Correlation functions at finite momentum within the eRG

ERG 2008 -Heidelberg July 4, 2008

Jean-Paul Blaizot, CNRS and ECT*

Outline

- Motivation
- A specific example T_{BEC}
- Summary of the method
- Some results

Work done in collaboration with

- -R. Mendez-Galaín, N. Wschebor
- F. Benítez, H. Chate, B. Delamotte

The 'magic' of the eRG

Exact flow equation (Wetterich's equation)

$$\partial_{\kappa}\Gamma_{\kappa}[\phi] = \frac{1}{2} \int \frac{d^{d}q}{(2\pi)^{d}} \partial_{\kappa}R_{\kappa}(q) G_{\kappa}(q)$$
$$G_{\kappa}(q;\phi)^{-1} = \Gamma_{\kappa}^{(2)}[\phi] + R_{\kappa}(q)$$

Local potential approximation

$$\Gamma_{\kappa}[\phi] = \int d^d x \, \left(\frac{1}{2}(\partial\phi)^2 + V(\phi)\right)$$

Can treat all correlations functions at once (but only at zero external momenta) We shall look for a generalization that allows calculation of Correlation functions at finite exernal momenta

Motivations : many !

Here, focus on a specific example

$$\frac{\Delta T_c}{T_c^0} = \frac{T_c - T_c^0}{T_c^0} = c \, a \, n^{1/3}$$

The coefficient c is obtained from the change in the fluctuations in a classical field theory at criticality.

$$\begin{split} \int \mathrm{d}^{d}x \, \left\{ \frac{1}{2} \left[\nabla \varphi(x) \right]^{2} + \frac{1}{2} r \varphi^{2}(x) + \frac{u}{4!} \left[\varphi^{2}(x) \right]^{2} \right\} \\ c \, \propto \frac{\Delta \langle \varphi_{i}^{2} \rangle}{N u} \end{split}$$

Why is c difficult to calculate?

$$\frac{\Delta \langle \varphi_i^2 \rangle}{N} = \int \frac{d^3 p}{(2\pi)^3} \left(\frac{1}{p^2 + \Sigma(p)} - \frac{1}{p^2} \right)$$

Quest for precision

- Look for an approximation to the eRG
- that yields accurate determination of $\Gamma_{\kappa}^{(2)}(p)$ for all p
- that is simple conceptually, and in its numerical implementation
- that can be systematically improved

summary of the method

Based on two observations

The vertex functions depend weakly on the loop momentum $\Gamma_{\kappa}^{(n)}(p_1, p_2, ..., p_{n-1} + q, p_n - q; \phi) \sim \Gamma_{\kappa}^{(n)}(p_1, p_2, ..., p_{n-1}, p_n; \phi)$

The hierarchy can be closed by exploiting the dependence on the field

$$\Gamma_{\kappa}^{(n+1)}(p_1, p_2, ..., p_n, 0; \phi) = \frac{\partial \Gamma_{\kappa}^{(n)}(p_1, p_2, ..., p_n; \phi)}{\partial \phi}$$

J.-P. B, R. Mendez-Galaín, N. Wschebor (PLB, 2006)

Start at bottom of hierarchy

$$\partial_{\kappa} V_{\kappa}(\phi) = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \partial_{\kappa} R_{\kappa}(q) G_{\kappa}(q)$$
 $G_{\kappa}(q;\phi)^{-1} = q^2 + \frac{\partial^2 V_{\kappa}}{\partial \phi^2} + R_{\kappa}(q)$

(Local potential approximation)

Two-point function

$$\partial_{\kappa} \Gamma_{\kappa}^{(2)}(p,-p;\phi) = \int \frac{d^{d}q}{(2\pi)^{d}} \partial_{\kappa} R_{\kappa}(q^{2}) \ G_{\kappa}^{2}(q^{2};\phi)$$

$$\times \left\{ \left(\frac{\partial \Gamma_{\kappa}^{(2)}(p,-p;\phi)}{\partial \phi} \right)^{2} G_{\kappa}((p+q)^{2};\phi) - \frac{1}{2} \frac{\partial^{2} \Gamma_{\kappa}^{(2)}(p,-p;\phi)}{\partial \phi^{2}} \right\}$$

Etc.

Role of the external momentum

Some improvements

$$\Gamma^{(3)}(p,-p,0;\phi) = \frac{\partial\Gamma^{(2)}(p,-p;\phi)}{\partial\phi}$$

$$\Gamma^{(3)}(p,q,k) = \frac{1}{2}\frac{\partial\Gamma^{(2)}(p,-p)}{\partial\phi} + \frac{1}{2}\frac{\partial\Gamma^{(2)}(q,-q)}{\partial\phi} + \frac{1}{2}\frac{\partial\Gamma^{(2)}(k,-k)}{\partial\phi} - \frac{1}{2}\frac{\partial\Gamma^{(2)}(0,0)}{\partial\phi}$$

Allows one to recover 2-loop accuracy in UV

C as a function of N (2006)

* F. Benítez, J.-P. B., H. Chaté, B. Delamotte, R. Mendez-Galaín, N. Wshcebor

N	lattice	7-loops [14]	this work*	(2006)
1	$1.09 \pm 0.09 [13]$	1.07 ± 0.10	1.15	(1.11)
2	$1.32 \pm 0.02 \ [12]$	1.27 ± 0.10	1.37	(1.30)
	$1.29 \pm 0.05 \ [11]$			
3		1.43 ± 0.11	1.50	(1.45)
4	1.60 ± 0.10 [13]	1.54 ± 0.11	1.63	(1.57)
5			1.75	
10			2.02	(1.91)
50			2.31	
100			2.36	

 $N \rightarrow \infty$, $c \rightarrow 2.33$ (J.-P. B., G. Baym and J. Zinn-Justin (2000))

[13] X. Sun (2000) [12] P. Arnold and G. Moore (2001) [11] V.A. Kashurníkov, N.V. Prokof'ev, B.V. Svístunov (2001) [14] B. Kasteníng (2004)