power counting found using

Wilsonian RG
→ extends results to nonzero total momentum
• highlights issues that will need to be addressed in improved

applications to dense fermionic matter
◦ violations of Galilean invariance
◦ nonanalytic terms generated by sharp cut-offs
◦ problems with taking starting scale too high

• first applications to three-, four-body systems


